John Locke's Christianity Diego Lucci
https://ebookmass.com/product/john-lockes-christianity-diego-lucci/
ebookmass.com
Governing the Anthropocene: Novel Ecosystems, Transformation and Environmental Policy Sarah Clement
https://ebookmass.com/product/governing-the-anthropocene-novelecosystems-transformation-and-environmental-policy-sarah-clement/
ebookmass.com
Social Psychology 12th Edition David G. Myers
https://ebookmass.com/product/social-psychology-12th-edition-david-gmyers/
ebookmass.com
Cardiovascular Engineering: A Protective Approach Shu Q. Liu
https://ebookmass.com/product/cardiovascular-engineering-a-protectiveapproach-shu-q-liu/
ebookmass.com
Blood Gases and Critical Care Testing: Physiology, Clinical Interpretations, and Laboratory Applications 3rd Edition John G. Toffaletti
https://ebookmass.com/product/blood-gases-and-critical-care-testingphysiology-clinical-interpretations-and-laboratory-applications-3rdedition-john-g-toffaletti/
ebookmass.com
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright © 2017ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise, orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-803386-9
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/
Coarsetoverycoarse-grainedscoriaceoussandstone(darkcolored)interbandedwith finesandstone/siltstone (lightcolored)andmudstone(brownish),Mio-PlioceneMisakiFormation,MiuraPeninsula,Japan.Thecoarse sandstonesarenormallygraded(turbidites)andwerederivedfromvolcanoes.The finerclasticsareindigenous backgroundsedimentsformedinadeepmarinesedimentarybasin(2000 3000mdeep)inanarc-arccollision zoneandthushavedifferentsedimentprovenancefromthecoarserclastics.Mostofthesoftsediment deformationstructurespreservedwithinlaterallycontinuousandselectivestratigraphichorizonshavebeen interpretedasseismite.
Publisher: CandiceJanco
AcquisitionEditor: AmyShapiro
EditorialProjectManager: TashaFrank
ProductionProjectManager: PaulPrasadChandramohan
Designer: MathewLimbert
TypesetbyTNQBooksandJournals
F.L.Kessler GoldbachGeoconsultantsO&G, Glattbach,Aschaffenburg,Germany
D.Kratzmann SantaRosaJuniorCollege, Petaluma,CA,UnitedStates
S.Lisco UniversitàdegliStudidiBari,Bari,Italy
D.G.F.Long LaurentianUniversity,Sudbury, ON,Canada
M.Lupulescu NewYorkStateMuseum, Albany,NY,UnitedStates
A.Mandal JadavpurUniversity,Kolkata,India
G.Mastronuzzi UniversitàdegliStudidiBari, Bari,Italy
R.Mazumder CurtinUniversity,Sarawak, Malaysia
W.Mejiama OsakaCityUniversity,Osaka, Japan
M.Moretti UniversitàdegliStudidiBari,Bari, Italy
V.Moretti RegionePuglia ServizioEcologia UfficioProgrammazione,PoliticheEnergetiche, Bari,Italy
S.Mukherjee JadavpurUniversity,Kolkata, India
J.Mukhopadhyay PresidencyUniversity, Kolkata,India;UniversityofJohannesburg, AucklandPark,SouthAfrica
R.Nagarajan CurtinUniversity,Miri, Sarawak,Malaysia
R.Nagendra AnnaUniversity,Chennai,India
A.P.Nutman UniversityofWollongong,Wollongong,NSW,Australia;ChineseAcademyof GeologicalSciences,Beijing,China
R.Offler UniversityofNewcastle,Callaghan, NSW,Australia
M.Pisarska-Jamro _ zy GeologicalInstitute, AdamMickiewiczUniversity,Poznan,Poland
G.Rambolamanana UniversityofAntananarivo, Antananarivo,Madagascar
C.A.Rosiere FederalUniversityofMinas Gerais,BeloHorizonte,Brazil
S.Saha UniversityofDelhi,NewDelhi,India
S.Sanyal JadavpurUniversity,Kolkata,India
S.Sarkar JadavpurUniversity,Kolkata,India
T.Sato INPEXCorporation,Tokyo,Japan
R.Scotti Freelancer,Taranto,Italy
B.Selleck ColgateUniversity,Hamilton,NY, UnitedStates
P.Sengupta JadavpurUniversity,Kolkata, India
G.Shanmugam TheUniversityofTexasat Arlington,Arlington,TX,UnitedStates
H.A.Tawfik TantaUniversity,Tanta,Egypt
M.Tropeano UniversitàdegliStudidiBari, Bari,Italy
Y.Tsutsumi NationalScienceMuseum, Tsukuba,Japan
A.J.(Tom)VanLoon GeocomConsultants, Benitachell,Spain
G.M.Young UniversityofWesternOntario, London,ON,Canada
Continentalsequencesgenerallyrecordastrongin fl uenceofsedimentsourceondepositionalfaciesandprovideexcellentopportunitiesforS2Sanalyses.SatoandChanhaveundertakenadetailedsedimentologicalanaly sisoftheEoceneDuchesneRiverformationof theUintaBasin,Utah,USA,andhavedemonstratedhowdifferentsourceinputscontrol sedimentaryfaciesdevelopmentandsandstonepetrophysicalpropertiesinthesink.Their studyrevealstheimportanceofsedimentp rovenanceanalysisforexplorationof fl uvial sandstonereservoirs.VanLoonetal.haveexaminedaseriesoflensesoflimestonebreccia fromtheLateCambrian(Furongian)ChaomidianFormationinShandongProvince,China andinterpretedtheseasaconsequenceoffra gmentationfollowedbyslidingofabreccia layerfromtheparentlayer(thesource)toitsd epositionalsite(thesink).Longhasexamined chertsofUpperJurassictoLowerCretaceousTa ntalusFormation,insouth-centralYukon, Canada.Hisstudyrevealsthatalargeslabof CacheCreekwasobductedoverstrataofthe Yukon Tananaterrane,andthisnowerodedslabwasthesourceofchertintheTantalus piggybackbasins.
LateNeoproterozoictoearlyMesozoicsed imentarysuccessionoftheTasmanidesof easternAustraliadevelopedinanactiveplate marginsetting.Multidisciplinaryresearch undertakenbyFergussonrevelsprovenanc eswitchingbetweenthedevelopmentsof igneous-dominateddetritusrelatedtoadjoin ingmagmaticarcs(e.g.,theMacquarieArc), andinteractionswithGondwana-derivedclastics.Chiarenzelliutilizeddetritalzirconsin anupperamphibolitefaciesterraintodocumentsedimentprovenanceandbasinevolution, andtoprovideinitialtemporalconstraints onsedimentation.Dasetal.havepresented detritalrecordsofsedimentprovenanceand itsshiftintheMesoproterozoicSinghora Group,centralIndia.Senguptaetal.inferredsedimentaryprovenance,timingofsedimentation,andmetamorphismfromasuiteofmetapelitesfromtheChotanagpurGraniteGneiss Complex,easternIndia,anddiscussedtheirimplicationsforProterozoictectonicsinthe east-centralpartoftheIndianshield. Mukhopadhayaetal.haveundertakenSEM CLfabricanalysisofquartzframeworkpopulatio nfromtheMesoarcheanKeonjharQuartzite fromSinghbhumCraton,easternIndia.These authorshavediscussedimplicationsofprovenanceanalysisfortheuppercontinentalcrustalevolution.CostaandHofmannhave undertakenprovenanceanalysisofdetrital pyriteintheMesoarchaeanWitwatersrand BasinofSouthAfrica,theworld’slargestgolddeposit.Accordingtotheseauthors,detrital pyriteismainlyderivedfromsedimentaryso urcesandsyn-sedimentaryprecipitates. Younghasdiscussedtheiceagesinearthhistory, “puzzling” paleolatitudes,andregional provenanceoftheicesheets.AccordingtoYoung, “theevolutionofmetazoans,climaxing withthe ‘ Cambrianexplosion, ’ mayhavebeenacceleratedbyrapidandradicalenvironmentalchangesassociatedwithglaciations. ” Theworld ’ soldestsedimentarystructures arepreservedindolomiticcarbonates,banded ironformations,volcaniclasticsedimentary rocks,andveryraresandstonesandconglomeratesinthe3.7 3.8billionyearsoldIsua supracrustalbeltinNorthAtlanticcraton(Gr eenland).TheholisticappraisaloftheIsua supracrustalsbyNutmanetal.indicatestheyformed overa100-million-yearperiodin supra-subductionzonesettings
Istronglybelievethatastate-of-theartexpositionofsedimentprovenanceanalyseswill helptoidentifykeyissuesandgapsintheexistingknowledgebaseandinitiatenewresearch tounderstandsourcerockcharacteristics,paleoweathering,paleoclimate,tectonics,and ultimately,theevolutionofcontinentalcrust.
A.Basu
IndianaUniversity,Bloomington,IN,UnitedStates
1.INTRODUCTION
Curiosityaboutoriginisafundamentalhumanurge.Investigatingtheprovenanceofsiliciclasticdebrisandrocksisasubsetofthatcuriosity.HenryCliftonSorbysagaciouslydetermined,morethan150yearsago,onthebasisofopticalpetrography,thatthequartzarenitic
FIGURE2.2 PaleogeographicreconstructionofthedepositionalbasinoftheOldRedSandstoneinsouthern Wales(UK)onthebasisof fieldgeology(mappingprimarysedimentarystructuresandinferringpaleocurrent direction)andtherelativedistributionofmicrocline,orthoclase,andplagioclase.Modifiedafter Allen(1965). 2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL
Forheavyminerals,(1)physicalpropertiessuchascolor,optical,andX-raycrystallography, Ramanspectroscopy,andcathodoluminescence;(2)concentrationsofmajor,minor,andtrace elements;andespecially(3)systematicsofbothstableandradioisotopesincludingabsolute ages,aremoreinuse.
4.INVESTIGATIVETECHNIQUESANDINSIGHTFULRESULTS
4.1OpticalMicroscopy
Opticalmicroscopyhasbeenandcontinuestobethemainstayofprovenanceinvestigationsforidentificationofmineralgrainsassmallas w20 mminsiliciclasticrocks.Objective andreproduciblemodalanalysesofsandstones,however,werehamperedforovera
100yearsbecause “rockfragments” defiedthetraditionaldescriptionof “twoormoremineralsinagrainofsand.” Wouldagrainofrutilatedquartzoragrainofperthitebecountedas arockfragment?Resultsofmodalanalysesarecommonlyplottedintriangulardiagrams ostensiblyforuniformcommunicationwiththethreepolesmarkedasQ,F,andLorRor RF.Threeformal,fairlyrigorous,butdifferentdefinitions(zcountingmethods)havebeen erected(Suttneretal.,1981;Folk,1974;Dickinson,1970;see AppendixI).Modalanalyses bythesethreemethodsofthesamethinsectionofasandstoneplotdifferently(Fig.5in Zuffa, 1985).ThemethodbyDickinson,morepopularlycalledtheGazzi-Dickinson(G-D)method, hasprovedtobethemostusefulandmostwidelyused.Modaldata,collectedbytheG-D methodandplottedintheDickinsondiagram(Fig.2.3),ef ficientlydiscriminatederivation ofsand-sizedsiliciclasticdetritusfromdifferenttectonicprovenance(Dickinson,1985; Dickinsonetal.,1983;DickinsonandSuczek,1979).Allthreemethods,quitewisely,retained theidentificationoftheoriginallabilemineralssuchasfeldsparsas “feldspars” evenifthey werealteredfullytoclaymineralsaslongasthedetritalgrainsretainedtheiroutlinesand othercharacteristicfeaturessuchasghosttwinning.Becauseexperiencedsubjectivejudgment isnecessaryforsuchidentification,automatedanalyticalimageanalysistodeterminethe modalcompositionofsandstonesisstillnotpossible.Butsee Bangs-RooneyandBasu (1994) forapossiblealternative.
4.2ChemicalCompositionsofBulkRocks
Bhatia(1983) and BhatiaandCrook(1986) discoveredthatdifferentsandstonesuitesfrom differenttectonicsettingsinAustralia,plotdifferentlyinCaO-Na2O-K2O,La-Th-Sc,Th-Sc-Zr, Ti/ZrversusLa/Sc,andLa/YversusSc/Crspaces.Theyconductedstatisticalanalysisof
FIGURE2.3 ThebasicQFLdiagramtoplot modalcompositionofsandstones,counted following Gazzi(1966) and Dickinson(1970) Manyhaveassignedtectonicprovenanceoftheir modaldataaccordingly.Adaptedfrom Dickinson(1985)
2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL
FIGURE2.5 Detritalzirconagespectraof(A)OakShale(lateNeoproterzoic?orlateMesoproterozoic?)inthe Cuddapahbasin,India,and(B)KansapatharSandstone(bracketedbetween1000and1400Ma)intheChhattisgarh basin,Indiashowingthatthemainsourceforbothsedimentaryunits some600kmapart arethe w2.5Gagranitic rocksoftwodifferentcratons.Fieldgeologyprecludesanycorrelationoracommonprovenance.After Bickfordetal. (2009,2013).
5.THECRITIQUE
5.1BulkMineralogicalCompositions
Empiricalstudiesled DickinsonandSuczek(1979),Dickinsonetal.(1983),and Bhatiaand Crook(1986) toidentifytectonicprovenancesinNorthAmericaandAustraliainwell-de fined spacesinQFLandLa-Th-Scandadditional/subsidiaryplots.Becausetheirsamplingwas geographicallyandtemporallylimited,itwouldbedoubtfuliftheirresultscouldbetaken asgeneraltemplates.Afewcounter-examplestotheirperceiveduniversalapplicabilityare discussedbelowwithsomeexplanatorynotes.Onemightnotehereinparenthesis,thatstatisticaltestsoftheverydatasetsusedtoerecttheQFLtemplatescanachieve “ success ” upto 85%andnomore(Molinarolietal.,1991).
Climateisasigni ficantfactorincontrollingthecompositionofsandsattheirorigin.The largeorographicbarrieroftheHimalayashasamuchwetterandwarmerclimatetoitssouth thantoitsnorth.EvenasmallorographicbarrierinJamaicahasthesamecontrast(Gupta, 1975).Compositionsofsandsgeneratedonthetwosidesofsuchorographicbarriersareobviouslydifferent,althoughtheyhavebeensourcedfromthesamemountainrange(zorogen). Quartzenrichmentatthesourcebecauseofclimaticeffectshasbeenwelldocumentedin modernsandsandancientsandstones(e.g., Garzantietal.,2015;Mack,1984;Suttneretal., 1981).Long-distancetransportofsandwithmultiplestoragesin floodplains,andreworking onthebeach,mayproduce “quartzsand” irrespectiveofitsultimateprovenance.Incontrast, beachsandsinPapuaafteraveryshorttransportdownasteepslope,eveninthehothumid climate,retainthequartz-poorcharacteroftheirsourceofavolcanicislandarc(Ruxton, 1970).Rivers,longorshort,mayalsocollectdetritusenroute,includingrecycledgrains fromoldertectonicregimes,orcrossothertectonicregimes,whichcompromisetheirQFL signature(e.g., Mack,1984;DickinsonandSuzcek,1979).Actually,compositionsofsome modernsandsareshowntobeaffectedbydifferentdegreesofweathering,systemsoftransport,andenvironmentsofdepositionsuf ficientlyenoughtodefyQFL-typeexpectations(e.g., Garzanti,2015;Garzantietal.,2015;andtheextensivereferencestherein).Diageneticprocessesdestroylabilegrainsinsandstonestodifferentdegreesandintheextrememaybe flushedawaybygroundwater flow,leavingsecondaryporesandproducingdiagenetic quartzarenitesthat,ofcourse,donotretainaQFLmemoryoftheirtectonicprovenance (McBride,1987).Diagenesisalsoproducespseudomatrixoutoflabilegrains,especiallyfeldsparandargillaceousgrains(Dickinson,1970;Sorby,1859).Ifnotconvertedfullytopseudomatrix,precursors(e.g.,feldspars,volcaniclithicfragments,schist,shale)ofsomeofthe argillaceousgrainsmaybeidentifiedandcountedassuch.Butthepreservationisvariable. Hence, Helleretal.(1985) recommendedthatasandstonewith >20%pseudomatrixshould notbeincludedintheQFL-typeprovenanceanalysis.
InDickinson’scompilationofthepetrographyofPhanerozoicNorthAmericansandstones,carbonaticsandgrainsareinsigni ficantandneglected.Theyare,however,quiteprofuseinsandstonesderivedfromMediterraneanorogens(Zuffa,1980).Whereasdisregarding suchsandstonesinQFL-typeprovenanceanalysis(Dickinson,1985,p.336)wouldnotnecessarilyinvalidatetectonicinferences,itwouldleaveouttheprovenanceinformationcontained inthecarbonaticgrains,especiallythosewithfossils.Theycouldalsodistortthemodaldata notenvisagedintheQFLmodel.Additionally,QFL-typemodaldatacouldbedistortedifa
fewsandstoneshadmixedheritagewithrecycledgrains,andhadsuffereddifferentialweatheringunderdifferentclimaticconditionsthatwouldproduceerraticquartzconcentrations (Mack,1984).
Basalticfragmentsandcalcicplagioclasecomenotonlyfromrocksinmagmaticarcsbut alsofromlargeintraplateigneousprovinces(seemapinFig.1of Xia,2014)thatoccurin “continentalblock” tectonicprovenance.Asomewhatunnoticedpapershowshowthe QFLcompositionsofsandsderivedprincipallyfromthelargest floodbasaltofthepresent time theDeccanTrapsinIndia plotprimarilyinthemagmaticarcprovenance fieldand alsoinother fields(inresponsetoquartzenrichmentbecauseofweatheringunderhothumid tropicalclimate)intheQFLdiagram(seeFigs.2and3of Garzanti,2015,andFig.3of Saha etal.,2010).Theinterpretativeerroris potentially enormouswhenProterozoicandArchean (meta-)sandstonesplottinginthemagmaticarc fieldsareusedasindicatorsofconvergent boundariesofthepast.Notrecognizing “anorogenicmagmatic” fieldsassubstantialsources ofvolcanicfragmentsinsiliciclasticsedimentaryrocksisadeficiencyoftheDickinsonian QFL-typeprovenanceanalysis(Garzanti,2015).Sedimentaryrocksandtheirmetamorphic equivalentsareabundantinorogens,especiallyinPhanerozoicorogens.Fragmentsofsuch rocksarepronetobeargillaceousorrenderedargillaceousthroughweatheringanddiagenesis.Thus,countedwiththeGDmethod,suchgrainswouldplotattheL-pole(Fig.2.3)and indicatetheirrecycledorogenprovenance.However,upliftedcontinentalblocksinmany partsoftheworldcradlemany flat-lyingundeformedandunmetamorphosedsedimentary rockssuchasinmanyoftheProterozoicandtheLatePaleozoic MesozoicbasinsintheerstwhileGondwana-Laurentiacontinents.Sedimentarylithicfragmentsderivedfromthese basins,plottingattheL-pole,wouldstronglydistortinterpretationsoftectonicprovenance.
Many,manymonomineralicquartzgrainsinsiliciclasticsediments,thiswritercontends, arerecycledfragmentsofsedimentaryrocks.Detritalquartzgrainswithovergrowthsare morecommonlyseeninmodernsedimentsthaninancientsandstoneswhere,inrarecases, abradedovergrowthsarepreserved(Basuetal.,2013;Critellietal.,2003;Garzantietal., 2003).Suchrarequartzgrainsarerecycledsedimentaryrockfragments;butmostothers remainunidentifiedassuch.QFL-typeanalysesmisstherelevantprovenanceinformation. Asofnow,however,wehavenootherpetrographicmeanstodistinguish first-cyclequartz fromrecycledquartz.
5.2BulkChemicalCompositions
Chemicalcompositionsofsiliciclasticsedimentaryrockshavetheadvantageofrepresentingthebulksedimentandnotonlythesand-sizedfractionasinthecaseofpetrographicanalysesalthoughtheylackthemineralogicalinformation,i.e.,anydirectknowledgeofthe hostsofthechemicalcomponents.Forexample,quartzorcalcitecementedquartzarenites willshowanomalousenrichmentofSiO2 orCaOandassociatedtraceelementsoverwhat wasdepositedoriginally.Likewise,adiageneticquartzarenitewithsecondaryporesafter feldsparwillshowanomalouslydepletedAl2O3,Na2O,K2O,andassociatedtraceelements. Barringsuchextremes,chemicalcompositionsofthemuddypartsofsandstonesaddtothe informationaboutthediageneticproductsoflabiledetritalgrains,whicharenowpreserved as “matrix” sensulatu.Ifwemakeanassumption,asveryeloquentlyandboldlystatedby Ali etal.(2014),thatweatheringanddiageneticprocessesbehavelikeaclosedsystemwith
7.THEFUTURE
Forcenturies,bothcuriosityandsocietalneedshaveinspiredbasicandappliedscienti fic research.Searchfortheoriginalsourcerocksorevenintermediate “stop-overs ” ofeconomic placerdeposits,suchasofdiamondandgold,arewell-knowntime-honoredexamples(e.g., Oppenheim,1943;Atkin,1904).Thereisnowaconcentratedeffortinthefossilfuelindustry topredictthepetrophysicalpropertiesofsubsurfacesiliciclasticrocksonthebasisoftheir inferredprovenanceandtheestimatedextentoftheirdiagenesis(e.g., HeinzandKairo, 2007).Suchstudiesandpredictivemodelswillgrowasneedsforfossilfuelincrease.Contemporaryclimaticchangeisareality.Localandglobalpaleoclimatesofthelasthundredsto thousandsofyears,asre flectedinmodernalluvialtodeep-seasediments(e.g., Asahara etal.,2012;Paletal.,2012;Luglietal.,2007),arecluestopredictingtheimmediatefuture. Becausetheresultsrequirecorrectionsandnormalizationforthesourcerockinput,provenancestudiesofmodernsedimentswillexpandtodecoupletectonicandclimaticsignatures.
Thecurrenttrendsinmeasurementsanddefiningoriginalcharacteristicsofdetritalminerals,which survive inthesedimentarymilieu,arelikelytogainprominenceinthenext 20yearsorso(cf. Suttner,1989).Determinationofabsoluteagesofcrystallizationofindividualmineralgrainsandtheovergrowthsonthem,forexample,zircon,monazite,rutile,feldspar,andothers,arelikelytoincreasemanifold.Ifsomeofthemineralgrainsarerecycled (e.g.,zircon,rutile),thentheirhistories,especiallytherecordsofpostdepositionalheating events,wouldhelpin “purifying” theprocessofidentifyingrelevantprovenance.Thedistributionsoftraceelementsandstableisotopes(e.g.,O,S,Si,Ti,Cr,Fe,Ni)lockedupinminerals(e.g.,zircon,quartz,rutile,pyroxene,etc.)arecommonlyindicativeoftheenvironments oftheircrystallization.Insituanalysesforsuchclues(e.g., Hofmannetal.,2009;Götzeetal., 2004)arelikelytobecomecommoninthenextdecadeortwo.
Thuswefollow Mackie(1897) inouroptimisticyetcautiousreasoning,andsay: “Thedust oftheoldlandshasbeenbuiltintothenew.Wehavetakenthesetinyfragments witnesses ofavenerablepast andaskedthemtotellussomethingoftheancientworldwhichthey beheld,” andconfess,withhumility,thatprovenanceremainsthemostdifficultproblem forasedimentarygeologisttosolve(Pettijohnetal.,1972).
8.CONCLUSIONS
Sixgiantconceptualleapsinthelast170yearsconstitutethefoundationsofcontemporary provenancestudiesofsiliciclasticsedimentsandsedimentaryrocks.Theyhavebeenevaluated,constrained,modified,andcontestedovertheyears.Thesenewconceptshavesurvived thetestsoftimeandarelikelyto “goonforever ” (Tennysonisgratefullyacknowledged). However,therearecaveats.
Therevolutionarymineralogical(QFL)approachby Dickinson(1985) followedupbythe chemicalapproach(elementalratios)erectedby BhatiaandCrook(1986),todeterminethe tectonicprovenanceofsiliciclasticrocks,andthusunravelthegeologicalhistoriesofdepositionalbasins,orogens,andplatemovement,donotnecessarilyleadtouniquesolutions. Neglectingcarbonaticdetritus,ignoringtheextentofrecycledoriginofdetritalquartz, ignoring floodbasaltsaspartsofupliftedcontinental/cratonicblocks,ignoringthediversity
2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL
Dickinson,W.R.,1970.Interpretingdetritalmodesofgraywackesandarkose.JournalofSedimentaryPetrology40, 695 707.
Dickinson,W.R.,1980.Platetectonicsandkeypetrologicassociations.In:Strangway,D.W.(Ed.),TheContinental CrustandItsMineralDeposits.GeologicalSocietyofCanadaSpecialPaper20,pp.341 360.
Dickinson,W.R.,1985.Interpretingprovenancerelationsfromdetritalmodesofsandstones.In:Zuffa,G.G.(Ed.), ProvenanceofArenites.NATOASIC-148,pp.333 361.
Dill,H.,Klosa,D.,2010.Heavymineral-basedprovenanceanalysisofMesozoiccontinental-marinesedimentsatthe westernedgeoftheBohemianMassif,SEGermany:withspecialreferencetoFe-Timineralsandthecrystal morphologyofheavyminerals.InternationalJournalofEarthSciences1 17.OnlineFirst.
Fedo,C.M.,Sircombe,K.N.,Rainbird,R.H.,2003.Detritalzirconanalysisofthesedimentaryrecord.Reviewsin MineralogyandGeochemistry53,277 303.
Fitches,W.R.,Muir,R.J.,Maltman,A.J.,Bentley,M.R.,1990.IstheColonsay-westIslayblockofSWScotlandan allochthonousterrane?evidencefromDalradiantilliteclasts.JournalofGeologicalSociety(London)147,417 420. Folk,R.L.,1974.PetrologyofSedimentaryRocks.Hemphill’s,p.184.
Fornelli,A.,Micheletti,F.,Langone,A.,Perrone,V.,2015.FirstU-PbdetritalzirconagesfromNumidiansandstones insouthernApennines(Italy):EvidencesofAfricanprovenance.SedimentaryGeology320,19 29.
Fosdick,J.C.,Romans,B.W.,Fildani,A.,Bernhardt,A.,Calderón,M.,Graham,S.A.,2011.Kinematicevolutionofthe Patagonianretroarcfold-and-thrustbeltandMagallanesforelandbasin,ChileandArgentina,51 300 S.Geological SocietyofAmericaBulletin123,1679 1698.
Garzanti,E.,Andò,S.,Vezzoli,G.,Dell’era,D.,2003.Fromriftedmarginstoforelandbasins:investigatingprovenanceandsedimentdispersalacrossdesertArabia(Oman,U.A.E.).JournalofSedimentaryResearch73,572 588.
Garzanti,E.,Andò,S.,Padoan,M.,Vezzoli,G.,ElKammar,A.,2015.ThemodernNilesedimentsystem:processes andproducts.QuaternaryScienceReviews130,9 56.
Garzanti,E.,2015.Fromstatictodynamicprovenanceanalysis:sedimentarypetrologyupgraded.Sedimentary Geology130,9 56. http://dx.doi.org/10.1016/j.sedgeo.2015.07.010
Gazzi,P.,1966.Learenariedel flyschsopracretaceodell’Appenninomodense:correlazioniconil flyschdiMinghidoro.MineralogicaetPetrograficaActa12,69 97.
Götze,J.,Plötze,M.,Graupner,T.,Hallbauer,D.K.,Bray,C.J.,2004.Traceelementincorporationintoquartz:acombinedstudybyICP-MS,electronspinresonance,cathodoluminescence,capillaryionanalysis,andgaschromatography.GeochimicaetCosmochimicaActa68,3741 3759.
Götze,J.,2009.Chemistry,texturesandphysicalpropertiesofquartz-geologicalinterpretationandtechnicalapplication.MineralogicalMagazine73,645 671.
Grigsby,J.D.,1990.Detritalmagnetiteasaprovenanceindicator.JournalofSedimentaryPetrology60,940 951.
Grimes,C.B.,John,B.E.,Kelemen,P.B.,Mazdab,F.K.,Wooden,J.L.,Cheadle,M.J.,Hanghøj,K.,Schwartz,J.J.,2007. Traceelementchemistryofzirconsfromoceaniccrust:amethodfordistinguishingdetritalzirconprovenance. Geology35,643 646.
Groves,A.W.,1931.TheunroofingoftheDartmoorGraniteandthedistributionofitsdetritusinthesedimentsof southernEngland.QuarterlyJournaloftheGeologicalSociety87,62 96.
Gupta,A.,1975.StreamcharacteristicsineasternJamaica,anenvironmentofseasonal flowandlarge floods. AmericanJournalofScience275,825 847.
Heins,W.A.,Kairo,S.,2007.Predictingsandcharacterwithintegratedgeneticanalysis.In:Arribas,J.,Critelli,S., Johnsson,M.J.(Eds.),SedimentaryProvenanceandPetrogenesis:PerspectivesfromPetrographyandGeochemistry.GeologicalSocietyofAmerica,SpecialPaper,420,345 379.
Heller,P.,Peterman,Z.E.,O’Neil,J.R.,Shafiqullah,M.,1985.IsotopicprovenanceofsandstonesfromtheEocenetyee formation,Oregoncoastrange.BulletinoftheGeologicalSocietyofAmerica96,770 780.
Hietpas,J.,Samson,S.,Moecher,D.,Schmitt,A.K.,2010.Recoveringtectoniceventsfromthesedimentaryrecord: detritalmonaziteplaysinhigh fidelity.Geology38,167 170.
Hofmann,A.E.,Valley,J.W.,Watson,E.B.,Cavosie,A.J.,Eiler,J.M.,2009.Sub-micronscaledistributionsoftrace elementsinzircon.ContributionstoMineralogyandPetrology158,317 335.
Ingersoll,R.V.,1990.Actualisticsandstonepetrofacies:discriminatingmodernandancientsourcerocks.Geology18, 733 736.
Johnson,M.H.,1872.Sourcesofsandstone.Nature6,26.
Kröner,A.,Sengor,A.M.C.,1990.ArcheanandProterozoicancestryinlatePrecambriantoearlyPaleozoiccrustal elementsofsouthernTurkeyasrevealedbysingle-zircondating.Geology18,1186 1190.