Scallops biology, ecology, aquaculture, and fisheries 3rd edition sandra e. shumway and g. jay parso

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The Diversity of Fishes: Biology, Evolution and Ecology, 3rd Edition Douglas E. Facey

https://ebookmass.com/product/the-diversity-of-fishes-biologyevolution-and-ecology-3rd-edition-douglas-e-facey/

ebookmass.com

Myxomycetes: biology, systematics, biogeography, and ecology Elsevier.

https://ebookmass.com/product/myxomycetes-biology-systematicsbiogeography-and-ecology-elsevier/

ebookmass.com

Neuropsychology: Science and Practice 3rd Edition Sandra Koffler (Editor)

https://ebookmass.com/product/neuropsychology-science-andpractice-3rd-edition-sandra-koffler-editor/

ebookmass.com

Binding 13 Chloe Walsh

https://ebookmass.com/product/binding-13-chloe-walsh/

ebookmass.com

Philemon Iko-Ojo Omede

https://ebookmass.com/product/nigerian-consumer-credit-law-regulationand-market-insights-philemon-iko-ojo-omede/

ebookmass.com

SCALLOPS

Biology,Ecology,Aquaculture, andFisheries

THIRDEDITION

DepartmentofMarineSciences,UniversityofConnecticut, Groton,Connecticut,USA

G.JAY PARSONS

FisheriesandOceansCanada,Aquaculture,Biotechnology andAquaticAnimalHealthScienceBranch,Ottawa,Ontario,Canada

ForAndyBrandandNeilBourne,scallopafficionados,mentors,andfriends.

EffectsonMarineEcosystems589 EffectsonDifferentSeabedTypes594 Management599 Conclusion603 Acknowledgements604 References604

15.Dynamics,Assessment,andManagement ofExploitedNaturalScallopPopulations

J.M.(LOBO)ORENSANZ,ANAM.PARMA,ANDSTEPHENJ.SMITH

Introduction611 PopulationStructureandDynamics613 AssessmentofAbundanceandItsSpatialDistribution632 TheFishingandDepletionProcesses640 OverfishingandEcologicalEffectsofFishing654 Management661 Acknowledgements676 Acronymsusedinthetext676 References677

16.ScallopsoftheWestCoastofNorthAmerica

G.JAYPARSONS,RAYMONDB.LAUZIER,ANDNEILF.BOURNE Foreword697 Introduction697 Fisheries698 Aquaculture709 Future713 Acknowledgements714 References714

17.FisheriesSeaScallop, Placopectenmagellanicus

KEVIND.E.STOKESBURY,CATHERINEE.O’KEEFE,AND BRADLEYP.HARRIS

Foreword719 Introduction719 LifeHistory721 Ecosystem723

TheFishingFleetsofCanadaandtheUnitedStates724 StockAssessments726 FisheriesManagement729 Summary731 Acknowledgements732 References732

18.ScallopAquacultureandFisheriesinEastern NorthAmerica

SHAWNM.C.ROBINSON,G.JAYPARSONS,LESLIE-ANNEDAVIDSON, SANDRAE.SHUMWAY,ANDNORMANJ.BLAKE

Introduction737

SeaScallop(Placopectenmagellanicus)737

BayScallop(Argopectenirradians)758 CalicoScallop, Argopectengibbus 761 AquacultureandEnhancement765 Future767 Acknowledgements767 References767

19.TheEuropeanScallopFisheriesfor Pecten maximus, Aequipectenopercularis,Chlamysislandica, and Mimachlamysvaria

PETERF.DUNCAN,ANDREWR.BRAND,ØIVINDSTRAND,AND ERICFOUCHER

Introduction781 BiologyandEcology782 Fisheries801 TheFuture838 Acknowledgements841 References841

20.EuropeanAquaculture ØIVINDSTRAND,ANGELESLOURO,ANDPETERF.DUNCAN

Introduction859 HistoricalOverviewofEuropeanScallopAquaculture859 SpatProduction862 Grow-OutCulture867 SeabedRanchingandStockEnhancement875 BiologicalConstraintstoScallopCulture879 MarketandEconomics881 StockProtectionSecurityandLegalIssues882 FutureProspects883 Acknowledgements884 References884

21.ScallopFisheriesandAquaculture inJapan

YOSHINOBUKOSAKA

Introduction891 Patinopecten(Mizuhopecten)yessoensis 891 Future926 Pectenalbicans 931 Chlamys(Mimachlamys)nobilis 932 Acknowledgements932 References933

22.ScallopsandScallopAquacultureinChina XIMINGGUOANDYOUSHENGLUO

Introduction937 TheChineseScallop938 OtherScallopSpecies943

Fishery945 Aquaculture945

Harvest,Processing,andMarketing951

Acknowledgements951 References951

23.ScallopsofNorthwesternPacificRussian Federation

VICTORV.IVIN,OLGAG.SHEVCHENKO,AND TATIANAYU.ORLOVA

Introduction953 BiologyandEcology953 FishingandAquaculture975

Acknowledgements991 References991

24.AquacultureoftheScallop Nodipectennodosus inBrazil

GUILHERMES.RUPPANDG.JAYPARSONS

Introduction999

Aquacultureof Nodipectennodosus inBrazil1001

Acknowledgements1015 References1015

25.ScallopsBiology,Fisheries,andManagement inArgentina

GASPARSORIA,J.M.(LOBO)ORENSANZ,ENRIQUEM.MORSAN, ANAM.PARMA,ANDRICARDOO.AMOROSO

Introduction1019

TheTehuelcheScallop, Aequipectentehuelchus

1019

ThePatagonianScallop, Zygochlamyspatagonica 1032 Acknowledgements1041 References1041

26.ScallopFisheryandAquacultureinChile: AHistoryofDevelopmentsandDeclines

ELISABETHVONBRAND,ALEJANDROABARCA, GERMANE.MERINO,ANDWOLFGANGSTOTZ

Introduction1047

SpeciesDescription1047 Fisheries1050

HowScallopAquacultureStartedinChile1053

AquacultureProduction1055

Acknowledgements1068 References1068

27.ScallopAquacultureandFisheriesinVenezuela CE ´ SARJ.LODEIROS,LUISFREITES,JOSE ´ J.ALIO ´ ,MAXIMIANONU ´ NEZ, ANDJOHNH.HIMMELMAN

Introduction1073

Distribution,Habitat,andReproduction1073 Fisheries1077 Aquaculture1078 PerspectivesforCulture1084 Acknowledgements1085 References1085

28.ScallopFisheryandCultureinPeru

JAIMEMENDO,MATTHIASWOLFF,TANIAMENDO,ANDLUISYSLA

Introduction1089

SpeciesDescription1089 ProductionChainandMarketing1094 FisheriesandAquacultureProduction1095 ChallengesandProjectionsofPeruvianScallopProduction1104 Acknowledgements1105 References1105

29.ScallopFisheriesandAquacultureinMexico

CESARA.RUIZ-VERDUGO,VOLKERKOCH,ESTEBANFELIX-PICO, ANAISABELBELTRAN-LUGO,CARLOSCA ´ CERES-MARTI ´ NEZ, JOSE MANUELMAZON-SUASTEGUI,MIGUELROBLES-MUNGARAY, ANDJORGECACERES-MARTI ´ NEZ

Introduction1111 DescriptionofMexicanScallops1112 Fisheries1114 Aquaculture1119 References1123

30.ScallopFisheries,Mariculture,andEnhancement inAustralasia

MICHAELC.L.DREDGE,ISLAYD.MARSDEN,ANDJAMESR.WILLIAMS

Introduction1127 Biology1129 FisheriesandFisheryManagement1140 Culture1161

FutureDirectionsandConclusions1164 Acknowledgements1166 References1166

GeneralIndex1171 SpeciesIndex1189

ListofContributors

AlejandroAbarca DepartamentodeAcuicultura, UniversidadCato ´ licadelNorte,Coquimbo,Chile

Jose ´ J.Alio ´ InstitutoNacionaldeInvestigacionesAgrı´colas, Cumana ´ ,EstadoSucre,Venezuela

RicardoO.Amoroso SchoolofAquaticandFishery Sciences,UniversityofWashington,Seattle,WA,USA

BruceJ.Barber EckerdCollege,St.Petersburg,Florida, USA

AnaIsabelBeltran-Lugo DepartamentodeIngenierı ´ aen Pesquerı´as,UniversidadAuto ´ nomadeBajaCaliforniaSur Ap.,LaPaz,BajaCaliforniaSur,Me ´ xico

PeterG.Beninger LaboratoiredeBiologieMarine,Faculte ´ desSciences,Universite ´ deNantes,Nantes,France

NormanJ.Blake CollegeofMarineScience,Universityof SouthFlorida,St.Petersburg,Florida,USA

NeilF.Bourne FisheriesandOceansCanada,Pacific BiologicalStation,Nanaimo,BritishColumbia,Canada

SusanM.Bower FisheriesandOceansCanada,Pacific BiologicalStation,Nanaimo,BritishColumbia, Canada

AndrewR.Brand UniversityofLiverpool,PortErin,Isleof Man,UnitedKingdom

V.MonicaBricelj DepartmentofMarineandCoastal SciencesandHaskinShellfishResearchLaboratory,School ofEnvironmentalandBiologicalSciences,Rutgers University,PortNorris,NJ,USA

JorgeCaceres-Martı ´ nez CentrodeInvestigacio ´ nCientı´ficay Educacio ´ nSuperiordeEnsenada(CICESE),Ensenada, BajaCalifornia,Me ´ xico;InstitutodeSanidadAcuı´cola, Ensenada,BajaCalifornia,Me ´ xicoInstitutodeSanidad Acuı´cola,Ensenada,BajaCalifornia,Me ´ xico

CarlosCa ´ ceres-Martı ´ nez DepartamentodeIngenierı ´ aen Pesquerı´as,UniversidadAuto ´ nomadeBajaCaliforniaSur Ap.,LaPaz,BajaCaliforniaSur,Me ´ xico

PeterD.Chantler UnitofVeterinaryMolecularandCellular Biology,ComparativeBiomedicalSciences,RoyalVeterinary College,UniversityofLondon,London,UnitedKingdom

SimonM.Cragg InstituteofMarineSciences,Universityof Portsmouth,Portsmouth,UnitedKingdom

PeterJ.Cranford FisheriesandOceansCanada,Coastal EcosystemSciencesDivision,BedfordInstituteof Oceanography,Dartmouth,NovaScotia,Canada

Leslie-AnneDavidson FisheriesandOceansCanada, Moncton,NewBrunswick,Canada

MichaelC.L.Dredge Tasmania,Australia

PeterF.Duncan FacultyofScience,Health,Educationand Engineering,UniversityoftheSunshineCoast, Queensland,Australia

EstebanFe ´ lix-Pico CentroInterdisciplinariodeCiencias Marinas,LaPaz,BajaCaliforniaSur,Mexico

EricFoucher IFREMER LaboratoireHalieutiquedePort enBessin,PortenBessin,France

LuisFreites InstitutoOceanogra ´ ficodeVenezuela, UniversidaddeOriente,Cumana ´ ,EstadoSucre, Venezuela

RodmanG.Getchell DepartmentofMicrobiologyand Immunology,CollegeofVeterinaryMedicine,Cornell University,Ithaca,NY,USA

HelgaE.Guderley De ´ partementdeBiologie,Universite ´ Laval,Que ´ becCity,Que ´ bec,Canada

XimingGuo HaskinShellfishResearchLaboratory, DepartmentofMarineandCoastalSciences,Rutgers University,PortNorris,NJ,USA

BradleyP.Harris Fisheries,AquaticScienceand TechnologyLaboratory,AlaskaPacificUniversity, Anchorage,AK,USA

JohnH.Himmelman De ´ partementdeBiologie,Universite ´ Laval,Que ´ becCity,Que ´ bec,Canada

LeighM.Howarth SchoolofOceanSciences,Bangor University,MenaiBridge,Anglesey,UnitedKingdom

VictorV.Ivin InstituteofMarineBiology,FarEastern BranchoftheRussianAcademyofSciences,Vladivostok, Russia

VolkerKoch DeutscheGesellschaftfu ¨ rInternationale Zusammenarbeit(GIZ),LaPaz,BajaCaliforniaSur,Me ´ xico YoshinobuKosaka AomoriPrefecturalIndustrial TechnologyResearchCenter,FoodResearchInstitute, Aomori,Japan

MaureenK.Krause DepartmentofBiology,Hofstra University,Hempstead,NY,USA

FranciscoJ.Lagreze-Squella FederalUniversityofParana ´ , PontaldoParana ´ ,Parana ´ ,Brasil

RaymondB.Lauzier FisheriesandOceansCanada,Pacific BiologicalStation,Nanaimo,BritishColumbia,Canada

thescallopaquacultureindustryinBritishColumbia.Neil,thankyouforyourfriendship,insightsand contributions.

ThecurrenteditionhasbenefittedgreatlyfromtheeffortsofNoreenBlaschikwhohastirelesslyhelpedwith proofreading,referencecross-checkingandotherthanklesstasks.ThetalentsofEricHeupelwerekeyinredraftingmanyofthefiguresandaregratefullyacknowledged.Gettingauthorstoagreetoparticipateinventuressuch asthisismucheasierthanextractingthefinaltextsandweextendourdeepestgratitudetotheauthorsfortheir skill,patienceandperseverance.ThankstoSharon,MichaelandChristopherfortheirsupport,cajolingand patience.GusandZeusspentmanyeveningspawingovertexts,andtheirassistancemadethetasksathand moretolerable.

AspecialthankstoPatriciaOsborne,ElsevierSciencePublisherswhoinitiatedandencouragedtheeffortfora ThirdEditionandtoJaclynTruesdell,DebbieClarkandKarenMillerfortheirpatienceandguidanceduringthe production.

Forsuccessfulcultureandmanagement,agoodknowledgeofthebiology,ecology,physiologyandfisheriesof thespeciesisnecessaryandwehopethatthisThirdEditionofScallops:Biology,Ecology,Aquaculture,and Fisherieswillserveasasolidreferencebaseforyearstocome.

SandraE.Shumway1 andG.JayParsons2

1DepartmentofMarineSciences,UniversityofConnecticut,Groton,CT,USA 2FisheriesandOceansCanada,Aquaculture,BiotechnologyandAquaticAnimalHealthScienceBranch, Ottawa,ON,Canada

theimportanceofgeneticstofisheriesandaquacultureofscallopsinChapter12.InChapter13,Orensanz,Parma andIribanediscusspopulationdynamicsandthemanagementofnaturalstocks.ThecommercialspeciesofscallopsarecoveredinChapter14accordingtogeographiclocation.MuchofthedatapresentedinChapter14is beingreportedforthefirsttime,includingsuchelementarymeasuresasgrowth,meatweightandlandings. ThisworkwouldnothavebeenpossiblewithouttheeffortsofDr.ScottSiddall.Hisexpertiseinthefieldof desktoppublishingcoupledwithhisknowledgeofshellfishbiologymademytaskpossible.Hiscontinuedinterest,supportandinterjectionsofhumourwhenmostneededmadethetaskenjoyable.JanBarter,Martha Hernandez-Davis,JohnHedleyandJimRollinshelpedinvariouswaysandtheirwillingnesstoundertakesuch arduoustasksasproofreading,crosscheckingreferences,retypingofmanuscriptsandredrawingandrepairof submitteddiagramsaregratefullyacknowledged.AspecialthanksmustgotoBobGoodman,ElsevierScience PublishingCompany,forhisconsiderablepatiencein‘meeting’deadlinesandhisinsightandsupport.Finally, Iwouldliketothanktheauthorsfortheirskill,patience,andperseverance.

1

ReconcilingMorphologicalandMolecular ApproachesinDevelopingaPhylogenyforthe Pectinidae(Mollusca:Bivalvia)

INTRODUCTION

Scallops(PectinidaeRafinesque,1815)areoneofthemostmorphologically,behaviourally,andbiologically diversefamilyofbivalves.AsamajormolluscancladeofMesozoicandCenozoiceras,thePectinidaehashada tumultuous245-million-yearhistory,survivingtwomassextinctioneventsattheTriassic-Jurassicand Cretaceous-Paleogeneboundaries(Hautmann,2010;NewellandBoyd,1995;Waller,2006a).Overtheintervening quarterofabillionyears,itislikelythatscallopsunderwentseveraladaptiveradiationsthatplayedamajorrole ingeneratingthebiologicaldiversityseentoday.Currently,about270extantspeciesofscallopsarerecognised (Dijkstra,2014)andaredistributedacrosspolar,temperate,andtropicalseas,withthegreatestbiologicaldiversityinthetropicalCaribbeanandIndo-Pacificoceans(RainesandPoppe,2006).Mostscallopspeciesarefound intheshallowsofsublittoralreefs,sandybays,andseagrassbedsofthecontinentalshelves,withasmallernumberofspeciesrestrictedtodeeperwaterincludingtheabyssaldepthsat7000m.Whilethetypicalscallopshell shapeisthefamiliarroundeddiskandstraighthingelineformedbytwoear-likeauricles,scallopsexhibitawide rangeofmodificationsonthisgeneralisedphenotype,withstrikingshape,texture,andcolourvariantsofthe shell.Thisvarietyhasmadescallopsafavouriteofamateurshellcollectorsandscientistsalikeand,asaresult, theirshellsarewellrepresentedinthecollectionsofnaturalhistorymuseums(e.g. Dijkstra,1999; Dijkstraand Koehler,2008).Theon-goingchallengeforscallopbiologistsistoorganisetheimpressivebiologicaldiversityof thePectinidaeinaphylogeneticcontext.

Underaphylogeneticclassificationsystem,taxaareorganisedhierarchicallyintogroupsthatreflectahypothesisofevolutionaryrelationshipderivedfromaphylogenetictree.Aphylogenetictree(alsocalleda‘phylogeny’ or‘topology’)isabifurcatingdiagramthatdepictstherelationshipsbetweentaxabasedonsharedhistory throughcommondescent(Gregory,2008).Notonlycanthephylogenyhelpidentifygroupsoftaxa(clades),but phylogenetictreesindicaterelationshipsbetweenthesegroups,forexample,howtribesarerelatedtooneanother inasubfamily.Phylogenetictreesalsoprovideahistoricalcontextandarelativeorderforwhenlineagesarose anddiversified.Moreover,thephylogenycanbeusedtostudytheevolutionoftraits,suchaswhetheracharacterstateisancestral(plesiomorphic)orderived(i.e.traitpolarity),ortotesthypothesesregardingtherateor modeoftraitevolution.

Basingaclassificationsystemonphylogenyincorporatestheevolutionaryhistoryofthosetaxaandallthe associatedinformationintotheclassification.Speciesorlineagesthataredescendantsofasingleancestorrepresent‘naturalgroups’,andtherecognitionofnaturalgroupsgivespredictivepowertoaclassificationsystem becausethesharedcharactersmayalsoindicatesimilaritiesinlifehistorytraits,habitatrequirements,orecologicalfunctionduetosharedhistoryoftheorganisms.Thus,modernclassificationsystemsareinformationretrieval resources,whereanindividualspeciescanbeusedtorepresentabroadersetofspeciesinsomecontexts,suchas

possessthealivincular-alateligament.Incontrast,thectenoliumisuniquetothePectinidaeandispresentatleastin theearlypost-larval(dissoconch)growthstages.Thectenoliumisarowofhook-shapeddenticlesalongtheventral edgeofbyssalnotch(Waller,1978,1984)(Figure1.1).Asaproteinbyssusissecretedbythebyssalglandwithinthe muscularfoot,itpassesoverthedenticlesofthectenoliumwhichkeepsthearrayofthreadsflatalongtheedgeof theshell(Waller,1984:Figure4b,c).Thecombinationofabyssalthreadsheetandthetwo-pointcontactofshelltoa surface(see Stanley,1972)stabilisestheanimal’sconnectiontothesubstrateandgreatlyreduceshowmuchtheshell canrotatearoundthebyssus.Asaresult,muchmoretorquemustbeappliedtobreakthebyssalattachment(Waller, 1984)andthismayprovideanadditionallevelofprotectionfrompredatorsthatmustdislodgeandmanipulateprey itemsbeforeconsumption(Caroetal.,2008).

TheRelationshipBetweenLifeHabitandShellShape

Scallopsmetamorphosefromaswimmingpediveligertoacrawling,benthicpost-larva.Atthistime,themantlebeginssecretionofthedissoconchshell(HodgsonandBurke,1988),whosemicrosculpturepatternshavebeen usedascharactersinsomeclassificationsystems(Waller,1991).Allnewlymetamorphosedscallopspossessactenoliumandcanproduceabyssustoattachtoasubstrate.Thisattachmentistemporaryastheanimalcanrelease thebyssusandthensecreteanewbyssustoattachtoanothersubstrate.Astheanimalgrowsandmatures,the ctenoliummaybeovergrownbytheadvancingfrontoftheanteriorauricle(Waller,1984:Figures2a c,3b).This resultsintheprogressivelossoftheabilitytoattachusingabyssusasbodysizeincreases(Caddy,1972).Thus, somescallopspeciesonlyemployabyssusasjuvenilesandlosetheabilitytoproduceabyssusasadults,becoming‘free-living’.

Basedontheabilitytoattachandmodeoflocomotion,adultscallopscanbeplacedintosixfunctionalgroups orlifehabits(sensu Stanley,1970).Theselifehabitsareassociatedwithspecificshellformsofscallops(Stanley, 1970).Themajorityofscallopspecieshavethebyssalattachinglifehabit,whereabilitytoattachtemporarilytoa substrateviabyssusismaintainedaftermaturity.Byssalattachershaveachlamydoidform,wheretheshellhasa strongasymmetryalongtheanterior posterioraxissuchthattheauriclesareofdifferentsizesandtheshell outlineisoblique(Figure1.2A).Additionally,therightvalvehasadeepbyssalnotchwithawell-developed ctenolium(Figure1.1).Ithasbeenhypothesisedthatthechlamydoidformistheplesiomorphicconditionforthe Pectinidae(Waller,1993).Afewbyssalattachingspecies,like Pedumspondyloidium (Gmelin,1791),exhibitthe nestlinglifehabit.Thesespeciesareobligateassociateswithlivingscleractiniancorals,wherethepost-larvapreferentiallysettleson,andbyssallyattachesto,coralpolypswhichgrowaroundthescallopencasingit(Yonge, 1967;Waller,1972a).

Otherspecies,suchas Crassadomagigantea (Gray,1825),permanentlyattachtohard,oftenabiotic,substrates bysecretingnewshellmaterial.Thiscementinglifehabitisassociatedwithashellthattransitionsfromthe

FIGURE1.1 Somemorphologicalfeaturesofthepectinidshell.Rightvalveof Volachlamystranquebaria orientedwithanterior(ant.)towards rightandposterior(post.)towardsleft.

Ctenolium
Ant. auricle Post. auricle Byssal notch Umbo
Right valve

4 1.RECONCILINGMORPHOLOGICALANDMOLECULARAPPROACHESINDEVELOPINGAPHYLOGENYFORTHEPECTINIDAE(MOLLUSCA:BIVALVIA)

FIGURE1.2 Fourcommonformsofscallopshells.Three-dimensionalsurfacescansoftheleftvalveofrepresentativescallopspeciesfor thechlamydoid(A);aequipectinoid(B);pectinoid(C),andamusioid(D)forms.Thecementingformisnotshown.Anterior(ant.)towards rightandposterior(post)towardsleft.

chlamydoidformtohighlyvariableshellshapeasgrowthoftherightvalveconformstothesubstrate. Morphologicalchangesincludeventralmigrationoftheligamentsystemandanincreaseddistancebetweenthe palliallineandshellmargin(Yonge,1951;Waller,1972a;Harper,1991),creatingathickenedanddistortedshell thatsuperficiallyresemblestheshellofoyster.Whilenotaspecificshellshape,thisshellformisoftenassociated withthename Hinnites (asin Hinnitespusio (Linnaeus,1758)).

Somepectinidspeciesdonotattachtoasubstrateofanykindasadults.These‘free-living’specieseitherpassivelyoccupyapositionon,orarepartiallycoveredin,asoftsubstrate(‘recliners’ sensu Stanley,1970).Shellsthat reflectthereclininglifehabitarelike Aequipectenopercularis (Linnaeus,1758)(aequipectinoidform),wherethe valvesaremoreequilateralandflaringthanthechlamydoidformandtherightvalvehasashallowbyssalnotch thatpersistslateinontogeny(Figure1.2B).Likeaequipectinoidform,eachvalveinthepectinoidform(asin Pecten Mu ¨ ller,1776, sensustricto)isstronglysymmetricalongtheanterior posterioraxisandishighlyflared alongthedorsal ventralaxis(Figure1.2C).Incontrast,thereisadramaticshapeasymmetrybetweentheleft andrightvalvesnotpresentintheaequipectinoidform,wheretheleftvalveisflatorslightlyconcaveandthe rightvalveisstronglyconvex.Thepectinoidformisassociatedwiththerecessinglifehabit,wherescallopsconstructasaucer-shapeddepressioninsoftsubstratesbydirectingwaterjetsfromitsmantlecavity(Baird,1958; SakuraiandSeto,2000).Speciesofthisformoftenlackabyssalnotchasadults.

Perhapsthemostintriguingscalloplifehabitisgliding(‘swimming’ sensu Stanley,1970).Whileallnon-permanentlyattachedscallopspecieshavetheabilitytoswimtoescapepredators(Himmelmanetal.,2009)orseek favourablehabitat(BuddenbrockandMoller-Racke,1953;HamiltonandKoch,1996),theseactivitiesarenot stronglydependentonshellshape.Glidingisatypeofswimmingbehaviourthatincludes:(i)agreatdistance travelledperswimmingeffort(5 30mpereffort; Brand,2006);(ii)themaintenanceofanear-horizontaltrajectoryabovethesubstrate(Morton,1980;Joll,1989;Anselletal.,1998);and(iii)aglidingcomponent,wherethe animalcontinuestomoveforwardwhilethevalvesareheldclosed(ManuelandDadswell,1993;Chengetal., 1996;Anselletal.,1998).Neitherhorizontaltrajectorynoraglidingcomponentisobservedinscallopsthatswim forshortdistances(Marshetal.,1992;Anselletal.,1998;Donovanetal.,2002).Theglidinglifehabitisassociated withtheamusioidform(asin Amusium Roding,1798, sensustricto).Animalswiththisformhavethin,lightweightshellswithasmoothexteriorandcircularoutlineconducivetoreducingdragandincreasinglift (Figure1.2D).Fromtheside,theshellsareslightlyconvexandcreateagapalongthemarginsventraltotheauriclessothatwatercanbeexpelledduringtheglidingphase(Hayami,1991:Figure1).Bothauriclesaresymmetricalandaregreatlyreducedinsizecomparedtoothershellforms.Specieswithanamusioidformrarelyattach, andassuchtherightvalvehasasmallbyssalnotchorlacksonealltogether.

SinceallfiveshellshapeshaveevolvedinarepetitivefashioninthehistoryofthePectinidae,theydonot denotehigher-leveltaxa.Rather,ithasbeendemonstratedthatshellformsreflectlifehabitratherthanhomologoustraits(Stanley,1970;Alejandrinoetal.,2011;Serbetal.,2011).Thus,theutilityofshellformasthesole basisofanyscallopclassificationsystemisquestionable(Waller,1991,2006a).Indeed,80%oftherecentandfossilspeciesandsubspecieswereoriginallyplacedintoonlyfivegenera, Chlamys, Aequipecten, PectenAmusium,and Hinnites,basedsolelyonshellform.Asaresult,thesefivegenerawererecognisedaspolyphyletic,and

group

FIGURE1.3 Waller’s1991 phylogenetichypothesisforscallopgroupscontainingcommercialspecies.Phylogenyisplottedagainsttimein millionsofyears(basedon Harlandetal.,1982).Numbersonbranchesrefertomorphologicalcharacterswhichdefineclades:(1)resilium withnon-calicifedcore;(2)ctenolium;(3)earlypre-radialstageofleftdissoconchwithantimarginalgroovesandridgeletsinmicrosculpture, resilial,anddorsalhingeteetharenearlyequallydeveloped;(4)earlypre-radialstageofmicrosculpturemaybesimilarto(1)inbeingpredominatelyantimarginalorpatternmaybeobscuredbyclosed-spacedcommarginallirae;tendencyforreductionofresilialhingeteethwhile dentalpatternbecomesdominatedbydorsal,infradorsal,orsupradorsalteeth;(5)earlypre-radialstageofmicrosculptureofleftvalveis eitherveryfinelypittedorcompletelysmooth,hingedominatedbydorsaland/orintermediateteeth,internalribcarinaebecomesnearlyuniversalinthe Decatopecten and Pecten groups;(6)prismaticstageofrightvalveissecondarilyextendedtoaheightofseveralmillimetres(in contrasttomoreancestralpectinids,whereitislimitedto ,2mm),leftpre-radialstageisgenerallysmooth,rarelyfinelypitted;(7)earlypreradialstageofmicrosculptureofleftvalveisverycoarselypittedandthesepitsarenearlyequidimensionalremnantsofoncecontinuousantimarginalgrooves,hingeteethsimilarto Chlamys group;and(8)earlypre-radialstageofmicrosculptureofleftvalveisverycoarselypitted, hingedentitionbecomesdominatedbyresilialteeth,atleastinearlygrowthstages.

Source:Imagereprintedfrom Waller(1991) withpermission.

(e.g. RainesandPoppe,2006; Dijkstra,2013a).Inhis1993work, Waller(1993) focusedonrelationshipswithinthe Chlamydinae,whichhefurthersubdividedintofourtribes(Chlamydini,Crassadomini,Mimachlamydini,and Aequipectinini).Thispaperalsoincludedtheintroductionoftwonewextanttribes(Crassadomini, Mimachlamydini),threenewextantgenera(Caribachlamys Waller,1993, Laevichlamys Waller,1993 and Spathochlamys Waller,1993),andclearhypothesesfortaxonomicrelationshipsamonglineages,whichhereferred toas‘paraclades’,that‘cannotyetbecharacterizedonthebasisofuniqueapomorphies(=synapomorphies)’ (Waller,1993:p.199).Onemajorcontributionofhis1993workwastodividespeciespossessingthecommon chlamydoidformintodifferenttribes(Chlamydini,Crassadomini,Mimachlamydini),asWallerrecognisedthis shellshapeasplesiomorphic.Later, Waller(2006a) revisedhistaxonomicclassificationmovingthePalliolini fromthePectininae(Waller,1993:Figure1)andelevatedthetribetothesubfamily,Palliolinae(Figure1.4).The Palliolinaewasdividedintofivetribes,threeofwhich(Adamussiini,Mesopeplini,Palliolini)includeextanttaxa

8 1.RECONCILINGMORPHOLOGICALANDMOLECULARAPPROACHESINDEVELOPINGAPHYLOGENYFORTHEPECTINIDAE(MOLLUSCA:BIVALVIA)

FIGURE1.4 Waller’s2006phylogenetichypothesisforthesubfamilyPalliolinae.Dashedlinesindicatemissingfossilrecords.Branches endinginarrowsrepresentextantlineages,thoseendingincross-barsareextincttaxa.Letter-numberlabelsonnodesrefertocharacters describedin(Waller,2006a).Timeinmillionsofyearsfrom Berggrenetal.(1995). Source:Imagereprintedfrom Waller(2006a) withpermission.

fromthegenera Adamussium Thiele,1934, Palliolum Monterosato,1884, Placopecten Verrill,1897,and Pseudamussium Morch,1853.Basedonevidencefrommolecularphylogeneticstudies, Waller(2006a) createdthe tribeAmusiiniandmoved Annachlamys Iredale,1939and Flexopecten Sacco,1897fromtheDecatopectininitothe PectininiandAequipectinini,respectively(Table1.1)(Figure1.5).

Waller’sworkpresentsmanyfirsts.Hewasthefirstworkerinscallopstoroutinelyincorporatefossilandlivingtaxaintophylogenetichypotheses(Waller,1969,1991,2006a).Hewasthefirsttodevelopafamilialclassificationsystembasedonaphylogeny,notsimplybinningmorphologicallysimilarspeciesintogroups(Waller,1991, 2006a).Hewasthefirstresearchertoovercomeadependenceofusinghomoplasiouscharactersinscallopmorphologyandsetouttodevelopasetofcharacterstoavoidissueswithconvergenceintheadultshellshape

Mostrecently, RainesandPoppe(2006) compiledabeautifullyphotographediconographyof250speciesin thePectinidae.Theclassificationsystemtheyemployedprimarilyfollowstheoneby Hertlein(1969),butmodifiedbytheworksofDijkstra,Habe,Kafanov,Wagner,andWaller.TheclassificationofRainesandPoppeisthe onlysystemtorecognisethesubfamilyHemipectinae.Inaddition,theirsubfamilyChlamydinaeincludesmore tribesthanothermoderntaxonomictreatments(Table1.1).

Thefourmostcomprehensiveclassificationsystemsof Hertlein(1969), Waller(1986,1991,1993,2006a), Raines andPoppe(2006),and Dijkstra(2014) arecomparedin Table1.1.Differencesamongtheclassificationsystems includewhetherextincttaxaareintegrated(Hertlein,Waller),ifallcurrentlyrecognisedspeciesareincluded (RainesandPoppe,Dijkstra),andiftheauthorgivesahypothesisofhowhighertaxaarerelatedtooneanother (Waller).Thesemodernclassificationsystemshaveinfluencedandsubsequentlyhavebeeninfluencedby(e.g. Waller,2006a)themolecular-basedphylogeneticstudiesdescribedbelow.

THEINFLUENCEOFMOLECULARPHYLOGENETICSONSYSTEMATICS

Inmolecularphylogenetics,speciesarerepresentedbynucleotidesequencesthatencodegenes,oraminoacid sequencesthatencodeproteins.Thesedataarealignedascharacterstatesinamatrixandanalysedunderamathematicalmodeldescribingevolutionarychange.Themethodsoftreeestimationincludeavarietyofapproaches andthereisalargebodyofliteratureonthesubject(Hillisetal.,1996;Swoffordetal.,1996;Felsenstein,2004). Currentlyacceptedphylogeneticmethodsutilisesometypeofoptimalitycriterion,whichisameasureoffitof thedata(charactermatrix)toagivenhypothesis(phylogenetictree).Thesemethodsinclude:Maximum Parsimony(MP: Fitch,1971);MaximumLikelihood(ML: Felsenstein,1981);andBayesianInference(BI: Yangand Rannala,1997).MP,ML,andBIarecharacter-basedmethods,wheretheoptimalitycriterionisappliedtoeach position(nucleotideoraminoacid)alongthealignment.Amongthese,MLandBIuseexplicitmodelsof sequenceevolutiontosearchforthebesttree(ML)ortrees(BI)thatareconsistentwithboththemodelanddata. Incontrast,distance-basedmethods,suchasneighbour-joining(SaitouandNei,1987),summarisethemolecular charactermatrixintoadistancematrix,wheresequencesinthealignmentarecomparedinapairwisefashionto calculatethefractionofsimilarity,thenaseriesofalgorithmsareappliedtoconstructasingletree.Theusefulnessofanyofthesemethodsdependsonitsphylogeneticaccuracy,theabilityofamethodtorecoveratopology thatbestfitsthedataathand.Computersimulation(Hall,2005;OgdenandRosenberg,2006),observationalbased(Yang,1996),andexperimentalevolution(Hillisetal.,1994)studieshaveagreedthattheapproachesthat areexplicitlymodel-based(BIandML)aremorephylogeneticallyaccuratethanMPestimates.Distance-based approaches,suchasneighbour-joiningorUPGMA,aretheleastaccurate.Adescriptionofthesimilaritiesand differencesamongtheoptimalitycriteriaandotherapproachescanbefoundin Hall(2008).Itisworthnoting thatphylogeneticinferencemethodsareundercontinualevaluationandre-developmenttoimprovetheaccuracy andspeedofcomputation.

Molecularphylogeneticsisapowerfultoolindevelopingaclassificationsystembecause:(i)molecularmarkers (e.g.genes)canbeselectedthatareindependentofshellmorphologyand,presumably,thesemarkerswillbeless influencedbyconvergentevolutionsothattheresultingtreeisamoreaccuraterepresentationofthedata; (ii)molecularmatriceshavealargenumberofcharactersformorerobustandaccuratephylogenetichypotheses; (iii)molecularcharactershavediscretestates(4nucleotidesor23aminoacids)whicharelesssubjectiveand reduceerrorinstatecalling;and(iv)selectionofappropriateoutgrouptaxacanbeusedtoidentifytheoldest lineageofthestudygroup(i.e.‘ingroup’),totestthemonophylyoftheingroupandtopolarisethehistorical sequenceofallsubsequentevolutionaryevents.Thus,themajorlimitationsinamolecularphylogeneticstudy aretheavailabilityofDNAorRNAsamplesforthetaxaofinterestandthenumberofmolecularmarkersdevelopedforthatparticulargroupoforganisms.

MolecularPhylogeneticStudiesofScallops

Earlymolecularphylogeneticstudiesthatincludedpectinidtaxawereinvestigatingrelationshipswithin Bivalvia.ManyofthesestudiesusedDNAsequencefromasinglenuclearlocus,18SrRNA(Riceetal.,1993; KenchingtonandRoddick,1994;SteinerandMuller,1996;Frischeretal.,1998;GiribetandCarranza,1999; SteinerandHammer,2000).Areviewofthesepapersisgivenin Waller(2006a).Primarily,thesestudiesexaminedthephylogeneticplacementofthePectinidaewithintheBivalvia.Becauseofthisbroadtaxonomicfocus,

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.