Sediment provenance. influences on compositional change from source to sink 1st edition rajat mazumd

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Lectures on Digital Design Principles (River Publishers Electronic Materials, Circuits and Devices) 1st Edition

Mazumder

https://ebookmass.com/product/lectures-on-digital-design-principlesriver-publishers-electronic-materials-circuits-and-devices-1stedition-pinaki-mazumder/ ebookmass.com

International Economics: An Introduction to Theory and Policy 2nd Edition Rajat Acharyya

https://ebookmass.com/product/international-economics-an-introductionto-theory-and-policy-2nd-edition-rajat-acharyya/

ebookmass.com

From Linear to Circular Food Supply Chains: Achieving Sustainable Change 1st Edition Stella Despoudi

https://ebookmass.com/product/from-linear-to-circular-food-supplychains-achieving-sustainable-change-1st-edition-stella-despoudi/

ebookmass.com

Social Beings: Core Motives in Social Psychology, 3rd Edition 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/social-beings-core-motives-in-socialpsychology-3rd-edition-3rd-edition-ebook-pdf/

ebookmass.com

John Locke's Christianity Diego Lucci

https://ebookmass.com/product/john-lockes-christianity-diego-lucci/

ebookmass.com

Governing the Anthropocene: Novel Ecosystems, Transformation and Environmental Policy Sarah Clement

https://ebookmass.com/product/governing-the-anthropocene-novelecosystems-transformation-and-environmental-policy-sarah-clement/

ebookmass.com

Social Psychology 12th Edition David G. Myers

https://ebookmass.com/product/social-psychology-12th-edition-david-gmyers/

ebookmass.com

Cardiovascular Engineering: A Protective Approach Shu Q. Liu

https://ebookmass.com/product/cardiovascular-engineering-a-protectiveapproach-shu-q-liu/

ebookmass.com

Blood Gases and Critical Care Testing: Physiology, Clinical Interpretations, and Laboratory Applications 3rd Edition John G. Toffaletti

https://ebookmass.com/product/blood-gases-and-critical-care-testingphysiology-clinical-interpretations-and-laboratory-applications-3rdedition-john-g-toffaletti/

ebookmass.com

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2017ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise, orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-803386-9

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/

Coarsetoverycoarse-grainedscoriaceoussandstone(darkcolored)interbandedwith finesandstone/siltstone (lightcolored)andmudstone(brownish),Mio-PlioceneMisakiFormation,MiuraPeninsula,Japan.Thecoarse sandstonesarenormallygraded(turbidites)andwerederivedfromvolcanoes.The finerclasticsareindigenous backgroundsedimentsformedinadeepmarinesedimentarybasin(2000 3000mdeep)inanarc-arccollision zoneandthushavedifferentsedimentprovenancefromthecoarserclastics.Mostofthesoftsediment deformationstructurespreservedwithinlaterallycontinuousandselectivestratigraphichorizonshavebeen interpretedasseismite.

Publisher: CandiceJanco

AcquisitionEditor: AmyShapiro

EditorialProjectManager: TashaFrank

ProductionProjectManager: PaulPrasadChandramohan

Designer: MathewLimbert

TypesetbyTNQBooksandJournals

F.L.Kessler GoldbachGeoconsultantsO&G, Glattbach,Aschaffenburg,Germany

D.Kratzmann SantaRosaJuniorCollege, Petaluma,CA,UnitedStates

S.Lisco UniversitàdegliStudidiBari,Bari,Italy

D.G.F.Long LaurentianUniversity,Sudbury, ON,Canada

M.Lupulescu NewYorkStateMuseum, Albany,NY,UnitedStates

A.Mandal JadavpurUniversity,Kolkata,India

G.Mastronuzzi UniversitàdegliStudidiBari, Bari,Italy

R.Mazumder CurtinUniversity,Sarawak, Malaysia

W.Mejiama OsakaCityUniversity,Osaka, Japan

M.Moretti UniversitàdegliStudidiBari,Bari, Italy

V.Moretti RegionePuglia ServizioEcologia UfficioProgrammazione,PoliticheEnergetiche, Bari,Italy

S.Mukherjee JadavpurUniversity,Kolkata, India

J.Mukhopadhyay PresidencyUniversity, Kolkata,India;UniversityofJohannesburg, AucklandPark,SouthAfrica

R.Nagarajan CurtinUniversity,Miri, Sarawak,Malaysia

R.Nagendra AnnaUniversity,Chennai,India

A.P.Nutman UniversityofWollongong,Wollongong,NSW,Australia;ChineseAcademyof GeologicalSciences,Beijing,China

R.Offler UniversityofNewcastle,Callaghan, NSW,Australia

M.Pisarska-Jamro _ zy GeologicalInstitute, AdamMickiewiczUniversity,Poznan,Poland

G.Rambolamanana UniversityofAntananarivo, Antananarivo,Madagascar

C.A.Rosiere FederalUniversityofMinas Gerais,BeloHorizonte,Brazil

S.Saha UniversityofDelhi,NewDelhi,India

S.Sanyal JadavpurUniversity,Kolkata,India

S.Sarkar JadavpurUniversity,Kolkata,India

T.Sato INPEXCorporation,Tokyo,Japan

R.Scotti Freelancer,Taranto,Italy

B.Selleck ColgateUniversity,Hamilton,NY, UnitedStates

P.Sengupta JadavpurUniversity,Kolkata, India

G.Shanmugam TheUniversityofTexasat Arlington,Arlington,TX,UnitedStates

H.A.Tawfik TantaUniversity,Tanta,Egypt

M.Tropeano UniversitàdegliStudidiBari, Bari,Italy

Y.Tsutsumi NationalScienceMuseum, Tsukuba,Japan

A.J.(Tom)VanLoon GeocomConsultants, Benitachell,Spain

G.M.Young UniversityofWesternOntario, London,ON,Canada

Continentalsequencesgenerallyrecordastrongin fl uenceofsedimentsourceondepositionalfaciesandprovideexcellentopportunitiesforS2Sanalyses.SatoandChanhaveundertakenadetailedsedimentologicalanaly sisoftheEoceneDuchesneRiverformationof theUintaBasin,Utah,USA,andhavedemonstratedhowdifferentsourceinputscontrol sedimentaryfaciesdevelopmentandsandstonepetrophysicalpropertiesinthesink.Their studyrevealstheimportanceofsedimentp rovenanceanalysisforexplorationof fl uvial sandstonereservoirs.VanLoonetal.haveexaminedaseriesoflensesoflimestonebreccia fromtheLateCambrian(Furongian)ChaomidianFormationinShandongProvince,China andinterpretedtheseasaconsequenceoffra gmentationfollowedbyslidingofabreccia layerfromtheparentlayer(thesource)toitsd epositionalsite(thesink).Longhasexamined chertsofUpperJurassictoLowerCretaceousTa ntalusFormation,insouth-centralYukon, Canada.Hisstudyrevealsthatalargeslabof CacheCreekwasobductedoverstrataofthe Yukon Tananaterrane,andthisnowerodedslabwasthesourceofchertintheTantalus piggybackbasins.

LateNeoproterozoictoearlyMesozoicsed imentarysuccessionoftheTasmanidesof easternAustraliadevelopedinanactiveplate marginsetting.Multidisciplinaryresearch undertakenbyFergussonrevelsprovenanc eswitchingbetweenthedevelopmentsof igneous-dominateddetritusrelatedtoadjoin ingmagmaticarcs(e.g.,theMacquarieArc), andinteractionswithGondwana-derivedclastics.Chiarenzelliutilizeddetritalzirconsin anupperamphibolitefaciesterraintodocumentsedimentprovenanceandbasinevolution, andtoprovideinitialtemporalconstraints onsedimentation.Dasetal.havepresented detritalrecordsofsedimentprovenanceand itsshiftintheMesoproterozoicSinghora Group,centralIndia.Senguptaetal.inferredsedimentaryprovenance,timingofsedimentation,andmetamorphismfromasuiteofmetapelitesfromtheChotanagpurGraniteGneiss Complex,easternIndia,anddiscussedtheirimplicationsforProterozoictectonicsinthe east-centralpartoftheIndianshield. Mukhopadhayaetal.haveundertakenSEM CLfabricanalysisofquartzframeworkpopulatio nfromtheMesoarcheanKeonjharQuartzite fromSinghbhumCraton,easternIndia.These authorshavediscussedimplicationsofprovenanceanalysisfortheuppercontinentalcrustalevolution.CostaandHofmannhave undertakenprovenanceanalysisofdetrital pyriteintheMesoarchaeanWitwatersrand BasinofSouthAfrica,theworld’slargestgolddeposit.Accordingtotheseauthors,detrital pyriteismainlyderivedfromsedimentaryso urcesandsyn-sedimentaryprecipitates. Younghasdiscussedtheiceagesinearthhistory, “puzzling” paleolatitudes,andregional provenanceoftheicesheets.AccordingtoYoung, “theevolutionofmetazoans,climaxing withthe ‘ Cambrianexplosion, ’ mayhavebeenacceleratedbyrapidandradicalenvironmentalchangesassociatedwithglaciations. ” Theworld ’ soldestsedimentarystructures arepreservedindolomiticcarbonates,banded ironformations,volcaniclasticsedimentary rocks,andveryraresandstonesandconglomeratesinthe3.7 3.8billionyearsoldIsua supracrustalbeltinNorthAtlanticcraton(Gr eenland).TheholisticappraisaloftheIsua supracrustalsbyNutmanetal.indicatestheyformed overa100-million-yearperiodin supra-subductionzonesettings

Istronglybelievethatastate-of-theartexpositionofsedimentprovenanceanalyseswill helptoidentifykeyissuesandgapsintheexistingknowledgebaseandinitiatenewresearch tounderstandsourcerockcharacteristics,paleoweathering,paleoclimate,tectonics,and ultimately,theevolutionofcontinentalcrust.

A.Basu

IndianaUniversity,Bloomington,IN,UnitedStates

1.INTRODUCTION

Curiosityaboutoriginisafundamentalhumanurge.Investigatingtheprovenanceofsiliciclasticdebrisandrocksisasubsetofthatcuriosity.HenryCliftonSorbysagaciouslydetermined,morethan150yearsago,onthebasisofopticalpetrography,thatthequartzarenitic

FIGURE2.2 PaleogeographicreconstructionofthedepositionalbasinoftheOldRedSandstoneinsouthern Wales(UK)onthebasisof fieldgeology(mappingprimarysedimentarystructuresandinferringpaleocurrent direction)andtherelativedistributionofmicrocline,orthoclase,andplagioclase.Modifiedafter Allen(1965). 2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL

Forheavyminerals,(1)physicalpropertiessuchascolor,optical,andX-raycrystallography, Ramanspectroscopy,andcathodoluminescence;(2)concentrationsofmajor,minor,andtrace elements;andespecially(3)systematicsofbothstableandradioisotopesincludingabsolute ages,aremoreinuse.

4.INVESTIGATIVETECHNIQUESANDINSIGHTFULRESULTS

4.1OpticalMicroscopy

Opticalmicroscopyhasbeenandcontinuestobethemainstayofprovenanceinvestigationsforidentificationofmineralgrainsassmallas w20 mminsiliciclasticrocks.Objective andreproduciblemodalanalysesofsandstones,however,werehamperedforovera

100yearsbecause “rockfragments” defiedthetraditionaldescriptionof “twoormoremineralsinagrainofsand.” Wouldagrainofrutilatedquartzoragrainofperthitebecountedas arockfragment?Resultsofmodalanalysesarecommonlyplottedintriangulardiagrams ostensiblyforuniformcommunicationwiththethreepolesmarkedasQ,F,andLorRor RF.Threeformal,fairlyrigorous,butdifferentdefinitions(zcountingmethods)havebeen erected(Suttneretal.,1981;Folk,1974;Dickinson,1970;see AppendixI).Modalanalyses bythesethreemethodsofthesamethinsectionofasandstoneplotdifferently(Fig.5in Zuffa, 1985).ThemethodbyDickinson,morepopularlycalledtheGazzi-Dickinson(G-D)method, hasprovedtobethemostusefulandmostwidelyused.Modaldata,collectedbytheG-D methodandplottedintheDickinsondiagram(Fig.2.3),ef ficientlydiscriminatederivation ofsand-sizedsiliciclasticdetritusfromdifferenttectonicprovenance(Dickinson,1985; Dickinsonetal.,1983;DickinsonandSuczek,1979).Allthreemethods,quitewisely,retained theidentificationoftheoriginallabilemineralssuchasfeldsparsas “feldspars” evenifthey werealteredfullytoclaymineralsaslongasthedetritalgrainsretainedtheiroutlinesand othercharacteristicfeaturessuchasghosttwinning.Becauseexperiencedsubjectivejudgment isnecessaryforsuchidentification,automatedanalyticalimageanalysistodeterminethe modalcompositionofsandstonesisstillnotpossible.Butsee Bangs-RooneyandBasu (1994) forapossiblealternative.

4.2ChemicalCompositionsofBulkRocks

Bhatia(1983) and BhatiaandCrook(1986) discoveredthatdifferentsandstonesuitesfrom differenttectonicsettingsinAustralia,plotdifferentlyinCaO-Na2O-K2O,La-Th-Sc,Th-Sc-Zr, Ti/ZrversusLa/Sc,andLa/YversusSc/Crspaces.Theyconductedstatisticalanalysisof

FIGURE2.3 ThebasicQFLdiagramtoplot modalcompositionofsandstones,counted following Gazzi(1966) and Dickinson(1970) Manyhaveassignedtectonicprovenanceoftheir modaldataaccordingly.Adaptedfrom Dickinson(1985)

2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL

FIGURE2.5 Detritalzirconagespectraof(A)OakShale(lateNeoproterzoic?orlateMesoproterozoic?)inthe Cuddapahbasin,India,and(B)KansapatharSandstone(bracketedbetween1000and1400Ma)intheChhattisgarh basin,Indiashowingthatthemainsourceforbothsedimentaryunits some600kmapart arethe w2.5Gagranitic rocksoftwodifferentcratons.Fieldgeologyprecludesanycorrelationoracommonprovenance.After Bickfordetal. (2009,2013).

5.THECRITIQUE

5.1BulkMineralogicalCompositions

Empiricalstudiesled DickinsonandSuczek(1979),Dickinsonetal.(1983),and Bhatiaand Crook(1986) toidentifytectonicprovenancesinNorthAmericaandAustraliainwell-de fined spacesinQFLandLa-Th-Scandadditional/subsidiaryplots.Becausetheirsamplingwas geographicallyandtemporallylimited,itwouldbedoubtfuliftheirresultscouldbetaken asgeneraltemplates.Afewcounter-examplestotheirperceiveduniversalapplicabilityare discussedbelowwithsomeexplanatorynotes.Onemightnotehereinparenthesis,thatstatisticaltestsoftheverydatasetsusedtoerecttheQFLtemplatescanachieve “ success ” upto 85%andnomore(Molinarolietal.,1991).

Climateisasigni ficantfactorincontrollingthecompositionofsandsattheirorigin.The largeorographicbarrieroftheHimalayashasamuchwetterandwarmerclimatetoitssouth thantoitsnorth.EvenasmallorographicbarrierinJamaicahasthesamecontrast(Gupta, 1975).Compositionsofsandsgeneratedonthetwosidesofsuchorographicbarriersareobviouslydifferent,althoughtheyhavebeensourcedfromthesamemountainrange(zorogen). Quartzenrichmentatthesourcebecauseofclimaticeffectshasbeenwelldocumentedin modernsandsandancientsandstones(e.g., Garzantietal.,2015;Mack,1984;Suttneretal., 1981).Long-distancetransportofsandwithmultiplestoragesin floodplains,andreworking onthebeach,mayproduce “quartzsand” irrespectiveofitsultimateprovenance.Incontrast, beachsandsinPapuaafteraveryshorttransportdownasteepslope,eveninthehothumid climate,retainthequartz-poorcharacteroftheirsourceofavolcanicislandarc(Ruxton, 1970).Rivers,longorshort,mayalsocollectdetritusenroute,includingrecycledgrains fromoldertectonicregimes,orcrossothertectonicregimes,whichcompromisetheirQFL signature(e.g., Mack,1984;DickinsonandSuzcek,1979).Actually,compositionsofsome modernsandsareshowntobeaffectedbydifferentdegreesofweathering,systemsoftransport,andenvironmentsofdepositionsuf ficientlyenoughtodefyQFL-typeexpectations(e.g., Garzanti,2015;Garzantietal.,2015;andtheextensivereferencestherein).Diageneticprocessesdestroylabilegrainsinsandstonestodifferentdegreesandintheextrememaybe flushedawaybygroundwater flow,leavingsecondaryporesandproducingdiagenetic quartzarenitesthat,ofcourse,donotretainaQFLmemoryoftheirtectonicprovenance (McBride,1987).Diagenesisalsoproducespseudomatrixoutoflabilegrains,especiallyfeldsparandargillaceousgrains(Dickinson,1970;Sorby,1859).Ifnotconvertedfullytopseudomatrix,precursors(e.g.,feldspars,volcaniclithicfragments,schist,shale)ofsomeofthe argillaceousgrainsmaybeidentifiedandcountedassuch.Butthepreservationisvariable. Hence, Helleretal.(1985) recommendedthatasandstonewith >20%pseudomatrixshould notbeincludedintheQFL-typeprovenanceanalysis.

InDickinson’scompilationofthepetrographyofPhanerozoicNorthAmericansandstones,carbonaticsandgrainsareinsigni ficantandneglected.Theyare,however,quiteprofuseinsandstonesderivedfromMediterraneanorogens(Zuffa,1980).Whereasdisregarding suchsandstonesinQFL-typeprovenanceanalysis(Dickinson,1985,p.336)wouldnotnecessarilyinvalidatetectonicinferences,itwouldleaveouttheprovenanceinformationcontained inthecarbonaticgrains,especiallythosewithfossils.Theycouldalsodistortthemodaldata notenvisagedintheQFLmodel.Additionally,QFL-typemodaldatacouldbedistortedifa

fewsandstoneshadmixedheritagewithrecycledgrains,andhadsuffereddifferentialweatheringunderdifferentclimaticconditionsthatwouldproduceerraticquartzconcentrations (Mack,1984).

Basalticfragmentsandcalcicplagioclasecomenotonlyfromrocksinmagmaticarcsbut alsofromlargeintraplateigneousprovinces(seemapinFig.1of Xia,2014)thatoccurin “continentalblock” tectonicprovenance.Asomewhatunnoticedpapershowshowthe QFLcompositionsofsandsderivedprincipallyfromthelargest floodbasaltofthepresent time theDeccanTrapsinIndia plotprimarilyinthemagmaticarcprovenance fieldand alsoinother fields(inresponsetoquartzenrichmentbecauseofweatheringunderhothumid tropicalclimate)intheQFLdiagram(seeFigs.2and3of Garzanti,2015,andFig.3of Saha etal.,2010).Theinterpretativeerroris potentially enormouswhenProterozoicandArchean (meta-)sandstonesplottinginthemagmaticarc fieldsareusedasindicatorsofconvergent boundariesofthepast.Notrecognizing “anorogenicmagmatic” fieldsassubstantialsources ofvolcanicfragmentsinsiliciclasticsedimentaryrocksisadeficiencyoftheDickinsonian QFL-typeprovenanceanalysis(Garzanti,2015).Sedimentaryrocksandtheirmetamorphic equivalentsareabundantinorogens,especiallyinPhanerozoicorogens.Fragmentsofsuch rocksarepronetobeargillaceousorrenderedargillaceousthroughweatheringanddiagenesis.Thus,countedwiththeGDmethod,suchgrainswouldplotattheL-pole(Fig.2.3)and indicatetheirrecycledorogenprovenance.However,upliftedcontinentalblocksinmany partsoftheworldcradlemany flat-lyingundeformedandunmetamorphosedsedimentary rockssuchasinmanyoftheProterozoicandtheLatePaleozoic MesozoicbasinsintheerstwhileGondwana-Laurentiacontinents.Sedimentarylithicfragmentsderivedfromthese basins,plottingattheL-pole,wouldstronglydistortinterpretationsoftectonicprovenance.

Many,manymonomineralicquartzgrainsinsiliciclasticsediments,thiswritercontends, arerecycledfragmentsofsedimentaryrocks.Detritalquartzgrainswithovergrowthsare morecommonlyseeninmodernsedimentsthaninancientsandstoneswhere,inrarecases, abradedovergrowthsarepreserved(Basuetal.,2013;Critellietal.,2003;Garzantietal., 2003).Suchrarequartzgrainsarerecycledsedimentaryrockfragments;butmostothers remainunidentifiedassuch.QFL-typeanalysesmisstherelevantprovenanceinformation. Asofnow,however,wehavenootherpetrographicmeanstodistinguish first-cyclequartz fromrecycledquartz.

5.2BulkChemicalCompositions

Chemicalcompositionsofsiliciclasticsedimentaryrockshavetheadvantageofrepresentingthebulksedimentandnotonlythesand-sizedfractionasinthecaseofpetrographicanalysesalthoughtheylackthemineralogicalinformation,i.e.,anydirectknowledgeofthe hostsofthechemicalcomponents.Forexample,quartzorcalcitecementedquartzarenites willshowanomalousenrichmentofSiO2 orCaOandassociatedtraceelementsoverwhat wasdepositedoriginally.Likewise,adiageneticquartzarenitewithsecondaryporesafter feldsparwillshowanomalouslydepletedAl2O3,Na2O,K2O,andassociatedtraceelements. Barringsuchextremes,chemicalcompositionsofthemuddypartsofsandstonesaddtothe informationaboutthediageneticproductsoflabiledetritalgrains,whicharenowpreserved as “matrix” sensulatu.Ifwemakeanassumption,asveryeloquentlyandboldlystatedby Ali etal.(2014),thatweatheringanddiageneticprocessesbehavelikeaclosedsystemwith

7.THEFUTURE

Forcenturies,bothcuriosityandsocietalneedshaveinspiredbasicandappliedscienti fic research.Searchfortheoriginalsourcerocksorevenintermediate “stop-overs ” ofeconomic placerdeposits,suchasofdiamondandgold,arewell-knowntime-honoredexamples(e.g., Oppenheim,1943;Atkin,1904).Thereisnowaconcentratedeffortinthefossilfuelindustry topredictthepetrophysicalpropertiesofsubsurfacesiliciclasticrocksonthebasisoftheir inferredprovenanceandtheestimatedextentoftheirdiagenesis(e.g., HeinzandKairo, 2007).Suchstudiesandpredictivemodelswillgrowasneedsforfossilfuelincrease.Contemporaryclimaticchangeisareality.Localandglobalpaleoclimatesofthelasthundredsto thousandsofyears,asre flectedinmodernalluvialtodeep-seasediments(e.g., Asahara etal.,2012;Paletal.,2012;Luglietal.,2007),arecluestopredictingtheimmediatefuture. Becausetheresultsrequirecorrectionsandnormalizationforthesourcerockinput,provenancestudiesofmodernsedimentswillexpandtodecoupletectonicandclimaticsignatures.

Thecurrenttrendsinmeasurementsanddefiningoriginalcharacteristicsofdetritalminerals,which survive inthesedimentarymilieu,arelikelytogainprominenceinthenext 20yearsorso(cf. Suttner,1989).Determinationofabsoluteagesofcrystallizationofindividualmineralgrainsandtheovergrowthsonthem,forexample,zircon,monazite,rutile,feldspar,andothers,arelikelytoincreasemanifold.Ifsomeofthemineralgrainsarerecycled (e.g.,zircon,rutile),thentheirhistories,especiallytherecordsofpostdepositionalheating events,wouldhelpin “purifying” theprocessofidentifyingrelevantprovenance.Thedistributionsoftraceelementsandstableisotopes(e.g.,O,S,Si,Ti,Cr,Fe,Ni)lockedupinminerals(e.g.,zircon,quartz,rutile,pyroxene,etc.)arecommonlyindicativeoftheenvironments oftheircrystallization.Insituanalysesforsuchclues(e.g., Hofmannetal.,2009;Götzeetal., 2004)arelikelytobecomecommoninthenextdecadeortwo.

Thuswefollow Mackie(1897) inouroptimisticyetcautiousreasoning,andsay: “Thedust oftheoldlandshasbeenbuiltintothenew.Wehavetakenthesetinyfragments witnesses ofavenerablepast andaskedthemtotellussomethingoftheancientworldwhichthey beheld,” andconfess,withhumility,thatprovenanceremainsthemostdifficultproblem forasedimentarygeologisttosolve(Pettijohnetal.,1972).

8.CONCLUSIONS

Sixgiantconceptualleapsinthelast170yearsconstitutethefoundationsofcontemporary provenancestudiesofsiliciclasticsedimentsandsedimentaryrocks.Theyhavebeenevaluated,constrained,modified,andcontestedovertheyears.Thesenewconceptshavesurvived thetestsoftimeandarelikelyto “goonforever ” (Tennysonisgratefullyacknowledged). However,therearecaveats.

Therevolutionarymineralogical(QFL)approachby Dickinson(1985) followedupbythe chemicalapproach(elementalratios)erectedby BhatiaandCrook(1986),todeterminethe tectonicprovenanceofsiliciclasticrocks,andthusunravelthegeologicalhistoriesofdepositionalbasins,orogens,andplatemovement,donotnecessarilyleadtouniquesolutions. Neglectingcarbonaticdetritus,ignoringtheextentofrecycledoriginofdetritalquartz, ignoring floodbasaltsaspartsofupliftedcontinental/cratonicblocks,ignoringthediversity

2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL

Dickinson,W.R.,1970.Interpretingdetritalmodesofgraywackesandarkose.JournalofSedimentaryPetrology40, 695 707.

Dickinson,W.R.,1980.Platetectonicsandkeypetrologicassociations.In:Strangway,D.W.(Ed.),TheContinental CrustandItsMineralDeposits.GeologicalSocietyofCanadaSpecialPaper20,pp.341 360.

Dickinson,W.R.,1985.Interpretingprovenancerelationsfromdetritalmodesofsandstones.In:Zuffa,G.G.(Ed.), ProvenanceofArenites.NATOASIC-148,pp.333 361.

Dill,H.,Klosa,D.,2010.Heavymineral-basedprovenanceanalysisofMesozoiccontinental-marinesedimentsatthe westernedgeoftheBohemianMassif,SEGermany:withspecialreferencetoFe-Timineralsandthecrystal morphologyofheavyminerals.InternationalJournalofEarthSciences1 17.OnlineFirst.

Fedo,C.M.,Sircombe,K.N.,Rainbird,R.H.,2003.Detritalzirconanalysisofthesedimentaryrecord.Reviewsin MineralogyandGeochemistry53,277 303.

Fitches,W.R.,Muir,R.J.,Maltman,A.J.,Bentley,M.R.,1990.IstheColonsay-westIslayblockofSWScotlandan allochthonousterrane?evidencefromDalradiantilliteclasts.JournalofGeologicalSociety(London)147,417 420. Folk,R.L.,1974.PetrologyofSedimentaryRocks.Hemphill’s,p.184.

Fornelli,A.,Micheletti,F.,Langone,A.,Perrone,V.,2015.FirstU-PbdetritalzirconagesfromNumidiansandstones insouthernApennines(Italy):EvidencesofAfricanprovenance.SedimentaryGeology320,19 29.

Fosdick,J.C.,Romans,B.W.,Fildani,A.,Bernhardt,A.,Calderón,M.,Graham,S.A.,2011.Kinematicevolutionofthe Patagonianretroarcfold-and-thrustbeltandMagallanesforelandbasin,ChileandArgentina,51 300 S.Geological SocietyofAmericaBulletin123,1679 1698.

Garzanti,E.,Andò,S.,Vezzoli,G.,Dell’era,D.,2003.Fromriftedmarginstoforelandbasins:investigatingprovenanceandsedimentdispersalacrossdesertArabia(Oman,U.A.E.).JournalofSedimentaryResearch73,572 588.

Garzanti,E.,Andò,S.,Padoan,M.,Vezzoli,G.,ElKammar,A.,2015.ThemodernNilesedimentsystem:processes andproducts.QuaternaryScienceReviews130,9 56.

Garzanti,E.,2015.Fromstatictodynamicprovenanceanalysis:sedimentarypetrologyupgraded.Sedimentary Geology130,9 56. http://dx.doi.org/10.1016/j.sedgeo.2015.07.010

Gazzi,P.,1966.Learenariedel flyschsopracretaceodell’Appenninomodense:correlazioniconil flyschdiMinghidoro.MineralogicaetPetrograficaActa12,69 97.

Götze,J.,Plötze,M.,Graupner,T.,Hallbauer,D.K.,Bray,C.J.,2004.Traceelementincorporationintoquartz:acombinedstudybyICP-MS,electronspinresonance,cathodoluminescence,capillaryionanalysis,andgaschromatography.GeochimicaetCosmochimicaActa68,3741 3759.

Götze,J.,2009.Chemistry,texturesandphysicalpropertiesofquartz-geologicalinterpretationandtechnicalapplication.MineralogicalMagazine73,645 671.

Grigsby,J.D.,1990.Detritalmagnetiteasaprovenanceindicator.JournalofSedimentaryPetrology60,940 951.

Grimes,C.B.,John,B.E.,Kelemen,P.B.,Mazdab,F.K.,Wooden,J.L.,Cheadle,M.J.,Hanghøj,K.,Schwartz,J.J.,2007. Traceelementchemistryofzirconsfromoceaniccrust:amethodfordistinguishingdetritalzirconprovenance. Geology35,643 646.

Groves,A.W.,1931.TheunroofingoftheDartmoorGraniteandthedistributionofitsdetritusinthesedimentsof southernEngland.QuarterlyJournaloftheGeologicalSociety87,62 96.

Gupta,A.,1975.StreamcharacteristicsineasternJamaica,anenvironmentofseasonal flowandlarge floods. AmericanJournalofScience275,825 847.

Heins,W.A.,Kairo,S.,2007.Predictingsandcharacterwithintegratedgeneticanalysis.In:Arribas,J.,Critelli,S., Johnsson,M.J.(Eds.),SedimentaryProvenanceandPetrogenesis:PerspectivesfromPetrographyandGeochemistry.GeologicalSocietyofAmerica,SpecialPaper,420,345 379.

Heller,P.,Peterman,Z.E.,O’Neil,J.R.,Shafiqullah,M.,1985.IsotopicprovenanceofsandstonesfromtheEocenetyee formation,Oregoncoastrange.BulletinoftheGeologicalSocietyofAmerica96,770 780.

Hietpas,J.,Samson,S.,Moecher,D.,Schmitt,A.K.,2010.Recoveringtectoniceventsfromthesedimentaryrecord: detritalmonaziteplaysinhigh fidelity.Geology38,167 170.

Hofmann,A.E.,Valley,J.W.,Watson,E.B.,Cavosie,A.J.,Eiler,J.M.,2009.Sub-micronscaledistributionsoftrace elementsinzircon.ContributionstoMineralogyandPetrology158,317 335.

Ingersoll,R.V.,1990.Actualisticsandstonepetrofacies:discriminatingmodernandancientsourcerocks.Geology18, 733 736.

Johnson,M.H.,1872.Sourcesofsandstone.Nature6,26.

Kröner,A.,Sengor,A.M.C.,1990.ArcheanandProterozoicancestryinlatePrecambriantoearlyPaleozoiccrustal elementsofsouthernTurkeyasrevealedbysingle-zircondating.Geology18,1186 1190.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Sediment provenance. influences on compositional change from source to sink 1st edition rajat mazumd by Education Libraries - Issuu