Scramjet combustion: fundamentals and advances gautam choubey - Own the ebook now with all fully det

Page 1


https://ebookmass.com/product/scramjet-combustion-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Combustion Kate Hill

https://ebookmass.com/product/combustion-kate-hill/

ebookmass.com

Scramjet Propulsion 1st Edition Dora Musielak

https://ebookmass.com/product/scramjet-propulsion-1st-edition-doramusielak/

ebookmass.com

Direct liquid fuel cells : fundamentals, advances and technical roadmaps Ay■e Bayrakçeken Yurtcan

https://ebookmass.com/product/direct-liquid-fuel-cells-fundamentalsadvances-and-technical-roadmaps-ayse-bayrakceken-yurtcan/ ebookmass.com

The Insurgent's Dilemma David H. Ucko

https://ebookmass.com/product/the-insurgents-dilemma-david-h-ucko/

ebookmass.com

Geriatric Physical Therapy 1st Edition

https://ebookmass.com/product/geriatric-physical-therapy-1st-edition/

ebookmass.com

Innovative Research Methodologies in Management: Volume II: Futures, Biometrics and Neuroscience Research 1st Edition Luiz Moutinho

https://ebookmass.com/product/innovative-research-methodologies-inmanagement-volume-ii-futures-biometrics-and-neuroscience-research-1stedition-luiz-moutinho/ ebookmass.com

International Economics 18th 18th Edition Robert Carbaugh

https://ebookmass.com/product/international-economics-18th-18thedition-robert-carbaugh/

ebookmass.com

John Erina Alcalá

https://ebookmass.com/product/john-erina-alcala/

ebookmass.com

Inferno Outlaws MC 06 - OUTLAWS - Book 6 A.J. Nightwolve

https://ebookmass.com/product/inferno-outlaws-mc-06-outlawsbook-6-a-j-nightwolve/

ebookmass.com

Media and Communication in the Soviet Union (1917–1953):

https://ebookmass.com/product/media-and-communication-in-the-sovietunion-1917-1953-general-perspectives-alexey-tikhomirov/

ebookmass.com

SCRAMJETCOMBUSTION

SCRAMJETCOMBUSTION

FundamentalsandAdvances

GAUTAMCHOUBEY

DepartmentofMechanical&AerospaceEngineering, InstituteofInfrastructureTechnologyResearchand Management(IITRAM)Ahmedabad,Gujarat380026,India

MANVENDRATIWARI

DepartmentofMechanicalEngineering,NationalInstitute ofTechnologyGoa,403401,India

Butterworth-HeinemannisanimprintofElsevier

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

ISBN:978-0-323-99565-8

ForinformationonallButterworth-Heinemannpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: DennisMcGonagle

EditorialProjectManager:RafaelGuilherme Trombaco

ProductionProjectManager: ManjuParamasivam

CoverDesigner: ChristianBilbow

TypesetbySTRAIVE,India

1.Introduction1

GautamChoubeyandManvendraTiwari

1.1 Backgroundandmotivation1

1.2 Abriefhistoryataglance3

1.3 Thebasicstructureandlayoutofascramjetengine5

1.4 Challengesfacedbyascramjetengineduringsupersonic combustion7

1.5 Strategiesforcombatingcombustiondifficulties7

1.6 Fuelinjectorsforscramjetengines7

1.7 Workingcycle12

1.8 Governingequations14 References17

2.Scramjetcombustionmechanism23

2.1 Introduction23

2.2 Chemicalkineticsinsupersonicflow24

2.3 Basictermsrelatedtosupersoniccombustion27

2.4 Fuelsusedinsupersoniccombustion29

2.5 Strategiesforfuel–airmixing32

2.6 Turbulentcombustion40 References44

3.Factorsaffectingthescramjetperformance49

3.1 Introduction49

3.2 Potentialflameholders50

3.3 Combustionstabilizationinastrut-basedscramjetcombustor50

3.4 Flamepropagationmechanism56

3.5 Wall-mountedcavity-stabilizedcombustion58 References61

4.Advancesinscramjetfuelinjectiontechnology65

4.1 Strutinjection65

4.2 Rampinjection80 v

4.3 Cavityinjectionapproach88

4.4 Thetransverseinjectionapproach116

4.5 Emergingramjettechnologies136 References141

5.Roadmapforfutureresearch159

5.1 Challengesforstrutdesigns160

5.2 Issuesrelatedtocavity-basedinjection161

5.3 Futureresearchstrategiesinthedirectionofthetransverse injectiontechnique162

6.Pedagogyforthecomputationalapproachinsimulating supersonicflows163

6.1 Turbulencemodellinginscramjetflows163

6.2 Computationalapproachtomodelasinglestrut-based scramjetcombustor171

6.3 Numericalmodellingandsimulationdetails172

6.4 Validationstudyforasingle-strutscramjetcombustor175 References179 Index 183

Acknowledgements

Theauthorsthanktheanonymousreviewersfortheirhighlyconstructive suggestionsonthisbook.TheauthorsalsoexpressgreatgratitudetoCarrie L.Bolger,DennisMcGonagle,RafaelGuilhermeTrombaco,Manju Thirumalaivasanandtheirteamfortheircontinuousandunconditional supportincompletingthisbook.Lastbutnotleast,theauthorsthankthe Almightyforprovidingstrength,ability,knowledge,andopportunityto writethebook.

GautamChoubeya andManvendraTiwarib

aDepartmentofMechanical&AerospaceEngineering,InstituteofInfrastructureTechnologyResearchand Management(IITRAM)Ahmedabad,Gujarat,India

bDepartmentofMechanicalEngineering,NationalInstituteofTechnologyGoa,Ponda,Goa,India

1.1Backgroundandmotivation

EversincetheWrightbrothersmadetheirsuccessfulmaidenairflight, continuoustechnologicaldevelopmenthasbeenongoinginaviationand spaceapplications,and,asaresult,wehavewitnessedvariousstagesofdevelopmentsuchasgasturbineengineswithdifferentconfigurations,rocket engines,andair-breathingengines.Needlesstosay,thepower-to-weight ratioisacrucialdesignparameterandaffectstheperformanceofairtransportationvehicles.Thedesireforahypersonicflighthasmotivatedengineers fordecadestosatisfythedemandsforhigh-speedtransportandeconomical accesstospace [1–6].Inordertomeettheseneedsandambitions,significant advancementsinpropulsiontechnologyarerequired.Itisobservedthatgas turbine-drivenaircraftenginescouldachieveaspeedlimitedtoasubsonic range.Rocketpropulsiontechnologyhasemergedasasolutiontohypersonicrangeflights,butsafetyandlowspecificimpulseistheAchillesheel ofthisinnovation.Greatsuccessisachievedwhentheconceptofaramjet evolved,leadingtotheeliminationofcompressorsandturbines.These mechanicalunits’rolehasbeenreplacedbythestrategicallyconstructedgeometricalcontourofaramjet’sbodythatactsasadiffuserandanexpander. Throughthesemodifications,theramjetcouldenterintoahypersonicoperatingrangeowingtoreducedweight.Duringtheoperationoftheramjet whileithasattainedsupersonicspeed,theairflowrushingintothecombustorisretardedwiththeobjectivetoachievethedesiredthermodynamicstate andfavourablerecirculationzonesconduciveforacceleratingthecombustionprocess.However,studiesadvocatenotreducingthespeedoftheinternalairflowbelowMachnumber7inordertoreduceenergylossesthat wouldtakeplaceastheintensityofretardationincreases,and,this,inturn, willgiveimpetustoskindragfrictionandassociatedsurfaceheating problem. ScramjetCombustion

Thepotentialsolutiontothisproblemhasevolvedintoscramjettechnologywhereeveryprocessresemblesaramjetandonlytheinternalflow, unliketheramjet,iskeptsupersonicwhileitentersintothecombustor.This changeofthestrategyofcombustionhaspavedthewayforachievinghypersonicspeedandisgoingtoplayavitalroleindefence,aviation,andspace applications.However,therearetechnicalchallengesaheadbeforeitcanbe successfullyimplementedindifferentdomainsofitsapplications.Theprime bottlenecksare(1)completionofthecombustionprocesswithinan extremelyshortintervalowingtothesupersonicstateofair,(2)development ofamaterialtosustainagainsthighertemperatureandtheenormousmagnitudeofthedragforce,(3)relianceonthecarriervehicleforthescramjetto operate,and(4)developmentofhi-techlaboratoriesandfacilitiesforconductingresearchandtesting.Thisrequirementisofutmostimportance becausescramjetcombustionexperimentsareextremelycomplicated,and onlylimitedruntimefacilitiesareavailablearoundtheworldtocarryout real-timeexperiments. Fig.1.1 showsthejourneystartingfromagasturbine toscramjettechnologicaldevelopment.

Fig.1.1 Journeyfromagasturbinetoscramjettechnologicaldevelopment.

1.2Abriefhistoryataglance

Theconceptofasupersonicenginecameintorealizationduringthe early90s,andthefirsttechnicalreportwaspublishedin1920.Intheeraof WorldWarII,thistechnologygainedmomentumintermsofresearchand itsapplicationsinfortifyingthenavyandairforcewithhigh-speedmissiles andaircraft.Duringthisperiodofwar,thepioneerFrenchcompany,named NordAviation,designedaircraft,whichreceivedpropulsionfrom turbo–ramjethybridtechnology.

NASAinitiatedresearchonscramjetsinthe1950s.TheBellX-1 achievedsupersonicflightin1947,and,bytheearly1960s,rapidprogress towardsfasteraircraftindicatedthatsupersonicflightwasfeasible [3].This newsencouragedthecivilaviationindustrytoresearchthepossibilityof reducingtheflighttime,but,atpresent,itisnoteconomicallyviableto switchthismode.Theprimarygoalofthecivilianairtransportistoreduce theoperatingcostratherthantoincreaseflightspeeds,andgiventhefactthat supersonicflightrequiressignificantamountsoffuel,airlinesgowithsubsonicjumbojetsratherthansupersonictransports.Theconceptofascramjet hasencouragedmanyjointventureprogrammes.In1992,theresearchwing ofRussiaandFrancecollaboratedandobservedsuccessinlaunchinga scramjetengine.Inanotherjointventurein1994,NASAandtheCentral InstituteofAviationMotors(CIAM)agreedtocarryoutaresearchprogrammeonadual-modescramjetengine,whichcontinuedfor4years [7].In1995,researchrelatedtoascramjetwasinitiatedinAustraliaat TheUniversityofQueenslandandreportedsuccessfultestingoftheHyshot scramjetunitin2002 [8].Amongtherecentdevelopments,the“National HypersonicsStrategy”hasbeenformulatedbytheUSmilitaryandNASA toinvestigatearangeofoptionsforhypersonicflight.UndertheNASA LangleyHyper-Xprogram,differentversionsoftheX-43vehicleseries havebeentested(Fig.1.2)andspeedsuptoMachnumber15havebeen achievedsofar [3,9,10]

AmongAsiancountries,Indiaisemergingasapotentialcentreof researchundertheleadershipofISROwherescramjetsaredesigned.During agroundtestingin2005,ISROreportedhavingachievedMach6forabout 7s.Furthermore,in2016,ISRO [11] reportedasuccessfultestofascramjet engine,whichwasintegratedwiththeAdvancedTechnologyVehicle (ATV)(Fig.1.3A).TheBrahMosAerospaceisstrivingtodesignand developascramjetwithatargetofMach5.Ontheotherhand,theDRDL

Fig.1.2 (A)Hyper-Xresearchvehicle(USNASALangley),(B)X-43A(USNASA),and (C)ScramjettestsatNASA-LaRC.

Fig.1.3 (A)AdvancedTechnologyVehicle(ATV,ISRO) [10] and(B) ‘HypersonicTechnologyDemonstratorVehicle’ (HSTDV,DRDO) [11]

Fig.1.4 Characteristicflighttrajectoriesfordifferentaerospacesystemsincluding hypersonicscramjet-poweredair-breathingvehicles.

hasinitiatedaprogramme,namely,‘HypersonicTechnologyDemonstrator Vehicle’(HSTDV)(Fig.1.3B)withthebeliefinproposingavehiclethat wouldbeabletoattainMach6.5 [12].

Hypersonicair-breathingspacecrafthavetheabilitytocarrypayloadstoa lowEarthorbitatahighrate.However,duetooxidizershortage,escaping theatmosphereisnoteasy,sothepayloadmustshifttoasecond,rocketbasedstageatMach10–12toachievehypervelocitiesintheorderofMach 20–25. Fig.1.4 illustratestheschematicdiagramofflighttrajectoriesfordifferentaerospacesystemsincludinghypersonicscramjet-poweredairbreathingvehicles [3]

1.3Thebasicstructureandlayoutofascramjetengine

Scramjetisanext-generationtechnologyandplausiblypromisingin reducingflighttimes,whichisaparameterofgreatinterestandimportance inthedomainofaviation,defence,andspacetechnologicaldevelopments. Scramjetisanimprovedversionoframjettechnologyintermsofgaining higherflightvelocity.Thecreditforthisachievementgoestotheideaof keepingthefluidflowsupersonicwhileitisrushingintothecombustor,

andthisdemonstratedattainmentofahigherMachnumberthantheramjet enginesduetosupersoniccombustion.Incontrasttothis,inramjet,theflow isretardedtothesubsoniclevelbeforeitentersthecombustor.Theidea behindreducingtheflowleveltothesubsoniclevelwastogivetimeforfluid mixingforachievingcompletecombustion.

Atypicalconceptualdiagramofascramjetisshownin Fig.1.5[10,13].A scramjetpropulsionsystemisanintegrationofascramjetengineandapropulsionvehicle.Thescramjetenginerequiresthesupportofthepropulsion vehicletomeettheminimumrequirementofmaintainingspeedwithan equivalentvalueofMachnumber3,foritscontinuousworkingandattendinghypersonicspeed.So,thescramjetengineisequippedwithfourkey components,namely,aninternalinlet,anisolator,acombustor,andan internalnozzle,whereasthefore-bodyandaft-bodyrepresentthepropulsionvehiclecomponents.Ascramjetengineismountedinsuchawaythat itacquirestheentirelowersurfaceofthevehiclebody.Thevehicleforebodyistheheartoftheairinductionsystem,whereasthevehicleaft-body isthebackboneofthenozzlecomponent.

Theresponsibilityofprovidingcompressedairtothecombustorsis sharedamongthefore-body,internalinlet,andisolatorunit.Asthefree streamofairistakeninviathefore-bodyandinternalinlet,thecompression processbegins,andthermodynamicstatesofairstartchangingalongwiththe reductioninitsMachnumber.Theprocessofcompressioncontinuesinthe isolator,whichalsohastheresponsibilityofprotectingtheinletsection fromthecatastrophiceffectofbackfirefromthecombustor.Completecombustionisanidealexpectationfromaproperlydesignedcombustor.The expansionsystem,whichisanintegrationoftheinternalnozzleandvehicle

Fig.1.5 Schematicdiagramofascramjetengine [13].

aft-body,allowshigh-pressure,high-temperaturegasestoexpandtothe lowestpossiblepressuresothatthemaximumpossiblethrustmaybe generated.

1.4Challengesfacedbyascramjetengineduring supersoniccombustion

Thescramjetengineisamechanicallysimplesystemduetothe absenceofmovingparts.Nevertheless,thecombustioninascramjetengine isahighlycomplexphenomenon.Astheairentersintothecombustion chamberatasupersonicspeed,theHerculeantaskofmixingfuelwithair andsubsequentlycompletingthecombustionposesmajorchallengesto theresearchcommunity.Besides,thesupersonicstateofairinthecombustoradverselyaffectstheperformanceofthefuelinjectorbyreducingthefuel injector’spenetrationdepthowingtohigherairpressure.Thisnecessitates theneedtorevisitanddevelopafuelinjectororstrategiesforinjectingthe fuelsuccessfullyagainsttheprevailinghigh-pressureairinthecombustor. Furthermore,ashortresidencetimeofairinthecombustionchamber, owingtoitssupersonicstate,isahighlydiscouragingsituationforthecompletionofchemicalreactions.Ascombustioninitiationconsumesan extremelysmallbutdefinitetimeandiscomparablewiththeairresidence timeinthecombustor,andthisdeprivesthefuelmoleculesofgettingoxygenmolecules,thisresultsincombustionsuppressionornoinitiationatall.

1.5Strategiesforcombatingcombustiondifficulties

Theabove-mentionedtechnicaldifficultiescanbehandled(a)by injectingcombustion-enhancingradicalsusingaplasmatorchand(b)bycreatingrecirculationzonesusingaerodynamicbodiessuchaswedges,ramps, orcavitiestoslowdowntheflowandprovideanenvironmentwhereastable flamecanexistandhelpincombustingtheavailablefuel.Inanutshell,the solutiontotheexistingchallengesinscramjettechnologiesliesinthedevelopmentofcombustors,fuelinjectors,fuelswithashorterdurationofchemicalreactions,andcombustion.

1.6Fuelinjectorsforscramjetengines

Combustion,beingahighlycomplexchemicalphenomenon,essentiallyinvolvesthepreparationofacombustiblemixtureandsubsequentlya

sustainableflamepropagationtoensurecompletecombustion.Amixtureis saidtobecombustibleifitissurroundedbytherequisiteamountofoxygen andasourceofignition [14,15].Fuelinjectorssupplyfuelsconsistingof finelydividedparticlesthatseekoxygenwhenencounteringincomingpressurizedair.So,theroleofafuelinjectorishighlycriticalinthecontextofthe preparationofthecombustiblemixtureandstableflamepropagation.However,forthiswholeevent,adefinitedurationoftimeisrequired,whichis hardlyavailablewhenair,inthecaseofscramjetengines,entersintothe combustoratasupersonicspeedandremainsinthesamestateofmotion whilepassingthroughit.Thepreparationofthecombustiblemixtureduring anextremelyshortstayofairisamajorhurdleforthesuccessofscramjet technology.Thischallengehasbeenacceptedbyresearchers,andcontinuouseffortsarepouringinforaugmentingair–fuelmixing;thevariousproposedstrategiesare(1)wallinjection,(2)wallinjectionwithcavity,(3)ramp injection,and(4)strutinjection.Besides,researchisalsoongoingwith respecttoscramjetfuels,rangingfromhydrocarbonstogreenfuels(e.g. hydrogen)andassociatedprocesseswiththeobjectivetoreduceignition delayandachievecompletecombustioninthatconciseduration.

1.6.1Wallinjection

Inthisstrategyoffuelinjection,slotsareincorporatedintothewallandthe fuelsaredirectedeitherorthogonaloratsomeangletothecoreflow [15–19].Thisplanoffuelinjectioninvolveslittledesigncomplexity,but, duetonormalimpingementoffuelstreams,variousshockandrecirculation regionsaredeveloped [20,21] (Fig.1.6).Thismethodoffuelinjectionhas notreceivedmuchencouragementasthisapproachhasdemonstratedshallowfuelpenetrationintotheairstream.

However,researchhasbeencarriedoutinviewtostudytheeffectof holeshapeandarrangementonthecombustionprocess.Itisobservedthat whentheholesarelocatedtoofar,fuelmixingisnotadequate,whereasplacingholesatasmallerpitchresultsinfluidexpansion-relatedissuesowingto spacestarvation [24–30].Inanotherstrategy,fuelinjectionbehindthewallis reported,butthisapproachdidnotmeettheexpectationofair–fuelmixing owingtotheweekrecirculationzonedevelopment [31–37]

1.6.2Wallinjectionwithcavity

Theideaofinjectingfuelthroughacavityimpressioninthewallresultedin betterair–fuelmixing.Thecreditgoestoinducedacousticvibrations,which

Fig.1.6 (A)Schematicdiagramof2Dand(B)3Dflowfieldsinatransverseinjectionbasedsupersoniccombustor [21–23].

originateincavitiesthroughprevailingunstableshearlayers.Thewall-based cavityinjection [38–49] offersimprovedthermohydraulicperformancein thesensethatbettermixingofair–fuelisachievedatrelativelylowerfrictionallossesowingtotheaerodynamiccontourofthecavity.Besides,itacts asapotentialsourceofignitionandassistsinachievingtheobjectiveofcompletecombustioninanextremelyshortspanofavailabletime.Furthermore, itisobservedthatthedimensionsofthecavityhaveastrongbearingon ignitiontimeandvortexgenerationforpromotingair–fuelmixing.Studies havebeenconductedtobringforwardtheeffectofvaryingtheratioofthe

cavity’sbasesurfacelength(L)toitsdepth(D).Itisreportedthatthedepthof thecavitygovernstheignitiontimebasedonthefreestreamconditions.In contrast,thelengthofthecavityinfluencestheintensityofvortexgeneration andconsequentlyimpactstheair–fuelmixinginsidethecavity.Depending onthe L/D ratio,twotypesofcavityflow,asshownin Fig.1.7A,areidentified:(1)opencavityflowand(2)closedcavityflow [46].

Opencavityflownormallyoccursforcavitieswith L/D < 10,whereas closedcavityflowisobservedfor L/D > 10 [46].Studiesrevealthattheopen cavityflowoptionismoreconduciveforscramjettechnologybecauseofthe

Fig.1.7 (A)Schematicdiagramofdifferentflowfieldsoveracavityfordifferentlengthto-depthratios, L/D [31].(B)Smalldisturbancescreatedbyafueljetincavity-based injection [47].

prevailinglargerdragforcewithclosedcavityflow.Thisconclusionisbased onthefactthatinopencavityflow,thereattachmentphenomenontakes placesomewhereontherearsideofthecavitywhilethesameeventoccurs onthecavityfloor,resultinginlargershearlosses(Fig.1.7B).

1.6.3Rampinjection

ThecredittothisapproachgoestoBurtonetal. [50] whoproposedawallmountedrampwithanintegratedsetofnozzlesforalmostaxialfuelinjection [51].Itwaspossibletostudytheeffectoframpinclinationwithrespect totheaxis,whichresultedinthedevelopmentofthefollowingtwoconfigurations,namely,asweptcompressionrampandasweptexpansionramp,as shownin Fig.1.8.Thestudyofasweptcompressionrampdemonstrated improvedair–fuelmixingduetothepassagebetweentherampandwallactingasadiffuser,which,inturn,increasesthedensityofthemixture,and, also,recirculationzonesaresetupowingtotheflowseparationfrom thewall.

Fig.1.8 Schematicofa(A)compressionramp [52,53],(B)asweptcompressionramp injector [21,50,53],and(C)aphysicalrampinjector [54].

Ontheotherhand,inthecaseofasweptexpansionramp,abettercombustionefficiencyisrecordedbecausetheexpansionofgasesinduces favourableconditionsforthegenerationofvortices,which,inturn,augmentsthemixinglargelybesidesprovidingfilmcoolingtothecombustion chamberwalls.Thisstudypraisedaxialflowinjectionssincethisstrategy exhibitedadeeperfuelpenetrationcomparedtothenormalfuelinjection besidesgenerationoffavourablefluidmixingmotions [53,54].

1.6.4Strutinjection

Thisisthemostrecentfuelinjectiontechnology,whichhasattributesof multi-directionalandmulti-locationfuelinjectionfacilities [55–58].Various researchplanshavebeeninitiatedforstudyingmultiplestrategiesrelatedtoits mountingsandshapesofthenozzleopeningandtheirdistributions.Whileitis possibletolocatethestrutinjectionunitcentrally,studiesarealsoreported whentheyareinstalledonthefloorandtheroofofthecombustionchamber.

Thestrutinjection [59–65] planappearstobehighlypromisingasthe challengeofcompletecombustionwithinanextremelyshortprevailing durationispotentiallytangibleduetothefollowinginherentdistinctadvantages:(1)itgivesscopeforinitiatingcombustionatvariouslocationsinthe combustionchamber,therebyacceleratingthecombustionphenomenon and(2)forimprovingair–fuelmixing,strutinjectorscanstrategicallyinject thefuel,bothinaxialandnormaldirections(3).Asustainableflame,which lateractsasasourceofignition,ismaintainedduetotherecirculationzone, andahightemperatureprevailsbehindthebaseofthestrutowingtothe generationofshockwavesinthewakeportion(Fig.1.9).

1.7Workingcycle

TheworkingcycleofascramjetenginehasmappingwiththeBrayton cycleinthesensethatitalsohastwoadiabaticandtwoisobaricprocesses [2]. Unliketheconventionalgasturbinecycle,airundergoesvariousstagesof compression,whichstartsastheairencountersthefore-body,anditcontinueswithintheisolatoradiabatically.Then,combustiontakesplacein thecombustor,and,finally,expansiontakesplaceintheaft-body,which impartsthrusttothescramjet.Technically,thescramjetengineoperation isanopencyclewhereproductsofcombustionaredischargedintotheatmosphere,andthecyclecontinueswiththeintakeoffreshairandfuel.This cycleispresentedontheh–splane,asshownin Fig.1.10.Furthermore,

Fig.1.9 Strutinjection [55]

Fig.1.10 Actualscramjetcycle.

forcomparisonandstudiesofassociatedirreversibilityinvariousprocesses, theidealcycleisalsopresented.Intheactualcycle, •State0indicatesthestateofthefreeairstream.

•Process“0–a”depictsthepressureriseduetorammingaction.

•Process“a–b”reflectsthecontinuationofthecompressionprocessinthe fore-bodysectionwhosegeometricalcontourofgraduallyreducingarea offersalongersectiontoactasadiffuser.

•Process“b–c”isexecutedinanisolatorunit.Thepresenceofanisolator servesadualpurpose.Itprotectsthefore-bodyinletsectionfrom receivingthereverseblowofhighpressure-heatedgasesduringthe vehementcombustionprocessthattakesplaceinthecombustorby splittingtheirstrength.Besides,isolatorsalsoactasadiffuserwhileair ispassingthroughitandrisestheairpressurepriortoitsentryinto thecombustor.Althoughtheincorporationoftheisolatorhasundesirableeffectssuchasincreasedpressuredrops,increaseinweightthatthe scramjetengineneedstobear,andanadditionalloadonthermal management,duetoitsfavourabledualactionsmentionedabove,its inclusioninthesystembecomesimperative.

•Process“c–d”isthecombustionprocessthattakesplaceinthecombustorwhenhotcompressedaircombineswiththefuelsprayedbythe injectors.Thisresultsinthegenerationofextremelyhotandhighpressuregases.

•Duringtheprocess‘d–e’,thehigh-pressure,high-temperaturegases expandviathenozzlesectionwheretheyacquireextremelyhighkinetic energyoftheorderofasupersonicvalueandhenceimpartthrusttothe scramjetvehicle.

1.8Governingequations

Ascramjetengineinvolvesintricateflowprocessesowingtothe highMachnumberwhilestrivingt oachievecompletecombustionwith theaidofstrategiesforpromotingfuel –airmixing.Hence,thisnecessitates asimultaneousconsiderationofconse rvationlawsassociatedwithfluids andchemicalaspects [23,66 –73].Thederivationofpertinentequations assumescontinuumideologysincethe densityoffluidatitsvariousstages ofoperationsissufficientlyhightosupportthisassumption.Thefollowing sectionsdealexclusivelywiththecontinuity,momentum,andenergy equations [2]

1.8.1Conservationofmass

Essentially,themassofaworkingfluidcrossinganysectionofaclosedchannelremainsconstant,asisalsothecaseforascramjet.Thisprincipleisdemonstratedbytheequation

wheretheoperator D Dt denotesthematerialderivativeexpressedas

UsingEq. (1.2),thecontinuityequationcanbewrittenas

1.8.2Conservationofmomentum

Ahugemomentumexchangeisinvolvedwhilethefluidissloweddownin thediffusersectionorisgettingacceleratedduringthecombustionprocessin ascramjetunit.Thisinducesalargeamountofthrust,whichisafavourable effect,whilebeingaccompaniedbyanundesirablegrowthinwallshear stress.Theestimateoftheforcesinducedduetomomentumexchange becomesparamountandcanbeworkedoutusingtheconservationprinciple whoseexpressionisgivenas

where rP signifiesthehydrostaticpressureactingonthevolume,rτ stands forviscousstresstensorthatactsatthefluidelementboundary,and F b isthe bodyforces.Thetensorformofthemomentumconservationequationcan berepresentedas

1.8.3Conservationofenergy

Atotalenergyconservationconceptincludesmechanicalaswellasheat energy.However,inthecontextofscramjettechnologies,mechanical

energyisnotinvolvedandhencecanbeignored.Theequationcanbewrittenas

where rq signifiestheconductionheattransferrateand Q isthebulkheat source.Thetensorformoftheenergyconservationequationispresentedas

Whenenthalpy h ¼ e + pv isusedintheenergyconservationequation,then theequationiswrittenas

Forinviscid,steadyflowassumptions,bodyforceandheattransferaretotally neglected.Thus,inthatparticularcase,theenergyequationreducesto

1.8.4Conservationofspecies

Thecombustionphenomenoninascramjetinvolvesalargenumberof chemicalactivities.Hence,theconceptofspeciesconservationandassociatedchemicallawsneedtobetakenintoaccount.Theequationsofspecies areasfollows:

wherethesuperscript i indicatesthespecies i andthediffusionvelocitieshave notbeenconsideredinthisequation.Theproductionterm ω i isderived fromtheanalysesofchemicalkinetics.

1.8.5Equationsofstate

Thethermodynamicstateoftheworkingfluidwhileitisundergoingcompressionandexpansionprocessesinascramjetcanbepredictedusingequationsofstateasgivenbelow.

Generally,thesizeofthemoleculesaswellasintermolecularforcesare neglectedinperfectgasassumptions,and,hence,thesimplifiedformof theequationofstateis

1.8.6Fourier’slawofheattransfer

Ascramjet,duringitsoperation,encountershugeairdragowingtothe developmentoftheboundarylayerinthevicinityofthecombustorwall, andtheboundarylayeressentiallyhousesastagnantfluidlayerduetothe prevailingfrictionbetweenthefluidandthewall.Hence,duringcombustion,heatexchangetakesplacethroughtheconductionmode,whichcanbe calculatedusingFourier’slaw.

Here,thenegativesignspecifiesthatthedirectionofheattransferisfromthe high-temperaturetothelow-temperatureregion [74]

1.8.7Theshearstress

Ahighairdragisamajorconcerninascramjetengine.Intenseairdrag inducesextremelyhighshearstressesandresultsinthermalfailureofthesurfacematerial.Hence,theestimateofshearstressesdevelopedduringthe scramjetoperationisparamountfromasafetypointofviewaswellasfor testingbetterthermalresistingmaterials.ForNewtonianfluids,itisa well-establishedfactthatshearstressisproportionaltothestrainrate.

References

[1] CurranET.Scramjetengines:thefirstfortyyears.JPropulPower2001;17(6):1138–48.

[2] SegalC.Thescramjetengine:processesandcharacteristics.CambridgeUniversity Press;2009.

[3] UrzayJ.Supersoniccombustioninair-breathingpropulsionsystemsforhypersonic flight.AnnuRevFluidMech2018;50:593–627.

[4] BilligFS.Researchonsupersoniccombustion.JPropulPower1993;9(4):499–514.

[5] CecereD,GiacomazziE,IngenitoA.Areviewonhydrogenindustrialaerospaceapplications.IntJHydrogenEnergy2014;39:10731–47.

[6] SchetzJA,BilligFS.Penetrationofgaseousjetsinjectedintoasupersonicstream.J SpacecrRocket1966;3(11):1658–65.

[7] RoudakovAS,SchickhmanY,SemenovV,Novelli,FourtO.Flighttestinganaxisymmetricscramjet—recentRussianadvances.In:44thcongressoftheInternationalAstronauticalFederationGraz,Austria;1993.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.