Scallops biology, ecology, aquaculture, and fisheries 3rd edition sandra e. shumway and g. jay parso

Page 1


https://ebookmass.com/product/scallops-biology-ecologyaquaculture-and-fisheries-3rd-edition-sandra-e-shumway-and-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The Diversity of Fishes: Biology, Evolution and Ecology, 3rd Edition Douglas E. Facey

https://ebookmass.com/product/the-diversity-of-fishes-biologyevolution-and-ecology-3rd-edition-douglas-e-facey/

ebookmass.com

Myxomycetes: biology, systematics, biogeography, and ecology Elsevier.

https://ebookmass.com/product/myxomycetes-biology-systematicsbiogeography-and-ecology-elsevier/

ebookmass.com

Neuropsychology: Science and Practice 3rd Edition Sandra Koffler (Editor)

https://ebookmass.com/product/neuropsychology-science-andpractice-3rd-edition-sandra-koffler-editor/

ebookmass.com

Binding 13 Chloe Walsh

https://ebookmass.com/product/binding-13-chloe-walsh/

ebookmass.com

Pirate's

Ruin (Master and Command Her Book 3) Marie Hall

https://ebookmass.com/product/pirates-ruin-master-and-command-herbook-3-marie-hall-2/

ebookmass.com

A

topical approach to life-span development 9th Edition

John W. Santrock

https://ebookmass.com/product/a-topical-approach-to-life-spandevelopment-9th-edition-john-w-santrock/

ebookmass.com

Fixing Broken Cities 2nd Edition John Kromer

https://ebookmass.com/product/fixing-broken-cities-2nd-edition-johnkromer/

ebookmass.com

Redemption (The Worthings Book 3) Noelle Adams

https://ebookmass.com/product/redemption-the-worthings-book-3-noelleadams/

ebookmass.com

500 AP Chemistry Questions to Know by Test Day (5 Steps to a 5), 4th Edition Mina Lebitz

https://ebookmass.com/product/500-ap-chemistry-questions-to-know-bytest-day-5-steps-to-a-5-4th-edition-mina-lebitz/

ebookmass.com

Philemon Iko-Ojo Omede

https://ebookmass.com/product/nigerian-consumer-credit-law-regulationand-market-insights-philemon-iko-ojo-omede/

ebookmass.com

SCALLOPS:BIOLOGY,ECOLOGY, AQUACULTURE,ANDFISHERIES

THIRDEDITION

DEVELOPMENTSINAQUACULTUREANDFISHERIESSCIENCE

Thefollowingvolumesarestillavailable:

22.FRONTIERSOFSHRIMPRESEARCH

EditedbyP.F.DeLoach,W.J.DoughertyandM.A.Davidson1991xv+412pages

24.MODERNMETHODSOFAQUACULTUREINJAPAN

EditedbyH.IkenoueandT.Kafuku1992xvi+274pages

26.PROTOZOANPARASITESOFFISHES

EditedbyJ.LomandI.Dykova´ 1992xii+316pages

28.FRESHWATERFISHCULTUREINCHINA:PRINCIPLESANDPRACTICE

EditedbyJ.MathiasandS.Li1994xvi+446pages

29.PRINCIPLESOFSALMONIDCULTURE

EditedbyW.PennellandB.A.Barton1996xxx+1040pages

30.STRIPEDBASSANDOTHERMORONECULTURE

EditedbyR.M.Harrell1997xx+366pages

31.BIOLOGYOFTHEHARDCLAM

EditedbyJ.N.KraeuterandM.Castagna2001xix+751pages

32.EDIBLESEAURCHINS:BIOLOGYANDECOLOGY

EditedbyJ.M.Lawrence2001xv+419pages

33.GLOBALSEAGRASSRESEARCHMETHODS

EditedbyF.T.ShortandR.G.Coles2001viii+482pages

34.BIOLOGYANDCULTUREOFCHANNELCATFISH

EditedbyC.S.TuckerandJ.A.Hargreaves2004x+676pages

36.THEKNOWLEDGEBASEFORFISHERIESMANAGEMENT

EditedbyL.MotosandD.Wilson2006xxi+476pages

38.SEAURCHINS

EditedbyJ.M.Lawrence2013xviii+532pages

39.THESEACUCUMBERAPOSTICHOPUSJAPONICUS

EditedbyH.Yang,J.F.Hamel,andA.Mercier2015xxiv+454pages

SCALLOPS

Biology,Ecology,Aquaculture, andFisheries

THIRDEDITION

DepartmentofMarineSciences,UniversityofConnecticut, Groton,Connecticut,USA

G.JAY PARSONS

FisheriesandOceansCanada,Aquaculture,Biotechnology andAquaticAnimalHealthScienceBranch,Ottawa,Ontario,Canada

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK

50HampshireStreet,5thFloor,Cambridge,MA02139,USA

Copyright r 2016,2006,1991ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensing Agency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-444-62710-0

ISSN:0167-9309

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress.

ForInformationonallElsevierPublishingpublications visitourwebsiteat https://www.elsevier.com/

ForAndyBrandandNeilBourne,scallopafficionados,mentors,andfriends.

ListofContributorsxi Prefacexiii

PrefacefromSecondEditionxv

PrfacefromFirstEditionxvii

1.ReconcilingMorphologicalandMolecular ApproachesinDevelopingaPhylogenyforthe Pectinidae(Mollusca:Bivalvia)

JEANNEM.SERB

Introduction1 WhatIsaScallop?2

ShellMorphologyandItsApplicationinTaxonomic ClassificationSystems5

TheInfluenceofMolecularPhylogeneticsonSystematics10 WhereDoWeGoFromHere?19 Summary24 Acknowledgements25 Glossary25 References25

2.BiologyandEcologyofScallopLarvae

SIMONM.CRAGG

Introduction31 EarlyLifeHistoryCharacteristicsofScallops31 LarvalDevelopment40 ComparativeAnatomy57 FunctionalMorphology58 PhysiologyandEffectsofEnvironmentalVariables60 BehaviourandLarvalDistribution62 RearingMethods70 FutureDirections72 Acknowledgements73 References73

3.ScallopStructureandFunction

PETERG.BENINGERANDMARCELLEPENNEC

Introduction85 AnOverviewoftheScallopBody85 TheMantleandItsDerivatives87 PallialOrgansandParticleProcessing91 DigestiveSystemandDigestion104 Cardio-vascularSystem111 ExcretorySystem119

ReproductiveSystem123 NervousandSensorySystems135 Foot ByssalComplex147 Acknowledgements150 References150

4.ScallopAdductorMuscles:StructureandFunction

PETERD.CHANTLER

Introduction161

StructureoftheStriatedAdductorMuscle162 StructureoftheSmoothAdductorMuscle171 Myosin177 FunctionoftheStriatedAdductor187 FunctionoftheSmoothAdductor200 AchievementsandCoda206 Acknowledgements207 References207

5.NeurobiologyandBehaviouroftheScallop

DANIELI.SPEISERANDLONA.WILKENS

Introduction219 TheMantleEyesofScallops219 VisuallyInfluencedBehavioursinScallops231 TheLocomotorySystem238 Acknowledgements248 References248

6.ReproductivePhysiology

BRUCEJ.BARBERANDNORMANJ.BLAKE

Introduction253 GametogenicCycles254 RegulationofGametogenicCycles268 EnergyMetabolism279 ApplicationstoAquaculture287 Summary290 Acknowledgements292 References292

7.Physiology:EnergyAcquisitionandUtilisation

BRUCEA.MACDONALD,V.MONICABRICELJ,AND SANDRAE.SHUMWAY

Introduction301 EnergyAcquisition301

8.NutritioninPectinids

SIMONESUHNELANDFRANCISCOJ.LAGREZE-SQUELLA

Introduction355

NutrientsandDietImprovementandSupplementation355 Summary366 References366

9.ScallopGeneticsandGenomics

MAUREENK.KRAUSEANDELISABETHVONBRAND

Introduction371 Cytogenetics371 PloidyManipulation373 MolecularMarkersofGeneticVariation376 Applications380 PopulationGenetics387 ScallopGenomics397

AdditionalAreasofGeneticResearch405 FutureDirectionsandConclusions412 References412

10.DiseasesandParasitesofScallops

RODMANG.GETCHELL,ROXANNAM.SMOLOWITZ, SHARONE.MCGLADDERY,ANDSUSANM.BOWER

Introduction425 MicrobialDiseases425 Mycota439 Protista441 Platyhelminthes448 Polychaetes452 Crustacea454 Gastropods456 Algae457 Foraminiferans458 Porifera458 Cnidaria459 Non-InfectiousDiseases459 Summary460 Acknowledgements460 References460

11.ScallopEcology:DistributionsandBehaviour ANDREWR.BRAND

FurtherStudy512 Acknowledgements513 References513

12.SwimminginScallops

HELGAE.GUDERLEYANDISABELLETREMBLAY

Introduction535

ShellCharacteristicsandTheirInfluenceUpon SwimmingCapacities536 BiomechanicsofSwimminginScallops538 LigamentProperties539 EvaluationofScallopSwimmingPerformance inNature540 LaboratoryTestsofEscapeResponsePerformance541 VisualAssessmentofEscapeResponsePerformance intheLaboratory542 InterspecificDifferencesinLaboratoryEscape ResponsePerformance545 PhysiologyofScallopSwimming546 BioticandAbioticInfluencesonMuscleUse DuringEscapeResponses549 InterspecificDifferencesinPatternsofMuscleUse550 MetabolicSupportofSwimming552 DoChangesinMuscleMetabolicCapacitieswith ReproductiveInvestmentExplainShiftsinEscape ResponseBehaviour?556 InterspecificDifferencesinMuscleMetabolic Capacities557 DeterminantsofInterspecificDifferencesin EscapeResponseStrategies:AnIndepthStudy ofFiveScallopSpecies557 References562

13.ScallopsandMarineContaminants

ISLAYD.MARSDENANDPETERJ.CRANFORD

Introduction567 TraceMetals568 TraceOrganics571 NutrientLevels573 OffshoreOilandGasOperations574 HealthRisks576 ScallopsasSentinelOrganisms577 UseofBiomarkers578 FutureDirectionsandConclusions580 References580

14.QuantifyingandManagingtheEcosystem EffectsofScallopDredgeFisheries BRYCED.STEWARTANDLEIGHM.HOWARTH

Introduction585 TypesofScallopDredgeFishery586 EffectsonScallopPopulations586

EffectsonMarineEcosystems589 EffectsonDifferentSeabedTypes594 Management599 Conclusion603 Acknowledgements604 References604

15.Dynamics,Assessment,andManagement ofExploitedNaturalScallopPopulations

J.M.(LOBO)ORENSANZ,ANAM.PARMA,ANDSTEPHENJ.SMITH

Introduction611 PopulationStructureandDynamics613 AssessmentofAbundanceandItsSpatialDistribution632 TheFishingandDepletionProcesses640 OverfishingandEcologicalEffectsofFishing654 Management661 Acknowledgements676 Acronymsusedinthetext676 References677

16.ScallopsoftheWestCoastofNorthAmerica

G.JAYPARSONS,RAYMONDB.LAUZIER,ANDNEILF.BOURNE Foreword697 Introduction697 Fisheries698 Aquaculture709 Future713 Acknowledgements714 References714

17.FisheriesSeaScallop, Placopectenmagellanicus

KEVIND.E.STOKESBURY,CATHERINEE.O’KEEFE,AND BRADLEYP.HARRIS

Foreword719 Introduction719 LifeHistory721 Ecosystem723

TheFishingFleetsofCanadaandtheUnitedStates724 StockAssessments726 FisheriesManagement729 Summary731 Acknowledgements732 References732

18.ScallopAquacultureandFisheriesinEastern NorthAmerica

SHAWNM.C.ROBINSON,G.JAYPARSONS,LESLIE-ANNEDAVIDSON, SANDRAE.SHUMWAY,ANDNORMANJ.BLAKE

Introduction737

SeaScallop(Placopectenmagellanicus)737

BayScallop(Argopectenirradians)758 CalicoScallop, Argopectengibbus 761 AquacultureandEnhancement765 Future767 Acknowledgements767 References767

19.TheEuropeanScallopFisheriesfor Pecten maximus, Aequipectenopercularis,Chlamysislandica, and Mimachlamysvaria

PETERF.DUNCAN,ANDREWR.BRAND,ØIVINDSTRAND,AND ERICFOUCHER

Introduction781 BiologyandEcology782 Fisheries801 TheFuture838 Acknowledgements841 References841

20.EuropeanAquaculture ØIVINDSTRAND,ANGELESLOURO,ANDPETERF.DUNCAN

Introduction859 HistoricalOverviewofEuropeanScallopAquaculture859 SpatProduction862 Grow-OutCulture867 SeabedRanchingandStockEnhancement875 BiologicalConstraintstoScallopCulture879 MarketandEconomics881 StockProtectionSecurityandLegalIssues882 FutureProspects883 Acknowledgements884 References884

21.ScallopFisheriesandAquaculture inJapan

YOSHINOBUKOSAKA

Introduction891 Patinopecten(Mizuhopecten)yessoensis 891 Future926 Pectenalbicans 931 Chlamys(Mimachlamys)nobilis 932 Acknowledgements932 References933

22.ScallopsandScallopAquacultureinChina XIMINGGUOANDYOUSHENGLUO

Introduction937 TheChineseScallop938 OtherScallopSpecies943

Fishery945 Aquaculture945

Harvest,Processing,andMarketing951

Acknowledgements951 References951

23.ScallopsofNorthwesternPacificRussian Federation

VICTORV.IVIN,OLGAG.SHEVCHENKO,AND TATIANAYU.ORLOVA

Introduction953 BiologyandEcology953 FishingandAquaculture975

Acknowledgements991 References991

24.AquacultureoftheScallop Nodipectennodosus inBrazil

GUILHERMES.RUPPANDG.JAYPARSONS

Introduction999

Aquacultureof Nodipectennodosus inBrazil1001

Acknowledgements1015 References1015

25.ScallopsBiology,Fisheries,andManagement inArgentina

GASPARSORIA,J.M.(LOBO)ORENSANZ,ENRIQUEM.MORSAN, ANAM.PARMA,ANDRICARDOO.AMOROSO

Introduction1019

TheTehuelcheScallop, Aequipectentehuelchus

1019

ThePatagonianScallop, Zygochlamyspatagonica 1032 Acknowledgements1041 References1041

26.ScallopFisheryandAquacultureinChile: AHistoryofDevelopmentsandDeclines

ELISABETHVONBRAND,ALEJANDROABARCA, GERMANE.MERINO,ANDWOLFGANGSTOTZ

Introduction1047

SpeciesDescription1047 Fisheries1050

HowScallopAquacultureStartedinChile1053

AquacultureProduction1055

Acknowledgements1068 References1068

27.ScallopAquacultureandFisheriesinVenezuela CE ´ SARJ.LODEIROS,LUISFREITES,JOSE ´ J.ALIO ´ ,MAXIMIANONU ´ NEZ, ANDJOHNH.HIMMELMAN

Introduction1073

Distribution,Habitat,andReproduction1073 Fisheries1077 Aquaculture1078 PerspectivesforCulture1084 Acknowledgements1085 References1085

28.ScallopFisheryandCultureinPeru

JAIMEMENDO,MATTHIASWOLFF,TANIAMENDO,ANDLUISYSLA

Introduction1089

SpeciesDescription1089 ProductionChainandMarketing1094 FisheriesandAquacultureProduction1095 ChallengesandProjectionsofPeruvianScallopProduction1104 Acknowledgements1105 References1105

29.ScallopFisheriesandAquacultureinMexico

CESARA.RUIZ-VERDUGO,VOLKERKOCH,ESTEBANFELIX-PICO, ANAISABELBELTRAN-LUGO,CARLOSCA ´ CERES-MARTI ´ NEZ, JOSE MANUELMAZON-SUASTEGUI,MIGUELROBLES-MUNGARAY, ANDJORGECACERES-MARTI ´ NEZ

Introduction1111 DescriptionofMexicanScallops1112 Fisheries1114 Aquaculture1119 References1123

30.ScallopFisheries,Mariculture,andEnhancement inAustralasia

MICHAELC.L.DREDGE,ISLAYD.MARSDEN,ANDJAMESR.WILLIAMS

Introduction1127 Biology1129 FisheriesandFisheryManagement1140 Culture1161

FutureDirectionsandConclusions1164 Acknowledgements1166 References1166

GeneralIndex1171 SpeciesIndex1189

ListofContributors

AlejandroAbarca DepartamentodeAcuicultura, UniversidadCato ´ licadelNorte,Coquimbo,Chile

Jose ´ J.Alio ´ InstitutoNacionaldeInvestigacionesAgrı´colas, Cumana ´ ,EstadoSucre,Venezuela

RicardoO.Amoroso SchoolofAquaticandFishery Sciences,UniversityofWashington,Seattle,WA,USA

BruceJ.Barber EckerdCollege,St.Petersburg,Florida, USA

AnaIsabelBeltran-Lugo DepartamentodeIngenierı ´ aen Pesquerı´as,UniversidadAuto ´ nomadeBajaCaliforniaSur Ap.,LaPaz,BajaCaliforniaSur,Me ´ xico

PeterG.Beninger LaboratoiredeBiologieMarine,Faculte ´ desSciences,Universite ´ deNantes,Nantes,France

NormanJ.Blake CollegeofMarineScience,Universityof SouthFlorida,St.Petersburg,Florida,USA

NeilF.Bourne FisheriesandOceansCanada,Pacific BiologicalStation,Nanaimo,BritishColumbia,Canada

SusanM.Bower FisheriesandOceansCanada,Pacific BiologicalStation,Nanaimo,BritishColumbia, Canada

AndrewR.Brand UniversityofLiverpool,PortErin,Isleof Man,UnitedKingdom

V.MonicaBricelj DepartmentofMarineandCoastal SciencesandHaskinShellfishResearchLaboratory,School ofEnvironmentalandBiologicalSciences,Rutgers University,PortNorris,NJ,USA

JorgeCaceres-Martı ´ nez CentrodeInvestigacio ´ nCientı´ficay Educacio ´ nSuperiordeEnsenada(CICESE),Ensenada, BajaCalifornia,Me ´ xico;InstitutodeSanidadAcuı´cola, Ensenada,BajaCalifornia,Me ´ xicoInstitutodeSanidad Acuı´cola,Ensenada,BajaCalifornia,Me ´ xico

CarlosCa ´ ceres-Martı ´ nez DepartamentodeIngenierı ´ aen Pesquerı´as,UniversidadAuto ´ nomadeBajaCaliforniaSur Ap.,LaPaz,BajaCaliforniaSur,Me ´ xico

PeterD.Chantler UnitofVeterinaryMolecularandCellular Biology,ComparativeBiomedicalSciences,RoyalVeterinary College,UniversityofLondon,London,UnitedKingdom

SimonM.Cragg InstituteofMarineSciences,Universityof Portsmouth,Portsmouth,UnitedKingdom

PeterJ.Cranford FisheriesandOceansCanada,Coastal EcosystemSciencesDivision,BedfordInstituteof Oceanography,Dartmouth,NovaScotia,Canada

Leslie-AnneDavidson FisheriesandOceansCanada, Moncton,NewBrunswick,Canada

MichaelC.L.Dredge Tasmania,Australia

PeterF.Duncan FacultyofScience,Health,Educationand Engineering,UniversityoftheSunshineCoast, Queensland,Australia

EstebanFe ´ lix-Pico CentroInterdisciplinariodeCiencias Marinas,LaPaz,BajaCaliforniaSur,Mexico

EricFoucher IFREMER LaboratoireHalieutiquedePort enBessin,PortenBessin,France

LuisFreites InstitutoOceanogra ´ ficodeVenezuela, UniversidaddeOriente,Cumana ´ ,EstadoSucre, Venezuela

RodmanG.Getchell DepartmentofMicrobiologyand Immunology,CollegeofVeterinaryMedicine,Cornell University,Ithaca,NY,USA

HelgaE.Guderley De ´ partementdeBiologie,Universite ´ Laval,Que ´ becCity,Que ´ bec,Canada

XimingGuo HaskinShellfishResearchLaboratory, DepartmentofMarineandCoastalSciences,Rutgers University,PortNorris,NJ,USA

BradleyP.Harris Fisheries,AquaticScienceand TechnologyLaboratory,AlaskaPacificUniversity, Anchorage,AK,USA

JohnH.Himmelman De ´ partementdeBiologie,Universite ´ Laval,Que ´ becCity,Que ´ bec,Canada

LeighM.Howarth SchoolofOceanSciences,Bangor University,MenaiBridge,Anglesey,UnitedKingdom

VictorV.Ivin InstituteofMarineBiology,FarEastern BranchoftheRussianAcademyofSciences,Vladivostok, Russia

VolkerKoch DeutscheGesellschaftfu ¨ rInternationale Zusammenarbeit(GIZ),LaPaz,BajaCaliforniaSur,Me ´ xico YoshinobuKosaka AomoriPrefecturalIndustrial TechnologyResearchCenter,FoodResearchInstitute, Aomori,Japan

MaureenK.Krause DepartmentofBiology,Hofstra University,Hempstead,NY,USA

FranciscoJ.Lagreze-Squella FederalUniversityofParana ´ , PontaldoParana ´ ,Parana ´ ,Brasil

RaymondB.Lauzier FisheriesandOceansCanada,Pacific BiologicalStation,Nanaimo,BritishColumbia,Canada

MarcelLePennec InstitutUniversitaireEurope ´ endela Mer,Universite ´ deBretagneOccidentale,Plouzane ´ ,France

Ce ´ sarJ.Lodeiros InstitutoOceanogra ´ ficodeVenezuela, UniversidaddeOriente,Cumana ´ ,EstadoSucre,Venezuela

AngelesLouro InstitutoEspanoldeOceanografı´a,A Coruna,Spain

YoushengLuo MarineFisheriesResearchInstitute,Dalian, Liaoning,PRChina

BruceA.MacDonald BiologyDepartment,Universityof NewBrunswick,SaintJohn,NewBrunswick,Canada

IslayD.Marsden SchoolofBiologicalSciences,University ofCanterbury,Christchurch,NewZealand

Jose ´ ManuelMazon-Suastegui CentrodeInvestigaciones BiologicasdelNoroeste,LaPaz,BajaCaliforniaSur, Me ´ xico

SharonE.McGladdery FisheriesandOceansCanada,St. AndrewsBiologicalStation,St.Andrews,NewBrunswick, Canada

JaimeMendo Dpto.ManejoPesqueroyMedioAmbiente, FacultaddePesquerı´a,UniversidadNacionalAgrariaLa Molina,Lima,Peru

TaniaMendo InstituteforMarineandAntarcticStudies, UniversityofTasmania,Taroona,Tasmania,Australia

Germa ´ nE.Merino DepartamentodeAcuicultura, UniversidadCato ´ licadelNorte,Coquimbo,Chile

EnriqueM.Morsa ´ n InstitutodeBiologı´aMarinay Pesquera‘Alte.Storni’,UniversidadNacionaldel Comahue,SanAntonioOeste,Rı´oNegro,Argentina

MaximianoNu ´ n˜ez InstitutoOceanogra ´ ficodeVenezuela, UniversidaddeOriente,Cumana ´ ,EstadoSucre, Venezuela

CatherineE.O’Keefe SchoolforMarineScienceand Technology,UniversityofMassachusetts,Fairhaven,MA, USA

J.M.(Lobo)Orensanz CentroNacionalPatago ´ nicoCONICET,PuertoMadryn,Chubut,Argentina

TatianaYu.Orlova InstituteofMarineBiology,FarEastern BranchoftheRussianAcademyofSciences,Vladivostok, Russia

AnaM.Parma CentroNacionalPatago ´ nico-CONICET, PuertoMadryn,Chubut,Argentina

G.JayParsons FisheriesandOceansCanada,Aquaculture, BiotechnologyandAquaticAnimalHealthScienceBranch, Ottawa,Ontario,Canada

ShawnM.C.Robinson FisheriesandOceansCanada,St. Andrews,NewBrunswick,Canada

MiguelRobles-Mungaray AcuaculturaRobles,LaPaz, BajaCaliforniaSur,Me ´ xico

Ce ´ sarA.Ruiz-Verdugo DepartamentodeIngenierı ´ aen Pesquerı´as,UniversidadAuto ´ nomadeBajaCaliforniaSur Ap.,LaPaz,BajaCaliforniaSur,Me ´ xico

GuilhermeS.Rupp EPAGRI EmpresadePesquisa Agropecua ´ riaedeExtensaoRuraldeSantaCatarina, Floriano ´ polis,SantaCatarina,Brazil

JeanneM.Serb DepartmentofEvolution,Ecology andOrganismalBiology,IowaStateUniversity,Ames, IA,USA

OlgaG.Shevchenko InstituteofMarineBiology,Far EasternBranchoftheRussianAcademyofSciences, Vladivostok,Russia;ResearchandEducationalCenter PrimorskyAquarium,OstrovRusskii,Vladivostok, Russia

SandraE.Shumway DepartmentofMarineSciences, UniversityofConnecticut,Groton,Connecticut,USA

StephenJ.Smith FisheriesandOceansCanada,Bedford InstituteofOceanography,Dartmouth,NovaScotia, Canada

RoxannaM.Smolowitz AquaticDiagnosticLaboratory, FeinsteinCollegeofArtsandSciences,RogerWilliams University,Bristol,RI,USA

GasparSoria CentroNacionalPatago ´ nico(CONICET), PuertoMadryn,Chubut,Argentina

DanielI.Speiser DepartmentofBiologicalSciences, UniversityofSouthCarolina,Columbia,SC,USA

BryceD.Stewart EnvironmentDepartment,Universityof York,Heslington,NorthYorkshire,UnitedKingdom KevinD.E.Stokesbury SchoolforMarineScience andTechnology,UniversityofMassachusetts,Fairhaven, MA,USA

WolfgangStotz DepartamentodeBiologı´aMarina, UniversidadCato ´ licadelNorte,Coquimbo,Chile ØivindStrand InstituteofMarineResearch,Bergen, Norway

SimoneSu ¨ hnel FederalUniversityofSantaCatarina, Floriano ´ polis,SantaCatarina,Brasil.

IsabelleTremblay De ´ partementdeBiologie,Universite ´ Laval,PavillonAlexandre-Vachon,Que ´ becCity,Que ´ bec, Canada;RessourcesAquatiquesQue ´ bec,Institutdes sciencesdelamerdeRimouski,Universite ´ duQue ´ beca ` Rimouski,Rimouski,Que ´ bec,Canada

ElisabethvonBrand DepartamentodeBiologı´aMarina, FacultaddeCienciasdelMar,UniversidadCato ´ licadel Norte,Coquimbo,Chile

LonA.Wilkens CenterforNeurodynamicsand DepartmentofBiology,UniversityofMissouri-St.Louis, St.Louis,MI,USA

JamesR.Williams NationalInstituteofWaterand Atmosphere,ViaductHarbour,Auckland,NewZealand MatthiasWolff TheoreticalEcologyandModelling,Leibniz CenterforTropicalMarineEcology,Bremen,Germany

LuisYsla Dpto.ManejoPesqueroyMedioAmbiente, FacultaddePesquerı´a,UniversidadNacionalAgrariaLa Molina,Lima,Peru

Preface

FromSandroBotticelli’sTheBirthofVenustothecorporatesymbolforShellOil,scallopsareoneofthemost widelyrecognisedshellfishworldwide.Theyareofglobaleconomicimportanceandsupportbothcommercial fisheriesandmaricultureefforts.Theyhavebeenthesubjectofnumerousresearcheffortsandtheirhigheconomicstatureencouragesaquacultureeffortsbyacademiciansandindustrialresearchers.Therapidgrowth,early maturityandhigheconomicvalueofmanyscallopspeciesofferspecialinducementtomariculturists.Scallops arealsokeyinthestructureandfunctionofthecommunitiesofwhichtheyarecharacteristiccomponents. Interestinallaspectsofscallopbiology,aquaculture,ecologyandfisheriescontinues;however,itisthefieldof geneticsthathasseenthegreatestsurgeinresearcheffortsoverthepastdecade.

TheFirstEdition,publishedin1991,representedthefirstcomprehensivetreatiseonscallops.Itwasprepared ascamera-readycopyusingtheveryearliestof‘desk-top’publishingprogrammesandonlythroughtheparticipationofScottSiddallwaspublicationmadepossible.Technologyhasthankfullyprogressedandword-processinghasmadeprojectssuchasthismoretenable butstillnotwithoutfrustrationsandroadblocks.

Theoriginalversionwasfollowed15yearslaterwiththeSecondEditionin2006.Sincethatprinting,five InternationalPectinidWorkshopshavebeenheld:Halifax,NovaScotia,Canada;SantiagodeCompostela,Spain; Quingdao,China;Florianopolis,Brazil;andmostrecently,Galway,Ireland.Thesemeetingsprovidedaunique andfocusedforumfordiscussionof‘allthingsscallop’andwebelievethatbothdirectlyandindirectlythecontributionspresentedherehavebenefittedgreatlyfromthoseopenandoftenlivelydiscussions.

ManyoftheauthorsfromtheFirstandSecondEditionshavesinceretiredortakenonotherresponsibilities andreaderswillnoteanumberofnewcontributors.Somehavejoinedforceswithpriorauthors,whileothercontributorshavepennednewsubmissions.

Thepresentvolumepresentsacomprehensiveoverviewofthebiology,ecology,aquaculture,andfisheries prospects,bothpresentandfuture,forscallopsworldwide.Theinclusionoffisheriesinthetitleisatestamentto increasedresearchandtheimportanceofthecommercialfleetsandhabitats.Somechaptershavebeencompletely rewritten,somehavebeenrevised,andnewchaptershavebeenadded.Whilethesubjectmatterisspecifically concernedwithscallopspecies,thebookshouldbeofinterestandrelevancetoanumberofreadersincluding advancedundergraduate/graduatestudents,mariculturists,researchersandfisheriesmanagers,andscallop enthusiasts.Chaptershavebeenpreparedbysomeoftheforemostauthoritiesintheirrespectivefieldsandrepresent24countries.ManuscriptssubmittedbyauthorswhosefirstlanguageisnotEnglishhavebeencorrectedfor grossgrammaticalerrorsandclarityofpresentationonly.Theireffortstowriteamanuscriptinaforeignlanguagearetobeapplaudedandshouldnotbecloudedbyeditoriallicense.Scallopsareofmoreeconomicimportanceinsomecountriesthaninothersandthisisreflectedinthespecificcoverageoftheindividualspecies.

Thebookiscomprisedof30chapters:thefirst15spanningtopicsfromphylogeny,biologyoflarvae,structure andfunction,genetics,physiology,nutrition,swimming,ecology,populationsdynamics,etc.Andthesecond halfofthebookisacomprehensivecountryorregionaloverviewofthefisheryandaquacultureofscallopsfrom allthekeyareasofproduction.

Wehavededicatedthiseditiontoourfriendsandcolleagues,Andrew(Andy)BrandandNeilBourne.From hishomebaseontheIsleofMan,Andydevotedhiscareertomentoringstudents,andbringingtop-tierscience tofishermen,governmentmanagers,aquaculturists,andmostrecentlytothesustainabilitycertificationeffortsof theMarineStewardshipCouncil.Andyhasalwaysbeengenerouswiththisknowledgeandtime,andunofficially recognisedastheseniorstatesmanoftheInternationalPectinidWorkshops.Thankyou,Andy,forallyouhave contributed.AndfromhisscenicbaseinNanaimo,BritishColumbia,CanadaNeil,too,hasspentanillustrious careerasashellfishresearcherworkingwithmanagers,scientists,students,andfishingandaquacultureindustry memberstodiscoverandcommunicateavastarrayofknowledgeofscallopsandotherbivalvespecies.Inadditiontobeingamentor,teacherandresearcherparexcellence,Neilwasinstrumentalinlayingthefoundationfor

thescallopaquacultureindustryinBritishColumbia.Neil,thankyouforyourfriendship,insightsand contributions.

ThecurrenteditionhasbenefittedgreatlyfromtheeffortsofNoreenBlaschikwhohastirelesslyhelpedwith proofreading,referencecross-checkingandotherthanklesstasks.ThetalentsofEricHeupelwerekeyinredraftingmanyofthefiguresandaregratefullyacknowledged.Gettingauthorstoagreetoparticipateinventuressuch asthisismucheasierthanextractingthefinaltextsandweextendourdeepestgratitudetotheauthorsfortheir skill,patienceandperseverance.ThankstoSharon,MichaelandChristopherfortheirsupport,cajolingand patience.GusandZeusspentmanyeveningspawingovertexts,andtheirassistancemadethetasksathand moretolerable.

AspecialthankstoPatriciaOsborne,ElsevierSciencePublisherswhoinitiatedandencouragedtheeffortfora ThirdEditionandtoJaclynTruesdell,DebbieClarkandKarenMillerfortheirpatienceandguidanceduringthe production.

Forsuccessfulcultureandmanagement,agoodknowledgeofthebiology,ecology,physiologyandfisheriesof thespeciesisnecessaryandwehopethatthisThirdEditionofScallops:Biology,Ecology,Aquaculture,and Fisherieswillserveasasolidreferencebaseforyearstocome.

SandraE.Shumway1 andG.JayParsons2

1DepartmentofMarineSciences,UniversityofConnecticut,Groton,CT,USA 2FisheriesandOceansCanada,Aquaculture,BiotechnologyandAquaticAnimalHealthScienceBranch, Ottawa,ON,Canada

PrefacefromSecondEdition

Fromtheircontinuedappearanceinartandculturetotheirsavouredplaceatthedinnertable,scallopshave notlosttheirgeneralappealandcontinuetogarnertheattentionofscientists,aquaculturists,chefs,shellcollectorsandothers.DiscussionduringtheSixthInternationalPectinidWorkshopin1987providedtheimpetusfor theFirstEditionof Scallops:Biology,EcologyandAquaculture whichwaspublishedin1991andhasbeenoutof printfornearlyadecade.TalkofaSecondEditionbeganalmostimmediately,butwasgentlyignoredforsome yearsbecauseofthetimeandeffortrequiredofallcontributorsandasenseonthepartoftheoriginaleditorthat therewasnotenoughnewinformationtowarrantasecondvolume.

Interestinallaspectsofscallopbiologyandecologyhascontinuedtoincrease,cultureeffortshaveexpanded globallyandscallopscontinuetobringhighpricesfromboththecommercialfisheriesandaquacultureventures.

PotentialauthorsbegantoenquireenthusiasticallyaboutthepotentialforaSecondEdition,ElsevierScience Publisherswereeagertoaddthevolumetotheirseriesandtherewasarenewedsenseofneedcoupledwith availabilityofnewinformationtoproceedwithpublishingaSecondEdition.

ThepresentvolumerepresentsanupdatedandrevisedversionoftheFirstEdition.Itisacomprehensiveoverviewofthebiology,ecologyandaquacultureforscallopspeciesworldwide.Somechaptershavebeencompletely rewrittenbypreviousornewauthorsandtwochaptershavebeenreprintedasintheoriginalvolume (seeChapter5 NeurobiologyandBehaviouroftheScallopbyWilkensandChapter8 Physiological IntegrationsandEnergyPartitioningbyThompsonandMacDonald)astheyareaspertinentnowastheywerein 1991.Otherchaptershavebeenrevisedandnewonesadded(Nutritionandaccountsbycountryofaquaculture andfisheries Brazil,VenezuelaandtheRussianFederationnowthattheformerSovietUnionhastransformed sincetheFirstEdition!).Thisworkwouldnothavebeenpossiblewithouttheassistanceofseveralindividuals. WethankLindaKallansrude,ManonChouinardandDinahHelpertwhoprovidedsecretarialandadministrative support,MailleLyonswhotookonthearduoustaskofdevelopingtheindices,MaraVos-Sarraiento(Elsevier) forassistance,guidanceandsupport,andaspecialthankstoSharon,Christopher,MichaelandMaxfortheir supportandpatience.

Finally,theauthorsaretobecongratulatedfortheireffortsandthankedprofuselyfortheirpatienceduring thepublicationprocess.

WehavededicatedthisvolumetoSamNaidu,friendandcolleague,whodevotedhiscareertoworkingwith fishermen,aquaculturistsandgovernmentmanagerstoensureasustainablefisheryforfuturegenerations.Sam wasagentleman,generouswithhisknowledgeandexpertise,acceptednosocialbarriersandwasapillarofthe PectinidWorkshops.Moreover,hehadperfectedtheartoflivingwellandappreciatinglife.Sincepublicationof theFirstEdition,therehavebeen7subsequentInternationalPectinidWorkshops,the15thheldinMooloolaba, Australiaandthe16thheldinHalifax,NovaScotia,Canadain2007.

Wehopethisvolumewillcontinuetofosterinterestinscallops,especiallyaquacultureforasustainablefuture, foryearstocome.

SandraE.ShumwayandG.JayParsons Groton,CT,USA Ottawa,ON,Canada

PrefacefromFirstEdition

Scallopsareamongthebetterknownshellfishesandarewidelydistributedthroughouttheworld.Theyareof worldwideeconomicimportanceandsupportbothcommercialfisheriesandmaricultureefforts.Theyhavebeen thesubjectofnumerousresearcheffortsandtheirhigheconomicstatureencouragesaquacultureeffortsbyboth academiciansandindustrialresearchers.Therapidgrowth,earlymaturityandhigheconomicvalueofmany scallopspeciesofferspecialinducementtomariculturists.Scallopsarealreadyculturedsuccessfullyinanumber ofgeographiclocationsandemphasisisincreasingglobally.Further,scallopsplayanimportantroleinthestructureandfunctionofthecommunitiesofwhichtheyareacharacteristicandimportantcomponent.

NotsincethepublicationofMarineMussels(Bayne,1975:IBPHandbook)hasthecurrentknowledgeofaparticulargroupofmolluscsreceivedacomprehensivecoverage.Hiseffortwasawelcomeadditiontothescientific literatureandprovidedanopportunitytosynthesiseawealthofinformation.Forsuccessfulcultureandmanagement,agoodknowledgeofthebiologyofthespeciesisnecessary.Whilescallopshavebeenthesubjectofaconsiderableamountofresearch,todatenointegratedaccountexistsofthebiology.

Discussionsregardingtheneedforacomprehensivetreatiseonscallopsfirsttookplacein1987duringthe SixthInternationalPectinidWorkshopinMenaiBridge,Wales.Thelevelofenthusiasmwashighandconvincing theindividualauthorstoundertakewritingthechapterswasaneasytask.Thesubsequenttaskofcollectingand integratingthosemanuscriptsprovedtobeconsiderablymorearduous.Therewerefurtherdiscussionsregarding thefinalversionsofmanuscriptsduringtheSeventhInternationalPectinidWorkshopheldinPortland,Maine,in 1989.Thesemeetingsprovidedauniqueopportunityforspecialistsinthefieldofscallopbiologyrepresenting over20countriestomeetanddiscusstheirindividualviewsandIbelievethatthefinalproducthasbenefited greatlyfromthoseopenandoftenlivelydiscussions.

Thepresentvolumepresentsacomprehensiveoverviewofthebiology,ecology,andaquacultureprospects, bothpresentandfuture,forscallopsworldwide.Althoughthesubjectmatterisspecificallyconcernedwiththe biology,ecologyandaquacultureofscallopspecies,thebookshouldbeofinterestandrelevancetoanumberof readersincludingadvancedundergraduate/graduatestudents,mariculturistsandresearchworkers.Contributed chaptershavebeenpreparedbysomeoftheforemostauthoritiesintheirrespectivefieldsandrepresentsome18 countries.ManuscriptssubmittedbyauthorswhosefirstlanguageisnotEnglishhavebeencorrectedforgross grammaticalerrorsandclarityofpresentationonly.Theireffortstowriteamanuscriptinaforeignlanguageare tobeapplaudedandshouldnotbecloudedbyeditoriallicence.

Thebookisdividedintotwomainsections:thefirstdealingwithgeneralbiology,ecology,andphysiology andtheseconddealingwithfisheriesandcultureeffortsinspecificcountries.Obviously,scallopsareofmore economicimportanceinsomecountriesthaninothersandthisisreflectedinthespecificcoverageofspecificspeciesinChapter12.

ThephylogeneticrelationshipofscallopspeciesofcommercialinterestisexaminedbyWallerinChapter1. Theavailableinformationonlarvalrequirementsandrangesoftoleranceofenvironmentalvariables,bothprime importancetoaquacultureefforts,arediscussedbyCraggandCrispinChapter2.BeningerandLePennecprovideanelegantaccountoftheinternalanatomyofscallopsinChapter3.Theimportanceofscallopadductor musclestothefieldofmusclephysiologyisclearlydefinedbyChantlerinChapter4.EnergyacquisitionandutilisationarediscussedbyBriceljandShumwayinChapter5andthephysiologicalintegrationsandpartitioningof thisenergyarediscussedinChapter6byThompsonandMacDonald.Reproductivebiology,anotherareaof primeimportancetoculturists,isreviewedbyBarberandBlakeinChapter7.Twoofthemoststrikingfeatures ofscallops,eyesandtheirabilitytoswim,arediscussedbyWilkensinChapter8.Diseasesandparasites,major threatstoaquacultureventures,arediscussedbyGetchellinChapter9,andGouldandFowlerreviewtheeffects ofpollutantsonthecommercialspeciesofscallopsinChapter10.Generalecology,distributionandbehaviour aregiveninChapter11byBrand.BeaumontandZourosreviewtheapplicationofgenetictoolstoscallopsand

theimportanceofgeneticstofisheriesandaquacultureofscallopsinChapter12.InChapter13,Orensanz,Parma andIribanediscusspopulationdynamicsandthemanagementofnaturalstocks.ThecommercialspeciesofscallopsarecoveredinChapter14accordingtogeographiclocation.MuchofthedatapresentedinChapter14is beingreportedforthefirsttime,includingsuchelementarymeasuresasgrowth,meatweightandlandings. ThisworkwouldnothavebeenpossiblewithouttheeffortsofDr.ScottSiddall.Hisexpertiseinthefieldof desktoppublishingcoupledwithhisknowledgeofshellfishbiologymademytaskpossible.Hiscontinuedinterest,supportandinterjectionsofhumourwhenmostneededmadethetaskenjoyable.JanBarter,Martha Hernandez-Davis,JohnHedleyandJimRollinshelpedinvariouswaysandtheirwillingnesstoundertakesuch arduoustasksasproofreading,crosscheckingreferences,retypingofmanuscriptsandredrawingandrepairof submitteddiagramsaregratefullyacknowledged.AspecialthanksmustgotoBobGoodman,ElsevierScience PublishingCompany,forhisconsiderablepatiencein‘meeting’deadlinesandhisinsightandsupport.Finally, Iwouldliketothanktheauthorsfortheirskill,patience,andperseverance.

1

ReconcilingMorphologicalandMolecular ApproachesinDevelopingaPhylogenyforthe Pectinidae(Mollusca:Bivalvia)

INTRODUCTION

Scallops(PectinidaeRafinesque,1815)areoneofthemostmorphologically,behaviourally,andbiologically diversefamilyofbivalves.AsamajormolluscancladeofMesozoicandCenozoiceras,thePectinidaehashada tumultuous245-million-yearhistory,survivingtwomassextinctioneventsattheTriassic-Jurassicand Cretaceous-Paleogeneboundaries(Hautmann,2010;NewellandBoyd,1995;Waller,2006a).Overtheintervening quarterofabillionyears,itislikelythatscallopsunderwentseveraladaptiveradiationsthatplayedamajorrole ingeneratingthebiologicaldiversityseentoday.Currently,about270extantspeciesofscallopsarerecognised (Dijkstra,2014)andaredistributedacrosspolar,temperate,andtropicalseas,withthegreatestbiologicaldiversityinthetropicalCaribbeanandIndo-Pacificoceans(RainesandPoppe,2006).Mostscallopspeciesarefound intheshallowsofsublittoralreefs,sandybays,andseagrassbedsofthecontinentalshelves,withasmallernumberofspeciesrestrictedtodeeperwaterincludingtheabyssaldepthsat7000m.Whilethetypicalscallopshell shapeisthefamiliarroundeddiskandstraighthingelineformedbytwoear-likeauricles,scallopsexhibitawide rangeofmodificationsonthisgeneralisedphenotype,withstrikingshape,texture,andcolourvariantsofthe shell.Thisvarietyhasmadescallopsafavouriteofamateurshellcollectorsandscientistsalikeand,asaresult, theirshellsarewellrepresentedinthecollectionsofnaturalhistorymuseums(e.g. Dijkstra,1999; Dijkstraand Koehler,2008).Theon-goingchallengeforscallopbiologistsistoorganisetheimpressivebiologicaldiversityof thePectinidaeinaphylogeneticcontext.

Underaphylogeneticclassificationsystem,taxaareorganisedhierarchicallyintogroupsthatreflectahypothesisofevolutionaryrelationshipderivedfromaphylogenetictree.Aphylogenetictree(alsocalleda‘phylogeny’ or‘topology’)isabifurcatingdiagramthatdepictstherelationshipsbetweentaxabasedonsharedhistory throughcommondescent(Gregory,2008).Notonlycanthephylogenyhelpidentifygroupsoftaxa(clades),but phylogenetictreesindicaterelationshipsbetweenthesegroups,forexample,howtribesarerelatedtooneanother inasubfamily.Phylogenetictreesalsoprovideahistoricalcontextandarelativeorderforwhenlineagesarose anddiversified.Moreover,thephylogenycanbeusedtostudytheevolutionoftraits,suchaswhetheracharacterstateisancestral(plesiomorphic)orderived(i.e.traitpolarity),ortotesthypothesesregardingtherateor modeoftraitevolution.

Basingaclassificationsystemonphylogenyincorporatestheevolutionaryhistoryofthosetaxaandallthe associatedinformationintotheclassification.Speciesorlineagesthataredescendantsofasingleancestorrepresent‘naturalgroups’,andtherecognitionofnaturalgroupsgivespredictivepowertoaclassificationsystem becausethesharedcharactersmayalsoindicatesimilaritiesinlifehistorytraits,habitatrequirements,orecologicalfunctionduetosharedhistoryoftheorganisms.Thus,modernclassificationsystemsareinformationretrieval resources,whereanindividualspeciescanbeusedtorepresentabroadersetofspeciesinsomecontexts,suchas

2 1.RECONCILINGMORPHOLOGICALANDMOLECULARAPPROACHESINDEVELOPINGAPHYLOGENYFORTHEPECTINIDAE(MOLLUSCA:BIVALVIA)

the‘surrogateapproach’forconservationmanagement(Wiensetal.,2008)orasanorganismalmodelfora researchprogramme(JennerandWills,2007).ForthePectinidae,abetterunderstandingofthephylogenyofscallopscouldguideaquaculturalistswhentargetingwhichspecieswouldbebestsuitedforculturingunderparticularconditions.Inaddition,acommonnomenclatureforscallopswillfacilitatecommunicationamongworkers fromdifferentscientificdisciplinesorcountries.

Furthermore,thePectinidaehasgreatpotentialtobeamodelsysteminevolutionarybiology.Scallopsrepresentalargeanddiversegroupofanimalswithasuperbfossilrecord,andsocantellusmuchaboutevolutionary processeslikespeciation,adaptation,andextinction.AlreadythePectinidaehasdemonstratedutilityinthestudy ofmorphology(Serbetal.,2011;Sherrattetal.,n.d.),behaviour(Alejandrinoetal.,2011),sensorybiology(Pairett andSerb,2013;Serbetal.,2013),genomeevolution(WangandGuo,2004),andextinctionrisk(SmithandRoy, 2006;Harnik,2011).Butinordertounderstandtheprocessesunderlyingthesetrends,weneedanaccuratephylogenyand,preferably,worktowardsaninclusivephylogenythataccountsforbothlivingandextinctspecies. Withthisphylogenyinhand,researcherscannotonlyorganisebiologicaldiversityintoaclassificationscheme thatreflectsrelatednessbutalsostudytheprocessesthatgeneratedthisbiologicaldiversity.

Thisreviewexaminestheconflictsbetweenmorphological-basedandmolecularphylogenetichypothesesof thePectinidae.Thefirstsectiondescribesthecharacteristicsofscallopsbydefiningthetraitsuniquetothefamily andprovidesbackgroundontheecologicalandphenotypicdiversityofthegroup.Throughareviewofprevious work,thesecondsectionexplainshowthismorphologicaldiversitywasusedtodevelopaclassificationsystem forthePectinidaeandshowshowthesesystemsareaffectedbyconvergentevolutionoftheshell.Thethirdsectiondescribeshowmolecularphylogeneticscanaddtoourunderstandingofscalloprelationshipsandevolution, reviewsthelastdecadeofphylogeneticstudyonthePectinidae,andprovidesacasestudy.Thechapterends withsomethoughtsaboutwhatstillneedstobedonetoaddresslong-standingissuesinscallopphylogenetics includingdeterminingtheevolutionaryoriginofthePectinidae,howtobetterestimatebiologicaldiversityinthe family,andmethodstoincorporateextantandextincttaxainacomprehensivephylogenetichypothesisforthe scallops.

WHATISASCALLOP?

DefiningthePectinidae

ScallopsbelongtothePectinoideaRafinesque,1815,asuperfamilythatincludesthePectinidae;Entoliidae Teppner,1922;Propeamussiidae Abbott,1954;SpondylidaeGray,1826;andtheextinctEntolioidesidaeKasumZade,2003;NeitheidaeSobetski,1960;PernopectinidaeNewell,1938;Tosapectinidae(Bieleretal.,2010).All membersofPectinoideaareunitedbyhavingatriangularresiliumwithanon-mineralisedmedialcorethatfunctionsbelowthehingeline(Waller,1978,2006b).Inearlyontogeny,allspeciesexhibitapectiniformgrowthstage completewithabyssalnotch,andpresumablythesespeciescanattachtosubstratesusingabyssus(Waller, 2006b).AfterthePectinidae,thesecondlargestextantfamilyofthePectinoideaisthePropeamussidaeor‘glass scallops’(B200species).Shellsofthesesmall,deep-waterbivalvesarethin,colourless,andresemblesomepectinidspecies.ThefamilySpondylidaeor‘thornyoysters’(B70species)isdistributedthroughoutthetropicaland subtropicaloceansandallmemberscementtosubstrates.Thefamilywiththefewestextantspeciesisthe Entoliidae,or‘smoothpectens’(twospecies).Asamendedby Waller(2006b),thisfamilycontainstwoextantspecies.Othermorphologicaldifferencesamongthepectinoideanfamiliesincludethehingedentitionandthemineralcompositionofthevalves(see Waller,2006b).

ThePectinidaeisthelargestpectinoideanfamilyanditsmemberscanbeidentifiedbytwokeystructures:(i)a particularhinge-ligamentsystemthatconnectsthetwovalvesoftheshelland(ii)thepresenceofactenolium (Waller,1984;Hautmann,2010).Thehinge-ligamentsystemofthescallopisthealivincular-alateligamentcondition (asdescribedin Hautmann,2004),whereatriangular-shaped,fibrousligament(theresilium)issecretedinadepression(theresilifer)oninternalsurfaceofalong,straighthingemarginofthedorsalportionofthevalve.Asecond ligamentextendslaterallyalongtheouterlengthofthestraighthingemargin,inawing-likeor‘alate’manner. Thelateralligamentalignsandconnectstheleftandrightvalvesoftheshelltogether,whilecompressionof theuncalcifiedcentreoftheresiliumperformslikeaspring,actinginoppositiontotheactionoftheadductormusclesthatdrawbothvalvestogether.Thus,ithasbeenhypothesisedthattheelastichingewaskeytodevelopmentof shellclappingandswimmingbehavioursexhibitedbyscallops(Trueman,1953;MarshandOlson,1994;Dickinson etal.,2000).Allscallops,andafewextinctfamilies(e.g.PernopectinidaeandEntiolioididae; Korobkov,1960),

possessthealivincular-alateligament.Incontrast,thectenoliumisuniquetothePectinidaeandispresentatleastin theearlypost-larval(dissoconch)growthstages.Thectenoliumisarowofhook-shapeddenticlesalongtheventral edgeofbyssalnotch(Waller,1978,1984)(Figure1.1).Asaproteinbyssusissecretedbythebyssalglandwithinthe muscularfoot,itpassesoverthedenticlesofthectenoliumwhichkeepsthearrayofthreadsflatalongtheedgeof theshell(Waller,1984:Figure4b,c).Thecombinationofabyssalthreadsheetandthetwo-pointcontactofshelltoa surface(see Stanley,1972)stabilisestheanimal’sconnectiontothesubstrateandgreatlyreduceshowmuchtheshell canrotatearoundthebyssus.Asaresult,muchmoretorquemustbeappliedtobreakthebyssalattachment(Waller, 1984)andthismayprovideanadditionallevelofprotectionfrompredatorsthatmustdislodgeandmanipulateprey itemsbeforeconsumption(Caroetal.,2008).

TheRelationshipBetweenLifeHabitandShellShape

Scallopsmetamorphosefromaswimmingpediveligertoacrawling,benthicpost-larva.Atthistime,themantlebeginssecretionofthedissoconchshell(HodgsonandBurke,1988),whosemicrosculpturepatternshavebeen usedascharactersinsomeclassificationsystems(Waller,1991).Allnewlymetamorphosedscallopspossessactenoliumandcanproduceabyssustoattachtoasubstrate.Thisattachmentistemporaryastheanimalcanrelease thebyssusandthensecreteanewbyssustoattachtoanothersubstrate.Astheanimalgrowsandmatures,the ctenoliummaybeovergrownbytheadvancingfrontoftheanteriorauricle(Waller,1984:Figures2a c,3b).This resultsintheprogressivelossoftheabilitytoattachusingabyssusasbodysizeincreases(Caddy,1972).Thus, somescallopspeciesonlyemployabyssusasjuvenilesandlosetheabilitytoproduceabyssusasadults,becoming‘free-living’.

Basedontheabilitytoattachandmodeoflocomotion,adultscallopscanbeplacedintosixfunctionalgroups orlifehabits(sensu Stanley,1970).Theselifehabitsareassociatedwithspecificshellformsofscallops(Stanley, 1970).Themajorityofscallopspecieshavethebyssalattachinglifehabit,whereabilitytoattachtemporarilytoa substrateviabyssusismaintainedaftermaturity.Byssalattachershaveachlamydoidform,wheretheshellhasa strongasymmetryalongtheanterior posterioraxissuchthattheauriclesareofdifferentsizesandtheshell outlineisoblique(Figure1.2A).Additionally,therightvalvehasadeepbyssalnotchwithawell-developed ctenolium(Figure1.1).Ithasbeenhypothesisedthatthechlamydoidformistheplesiomorphicconditionforthe Pectinidae(Waller,1993).Afewbyssalattachingspecies,like Pedumspondyloidium (Gmelin,1791),exhibitthe nestlinglifehabit.Thesespeciesareobligateassociateswithlivingscleractiniancorals,wherethepost-larvapreferentiallysettleson,andbyssallyattachesto,coralpolypswhichgrowaroundthescallopencasingit(Yonge, 1967;Waller,1972a).

Otherspecies,suchas Crassadomagigantea (Gray,1825),permanentlyattachtohard,oftenabiotic,substrates bysecretingnewshellmaterial.Thiscementinglifehabitisassociatedwithashellthattransitionsfromthe

FIGURE1.1 Somemorphologicalfeaturesofthepectinidshell.Rightvalveof Volachlamystranquebaria orientedwithanterior(ant.)towards rightandposterior(post.)towardsleft.

Ctenolium
Ant. auricle Post. auricle Byssal notch Umbo
Right valve

4 1.RECONCILINGMORPHOLOGICALANDMOLECULARAPPROACHESINDEVELOPINGAPHYLOGENYFORTHEPECTINIDAE(MOLLUSCA:BIVALVIA)

FIGURE1.2 Fourcommonformsofscallopshells.Three-dimensionalsurfacescansoftheleftvalveofrepresentativescallopspeciesfor thechlamydoid(A);aequipectinoid(B);pectinoid(C),andamusioid(D)forms.Thecementingformisnotshown.Anterior(ant.)towards rightandposterior(post)towardsleft.

chlamydoidformtohighlyvariableshellshapeasgrowthoftherightvalveconformstothesubstrate. Morphologicalchangesincludeventralmigrationoftheligamentsystemandanincreaseddistancebetweenthe palliallineandshellmargin(Yonge,1951;Waller,1972a;Harper,1991),creatingathickenedanddistortedshell thatsuperficiallyresemblestheshellofoyster.Whilenotaspecificshellshape,thisshellformisoftenassociated withthename Hinnites (asin Hinnitespusio (Linnaeus,1758)).

Somepectinidspeciesdonotattachtoasubstrateofanykindasadults.These‘free-living’specieseitherpassivelyoccupyapositionon,orarepartiallycoveredin,asoftsubstrate(‘recliners’ sensu Stanley,1970).Shellsthat reflectthereclininglifehabitarelike Aequipectenopercularis (Linnaeus,1758)(aequipectinoidform),wherethe valvesaremoreequilateralandflaringthanthechlamydoidformandtherightvalvehasashallowbyssalnotch thatpersistslateinontogeny(Figure1.2B).Likeaequipectinoidform,eachvalveinthepectinoidform(asin Pecten Mu ¨ ller,1776, sensustricto)isstronglysymmetricalongtheanterior posterioraxisandishighlyflared alongthedorsal ventralaxis(Figure1.2C).Incontrast,thereisadramaticshapeasymmetrybetweentheleft andrightvalvesnotpresentintheaequipectinoidform,wheretheleftvalveisflatorslightlyconcaveandthe rightvalveisstronglyconvex.Thepectinoidformisassociatedwiththerecessinglifehabit,wherescallopsconstructasaucer-shapeddepressioninsoftsubstratesbydirectingwaterjetsfromitsmantlecavity(Baird,1958; SakuraiandSeto,2000).Speciesofthisformoftenlackabyssalnotchasadults.

Perhapsthemostintriguingscalloplifehabitisgliding(‘swimming’ sensu Stanley,1970).Whileallnon-permanentlyattachedscallopspecieshavetheabilitytoswimtoescapepredators(Himmelmanetal.,2009)orseek favourablehabitat(BuddenbrockandMoller-Racke,1953;HamiltonandKoch,1996),theseactivitiesarenot stronglydependentonshellshape.Glidingisatypeofswimmingbehaviourthatincludes:(i)agreatdistance travelledperswimmingeffort(5 30mpereffort; Brand,2006);(ii)themaintenanceofanear-horizontaltrajectoryabovethesubstrate(Morton,1980;Joll,1989;Anselletal.,1998);and(iii)aglidingcomponent,wherethe animalcontinuestomoveforwardwhilethevalvesareheldclosed(ManuelandDadswell,1993;Chengetal., 1996;Anselletal.,1998).Neitherhorizontaltrajectorynoraglidingcomponentisobservedinscallopsthatswim forshortdistances(Marshetal.,1992;Anselletal.,1998;Donovanetal.,2002).Theglidinglifehabitisassociated withtheamusioidform(asin Amusium Roding,1798, sensustricto).Animalswiththisformhavethin,lightweightshellswithasmoothexteriorandcircularoutlineconducivetoreducingdragandincreasinglift (Figure1.2D).Fromtheside,theshellsareslightlyconvexandcreateagapalongthemarginsventraltotheauriclessothatwatercanbeexpelledduringtheglidingphase(Hayami,1991:Figure1).Bothauriclesaresymmetricalandaregreatlyreducedinsizecomparedtoothershellforms.Specieswithanamusioidformrarelyattach, andassuchtherightvalvehasasmallbyssalnotchorlacksonealltogether.

SinceallfiveshellshapeshaveevolvedinarepetitivefashioninthehistoryofthePectinidae,theydonot denotehigher-leveltaxa.Rather,ithasbeendemonstratedthatshellformsreflectlifehabitratherthanhomologoustraits(Stanley,1970;Alejandrinoetal.,2011;Serbetal.,2011).Thus,theutilityofshellformasthesole basisofanyscallopclassificationsystemisquestionable(Waller,1991,2006a).Indeed,80%oftherecentandfossilspeciesandsubspecieswereoriginallyplacedintoonlyfivegenera, Chlamys, Aequipecten, PectenAmusium,and Hinnites,basedsolelyonshellform.Asaresult,thesefivegenerawererecognisedaspolyphyletic,and

subsequentlyover100genericnameshavebeenintroduced,compoundingthetaxonomicconfusionandinstabilitywithinthefamily(Waller,1991).Thenextsectionprovidesabriefreviewofthetransitionfromusinghighly convergentadultshellformtousingshellmicrosculptureandhingefeaturesinthedevelopmentofaclassificationsystemforthePectinidae.

SHELLMORPHOLOGYANDITSAPPLICATIONINTAXONOMIC CLASSIFICATIONSYSTEMS

Theearliestandmostcomprehensivetaxonomictreatmentsofthefamilyarebasedonthemacroscopiccharactersoftheadultshellsorshellform(Thiele,1935;Korobkov,1960;Hertlein,1969;Habe,1977),butoften,these classificationsystemslackcleardiagnosticcharacters(e.g. Thiele,1935; Habe,1977).Forexample, Thiele(1935) hadafoursubfamilyclassificationforthePectinidaedividingitintothePectininae,Amussiinae[=Amusiinae], SpondylinaeandPlicatulinae(thelattertwosubfamiliesarenolongerconsideredscallops(Bieleretal.,2010)). SpecieswereplacedintothePectininaeorAmussiinaebasedonthethickness,coloration,anddegreeofexterior sculptureofthevalves.Forinstance,speciesin Propeamussium, Adamusium,and Amusium,whichpossesssmooth valves,internalribs,and/ortranslucentshells(i.e.theamusioidform)wereplacedintheAmusiinae.Theclassificationof Korobkov(1960) issimilartoThiele’s,butsubdividedThiele’ssubfamiliesintoPectininaeand ChlamydinaeorAmusiinaeandPalliolinae.

Hertlein(1969) wasthefirsttoaddresstheissueofconvergentevolutioninpectinidshellshapewhendevelopinghisclassificationsystem.Aftercomparingextinctandrecenttaxa,hefoundthedatasupported Philippi’s (1853) theoryofiterationandconcludedthatsimilaritiesinshellformusedtodefinesupra-specificgroupsof pectinidsaremostlikelyduetoconvergenceratherthansharedhistory.Assuch, Hertlein(1969) adoptedaconservativeapproachandplacedspeciesinto11supragenericgroupswithoutusingtheformaltaxonomictermof ‘subfamily’,whichwouldimplyrelationship.Sevenofthe11supragenericunits,the Amusium, Chlamys, Decatopecten, Eburneopecten, Hinnites, Lentipecten,and Pecten groupscontainextantspecies,withmostmoderngenerabelongingtothe Chlamys Group(Table1.1). Hertlein(1969) recognisedthatconvergentshellshapewasparticularlyproblematicwhendeterminingtheplacementofamusiidscallopsandotheramusioidformtaxa. Historically,theamusiidshavebeenplacedinthePectinidaewhileothertimesconsideredaseparatefamily(e.g. Ridewood,1903).Takingintoaccountfossiltaxasuchas Amussiopecten,Hertleinfavouredplacingamusiidsback intothePectinidae,althoughhefeltthatthisissuewasnotsatisfactorilyresolved.Bothsmooth-shelledamusiid andpropeamussidtaxaareinthe Amusium Group;however,Hertleinnotesthatthesetaxamayhavebeen derivedfromdifferentancestrallineagesandmaynotrepresentanaturalgroup.

Habe(1977) producedaclassificationsystemof10pectinidsubfamiliesprimarilybasedonrecentJapanese taxa.Animportantcontributionofthisworkwastoelevatethe Camptonectes Grouptothesubfamilylevel. Habe’sCamptonectinaeincludedfourextantgenera(Cyclopecten, Palliolium, Hyalopecten,and Delectopecten),but sincepublication,allbut Delectopecten havebeenmovedtoothersubfamilies(WallerandMarincovich,1992).

Ingeneral,theseearlyclassificationsystemsdidnotincludesoftanatomycharacters(butsee Thiele,1935),as oldermuseumcollectionsprimarilywerecomprisedofdrymaterials.Yet,thedemonstratedmorphologicalplasticity(e.g. Laudienetal.,2003; Culveretal.,2006; Lam,2006)andconvergentevolution(e.g. Stanley,1970,1972, 1975; Serbetal.,2011)ofthebivalveshellcastssomedoubtonthevalidityofclassificationschemesbasedsolely onshapeandsculptureoftheadultshell.

Inanefforttoavoidtheuseofhomoplasiouscharacters, Waller(1986,1991,1993) developedaclassificationof bothextantandextincttaxathatprimarilyfocusedonmicrosculptureofthejuvenileshell,shellmicrostructure (e.g.crystallinecomposition),andhingedentition(Waller,1991:pp.3 9).Unlikepreviousclassificationsofthe Pectinidae,Wallerappliedhispaleontologicalbackgroundtoinferevolutionaryrelationshipsamongpectinid taxabasedonsharedderivedmorphologicalstates(synapomorphies)ofthesetraits.

Waller’searliestphylogenetichypothesiswashis1969paperontheevolutionofthe Argopectengibbus stock,a monophyleticgroupofspeciesfromtheCaribbeanandPanamicprovinces(Waller,1969).Thegoalofthestudy wastoreconstructtheCenozoichistoryof17fossilandlivingtaxa.Todoso,hecollecteddataonmorphology andecologyoflivingspeciesandthenusedpatternsidentifiedinextantspeciestointerpretdatafromthefossil species.Hisdatasetincluded70morphometricmeasurementsofoutline,ligamenture,andmusculatureforover 4100valvesofbothfossilandlivingtaxafrommorethan95localities.Bycombiningbothpaleontologicaland neontologicalinformation,Wallerwasabletodevelopaphylogenetichypothesisthattookintoaccountboth

TABLE1.1 FourModernClassificationSchemesofExtantScallopSpecies

Hertlein,1969,withsomerepresentativegenera Waller(1986,1991,1993,2006) Dijkstra(2004,2014)RainesandPoppe(2006)

CamptonectesGroup (allextinct)

ChlamysGroup

Chlamys

HinnitesGroup

Pedum

Hinnites

LentipectenGroup

Adamussium

EburneopectenGroup

Hemipecten

Palliolum

Delectopecten

Pseudamussium

SubfamilyCamptonectinaeSubfamilyCamptonectinaeSubfamilyCamptonectinae

SubfamilyChlamydinae

TribeChlamydini

TribeCrassadomini

TribeMimachlamydini

SubfamilyPalliolinae

TribeAdamussiini

TribeMesopeplini

TribePalliolini

DecatopectenGroupSubfamilyPectininae

AmusiumGroup Amusium

Propeamussium

PectenGroup

TribeAequipectinini

TribeAmusiini

TribeDecatopectinini

TribePectinini

SubfamilyChlamydinae

TribeChlamydini

TribeCrassadomini

TribeFortipectinini

TribeMimachlamydini

SubfamilyPalliolinae

TribeAdamussiini

TribeMesopeplini

TribePalliolini

SubfamilyHemipectinae

SubfamilyChlamydinae

TribeAdamussiini

TribeAequipectinini

TribeAustrochlamydini

TribeChlamydini

TribeCrassadomini

TribeFortipectinini

TribeMimachlamydini

SubfamilyPalliolinae

TribePalliolini

SubfamilyPectininae

TribeAequipectinini

TribeAmusiini

TribeAustrochlamydini

TribeDecatopectinini

TribePectinini

SubfamilyPedinae

TribePedini

SubfamilyPectininae

TribeDecatopectinini

TribePectinini

morphologicalchangealongalineageandchangethatresultedintheformationofnewlineages(i.e.speciation). Then,byplacingthephylogeneticrelationshipsinthecontextofecological(baysvsopen-marineenvironments) andbiogeographicbarriers,hedevelopedahypothesistoexplainthedifferenceinratesofmorphologicalevolutionandspeciationbetweenthetwobiogeographicprovinces.Basedontheresultingphylogeny,heupdatedthe taxonomicdescriptionsoffossilandextantspeciesexamined.

Subsequently,Wallerbeganexploringtheuseofshellmicrostructureandmicrosculptureascharacterstodefine taxonomicgroupsandtheirrelationships.Hefirstfoundanassociationbetweenmicrostructureandsurfacesculptureoftheshell,wheresurfacesculptureisinhibitedwhentheoutershelllayeriscomposedofprismaticcalcite (Waller,1972b).Thus,thechangeduringshellgrowthfromprismaticcalcitetofoliatecalcitecorrespondswitha changefromasmoothsurfacetothebeginningofradialsculpture.Wallerdeterminedthatthetimingofthis microstructuralshiftmaybeusefulindefiningtaxonomicgroups(Chlamys vs Pecten speciesgroups).Similarly, Wallerdeterminedthatshellmicrosculptureonthesurfaceoffoliatecalcitecouldbeappliedtotaxonomic andphylogeneticstudiesofpectinids.Heusedshellmicrosculpturetodefineanewtribe,theDecatopectinini (Waller,1986)andlaterappliedthesecharacterstatestodevelopphylogenetichypotheses(Waller,1991,1993).

In1991,WallerexaminedthePectinidaeinamoreinclusivemanner.Hedevelopedaphylogenetichypothesis (Figure1.3)basedprimarilyonpre-radialstageshellmicrosculpture.Theresultwasaphylogenetic-basedclassificationsystemthatdividedthePectinidaeintothreesubfamilies(Camptonectinae,Chlamydinae,andPectininae) andtheirrespectivespeciesgroups,manyofthesetaxacorrespondtopreviouslyrecognisedtribes(Waller,1986). ThisstudywasmonumentalasWallerdevelopedaphylogenetichypothesisofthePectinidaethatwastime-calibratedwiththeinclusionoffossiltaxa.Furthermore,hegeneratedspecifichypothesesfortheoriginofthefamily andidentifiedthebasalgroup,theCamptonectinae,asrepresentedbytheextant Delectopecten (‘basal Camptonectinae’hypothesis,see‘Delectopecten astheBasalLineageofthePectinidae’section).Last,foreachspeciesgroupheidentified,Wallerdevelopedspecificevolutionaryhypothesesbasedongeologicalevidence.

While Waller’s1991 paperfocusedoncommercialspecies,hissubsequentpublications(Waller,1993,2006a) providedamorecompleteclassificationschemethathasbeenpartiallyadoptedoramendedbyotherauthors

group

FIGURE1.3 Waller’s1991 phylogenetichypothesisforscallopgroupscontainingcommercialspecies.Phylogenyisplottedagainsttimein millionsofyears(basedon Harlandetal.,1982).Numbersonbranchesrefertomorphologicalcharacterswhichdefineclades:(1)resilium withnon-calicifedcore;(2)ctenolium;(3)earlypre-radialstageofleftdissoconchwithantimarginalgroovesandridgeletsinmicrosculpture, resilial,anddorsalhingeteetharenearlyequallydeveloped;(4)earlypre-radialstageofmicrosculpturemaybesimilarto(1)inbeingpredominatelyantimarginalorpatternmaybeobscuredbyclosed-spacedcommarginallirae;tendencyforreductionofresilialhingeteethwhile dentalpatternbecomesdominatedbydorsal,infradorsal,orsupradorsalteeth;(5)earlypre-radialstageofmicrosculptureofleftvalveis eitherveryfinelypittedorcompletelysmooth,hingedominatedbydorsaland/orintermediateteeth,internalribcarinaebecomesnearlyuniversalinthe Decatopecten and Pecten groups;(6)prismaticstageofrightvalveissecondarilyextendedtoaheightofseveralmillimetres(in contrasttomoreancestralpectinids,whereitislimitedto ,2mm),leftpre-radialstageisgenerallysmooth,rarelyfinelypitted;(7)earlypreradialstageofmicrosculptureofleftvalveisverycoarselypittedandthesepitsarenearlyequidimensionalremnantsofoncecontinuousantimarginalgrooves,hingeteethsimilarto Chlamys group;and(8)earlypre-radialstageofmicrosculptureofleftvalveisverycoarselypitted, hingedentitionbecomesdominatedbyresilialteeth,atleastinearlygrowthstages.

Source:Imagereprintedfrom Waller(1991) withpermission.

(e.g. RainesandPoppe,2006; Dijkstra,2013a).Inhis1993work, Waller(1993) focusedonrelationshipswithinthe Chlamydinae,whichhefurthersubdividedintofourtribes(Chlamydini,Crassadomini,Mimachlamydini,and Aequipectinini).Thispaperalsoincludedtheintroductionoftwonewextanttribes(Crassadomini, Mimachlamydini),threenewextantgenera(Caribachlamys Waller,1993, Laevichlamys Waller,1993 and Spathochlamys Waller,1993),andclearhypothesesfortaxonomicrelationshipsamonglineages,whichhereferred toas‘paraclades’,that‘cannotyetbecharacterizedonthebasisofuniqueapomorphies(=synapomorphies)’ (Waller,1993:p.199).Onemajorcontributionofhis1993workwastodividespeciespossessingthecommon chlamydoidformintodifferenttribes(Chlamydini,Crassadomini,Mimachlamydini),asWallerrecognisedthis shellshapeasplesiomorphic.Later, Waller(2006a) revisedhistaxonomicclassificationmovingthePalliolini fromthePectininae(Waller,1993:Figure1)andelevatedthetribetothesubfamily,Palliolinae(Figure1.4).The Palliolinaewasdividedintofivetribes,threeofwhich(Adamussiini,Mesopeplini,Palliolini)includeextanttaxa

8 1.RECONCILINGMORPHOLOGICALANDMOLECULARAPPROACHESINDEVELOPINGAPHYLOGENYFORTHEPECTINIDAE(MOLLUSCA:BIVALVIA)

FIGURE1.4 Waller’s2006phylogenetichypothesisforthesubfamilyPalliolinae.Dashedlinesindicatemissingfossilrecords.Branches endinginarrowsrepresentextantlineages,thoseendingincross-barsareextincttaxa.Letter-numberlabelsonnodesrefertocharacters describedin(Waller,2006a).Timeinmillionsofyearsfrom Berggrenetal.(1995). Source:Imagereprintedfrom Waller(2006a) withpermission.

fromthegenera Adamussium Thiele,1934, Palliolum Monterosato,1884, Placopecten Verrill,1897,and Pseudamussium Morch,1853.Basedonevidencefrommolecularphylogeneticstudies, Waller(2006a) createdthe tribeAmusiiniandmoved Annachlamys Iredale,1939and Flexopecten Sacco,1897fromtheDecatopectininitothe PectininiandAequipectinini,respectively(Table1.1)(Figure1.5).

Waller’sworkpresentsmanyfirsts.Hewasthefirstworkerinscallopstoroutinelyincorporatefossilandlivingtaxaintophylogenetichypotheses(Waller,1969,1991,2006a).Hewasthefirsttodevelopafamilialclassificationsystembasedonaphylogeny,notsimplybinningmorphologicallysimilarspeciesintogroups(Waller,1991, 2006a).Hewasthefirstresearchertoovercomeadependenceofusinghomoplasiouscharactersinscallopmorphologyandsetouttodevelopasetofcharacterstoavoidissueswithconvergenceintheadultshellshape

FIGURE1.5 Waller’s2006phylogenetic hypothesisforthesubfamilyPectininae. Branchesendinginarrowsrepresentextant lineages,thoseendingincross-barsareextinct taxa.Timeinmillionsofyearsfrom Berggren etal.(1995) Source:Imagereprintedfrom Waller (2006a) withpermission.

(Waller,1972a,b,1986,1991,1993,2006a).AsaresultofWaller’stotalbodyofwork,thePectinidaehasachieved ameasureoftaxonomicstability.

TheclassificationsfromWallerprovidedanoverviewofhowdifferenthighertaxonomicgroupswererelated tooneanotherandlinkedextinctandextanttaxaunderageologictimescale;however,fewspecieswerespecificallyplacedinthissystem. Dijkstra(2004) developedacomprehensivetaxonomicsynopsisofscallopsthat includesallrecognisedpectinidspecies.ThisclassificationisbasedonthescaffoldingofWaller’sclassification system,theworkof Coanetal.(2000) andoverthreedecadesofpublishedworkbyDijkstrahimself(seewebsite forcompletelist, www.scallop.nl).ThemajortaxonomicdifferenceintheDijkstra’sclassificationsystemisthe resurrectionofthreetribes:FortipectininiMasuda1963,AustrochlamydiniJonkers,2003,PediniBronn,1862 (Table1.1).Topublicisehisclassificationsystem,Dijkstradevelopedawebpagesummarisinghispeer-reviewed work.Thefirstiterationwasavailableintheearly2000sasthe‘ScallopCabinet’(Dijkstra,2004)andlater renamedasthe‘World-widelivingscallops’website(Dijkstra,2014).Dijkstra’sbodyofworkhasprimarily focusedonalphataxonomy(e.g. Dijkstra,1986,1988,1989,2008; DijkstraandRoussy,1994; DijkstraandKilburn, 2001)andistheresultofacoordinatedeffortwithlargeresearchexpeditionsorganisedbytheMuse ´ umNational d’HistoireNaturelledeParis(DrPhilippeBouchet)andtheFrenchresearchorganisation,theInstitutde recherche ´ pourlede ´ veloppement(IRD),andcollectionholdingsofDijkstra’shomeinstitution,theNaturalis BiodiversityCenter,Leiden(previouslytheZoologicalMuseum,UniversityofAmsterdam).Thus,muchof Dijkstra’sworkhasfocusedontaxaofthetropicalIndo-PacificOcean.PerhapsofDijkstra’smostimportantcontributiontothestudyofPectinidaeisthathenotonlydescribesnewtaxa,buthepresentsimportantecological information.Hispapersprovidedetaileddescriptionsoflifehabit,associatedsubstrates,andbathymetricalrange togiveahabitatprofileforpectinidspecies(e.g. Dijkstra,2013b).

Mostrecently, RainesandPoppe(2006) compiledabeautifullyphotographediconographyof250speciesin thePectinidae.Theclassificationsystemtheyemployedprimarilyfollowstheoneby Hertlein(1969),butmodifiedbytheworksofDijkstra,Habe,Kafanov,Wagner,andWaller.TheclassificationofRainesandPoppeisthe onlysystemtorecognisethesubfamilyHemipectinae.Inaddition,theirsubfamilyChlamydinaeincludesmore tribesthanothermoderntaxonomictreatments(Table1.1).

Thefourmostcomprehensiveclassificationsystemsof Hertlein(1969), Waller(1986,1991,1993,2006a), Raines andPoppe(2006),and Dijkstra(2014) arecomparedin Table1.1.Differencesamongtheclassificationsystems includewhetherextincttaxaareintegrated(Hertlein,Waller),ifallcurrentlyrecognisedspeciesareincluded (RainesandPoppe,Dijkstra),andiftheauthorgivesahypothesisofhowhighertaxaarerelatedtooneanother (Waller).Thesemodernclassificationsystemshaveinfluencedandsubsequentlyhavebeeninfluencedby(e.g. Waller,2006a)themolecular-basedphylogeneticstudiesdescribedbelow.

THEINFLUENCEOFMOLECULARPHYLOGENETICSONSYSTEMATICS

Inmolecularphylogenetics,speciesarerepresentedbynucleotidesequencesthatencodegenes,oraminoacid sequencesthatencodeproteins.Thesedataarealignedascharacterstatesinamatrixandanalysedunderamathematicalmodeldescribingevolutionarychange.Themethodsoftreeestimationincludeavarietyofapproaches andthereisalargebodyofliteratureonthesubject(Hillisetal.,1996;Swoffordetal.,1996;Felsenstein,2004). Currentlyacceptedphylogeneticmethodsutilisesometypeofoptimalitycriterion,whichisameasureoffitof thedata(charactermatrix)toagivenhypothesis(phylogenetictree).Thesemethodsinclude:Maximum Parsimony(MP: Fitch,1971);MaximumLikelihood(ML: Felsenstein,1981);andBayesianInference(BI: Yangand Rannala,1997).MP,ML,andBIarecharacter-basedmethods,wheretheoptimalitycriterionisappliedtoeach position(nucleotideoraminoacid)alongthealignment.Amongthese,MLandBIuseexplicitmodelsof sequenceevolutiontosearchforthebesttree(ML)ortrees(BI)thatareconsistentwithboththemodelanddata. Incontrast,distance-basedmethods,suchasneighbour-joining(SaitouandNei,1987),summarisethemolecular charactermatrixintoadistancematrix,wheresequencesinthealignmentarecomparedinapairwisefashionto calculatethefractionofsimilarity,thenaseriesofalgorithmsareappliedtoconstructasingletree.Theusefulnessofanyofthesemethodsdependsonitsphylogeneticaccuracy,theabilityofamethodtorecoveratopology thatbestfitsthedataathand.Computersimulation(Hall,2005;OgdenandRosenberg,2006),observationalbased(Yang,1996),andexperimentalevolution(Hillisetal.,1994)studieshaveagreedthattheapproachesthat areexplicitlymodel-based(BIandML)aremorephylogeneticallyaccuratethanMPestimates.Distance-based approaches,suchasneighbour-joiningorUPGMA,aretheleastaccurate.Adescriptionofthesimilaritiesand differencesamongtheoptimalitycriteriaandotherapproachescanbefoundin Hall(2008).Itisworthnoting thatphylogeneticinferencemethodsareundercontinualevaluationandre-developmenttoimprovetheaccuracy andspeedofcomputation.

Molecularphylogeneticsisapowerfultoolindevelopingaclassificationsystembecause:(i)molecularmarkers (e.g.genes)canbeselectedthatareindependentofshellmorphologyand,presumably,thesemarkerswillbeless influencedbyconvergentevolutionsothattheresultingtreeisamoreaccuraterepresentationofthedata; (ii)molecularmatriceshavealargenumberofcharactersformorerobustandaccuratephylogenetichypotheses; (iii)molecularcharactershavediscretestates(4nucleotidesor23aminoacids)whicharelesssubjectiveand reduceerrorinstatecalling;and(iv)selectionofappropriateoutgrouptaxacanbeusedtoidentifytheoldest lineageofthestudygroup(i.e.‘ingroup’),totestthemonophylyoftheingroupandtopolarisethehistorical sequenceofallsubsequentevolutionaryevents.Thus,themajorlimitationsinamolecularphylogeneticstudy aretheavailabilityofDNAorRNAsamplesforthetaxaofinterestandthenumberofmolecularmarkersdevelopedforthatparticulargroupoforganisms.

MolecularPhylogeneticStudiesofScallops

Earlymolecularphylogeneticstudiesthatincludedpectinidtaxawereinvestigatingrelationshipswithin Bivalvia.ManyofthesestudiesusedDNAsequencefromasinglenuclearlocus,18SrRNA(Riceetal.,1993; KenchingtonandRoddick,1994;SteinerandMuller,1996;Frischeretal.,1998;GiribetandCarranza,1999; SteinerandHammer,2000).Areviewofthesepapersisgivenin Waller(2006a).Primarily,thesestudiesexaminedthephylogeneticplacementofthePectinidaewithintheBivalvia.Becauseofthisbroadtaxonomicfocus,

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.