Satellite soil moisture retrieval. techniques and applications 1st edition prashant k srivastava - D

Page 1


https://ebookmass.com/product/satellite-soil-moisture-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Radar Remote Sensing: Applications and Challenges Prashant K. Srivastava & Dileep Kumar Gupta & Tanvir Islam & Dawei Han & Rajendra Prasad

https://ebookmass.com/product/radar-remote-sensing-applications-andchallenges-prashant-k-srivastava-dileep-kumar-gupta-tanvir-islamdawei-han-rajendra-prasad/ ebookmass.com

Soil Mechanics and Foundation Engineering: Fundamentals and Applications Nagaratnam Sivakugan

https://ebookmass.com/product/soil-mechanics-and-foundationengineering-fundamentals-and-applications-nagaratnam-sivakugan/

ebookmass.com

Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery Prashant Kesharwani

https://ebookmass.com/product/emerging-applications-of-carbonnanotubes-in-drug-and-gene-delivery-prashant-kesharwani/

ebookmass.com

The Linguistics of the History of English Remco Knooihuizen

https://ebookmass.com/product/the-linguistics-of-the-history-ofenglish-remco-knooihuizen/

ebookmass.com

Journey

of Adulthood 8th Edition, (Ebook PDF)

https://ebookmass.com/product/journey-of-adulthood-8th-edition-ebookpdf/

ebookmass.com

Dental Public Health and Research (4th Edition ) 4th Edition

https://ebookmass.com/product/dental-public-health-and-research-4thedition-4th-edition/

ebookmass.com

The Tiger and the Rabbit: Harnessing the Power of the Metaverse, WEB3, and AI for Business Success Sandy Carter

https://ebookmass.com/product/the-tiger-and-the-rabbit-harnessing-thepower-of-the-metaverse-web3-and-ai-for-business-success-sandy-carter/

ebookmass.com

Effective School Interventions, Third Edition: Evidence Based Strategies for Improving Student Outcomes 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/effective-school-interventions-thirdedition-evidence-based-strategies-for-improving-student-outcomes-3rdedition-ebook-pdf/

ebookmass.com

Review of Medical Microbiology and Immunology, 17th Edition [Non-genuine PDF] Warren E. Levinson

https://ebookmass.com/product/review-of-medical-microbiology-andimmunology-17th-edition-non-genuine-pdf-warren-e-levinson/

ebookmass.com

The Code of Putinism Brian D. Taylor

https://ebookmass.com/product/the-code-of-putinism-brian-d-taylor/

ebookmass.com

SatelliteSoilMoistureRetrieval

SatelliteSoilMoisture Retrieval

TechniquesandApplications

Editedby

PrashantK.Srivastava

NASAGoddardSpaceFlightCenter,USA andInstituteofEnvironmentandSustainableDevelopment, BanarasHinduUniversity,India

GeorgeP.Petropoulos

Geography&EarthSciences

AberystwythUniversity

Aberystwyth,SY233DB Wales,UK

YannH.Kerr

CESBIO

Toulouse,France

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 50HampshireStreet,5thFloor,Cambridge,MA02139,USA

Copyright © 2016ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensing Agency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-803388-3

ForinformationonallElsevierpublications visitourwebsiteat https://www.store.elsevier.com/

Iwouldliketodedicatethisbooktomyparents,BishwambharNSrivastavaand NirmalaDevi,aswellastomybelovedwifeManikafortheircontinuous support

—PrashantK.Srivastava

Idedicatethisbooktomyparents,PanagiotisandEvgenia,fortheircontinuing loveandsupportinalltheendeavorsofmylife

Iwouldliketodedicatethisbooktomywifeandchildrenfortheirpatienceand understandingaswellastomycolleaguesfortheirsignificantcontributions

—YannH.Kerr

ListofContributors

Numbersinparenthesisindicatethepagesonwhichtheauthors’contributionsbegin.

R.Akbar(187),MingHsiehDepartmentofElectricalEngineering,Universityof SouthernCalifornia,LosAngeles,CA

A.AlBitar(3,351),Centred’EtudesSpatialesdelaBiosphere,Toulouse,France

V.Anagnostopoulos(91),NationalTechnicalUniversityofAthens;InfoCosmosLtd, Athens,Greece

B.Barrett(209),UniversityCollegeCork(UCC),Cork,Ireland

A.Berg(47),UniversityofGuelph,Guelph,ON,Canada

N.Berni(231),CivilProtectionCentre,Foligno,Italy

L.Brocca(231,351),NationalResearchCouncil;ResearchInstituteforGeo-Hydrological Protection,NationalResearchCouncil,Perugia,Italy

D.Chaparro(249),UniversitatPolitecnicadeCatalunya,IEEC/UPC;Barcelona ExpertCenter,InstituteofMarineSciences,CSIC,Barcelona,Spain

L.Ciabatta(231),NationalResearchCouncil,Perugia,Italy

Q.Dai(289),NanjingNormalUniversity,Nanjing,China

N.Das(187),NASA/JetPropulsionLaboratory(JPL),Pasadena,CA

E.DeWitte(379),AirbusDefenceandSpaceLtd,Stevenage,UnitedKingdom

E.Dwyer(209),EurOcean—EuropeanCentreforInformationonMarineScienceand Technology,Lisbon,Portugal

D.Entekhabi( 187),DepartmentofCivilandEnvironmentalEngineering, MassachusettsInstituteofTechnology,Cambridge,MA

F.Gerard(379),CentreforEcology&Hydrology,Wallingford,UnitedKingdom

N.Ghilain(309),RoyalMeteorologicalInstituteofBelgium,Brussels,Belgium

H.Griffiths(91),DepartmentofGeography&EarthSciences,Ceredigion,Wales, UnitedKingdom

A.Gruber(209),ViennaUniversityofTechnology,Vienna,Austria

D.K.Gupta(159,333),IndianInstituteofTechnology(BHU),Varanasi,India

M.Gupta(29,271,333),NASAGoddardSpaceFlightCenter,Greenbelt,MD, UnitedStates

D.Han(289),UniversityofBristol,Bristol,UnitedKingdom

C.Hodges(91),GeoSmartDecisionsLtd,Llanidloes,Powys,UnitedKingdom

M.Holzman(73),ConsejoNacionaldeInvestigacionesCientı´ficasyTecnicas –InstitutodeHidrologı´adeLlanuras“Dr.EduardoJ.Usunoff”,Rep.Italia780,Azul, BuenosAires,Argentina

G.Ireland(91),DepartmentofGeography&EarthSciences,Ceredigion,Wales, UnitedKingdom

T.Islam(29,91,159,271,289,333),NASAJetPropulsionLaboratory;California InstituteofTechnology,Pasadena,CA,UnitedStates

J.C.Jimenez-Mun ˜ oz(135),UniversitatdeValencia,Valencia,Spain

D.Kalivas(91),AgriculturalUniversityofAthens,Athens,Greece

Y.H.Kerr(3),Centred’EtudesSpatialesdelaBiosphere,Toulouse,France

C.Mattar(135),UniversityofChile,Santiago,RM,Chile

A.Mialon(3),Centred’EtudesSpatialesdelaBiosphere,Toulouse,France

V.Mironov(169),KirenskyInstituteofPhysics,Krasnoyarsk,Russia

M.Moghaddam(187),MingHsiehDepartmentofElectricalEngineering,University ofSouthernCalifornia,LosAngeles,CA

T.Moramarco(231),NationalResearchCouncil,Perugia,Italy

J.Mun ˜ oz-Sabater(351),EuropeanCentreforMediumRangeWeatherForecasts, Reading,UnitedKingdom

V.Pandey(29),BanarasHinduUniversity,Banaras,India

A.Petrie(379),CentreforEcology&Hydrology,Wallingford,UnitedKingdom

G.P.Petropoulos(91,333),DepartmentofGeography&EarthSciences,Ceredigion, Wales,UnitedKingdom

M.Piles(109,249),UniversitatPolitecnicadeCatalunya,IEEC/UPC;Barcelona ExpertCenter,InstituteofMarineSciences,CSIC,Barcelona,Spain

F.Ponziani(231),CivilProtectionCentre,Foligno,Italy

R.Prasad(159,333),IndianInstituteofTechnology(BHU),Varanasi,India

C.Pratola(209),UniversityCollegeCork(UCC),Cork,Ireland

P.Rahimzadeh-Bajgiran(47),UniversityofMaine,Orono,ME,UnitedStates

R.Rivas(73),Comisio ´ ndeInvestigacionesCientı´ficasdelaprovinciadeBuenos Aires – InstitutodeHidrologı´adeLlanuras“Dr.EduardoJ.Usunoff”,Campus Universitario,Tandil,BuenosAires,Argentina

A.Santamarı´a-Artigas(135),UniversityofChile,Santiago,RM,Chile

I.Savin(169),KirenskyInstituteofPhysics,Krasnoyarsk,Russia

S.K.Singh(333), University ofAllahabad,Allahabad,India

N.Sa ´ nchez(109),UniversityofSalamanca/CIALE,Villamayor,Spain

J.A.Sobrino(135),UniversitatdeValencia,Valencia,Spain

ListofContributors xix

P.K.Srivastava(3,29,91,159,271,333),NASAGoddardSpaceFlightCenter, Greenbelt,MD,UnitedStates;BanarasHinduUniversity,Banaras,India

S.Suman(29),BanarasHinduUniversity,Banaras,India

E.Tebbs(379),King’sCollegeLondon,DepartmentofGeography,Strand,London, UnitedKingdom

M.Vall-llossera(249),UniversitatPolitecnicadeCatalunya,IEEC/UPC;Barcelona ExpertCenter,InstituteofMarineSciences,CSIC,Barcelona,Spain

W.Wagner(231),ViennaUniversityofTechnology,Vienna,Austria

W.Z.WanJaafar(333),UniversityofMalaya,KualaLumpur,Malaysia

J.-P.Wigneron(3),INRAISPA,Bordeaux,France

L.Zhuo(289),UniversityofBristol,Bristol,UnitedKingdom

AuthorBiographies

PrashantK.Srivastava ispresentlyworking inHydrologicalSciences,NASAGoddard SpaceFlightCenteronSMAPsatellitesoil moistureretrievalalgorithmdevelopment, instrumentation,andsimulationforvarious applications,andaffiliatedwithIESD,BanarasHinduUniversityasafaculty.Hereceived hisPhDdegreefromDepartmentofCivil Engineering,UniversityofBristol,Bristol, UK.Hisprimaryresearchfocusesonthe useofopticalandmicrowavesatellitesynergywithWeatherResearchandForecasting forhydrologicalapplications.Heisalsoa workinggrouppartnerwithNASAJPLon SMAPsoilmoisturecalibrationandvalidation.HehasbeenarecipientofseveralawardssuchasUniversityofMaryland Fellowship,USA;CommonwealthFellowship,UK;CSIR-UGC-JRF-NET (2005),CSIR-JRF-NET(2006),UniversityGrantCommission(UGC)-NET (2006),andMinistryofHumanResourceDevelopmentfellowshipsfromIndia. Hehas100+publicationsinpeer-reviewedjournals,published4bookswith reputedpublishinghousessuchasSpringer,TaylorandFrancis,andElsevier andpublishedseveralbookchapters.Heisalsoactingaseditoroffewjournals andiscurrentlyamemberofIndianSocietyofGeomatics,IndianSocietyof RemoteSensing,IndianAssociationofHydrologists(IAH),InternationalSocietyforAgrometeorology(INSAM),InternationalAssociationofHydrological Sciences(IAHS),andfewothers.

GeorgeP.Petropoulos isaseniorlecturerin RemoteSensing&GISatAberystwythUniversity,UK.Hecompletedhisgraduatestudies(MSc,PhD)attheUniversityofLondonin 2008,specializinginEarthObservation(EO) Modelling.HisPhDwasfocusingspecifically intheretrievalsofenergyfluxesandsoil moisturefromthesynergyofopticalEOdata withsimulationprocessmodels.

Petropoulos’researchfocusesonexploitingEOdataaloneorsynergisticallywithland surfaceprocessmodelsforcomputingkey statevariablesoftheEarth’senergyandwater budget,includingenergyfluxesandsoilsurfacemoisture.Heisalsoconductingresearch ontheapplicationofremotesensingtechnologytolandcovermappingandits changesoccurredfromeitheranthropogenicactivitiesorgeohazards(mainly floods,wildfires,frost).Inthisframework,hecontributestothedevelopment ofopensourcesoftwaretoolsinEOmodellinganddevelopsandimplements all-inclusivebenchmarkingapproachestoeitherEOoperationalalgorithms/ productsorsurfaceprocessmodels,includingadvancedsensitivityanalysis.

PetropoulosservesasaCouncilmemberoftheRemoteSensing&PhotogrammetricSociety(RSPSoC),EditorialBoardmemberonseveralinternational peer-reviewedscientificjournalsinEOandenvironmentalmodelling,andas areviewerforvariousfundingbodies(includingtheEuropeanCommission). Heiseditor/co-editorof2books,author/co-authorof +50 peer-reviewedjournal articlesandof +90 internationalconferences.Hehasdevelopedfruitfulcollaborationswithkeyscientistsinhisareaofspecializationglobally,andhisresearch worksofarhasreceivedinternationalrecognitionviaseveralnoteworthyawards hehasobtained.

YannH.Kerr receivedtheengineering degreefromEcoleNationaleSuperieurede l’Aeronautiqueetdel’Espace,theMScdegree inelectronicsandelectricalengineeringfrom GlasgowUniversity,Glasgow,Scotland,UK, andthePhDdegreeinAstrophysiqueGeophysiqueetTechniquesSpatiales,Universite PaulSabatier,Toulouse,France.Affiliatedto theFrenchspaceagency(CNES)since1980, hejoinedLERTSin1985;forwhichhewas directorin1993–94.Hespent19monthsat JPL,Pasadena,in1987–88.HehasbeenworkingatCESBIOsince1995asdeputydirector (1995–99)anddirector(2007–16).

Hisfieldsofinterestareinthetheoryand techniquesformicrowaveandthermalinfraredremotesensingoftheEarth, withemphasisonhydrology,waterresourcesmanagement,andvegetation monitoring.

HewasanEOSprincipalinvestigator(interdisciplinaryinvestigations),and PIandprecursoroftheuseoftheSCAToverland.In1989,hestartedtoworkon theinterferometricconceptappliedtopassivemicrowaveearthobservationand wassubsequentlythescienceleadontheMIRASforESA.Heisamemberof theSMAPScienceTeam.In1997,hefirstproposedthenaturaloutcomeofthe previousMIRASworkwithwhatwastobecometheSMOSMissionselectedby ESAin1999withhimastheSMOSmissionlead-investigatorandchairofthe ScienceAdvisoryGroup.HehasorganizedalltheSMOSworkshopsandwas guesteditorontwoIEEEandoneRSEspecialissues.Heisalsoworkingonthe SMOS-Nextconcept.HereceivedtheWorldMeteorologicalOrganization 1stprize(NorbertGerbier),theUSDASecretary’steamawardforexcellence (SalsaProgram),theGRSScertificateofrecognitionforleadershipindevelopmentofthefirstsyntheticaperturemicrowaveradiometerinspaceandsuccess oftheSMOSmission,andtheESAteamaward.

Preface

Informationonourplanet’ssoilmoistureisindispensabletoanumberofpracticalapplicationsrelatedtofoodsecurity,society,andecosystems.Itplaysan importantroleintheEarth’swatercycle;itisakeyvariableinthewaterand energyexchangesthatoccurattheland-surface/atmosphereinterfaceandconditionstheevolutionofweatherandclimateovercontinentalregions.Therefore,globally,themonitoringofthesoilmoisturehasdevelopedintoavery importantandurgentresearchdirection,especiallytowardswaterresource management,irrigationscheduling,improvedweatherforecasts,natural hazardsmitigationanalysis,predictionsofagriculturalproductivity,crop insurance,climatepredictions,ecologicalhealthandservices,improvedtrafficability,groundwaterrecharge,waterqualityandquantity,etc.Inthiscontext, thereisagrowingneedofmonitoringandunderstandingthesoilmoisture retrievaltechniquesanditsapplications.Thiscanbeofcrucialimportance,particularlytoregionsonwhichtheamountofwateravailableislimited.

Thisbookismotivatedbythedesiretosolvetheproblemofsoilmoisture retrievalsinacosteffectiveandtimelyway.ThelaunchofadvancedEarthObservation(EO)satellitesinoptical/IRandmicrowavedomainhasthepotentialto reshapethesoilmoistureretrievalsystemandcanbeusedtomonitorsoilmoisture regularly,accurately,andinrealtime.Thesesatellites/instrumentsprovidenecessarydatathatcanmakeupforthelackofon-the-groundmonitoringofsoilmoisture aroundtheworldandbecauseofsubstantialimportanceofsoilmoisturebothESA andNASAhavelaunchedfullydedicatedsoilmoisturesatellitesknownasSMOS andSMAP,respectively,toprovideabetterestimatesoilmoistureovertheglobe.

Afterthelaunchofmanysophisticatedsatellites(suchasSSM,AMSRE/2, SMOS,ASCAT,Aquarius,SMAP,Landsatseries,MODIS,andmanyothers),soil moistureretrievaltechniqueshavegainedconsiderablemomentumamongthe earthandenvironmentalsciencecommunitiesforsolvingandunderstandingvariouscomplexproblems.Inthisessence,acomprehensivebookisneededdevoted toputtingtogetheracollectionoftherecentdevelopmentsandrigorousapplicationsofthesoilmoisturefromoptical/infraredandmicrowavesatellites.Inorder tounderstandtheretrievalsystemandapplications,thebookisdesignedto advancethescientificunderstanding,development,andapplicationofsoilmoistureretrievaltechniques,anditsapplicationsforvariousenvironmentalproblems. Thisbookwillpromotethesynergisticandmultidisciplinaryactivitiesamongscientists.Therefore,wewouldconsiderthisamustreadbookthatpromotesthe

synergisticandmultidisciplinaryactivitiesamongscientistsandusersworkingin thefieldofhydrometeorologicalsciencesandotherrelateddisciplines.

Thebookbecomespossiblebecauseofextensiveandvaluablecontributions frominterdisciplinaryexpertsfromallovertheworldinthefieldofsoilmoistureretrievalsandapplications.Inordertosimplifythesoilmoistureretrieval techniquesandapplicationsformostofthestudentsandresearchers,thisbook focusedonthreeworkingmethodologies, viz,theory,abstraction,andapplicationsastheyarefundamentaltoallresearchprograms.Thebookhas beendividedintofivesections.SectionIcontainsIntroduction,SectionII detailstheOpticalandInfraredTechniquesandSynergiesBetweenThem, SectionIIIprovidesseveralmethodologiesforMicrowaveSoilMoisture RetrievalwhileSectionsIVandVdealwithAdvanceApplicationofSoil MoistureandFutureChallengesinSoilMoistureRetrievalandApplications.

Chapter1 inIntroductionsectionwrittenbyKerrandteamreviewsvarious meansofmeasuringsoilmoisture,satellitemissions,retrievalsystem,andpossiblepitfalls. Chapter2 bySrivastavaetal.furnishesabriefdescriptionofavailabledatasetsforterrestrialsoilmoistureestimation.TheSectionIIofthebook containschaptersrelatedtooptical/IRmethods. Chapter3 ofthissectionby Rahimzadeh-BajgiranandBergprovidesabriefhistoryandconceptofoptical/ TIRmodelsforsoilmoistureestimationwithcasestudyofCanadianPrairies. Chapter4 byHolzmanandRivasdealswiththeestimationofsoilmoisture usingtemperaturevegetationdrynessindex.In Chapter5,Petropoulosetal. interestinglydescribedthesoilmoistureestimationusingthe“triangle” approachusingtemperatureandvegetationindexfeaturespace.Asfinerresolutiondatasetareimportantforhydrologicalcommunity, Chapter6 byPilesand Sanchezprovidedareviewofseveralapproachesforsoilmoisturedownscaling usingthesemiempiricalmodelanditsvalidationinDuerobasin. Chapter7 of thissectionwrittenbyMattaretal.providedanoverviewofthedifferentmicrowavesoilmoistureretrievalmodelwiththeirtheoriesandapplications.

SectionIIIofthebookmadeavailableanoverviewofmethodologiesfor microwavesoilmoistureretrieval. Chapter8 providedbyGuptaetal.briefly describeddiversenonparametricmodelsfortheretrievalofsoilmoistureby usingbistaticscatterometerdatasets.In Chapter9,MironovandSavinprovided theusefulnessofdielectricmodelformicrowavesoilmoistureretrievalwhile Akbaretal.in Chapter10 providedtheactiveandpassivesynergyforsoilmoistureretrievalanddiscussthemeritsofactiveandpassivesystemsinspatialresolutionenhancement. Chapter11 byBarrettetal.summarizedtheperformance ofdifferentsoilmoistureproductswithseasonalandtemporalanalysis.

SectionIVofthisbookdealswithchaptersrelatedwiththeadvancedapplicationsofsoilmoisture. Chapter12 ofthissectionbyBroccaetal.provided anoverviewofPRESSCAearlywarningsystemforlandslideriskprediction usingsatellitesoilmoistureinformation.In Chapter13,Chaparroetal.presentedtheroleofsoilmoistureinwildfirepreventionusingthesoilmoisture fromSMOSandSMAPsatellites.In Chapter14,Guptaetal.demonstrated theroleofsoilmoistureforestimationofsoilhydraulicparametersforan

improvedagriculturalwatermanagement.Zhuoetal.,in Chapter15,presented theimportanceofsatellitesoilmoistureinrainfallrunoffmodelingforaneffectivedischargeprediction. Chapter16 providedbyGhilainpresentedtheusefulnessofsatellitesoilmoistureassimilationforimprovingtheevapotranspiration onadailyandsub-dailyscale.Hefurtherexplainedthegainandlossofaccuracyinchoosinganewsourceforsoilmoistureinputandprovidedthevalidationoftheprototypebycomparisonwithinsituobservations. Chapter17 writtenbySrivastavaetal.furnishedtheuseofmicrowavesoilmoisturefrom SMOSforsoilmoisturedeficitestimationatacatchmentlevelanddepictedthe relationofsoilmoisturewiththehydrologicalmodelbasedproducts.

SectionVdealswiththechaptersrelatedwithfuturechallengesinsoil moistureretrievalandapplications. Chapter18 inthissectionbyMunozSabateretal.offeredadetailedoverviewofsoilmoisturefrommicrowave remotesensingandpointedoutvariousobstaclesintheproductionofsoilmoistureretrievalsanditsapplications.Atlast, Chapter19 writtenbyTebbsetal. suppliedadiscussionontheemergingandpotentialfutureapplicationsof satellite-basedsoilmoistureproductsandpointedoutthecurrentlimitations ofsoilmoistureapplicationsanddevelopmentsrequiredincomingdecades.

Webelievethatthebookwouldbereadbythepeoplewithacommoninterestin geo-spatialtechniques,remotesensing,sustainablewaterresourcedevelopment, applicationsandotherdiversebackgroundswithinearthandenvironmentaland hydrologicalsciencesfield.Wedohopethisbookwouldbebeneficialfortheacademician,scientists,environmentalists,meteorologists,environmentalconsultants,computingexpertsworkingintheareaofwaterresources.

ACKNOWLEDGMENTS

Editorswouldliketothankallthecontributingauthorsandanonymous reviewersfortheirtime,talents,andenergiesandforadherencetoastricttimelineandthestaffatAcademicPress,Elsevierfortheirpatienceandthroughout support.Editorsarealsogratefultothepublisherforthecollaborationinaccomplishingthepreparationofthisbook.

ABOUTTHECOVER

SophisticatedSoilMoistureandOceanSalinity(orSMOS)satelliteshownon thecoverisprovidedbyCESBIO/MIRA.

PrashantK.Srivastava Maryland,UnitedStates

GeorgeP.Petropoulos Wales,UnitedKingdom

SoilMoisturefromSpace: TechniquesandLimitations

Y.H.Kerr*,J.-P.Wigneron †,A.AlBitar*,A.Mialon* andP.K.Srivastava‡,§ *Centred’EtudesSpatialesdelaBiosphere,Toulouse,France, †INRAISPA,Bordeaux,France, ‡NASAGoddardSpaceFlightCenter,Greenbelt,MD,UnitedStates, §BanarasHinduUniversity, Banaras,India

1INTRODUCTION

Soilmoistureiscertainlyanimportantfactorforeverythinglinkedtolifeon Earth.Withoutwaterlifedisappears,andwithtoomuchwater(e.g.,floods) nonaquaticlifemaybeseverelyaffected.Sothefirstuseof“soilmoisture” istoenablevegetationgrowthandimpactweatherthroughtheheatandmass exchangesatthesurface/atmosphereinterface(Srivastavaetal.,2013c).This “soilmoisture”correspondstowaterinboththesurfaceandtherootzoneor vadosearea.Inamore“scientific”andhydrologicapproach,soilmoisture, inotherwords,waterstoredinthesoil,playsmanyroles.Surfacesoilmoisture controlsthepartitioningofrainfallintorunoffandinfiltrationandthusimpacts theamassingofwater.Goodinfiltrationusuallymeansreplenishingthewater table,whilerunoffmaymeanbothexportationofvaluablewatertootherareas oreventothesea,anddegradationoftopsoilthrougherosion.Also,whensaturated,soilmaytransformheavyrainfallsintofloods.Surfacesoilmoistureis thusofgreatinterestforimprovingtheforecastingskillsofrun-offmodels whichaimatfloodriskpredictionand/orwaterresourcesmanagement (Entekhabietal.,1999).Furtherconsistentestimatesofsoilmoisturefromagriculturalfieldsarerequiredforefficientirrigationmanagementandscheduling (Glennetal.,2011;Loriteetal.,2012;Srivastavaetal.,2013b).

Surfacesoilmoistureisalsoimportantasitcontrolssoilevaporationand vegetationtranspirationandthustheheatandmasstransfersbetweentheearth andtheatmosphere(vandenHurketal.,2002).Itisconsequentlyveryusefulin weatherforecastmodelsthroughglobalcirculationmodels(Entekhabietal., 1996).Ithasbeenshown,forinstance,thatincludingactualsoilmoisture insteadofsimplyusingseasurfacetemperaturemayimproverainforecastsvery significantly,especiallyincasesofextremeevents(Entekhabietal.,1996; SatelliteSoilMoistureRetrieval. http://dx.doi.org/10.1016/B978-0-12-803388-3.00001-2 Copyright © 2016ElsevierInc.Allrightsreserved. 3

vandenHurketal.,2012).Finally,continuousmonitoringofsoilmoistureona largescaleandoverlongperiodsoftimegivesasignificantinsightintoclimate changes(Srivastavaetal.,2015).

Butsoilmoistureisaveryvaguetermanditisimportanttodefineit.The mostcommonunderstandingofthetermis“thetotalamountofwaterinthe unsaturatedzone.”Forpracticalreasonsitisoftenseparatedintotwocomponents,surfacesoilmoisturecorrespondingtothefirstcentimeters(5cmingeneral),andtherootzonesoilmoisture,orsecondreservoir.Soilmoistureis usuallyexpressedingravimetricunits(g/cm3)whichisindependentofsoil characteristics(bulkdensity).Itis,however,alsocommonlyexpressedinvolumetricunits:m3/m3.Sometimesitisexpressedasafunctionofthewilting pointandthefieldcapacity.Thetwolatterunitsaresoiltypedependent.

2MEANSOFMEASURINGSOILMOISTURE

Toachievethegoalsmentionedpreviously,itisnecessarytohaveaccesstosoil moistureestimates.Ataspecificpointinspaceandtimethisisrelativelyeasy withgravimetricsampling.However,tohavemeasurementsrepresentativeofa largerarea(suchasafield),theprocedureisalreadysomewhatcomplexasit involvesadedicatedsamplingstrategy.Moreover,becausethesemeasurements aretimeconsuming,regionaland,evenmore,globalcoverageisoutofquestion.Providedoneusesautomaticprobes(resistive,capacitive,timedomain reflectometry,etc.)itispossibletoachievelargercoveragesbutthese approachescanonlybeconfinedtowell-equippedandmannedsites,asthey requirecareandmaintenance(Bircheretal.,2013).Finallythesesystemscarry theirownproblemsandinaccuracies(Chanzyetal.,1998;Escorihuelaetal., 2006;Vazetal.,2013).Alsotheinsituobservationsofsoilmoisture,such asthosefromprobeorgravimetricmeasurements,donotrepresentthespatial distributionaccuratelyassoilmoistureishighlyvariablebothspatiallyandtemporallyandthereforenotsuitableforregionalorglobalapplications.So,large scalemonitoringofsoilmoisturecanonlyrelyonremotesensingfromspace approaches(Srivastavaetal.,2013a,2014).

2.1RemotelySensedSoilMoisture,TheMainApproaches

Becauseofthehighneedforsoilmoisturemeasurements,alargenumberof approacheshavebeentested.Forsurfacesoilmoisture,thefirstoneswerebased onshortwavemeasurementsandonthefactthatsoilsgetdarkerwhenwet. Obviously,duetoatmosphericeffectsandpotentialcloudcover,aswellas vegetationcovermaskingeffects,thisapproachisboundtofailinmostcases (see Kerr,2007).Amorepromisingfeatureislinkedtolatentheateffects.Wet soilshaveahigherthermalinertiaandare“cooler”thandrysoils.Thesepropertiesledtovarioustrials(thermalinertiamonitoring,rateofheatinginthe morning,andsurfacetemperatureamplitude,etc.)(vandenHurketal., 1997)toassesssoilmoistureindirectly.Allthoseapproachesprovedtobe

somewhatdisappointingduetofactorsinherenttoopticalremotesensing (atmosphericeffects,cloudmaskingandforcing,andvegetationcoveropacity) aswellastothefactthatthermalinfrared:(1)probestheveryskinofsoilsand (2)thislayerisdominatedbytheexchangeswiththeatmosphere(Kerr,2007; Ochsneretal.,2013; Petropoulosetal.,2015).Consequently,toinfersoilmoisturefromsuchmeasurementsoneneedstoknowexactlytheforcings(wind,for instance,willchangedrasticallytheskintemperatureofawetsoil).Abrief reviewofsoilmoistureretrievalusingoptical/IRisprovidedby(Kerr,2007; Petropoulosetal.,2015)andsonotcoveredinthischapter.

Asmicrowavesystemsmeasurethedielectricconstantofsoilswhichis directlyrelatedtothewatercontent,researchhasquicklyfocuseditsefforts onassessingsoilmoisturewithradars,scatterometers,orradiometers (Pellarinetal.,2003).Thesesystemsoffer,whenoperatedatlowfrequency, theaddedadvantageofbeingallweather(measurementsarenotmuchaffected bytheatmosphereandclouds)andabletopenetratevegetation(Ulabyetal., 1986)andcanoperateduringthenight(Srivastavaetal.,2015).

Finally,inanattempttobeexhaustive,anewapproach,relyingonmeasurementsofthegravityfieldfromspace,isprovidinginformationonthechanges inthetotalcolumnofwaterwithaspatialresolutionof500kmormore.This columnincludestheatmosphere,vegetationandsurfacewater,possiblesnow orice,soilmoisture,andwaterstorage.Thefirstresultscertainlyshowasignal butitsrelationshipwithwaterstoragehasyettobevalidated.Actually,manycorrectionshavetobebroughttothesignaltoseparatewaterstorageintheground fromsurfacewater,atmosphericwater,vegetationwatercontent,orsnow(Han etal.,2005).

2.2MicrowaveasaToolforSoilMoisture

Monitoring:CurrentStatus

Onceitisestablishedthatthemostpromisingwaytoaccesssurfacesoilmoistureistheuseofmicrowavesystems,itisnecessarytoassesstheadvantagesand drawbacksofthedifferentpossibleapproaches.ThemostpopularapproachreliesontheuseofactivesystemssuchasSyntheticApertureRadars(SARs). Thesesystems,inusesince1977withSeaSatellite(SEASAT),offerallweather measurementswithafinespatialresolution(tensofmeters).Operationally, however,theysuffer—asmosthighresolutionsystems—fromaratherlowtemporalsampling(35daysfortheEuropeanRemoteSensingsatellite(ERS)for instance)whichisnotreallycompatiblewithhydrologicrequirementsorweather forecastmodels(Wagneretal.,2007).WiththeadventoftheCopernicusprogram andtheSentinel1satellites,thislimitationisboundtodecreaseaswith twoSentinel1satellitesandarevisitof12days,onemayexpecttoachieveanoverall6dayrevisitcapacity.ButthemostcomplicatedcharacteristicofSARsystems isthecoherentnatureofthesignalitselfandtheinteractionswiththediffusing medium.SARimagesareaffectedbyspeckleandbythescatteringatthesurface.

Thescatteringcanbeduetothevegetationcover(distributionofwaterinthecanopy) ortothesoil’ssurface(surfacescatteringwhenwet,andvolumescatteringwhen dry).Thedirectconsequenceoftheseperturbationsisasignalatleastasmuch sensitivetosurfaceroughnessastomoistureitself,notmentioningvegetation (seealso Wigneronetal.,1999).Obviouslytheseeffectsarefrequencydependent.

Alltheseinherentdifficultiesmightexplainthat,althoughseveralSARflew since1977,theywerenotusedinastandardandroutinefashion,norwasany realsoilabsolutemoisturemappingreallydone.Actually,toavoidtheroughnessandvegetationperturbations,anapproachrelyingonchangedetection, hencerelative,hasbeenusedwithrelativesuccess(Gorrabetal.,2015;Kim etal.,2012;Moranetal.,2002;Tomeretal.,2015).Thisworksaslongaseither vegetationorsoilroughnessdonotchange.Also,aslongasSentinel1and2are notoperational,again,temporalcoveragewilloftenbeanissue.

Theuseofscatterometersoffersaninterestingtradeoff.Thespatialresolutionismuchcoarser(tensofkilometers)butwithamuchwiderswathallowing reasonablyfrequentcoverage(every2–6daysonaveragedependingonthesystem).Italsoofferstheadvantageofbeinglesssubjecttospeckle(Magagiand Kerr,1997).Consequently,severalauthorsroutinelyproducesoilwetnessindex mapsofmanyareasoftheworldwithscatterometersusingchangedetection approaches.Theeffectofvegetationis,however,stillsignificantandactually correspondstomostofthesignalasthefrequenciescurrentlyavailableare C-bandon(MetOp)andhigher.Sothemostinterestingresultswereobtained overaridandsemiaridregionswherevegetationandsoilmoisturearevery highlycorrelatedanyway.Itshouldbealsonotedthatoverdryareas(arid andsemiarid)theretrievalsareoftenerroneous;areaswheresoilmoistureis pronetobeofimportancetousers(Wagneretal.,2013;Al-Yaarietal., 2014b).Theinfluenceofsurfaceroughnessisalsosignificant(Magagiand Kerr,2001)anditisbestdealtwithbyusing,hereagain,changedetection.

Theadvancedscatterometer(ASCAT)givesoneofthefreelyavailable globalsoilmoisturedatasetsderivedfromthebackscattermeasurement.The ASCATonboardMetOpisareal-apertureandanactivemicrowaveremote sensinginstrumentwithverygoodradiometricaccuracy(about0.3dB)andstability.ItisaC-bandscatterometeroperatedatafrequencyof5.255GHzusing sixsideways-looking,verticallypolarizedantennae.Themainobjectiveof installinganASCATistomonitorwindspeedanddirectionovertheoceans, thoughitisalsousedforstudyingsoilmoisture.Currently,withASCATon boardMetOp,thesignalisscaledbetweenminimumandmaximummeasurementsaslongasthewholesoilmoisturerangeisexplored.

Thelastpossibilityinthemicrowavedomainistouseradiometers (Schmugge,1998).Thetechniqueisold(Newtonetal.,1982)andwellmasteredasmanysensorsandnotablysoundersrelyonpassivemicrowaves.To infersoilmoisture,thesesystemsareboundtoofferthebestcompromiseifused atlowfrequency,asdemonstratedintheearly1970swiththeveryshortSKYLABmission(EaglemanandUlaby,1975;Jacksonetal.,2004).Tobeefficient,

oneneedstoworkinaprotectedfrequencybandtoavoidunwantedman-made emissionsandradiofrequencyinterferences(RFIs)andneedsaninstrument sensitivetosoilmoisturewhileatmosphereistransparentandvegetationplays alimitedrole.AtL-bandtheemissivitymayvaryfromalmost0.5foraverywet soiltoalmost1foraverydryonegivingarangeof80–100Kforaninstrument sensitivityusuallyoftheorderof1K.Asthesignalisnotcoherent,surfaceroughnessandvegetationstructureplayareducedrolewhencomparedtoanactive system(UlabyandLong,2014).So,onemaywonderwhyL-bandradiometry wasnotusedextensivelybeforewhenithadbeenprovedtobemostefficient duringgroundandairbornemeasurements(JacksonandSchmugge,1991; Schmuggeetal.,1988).Thisisduetoaninherentlimitation:thespatialresolution isproportionaltotheantennadiameterandinverselyproportionaltothewavelength.At21cm,toachievea40kmresolutionfromanaltitudeof750km requiresandantennaofabout8mindiameterwhichisaverysignificanttechnicalchallenge.Sotheresearchwasperformedwithhigherfrequencysystemsas availableonthescanningmultichannelmicrowaveradiometer(SMMR) (6.6GHz)(KerrandNjoku,1990),thespecialsensormicrowave/imager(SSM/I) (19GHz),theEarthObservingAdvancedMicrowaveScanningRadiometer (AMSR-E)(6.8GHz)(NjokuandLi,1999)andnowitsfollowon,theAdvanced MicrowaveScanningRadiometer2(AMSR-2)(Imaokaetal.,2010;Kimetal., 2015).Eventhoughthefrequencyisnotideal,goodresultswereobtainedwiththe SMMR(inspiteofaverypoorresolutionduetoimportantsidelobes)andnow AMSR-E/2(Al-Yaarietal.,2014b;Gruhieretal.,2008;Lerouxetal.,2014; NjokuandLi,1999).Thelimitationsaremainlylinkedtothefactthatthevegetationbecomesrapidlyopaque,thefrequencyisnotprotectedandthusboundto bepollutedbyRFIs,andthesingleangularmeasurementmakesitdifficult—in severalcases—toseparatevegetationandsoilcontributionstothesignal.

3SATELLITEMISSIONS

ConsideringthenecessityofmakingL-bandmeasurements,severalapproaches havebeentestedtoovercometheantennasizeissue.Thefirstwasinitiatedinthe early1990swiththeideatoapplyradioastronomytechniques(verylargearrays andverylargebaselineinterferometers)toEarthremotesensing(Martin-Neira etal.,2014).Theone-dimensionalconcept,electronicallyscannedthinnedarray radiometer(ESTAR)wasimplementedasanaircraftversionandprovedto fulfilltherequirements(LeVineetal.,1994).Itisasystem,deployableinspace asasortoflargerakeandoffering—atthecostofareducedsensitivity—an acceptablespatialresolution.Inparallel,anotherapproachusinginflatable(or umbrella-likedeployingtechnology)wasstudiedattheJetPropulsionLaboratory (JPL).Theconceptsappearedtobecomplextodeployandtorun,ortooffertoo limitedmeasurements(singleangleandfrequency).By1991,asmallgroup startedtoworkfortheEuropeanSpaceAgency(ESA)onthedevelopment ofasimilarinstrumentbutworkingintwodimensions(Goutoule,1995; SoilMoisturefromSpace:TechniquesandLimitations Chapter 1 7

Goutouleetal.,1996).TheconceptwasnamedMicrowaveImagingRadiometer withApertureSynthesis(MIRAS)andanairborneprototypewasmadeandoperated(Bayleetal.,2002).Fromthenontheconceptevolvedintoamoretailored instrumentwhichwasproposedtotheCentreNationald’EtudesSpatiales (CNES)in1997andthentotheESA(Kerr,1998)intheframeworkoftheEarth ExplorerOpportunitymissionunderthenameofSoilMoistureandOceanSalinity(SMOS)mission.SMOSwaslaunchedinNov.2009(Kerretal.,2001,2010). Similarly,amissionwasproposedandselectedbyNASAbasedonadeployable androtatingantennarelatedtobotharadiometerandaradarandcalledSoilMoistureActivePassive(SMAP)(Entekhabietal.,2010,2014).Thesatellitewas launchedinJan.2015.NotethattheSMAPradarbrokedownonJul.7,2015 becauseofpowersupplyfailureonitshigh-poweramplifier.BothSMOSand SMAPpassiveinstrumentshavesimilarcharacteristicsinspiteoftheverydifferentconcept(spatialresolutionofmorethan40km,3dayrevisitwithtimeof overpassat6:00am/6:00pmlocalsolartime)butwithnoticeabledifferences. SMOSmeasurestheangularsignaturesofthebrightnesstemperature,while SMAPmeasuresatonlyoneangle(40degree)butwithabettersensitivity(less than1Kvs.morethan3KforSMOSoverlandsurfaces).SMAPalso hasasophisticatedRFIdetectionsystem(Spenceretal.,2013)whosenecessity wasidentifiedduringthefirstmonthsoftheSMOSmission(Daganzo-Eusebio etal.,2013;Khazaaletal.2014;Olivaetal.,inpress;Soldoetal.,2014,2015).

TheSMOSmissionisthefirstpolarorbitingsatellitelaunchedthat,operatingatL-band,measuresbothseasurfacesalinityandsoilmoisture.ItisanESAledEarthExplorerMissionwithcontributionsfromtheCNES(France)andthe CentroparaelDesarrolloTeccnologicoIndustrial(CDTI)inSpain.Itwas launchedonNov.2,2009.Itaimsatcollectingcontinuousglobalobservation ofnear-surfacesoilmoistureandvegetationopacityoverland,seasurfacesalinityandextremewindspeedovertheoceans,andthinseaiceathighlatitudes. SMOSisona755kmpolarsun-synchronousorbitwithanequatorcrossingtime of6:00am(ascending)and6:00pm(descending).Theinstrumentonboard SMOSisa2DinterferometeroperatingatL-band(1404–1423MHz).Itmeasurestheemissionfromthesurfaceinafullypolarimetricmodeandwitha largenumberofviewangles(from0to55degree).TheSMOSlevel2soilmoistureproductsaredefinedontheISEA4H9grid(i.e.,IcosahedralSnyder EqualAreaprojectionwithaperture4,resolution9anditsshapeofcellsashexagon)(Kerretal.,2010).Eachpoint(ornode)ofthisgridisknownasaDiscrete GlobalGrid(DGG)thathasfixedcoordinatesandisassignedwithanidentifier the“DGGId.”Level3and4productsaredefinedontheEqual-AreaScalable Earth(EASE)-grid2projection.DataisavailablethroughtheESAportalfor level1and2dataandthroughtheCentreAvaldeTraitementdesDonnees SMOS(CATDS)forlevel3and4.

TheSMAPwasthefirstEarthobservationsatellitemissiondevelopedby NASAontherecommendationoftheNationalResearchCouncil’sEarthScienceDecadalSurvey,EarthScienceandApplicationsfromSpace:National

ImperativesfortheNextDecadeandBeyondin2007.ItwaslaunchedonJan. 31,2015.Likewise,SMOS,theSMAPmissiondesignedtocollectcontinuous globalobservationofnear-surfacesoilmoisture(0–5cmdepth)andfreeze/ thawstateevery2–3daysathydrometeorology(10km)andhydroclimatology (40km)scales.TheSMAPisafor-synchronoussatellitethatrunsfrompoleto poleandcrossesEarth’sterminatorattheequator.TheSMAP’sorbitis685km aboveEarth’ssurface.BecauseEarthspinswhileSMAPrevolves,swathsfrom eachorbitareoffsetfromeachotherand,after8days,thesameswathis repeated.Over2–3days(2daysatthepolesand3daysattheequator),thegaps betweenswathsarecompensatedforandthusaglobalmapofsoilmoistureis generated.TheinstrumentonboardSMAPconsistsofasimultaneousactive(in theformofradar)andpassive(intheformofradiometer)microwaveinstrumentsatL-bandfrequency(1.2–1.4GHzrange).Theradiometerinstrument oftheSMAPsatelliteisbasedonasinglefeedanddeployable6mreflector antennasystemthatrotatesaroundthenadiraxis.Thisrotationantennaenables conicalscanningataconstantincidenceangle(40degree).Theradiometer (1.41GHz)measurestheintensityofmicrowaveradiationemittedfromthe Earth’ssurface(i.e.,brightnesstemperature)ataspatialresolutionofapproximately40km.Theradiometeracquiresmeasurementsinfourchannels,vertical(V)polarization,horizontal(H)polarization,third,andfourthstokes.The radar(1.26GHz)transmitsmicrowaveradiationintwolinearpolarizations andmeasuresthescenebackscatterat1–3kmspatialresolutioninmultiple polarimetricchannels.Eachchannelreceivesandtransmitspolarizedradiation indifferentorientations:HH,VVandHV,orVH.Radiometric-basedmeasurementalgorithmsprovidebettersoilmoistureestimationundervegetatedconditions.TheSMAPbaselinedataproductsaremadeavailablepubliclythrough NASA’stwoDistributedActiveArchiveCenters(DAACs),theAlaskaSatellite Facility,andtheNationalSnowandIceDataCenterforallotherproducts.

OneshouldalsomentiontheAquariusinstrument(LeVineetal.,2014)which, eventhoughdesignedtomeasureoceansalinity,wasalsousedoverlandtoinfer soilmoistureatacoarsespatiotemporalresolution(Bindlishetal.,2015).Thethree L-bandmissioncharacteristicsaregivenin Table1.Notethat,onJun.7,2015,the satellitecarryingAquariussufferedapowersupplyfailure,endingthemission.

Itisworthmentioningatthislevelthatotherpassivemicrowaveinstruments,thoughnotspecificallydesignedforsoilmoistureretrievals(seeAMSR specificationsin Table2 forinstance)canshowgoodperformances(Al-Yaari etal.,2014b).

4SOILMOISTURERETRIEVALFROMSPACE USINGPASSIVEMICROWAVES

Eventhoughseveraltechniquesareavailable,wewillfocushereonthemost promising,theapproachusingpassivemicrowavesatlowfrequencyandinparticularatL-band.

Equatorcrossingsolar time(ascendingorbit)

Datesofoperation Nov.2,2009Jun.11,2011to Nov.7,2015 Jan.31, 2015

Radiometer InterferometerPushbroom Conical scan Spatialresolution(3dB)27

Polarization Full Threestokes Full Bandwidth(MHz) 1404–14231400–1427

Incidenceangle(degree)0–60 29.36,38.49,46.2940

4.1SurfaceSoilMoisture

SoilmoistureisaveryeasytargetatL-bandastheamplitudeofthesignalcan reach100Kforthewholesoilmoisturerange.Theproblemisnevertheless complicatedbythepresenceofvegetation,topography,freeze/defreezecycles, snowcover,orwaterbodies.Tocopewiththese,averyspecificretrievalalgorithmwasdeveloped(Kerretal.,2012)andimplementedfromlaunch.Itrelies onthemultiangularcapacityoftheSMOSinstrument(Kerretal.,2014).

ThesignalmeasuredbyapassivemicrowavesensoratL-band,overanonfrozenandsnowfreesurface,ismainlyafunctionofsoilmoisture,vegetation opacity,andeffectivesurfacetemperature.Othersurfacecharacteristicslike soiltextureandroughnessalsoplayanimportantrole.Atmosphericcontribution(includingcloudsandrain)andgalacticreflectioncanbeeasilyneglected overlandsurfacesatL-band.

Atatypicalspatialresolution(40kmonaverageforSMOSorSMAP),the surfacecontributiontotheL-bandsignalisrarelyuniform.Asurfaceareacorrespondingtoapixeloftenconsistsofsomewaterbodies,lowandpossiblyhigh vegetationfields,possiblyfrozenandsnowcoveredsurfaces,topography,and

TABLE2 AMSRSeries:Characteristics

Datesofoperation Dec.14,2002toOct.25,2003May4,2002toOct.4,2011 May18,2012

Frequenciesandresolutions

others.Consequently,anyphysicallybasedretrievalalgorithmhastobeableto accountforanumberoffeaturesintheobservedarea.Somesurfacecharacteristics,suchassoiltextureandlanduse,areobtainedfromstaticmapswhile others,suchastemperatureandsnow,areobtainedfromforecasts.Therefore, itisasignificantchallengetodeterminewithanadequateaccuracyandglobally thesurfacecharacteristics,andusethemintheretrievalprocesstoinferthe desiredcharacteristics.TheSMOSandSMAPmissionsdifferslightlyatthis level.Bothuseaphysicallybasedapproachusingstateoftheartmodelsbut SMOSusesthemultiangularinformationforassessingvegetationcontribution whileSMAPreliesontheuseofsatellitederivedvegetationindices.

TheSMOSalgorithmusesaniterativeapproachwhichaimsatminimizinga costfunctionwhosemaincomponentisthesumofthesquaredweighteddifferencesbetweenmeasuredandmodeledbrightnesstemperaturedata,foracollectionofincidenceangles.Thisisachievedbyfindingthebest-suitedsetof parameterswhichdrivethedirectTBmodel(e.g.,soilmoistureandvegetation characteristicsusingtheL-MEBmodel)(Wigneronetal.,2007).

Despitetheapparentsimplicityofthesoilmoistureretrievalprinciple,the modelingoftheradiometricsignaliscomplexandrequirescloseattentionto manydetails.TheSMOS“pixels”cancorrespondtoratherlarge,inhomogeneoussurfaceareasinvolvingmanylandusetypes(cropfields,forests,water bodies,urbanareas,etc.),eachwiththeirowncharacteristics.Moreover,the radiometricsignalisimpactedbythedirectionalpatternoftheSMOSinterferometricradiometer.Therefore,modelingoftheSMOSradiometricsignal involvesboththemodelingofthegroundtargetandtheantennaforavariety ofincidenceangles.Themodelingofthegroundtargetinvolvesestimation ofvariousparameters(suchassurfacetemperatureandsoilmoisture)atvarious positionswithinthetarget.Theantennapatternisrepresentedthroughaweightingfunctionwhichdependsontheincidenceangle.Itisimportanttonotethat, thankstothe“reconstruction”principle,theobservationsarecomputedforany givenpointofthesurface(withanaccuracyof400m)anditisalwaysthesame center.So,fromoneacquisitiontothenext,theinstrumentfootprintisexactly thesame.

Asforanypixel,theremightbealargevarietyofsurfacetypes,notallof whicharecharacterizedbythesamesetofparameters.Itis,therefore,notrealistictocarryoutthesameretrievaleverywhere.Itisunderstoodthatallsurface types,regardlessofwhethertheysupporttheretrievalofagivensetofparameters,docontributetotheSMOSsignalaccordingtoagivenmodel.However, estimationofsoilmoistureisonlymeaningfulovercertainsurfacetypes.For instance,whilealakecontributestotheradiometricsignal,itisnotparameterizedbysoilmoisture.Inordertofacilitatetheretrievalprocess,anodeis dividedgenerallyintotwoareas,onewheretheretrievalwilltakeplaceand onewherethecontributionstotheoverallnodesignalneedtobeestimated butnoretrievalswillbeperformed.Thislatterpartisthenconsideredtohave fixedcontribution(defaultcontributions)andtheretrievalismadeonthe

remaining—dominant—area.Forinstance,ifthereisanareaoflowvegetation withadenseforestandalake,wewillestimatethecontributionofthelakeand thatoftheforestusingeitherexternaldataorpredeterminedvaluesofthesurfacecharacteristics:the referencevalues.Thisdefaultcontributionwillbe assumedconstantinthemodeledsignal,andtheretrievalisperformedonly ontheremaining,dominantpart.

Oncethedominantareaisascertained,itscontentmustbetakeninto account.Actually,asurfaceareacontributingtotheSMOSsignalmayinclude alargevarietyofsurfacetypes,suchascultivatedagriculture,grasslands,and forests.Theseland-useclassesaregroupedtogetherbasedontheirL-band microwaveemissionproperties.Allsurfacetypesareaggregatedintoasmall number(about10)ofgenericclasseshavingthesamemodelingcharacteristics andusingsimilarparameters.Atargetareaissubdividedintoanumberofunits (4 4km2 bydefault)andeachunitisdefinedbyacollectionofsuchaggregatedfractions.TheSMOSpixelscorrespondtovariousviewsofanodeasseen fromdifferentangles.Thespatialextentsoftwodifferentviewsofthesame targetaregenerallydifferent.Thedifferenceincreasesastheviewingangles arefurtherapart.

Thedominantpartdoesnotalwayscovernicerollinghillsofgreenpastures (alsoknownas“nominal”).Thesoilcanbefrozenorcoveredwithsnowor rocks.Thetargetcouldbeanislandwithinaseaorhavealargeurbanormountainouscomponent,nottomentionmarshesorricefields.Thesenonnominal,or exotic,casesneedtobemodeleddifferently.Theexoticsurfacescouldbeeither complementary(i.e.,thereisnooverlapbetweentwoclassesofthistype)or supplementary(theynecessarilyoverlapwithcomplementaryclasses).For instance,surfacecharacteristicscanbesupplementarywhentwo“special”cases arepresentatthesameplaceandsamemoment(i.e.,topographyandwaterbody orforest).Theycanbesupplementarywhentheyexcludeoneanothersuchas waterbodyandforest.

Whenitisnotpossibleorrelevanttoretrievesoilmoisture,itmaybepossibletoretrieveotherparametersofinterest.Forinstance,onecanretrieve dielectricconstantparameters(usingtheso-calledCardioidapproach)(Kerr etal.,2014).

Thealgorithmhasbeenundergoingcontinuousvalidationusinggroundsites andsubsequentimprovements.Asalreadystated,RFIconstitutesanissue,so resultsobtainedinEuropeandAsiaarealwaysdifficulttointerpret.Sitesin theUnitedStateshaveprovedtobemuchmoreuseful(Albitaretal.,2012; Jacksonetal.,2012).Theresultsareavailable(SMOSspecialissueMay 2012andRSEspecialissue2016).Currentlyversion620isbeingrunand resultsareverysatisfyingovernormallandsurfaces(flattishareawithlowvegetationandnoRFI).

TheSMAPmissioniscurrentlyinitsfirstyearandfourretrievalalgorithms arebeingtestedandevaluated.Themostusedareone(singlechannelalgorithm)basedononlyonechannel(theVpolarization)asselectedattheend

ofthecommissioningphaseandoneusingthetwopolarizations(dualchannel algorithm).FirstintercomparisonexercisesshowthatbothSMOSandSMAP areverycoherentintheirresultsandshowsimilarquality.SMAPhastheadded advantageofanefficientRFIfiltering,enablingamoreexhaustivespatialcoveragewhileSMOSseemstobemoreabletocopewithverydensevegetation,at leastforthetimebeing(SMAPhandbook).1

Globally,theSMOSretrievalalgorithmperformswellintermsofcoverage withthebigcaveatoftheRFIwhichaffectsmainlyobservationsinEuropeand Asia.Thequalityoftheresultsisalmostwithinexpectations(0.04m3/m3), whichisencouragingwhenoneconsidersthatthesatellitewasthefirstspaceborneinterferometricsystemandhasbeenoperatingfor6years.Goodresults areobtainedoverRFI-freeareasandveryencouragingresultsareobtainedover moderatelydenseforests(Rahmouneetal.,2014;Vittuccietal.,inthisissue).

SoilmoistureretrievalsareinthecorrectrangewithpossibleunderestimationlinkedtoRFIascouldbeexpected.However,insomecasesandaftera heavyrainfallevent,thesoilmoisturevaluesobtainedseemtoohigh(sometimesexceeding0.65m3/m3).Thismaybeduetopondingeffects,saturation oftheuppersoillayerandcanindicateflooding.Insomecases,itcanbelinked toretrievalerrorslinkedtoerroneousauxiliarydata.

Anotherpointofconcernisthewaycoldareasareprocessed.Iffreeze/thaw iseasilydetected(soilappearssuddenlydrywhenitfreezesandvegetation becomestransparentwhenfrozen)(Matzler,1994;Schwanketal.,2004),the mainissueatthislevelisthefactthatahighspatialresolutionisrequired tomonitorfreeze/thaw,especiallyinthetransitionareas.Snowcoverismore complex.Whendry,snowisalmosttransparent,andL-bandissensitivetothe relativelywarmsoilunderneath.However,whenthesnowiswetitisratheropaque.Alltheintermediarycases(bothintermsofsnowstateandspatialdistribution)makeretrievalintransitionareasverydifficultandtheproductisprone tobeingerroneous.Anothersourceofconcernislinkedtowaterbodies.There arenoavailabledynamicmapsofwaterbodiesatafineenoughresolutionand waterbodiesdochangewithtime,beitthroughseasonalvariations,floods,or eventides.Anerrorof2%onthewaterbodysurfacecanleadtoanerrorinsoil moisturecorrespondingto0.01m3/m3 (Kerretal.,2012).

QuantitativeevaluationoftheL2algorithmhasbeendescribedinseveral papersforbothSMOSandSMAP.Anexampleisgivenin Fig.1 anddescribed furtherin(Kerretal.,submittedforpublication)andfortwodifferentcases;a semiaridenvironment(WalnutGulch)andatemperateone(LittleWashita).The chartsshowthetemporalevolutionofthesoilmoistureforSMOS,ascatterometer(ASCAT),modeloutputs(EuropeanCenterforMedium-RangeWeather Forecasts,ECMWFandModernEra-RetrospectiveanalysisforResearchand Applications(MERRA))andinsitudata.BelowistheCumulativeDistribution

1. http://smap.jpl.nasa.gov/system/internal_resources/details/original/178_SMAP_Handbook_ FINAL_1_JULY_2014_Web.pdf

FIG.1 TypicalresultsofretrievalsoveraUSWatershed(see Jacksonetal.,2012):(A)forWalnut Gulchand(B)forLittleWashita.

Function(CDF)plotandaTaylor’sdiagramforthesamemeasurements. Thesetypesofplotsallowforagoodestimationoftheretrievalsqualityeven thoughnotallaspectscanbecovered(inparticularthespatialrepresentation). Thetemporalbehaviorsoverthisexampleofaridenvironmentshowsthat theASCATtendstohaveastrangebehaviorwithlargeerrorsassociated (Wagneretal.,2013),whilemodelstendtolargelyoverestimatesoilmoisture

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.