Rotational structure in molecular infrared spectra 2nd edition carlo di lauro - The full ebook versi

Page 1


StructureinMolecularInfraredSpectra 2ndEditionCarloDiLauro

https://ebookmass.com/product/rotational-structure-inmolecular-infrared-spectra-2nd-edition-carlo-di-lauro/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications 2nd Edition Jean-Michel Hartmann

https://ebookmass.com/product/collisional-effects-on-molecularspectra-laboratory-experiments-and-models-consequences-forapplications-2nd-edition-jean-michel-hartmann/ ebookmass.com

Chemical kinetics : from molecular structure to chemical reactivity 2nd Edition Luís G. Arnaut

https://ebookmass.com/product/chemical-kinetics-from-molecularstructure-to-chemical-reactivity-2nd-edition-luis-g-arnaut/ ebookmass.com

Freiluftverbrennungen in Auschwitz Carlo Mattogno

https://ebookmass.com/product/freiluftverbrennungen-in-auschwitzcarlo-mattogno/ ebookmass.com

Kings and Queens of England: Lives and Reigns from the House of Wessex to the House of Windsor Peter Snow

https://ebookmass.com/product/kings-and-queens-of-england-lives-andreigns-from-the-house-of-wessex-to-the-house-of-windsor-peter-snow/ ebookmass.com

Microsoft Excel Formulas and Functions (Office 2021 and Microsoft 365) Paul Mcfedries

https://ebookmass.com/product/microsoft-excel-formulas-and-functionsoffice-2021-and-microsoft-365-paul-mcfedries/

ebookmass.com

Franciscan Books and Their Readers: Friars and Manuscripts in Late Medieval Italy Rene Hernandez Vera

https://ebookmass.com/product/franciscan-books-and-their-readersfriars-and-manuscripts-in-late-medieval-italy-rene-hernandez-vera/

ebookmass.com

Statistical Mechanics: Fourth Edition R.K. Pathria

https://ebookmass.com/product/statistical-mechanics-fourth-edition-rk-pathria/

ebookmass.com

Principles of Computer Security - Wm. Arthur Conklin & Greg White & Chuck Cothren & Roger L. Davis & Dwayne Williams

https://ebookmass.com/product/principles-of-computer-security-wmarthur-conklin-greg-white-chuck-cothren-roger-l-davis-dwayne-williams/

ebookmass.com

Nordicism and Modernity Gregers Einer Forssling

https://ebookmass.com/product/nordicism-and-modernity-gregers-einerforssling/

ebookmass.com

International

9th Edition, (Ebook PDF)

https://ebookmass.com/product/international-management-culturestrategy-and-behavior-9th-edition-ebook-pdf/

ebookmass.com

ROTATIONAL STRUCTUREIN MOLECULAR INFRAREDSPECTRA

ROTATIONAL STRUCTUREIN MOLECULAR INFRAREDSPECTRA

SecondEdition

CARLODILAURO

UniversityofNapoliFedericoII,Napoli,Italy

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-821336-0

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnnekaHess

EditorialProjectManager: AndreaDulberger

ProductionProjectManager: SruthiSatheesh

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

1.TheVibration-RotationProblem1

1.1 ClassicalKineticEnergy1

1.2 TheQuantumMechanicalHamiltonian10 References 12

2.InteractionofMatterandLight15

2.1 Time-DependentPerturbations15

2.2 AChargeinanElectromagneticField16

2.3 ASystemofChargedParticlesinaRadiationField18

2.4 MoreonElectricDipoleTransitions26

2.5 SpontaneousEmission30 References 31

3.MolecularSymmetryandSpectroscopy33

3.1 MolecularSymmetryandMolecularPointGroups34

3.2 RotationalEnergyandRotationalHamiltonianofRigidRotors35

3.3 RotationalSymmetryandRotationalGroups36

3.4 MolecularDeformationsandMolecularSymmetryGroups39

3.5 TheInversionOperation E andParity45

3.6 TheCompleteNuclearPermutationandPermutation-InversionGroups46

3.7 FeasibleOperationsandMolecularSymmetryGroups46

3.8 TheExtensionofMolecularSymmetryGroups49

3.9 TimeReversal55

3.10 AFirstGlancetoTransitionSelectionRules:Parity57 References 58

4.SymmetryofWavefunctionsinVibration-RotationSpectroscopy59

4.1 RotationalCoordinates59

4.2 RotationalOperatorsandWavefunctions60

4.3 MolecularVibrations66

4.4 Vibration-RotationWavefunctions72

4.5 LinearMolecules74

4.6 AsymmetricTopMolecules76

4.7 SphericalTopMolecules80 References 82

5.NuclearSpinStatisticalWeights83

5.1 SymmetriesofNuclearSpin,Rovibronic,andTotalWavefunctions85

5.2 LinearMolecules93

5.3 CoupledandUncoupledNuclei95

5.4 MoleculeswithnoSymmetryElements96

Reference 96

6.ExpansionandTransformationsoftheVibration-RotationHamiltonian97

6.1 ExpansionoftheVibration-RotationHamiltonian97

6.2 TheExpandedVibration-RotationHamiltonian101

6.3 AnIsolatedVibrationalState102

References 107

7.EffectsofCentrifugalDistortions109

7.1 LinearMolecules111

7.2 SymmetricTopMolecules111

7.3 SphericalTopMolecules114

7.4 AsymmetricTopMolecules115 References 116

8.SpectraofSymmetricTopandLinearMolecules117

8.1 MolecularDegreesofFreedom118

8.2 TheHarmonicOscillator-RigidRotorApproximation119

8.3 SemirigidSymmetricTopMolecules120

8.4 OvertonesandCombinations125

8.5 LinearMolecules133

8.6 Vibration-RotationSelectionRules:LineIntensitiesandLineStrengths133

8.7 ParallelandPerpendicularLineStrengths140

8.8 LineStrengthswithPerturbedUpperStates143

8.9 LineShapes145

8.10 MainSpectralFeaturesinSymmetricTopsandLinearMolecules147

8.11 LowerandUpperStateCombinationDifferences157

8.12 HotandDifferenceBands160

8.13 PhaseConventions163

8.14 AnharmonicInteractions164

8.15 CoriolisInteractions169

8.16 l-TypeInteractionsandDoublings184

8.17 HigherOrderPerturbations196

8.18 IsolatedVibrationalLevelsandPolyads200

References 200

9.SpectraofAsymmetricTopMolecules203

9.1 RotationalEnergy203

9.2 OrthorhombicMolecules206

9.3 Vibration RotationTransitions208

9.4 HybridBands212

9.5 Near-SymmetricTops214

9.6 AnharmonicandCoriolisInteractions217

9.7 IntensityCalculation220

References 221

10.SpectraofSphericalTopMolecules223

10.1 GeneralConsiderations223

10.2 FundamentalVibrationalStates224

10.3 OvertonesandCombinationsof F-Modes226

10.4 CoriolisCouplinginOvertonesandCombinationsof F-Modes228

10.5 SelectionRulesandIntensities230

10.6 EffectsofAnharmonicity233

10.7 CentrifugalDistortionEffects238

10.8 Remarks 238

10.9 CubicSymmetry239 References

11.FloppyMolecules243

11.1 MolecularInversion243

11.2 InternalRotation245

11.3 EffectsofTorsionalCoriolisCoupling252

11.4 PerturbationApproachfortheDegenerateModesofEthane-LikeMolecules255

12.HyperfineStructureandtheInteractionofMolecularRotation WithNuclearElectricQuadrupoles261

12.1 ReducedMatrixElementsof Q(2) and V(2) 263

12.2 ASimplerAlternativeMethod265

12.3 MatrixElements268

12.4 SelectionRulesforElectricDipoleTransitions270

12.5 HyperfineStructureinanInfraredSpectrum271

AppendixA1:PhasesofWavefunctions275

AppendixA2:EigenfunctionsofCommutingOperators277 AppendixA3:CouplingofAngularMomenta281

AppendixA4:AngularMomentumMatrixElements297

AppendixA5:TheFullRotationGroupandIrreducibleSphericalTensors301

AppendixA6:DirectionCosineOperators309

AppendixA7:HarmonicOscillators313

AppendixA8:VibrationalNormalModesandCoriolisCoefficients327

AppendixA9:ContactTransformationandPerturbationMethods335 Index 341

CHAPTER1

THEVIBRATION-ROTATIONPROBLEM

Contents

1.1 ClassicalKineticEnergy1

1.1.1 TheEckartConditions3

1.1.2 TransformationtoNormalCoordinates5

1.1.3 KineticEnergyinTermsofMomenta8

1.2 TheQuantumMechanicalHamiltonian10

1.2.1 LinearMolecules12

References 12

1.1ClassicalKineticEnergy

Inthischaptersymbolslike rj and _ r j areusedtorepresentcoordinateandvelocity vectorsofthe jthparticleinamolecule,andsymbolslike rjα and _ r j α ,with α 5 x, y, z, fortheircomponents,whenapplicable.

Thekineticenergyofamoleculeis

where N isthenumberofparticles,includingnucleiandelectrons,and r 0j and r0j are vectorsdeterminingthevelocityandpositionofthe jthparticle,ofmass mj,with respecttoareferential X0,Y0,Z0 fixedintheexternalspace.

Eachpositionvector r0j isthesumofthevectors R,whichdefinesthepositionof themolecularmasscenterrelativetotheoriginofthe X0,Y0,Z0 space-fixedsystem, and rj,whichdefinesthepositionofthe jthparticlewithrespecttothemasscenter (see Fig.1.1).Inanonrotatingvibratingmolecule,thevelocityofthe jthparticleis _ R 1 _ r j ,where _ r j isthevelocityofthe jthparticleduetoitsmotioninthemoleculefixedsystem(vibrationaldisplacementsofthenucleiandorbitalmotionsofthe electrons).

Ifthemoleculeundergoesanoverallrotation,atanangularvelocity ω aboutan axispassingthroughitsmasscenter,thevelocityofits jthparticleinthespace-fixed referencesystemis _ R 1 _ r j 1 ω 3 rj ,thereforethekineticenergyis:

Figure1.1 Positionandvelocityofaparticle Pj inamolecule.Theoriginandorientationofthe Cartesiansystem X0, Y0, Z0 arefixedintheexternalspace.WedefineanadditionalCartesiansystem X, Y, Z,withtheoriginfixedatthemasscenter O ofthemoleculeandtravelingwithit,butremainingalwaysparalleltothespace-fixedsystem,andamolecule-fixedsystem x, y, z,withitsoriginin O,whichtravelsandrotateswiththemolecule.Seetextforfurtherdetails.

where n isthenumberofnuclei, nel isthenumberofelectrons, mj isthemassofthe jthnucleus,and mel isthemassoftheelectrons.Oneobtainsbyexpansion:

where M isthemolecularmass(inclusiveofnucleiandelectrons), n isthenumberof nuclei, nel isthenumberofelectrons,and N isthetotalnumberofparticles n 1 nel

Thelasttwotermsin (1.3) vanish.Thefirstofthembecausethedefinitionofmass centerimpliesthatthequantity PN i51 mi ri vanishesatanytime,thereforeitschangesin timemustalsovanish,andthen PN i51 mi _ r i 5 0.Thesecondone,exploitingthepropertiesofthetriplescalarproduct(seeMargenauandMurphy [1],Chapter4:Symmetry ofwavefunctionsinvibration-rotationspectroscopy),canbewrittenintheequivalent form(PN i51 mi ri ) ( _ R 3 ω ),anditclearlyvanishesonaccountofthementioned propertyofthemasscenter.

Thefirsttermin (1.3) isthekineticenergyofthetranslationalmotionofthemolecule.Itcanbeseparatedfromtheotherterms,becauseitcontainsonlythecomponentsofthetranslationalvelocityofthemasscenter,andnoothernonvanishingterm

contains R or R .Thustherotation-vibration-electronic(rovibronicforshort)kinetic energy Tevr canbewrittenasthesumofthetwoterms, Tvr and Ter,whichrepresent thekineticenergiesofthenucleiandelectrons,respectively,inarotatingmolecule:

Thefirsttermin (1.5) isthekineticenergyofthevibrationalmotionofthenuclei, thesecondtermistherotationalenergyofthenuclei,andthethirdistheinteraction termbetweenvibrationandrotation.Ananalogousdescriptioncanbemadeforthe termsof (1.6),whichappliestotheelectrons.

Inmoleculeswithoneequilibriumgeometry,itisconvenienttodecomposethe positionvector rj ofanucleus,inthemolecule-fixedframe,asthesumofthevalue aj intheequilibriumpositionandthedisplacement dj causedbythevibrationalmotions (see Fig.1.1).Theequilibriumvaluesareconstant,therefore _ r j 5 _ d j .Weshallmake thissubstitutionin Eq.(1.5)

Usingagainthepropertiesofthescalartripleproduct,theinteractiontermin Eq.(1.5) canbewrittenas ω

; wherethesummationisthevibrationalangularmomentumofthenuclei,thatis,theangularmomentumgeneratedby theirvibrationalmotioninasystemwithorigininthemasscenter.

Therotationalenergy,thesecondtermin Eq.(1.5),canbeexpressedbyEq.(3.4), makinguseofthecomponentsof ω inamolecule-fixedaxissystemandoftherelative inertiatensor.Itisobviousthatthisisconvenientlydoneinamolecule-fixedsystem, inorderthatmomentsandproductsofinertiabemolecularproperties(which,however,dependonthevibrationaldeformations).

1.1.1TheEckartConditions

Thedefinitionofamolecule-fixedaxissystem x,y,z,withorigininthemasscenter androtatingwiththemolecule,wouldbeasimplematterinanonvibratingmolecule, becausesuchaxescanbeattachedwithfixeddirectionstoarigidbody.Inavibrating molecule,oneneverknowshowtoattachtheaxissystemtothemoleculeineachof thegeometriesthatitassumesinthevibrationalmotion.Inotherwords,itissomehowarbitrarytodecideifamoleculardeformationimplies,andtowhatextent,a

changeintheorientationofthemolecule-fixedaxes,andthenanoverallrotation. Thisindeterminacyisrelatedtothearbitrarinessindefiningtheseparatecontributions ofoverallrotationandvibrationalmotionstotheangularmomentum.Aconvenient choicewouldbetodefinethevibrationalcoordinatesinsuchawaythattheassociated velocitieswouldnotgenerateangularmomentuminthemolecule-fixedsystem,but thiscouldbedoneonlyatagivengeometry.Thenthechoicehasbeenmadethatthe vibrationalvelocitiesofthenucleidonotgenerateangularmomentumwhenthemoleculeisintheequilibriumgeometry(rj 5 aj, dj 5 0forallnuclei),thatis,

Pn j51 mj ðaj 3 _ d j Þ 5 0.Multiplicationofthisexpressionbyinfinitesimalincrementof time dt transforms _ d j intothedifferentialof dj,andintegrationbetween0and dj gives Pn j51 mj (aj 3 dj) 5 0.SeealsoSection11.1ofRef. [2]

Molecularvibrationsareconvenientlytreatedintermsofnormalcoordinates, whicharelinearcombinationsofthe3n Cartesiandeformations djα.Sincethe3n Cartesiandegreesoffreedomalsocontaintherigidmodes,thatis,thethreetranslationsalong X0, Y0,and Z0 andthethreerotationsabout x, y,and z (onlyabout x and y inlinearmolecules,if z istheinternuclearaxis),the3n Cartesiancoordinatesofthe nucleiinthemolecule-fixedframemustobeysix(orfive)constraintsinthemoleculefixedframe.Actually,wehavejustfoundtheconstraints Pn j51 mj (aj 3 dj) 5 0,andthe constraints PN i51 mi ri 5 0whichallowtheseparationoftranslation,butasubtlequestionarisesaboutthemasscenterconstraints:oneneedsconstraintstotheCartesian coordinatesofthenucleiinthemolecule-fixedframe,butthementionedmasscenter conditionsapplytoalltheparticles,includingtheelectrons,anddefinethemasscenter ofthewholemolecule.Itisfortunatethatthemasscentersofthemoleculeandof theirnucleiareveryclose,andcanbeassumedtobecoincident(seePapousekand Aliev [3]).Thisisinpartduetothefactthattheelectronsaremuchlighterthanthe nuclei;moreover,theirmotionisnotcompletelyindependentfromthemotionofthe nuclei,especiallyforthecoreelectrons.Thecoreelectronscouldalsobetreatedas partofthecorrespondingnuclei,treatingonlythe nel valenceelectronseparately.

Thus,fixingtheoriginofthemolecule-fixedsystematthemasscenter,itisfound thatthe3n Cartesiancoordinatesofthennucleiinamolecule-fixedframemustobey thefollowingconstraints,calledEckart Sayvetzconditions [4,5]:

Fornonlinearmoleculestherearesixconstraints,becausetherearethreein Eq.(1.7),for x, y and z,andthreein Eq.(1.8).Forlinearmoleculestherearefive constraints,becausethe Eq.(1.8) relativetothe z-component(theinternuclearaxis)is trivial(the x and y componentsof aj arealwayszero,andthisthirdequationdoesnot imposeanyrestrictiontothepossiblevibrationalcoordinates).Thus,ina n-atomic moleculesthereare3n 6vibrationalmodesifthegeometryisnotlinear,and3n 5 ifthegeometryislinear.

Owingtotheconstraints (1.8),wecanwritethevibration-rotationclassicalkinetic energyas:

SeeEqs.(3.5)and(3.6)fortheelementsofthetensor I Ifwereplacethenuclearvibrationaldisplacementcoordinates dαj (α 5 x, y, z)in themolecule-fixedframebytheirmass-weightedvalues qαj 5 mj 1/2dαj,thevibrationrotationkineticenergyexpression(1.9) canbewrittenreplacingthevectors dj and _ d j by qj and _ qj ,anddroppingoutthemasses mj.Theadoptionofmass-weightedcoordinatesissuggestedbythefactthatthevibrationalnormalmodesarealsomass-weighted coordinates.

1.1.2TransformationtoNormalCoordinates

Therelationbetweenmass-weightedCartesianandnormalcoordinatesislinear,and canbewritteninthematrixnotationas ~ Q tot 5 l~ q ,where ~ Q tot and ~ q arecolumnmatrices,and l isanorthonormalmatrix.Thevector ~ Q tot containsthevibrationalnormal coordinatesandtherigidmotionsofthemolecule,thatis,translationsandrotations. Thus,wecanwriteinmatrixform

where α 5 x, y, z identifiestherotationalcomponent Rα.Thisistherelationbetween mass-weightedCartesiandisplacementcoordinates,arrangedinacolumnandordered by x, y,and z components,andthecolumnincludingvibrationalnormalcoordinates ~ Q ,translationalcoordinates T , ,androtationalcoordinates ~ R .Assumingthatthetranslationalcoordinatestooaremassweighted(displacementsofthemasscentermultiplied bythesquarerootofthemolecularmass M),weobtain:

lxy;j 52 mj Ixx 1=2 azj ; lxz;j 5

=2 ayj andcyclicpermutations ð1 12Þ

Ixx

withreferencetoasystemofprincipalinertiaaxes.In Eq.(1.12) therotationalcoordinatestoohavedimensions m 1/2l,andaregivenbyanangulardisplacementmultiplied bythesquarerootoftheappropriatemomentofinertia.Theequilibriumcoordinates aj intheseequationsarenotmassweighted.SeeMealandPolo [6,7] andPapouˇ sek andAliev [3].

Fromrelations (1.11) and (1.12) itcanbeverifiedthatallthecomponentsof T , and ~ R vanish,iftheEckart Sayvetzconditionsin Eqs.(1.7) and (1.8) areobeyed. Thus,owingtotheorthonormalityofthematrix l (l ~ l 5 E ),wecanwrite

Thisequationsallowsonetoreplacein (1.9) the x, y, z componentsof dj and _ d j bythe Q’sand _ Q’s(rememberthat dja 5 mj 1/2 qja),andweobtain

Thecoefficients ζ α i;k arecalledCorioliscoefficientsaboutthemolecule-fixed α-axis,betweenthevibrationalnormalmodes Qi and Qk.Theirvaluesrepresentthe α-componentsofthevectorproductofthenormalmodes i and k.Obviously,the diagonalcoefficients(i 5 k)vanish,andthesecoefficientscanbearrangedin ζ α

matriceswhichareskewsymmetric,ascanbeseenfrom Eqs.(1.15) (1.17) (seealso AppendixA8).Theexpression Pi;k ζ α i;k Qi _ Qk representsthe α-component π0 α (inthe molecule-fixedsystem)oftheclassicalvibrationalangularmomentumintheabsence ofmolecularrotation:

or,withthematrixformalism,

ThepropertiesofCorioliscoefficientshavebeenextensivelydiscussedbyMealand Polo [6,7] andHenryandAmat [8].

From Eqs.(1.14) and (1.6),usingmass-weightedcoordinatesfortheelectronsin Eq.(1.6)also,wefind:

I el isanelectronicinertiatensor,withelements I

and I el α;β 52 Pr qr

Eq.(1.20) canberearrangedas

Thelasttwotermsaretheoppositeofeachotherandcancelout.Wecanwrite:

with

Notethatour I correspondsto I I el ofPapouˇ sekandAliev [3].

1.1.3KineticEnergyinTermsofMomenta

Beforeapproachingthequantummechanicaltreatment,itisconvenienttoexpressthe kineticenergyintermsofmomenta,insteadofvelocities.Asoursystemisconservative,themomentaarethederivativesofthekineticenergy (1.20) or (1.22),with respecttothevelocities _ Qk , ω α,and qr .Oneobtains:

with α 5 x, y, z,where π0 α hasbeendefinedin (1.18),and

From (1.24) and (1.25) wecanseethatthefirstandlasttermsof Eq.(1.22) are sumsofthesquaresof Pk and pr,therefore

Nowweshouldreplacetheangularvelocitiesbytheirassociatedmomenta,but Eq.(1.26),with α 5 x, y, z arenotsatisfactoryforthispurpose,becauseoftheoccurrenceof π0 α and Π 0 α whichcontain _ Qk and _ qr ,insteadoftheconjugatedmomenta,see Eqs.(1.18)and(1.27)

From Eqs.(1.18)and(1.24) and (1.1),(1.25),and(1.27) wefind:

with

Intheabsenceofmolecularrotation, πα and Π α areequalto π0 α and Π 0 α

From (1.29) onefinds Jα

,andinmatrix notation

whereanarrowrepresentsavector(columnmatrix)and μ 5 I 0 1.Theelementsof μ, asthoseof I 0 ,arefunctionsofthenormalcoordinates,anddonotdependonthe coordinatesoftheelectrons.

Thetermcontainingtheangularvelocitiesin (1.28) canbeexpressedinmatrixnotationas ~ ω I 0 ~ ω ,wherethetildedenotestransposition.From (1.33), ~ ω

Π μ, where μ issymmetric,therefore

Þ.Bysubstitutionofthistermin Eq.(1.28),theclassicalkinetic energyisobtainedasafunctionofmomenta:

Inthisequationwecandistinguishth reetermsrepresenting,inorder,the vibrationalkineticenergyofthenuclei,therotationalenergy,andthekinetic energyofthemotionoftheelectronsaroundthenuclearskeleton(withoutoveralltranslation).Thesecondtermhastheform 1

Rα Rβ ,wherethepure rotationalangularmomentum R isequaltothetotalangularmomentum J minus thecontributions π and Π ,generatedbythevibrationalandelectronicmotion, respectively.

1.2TheQuantumMechanicalHamiltonian

ThederivationofthequantummechanicalHamiltonianfromexpression (1.34) ofthe rovibronickineticenergyisquiteacomplexprocedure,andhasbeendescribed, amongothers,byWilsonetal. [2],Bunker [9],BunkerandJensen [10],andPapouˇ sek andAliev [3].ItisfoundthattherovibronicquantummechanicalHamiltonian,asformulatedbyDarlingandDennison [11],is

Inthisequation μ isthedeterminantofthematrixwithelements μα,β , Vn( ~ Q )is thepotentialenergygoverningthevibrationsofthenuclei,functionofthenormal coordinates, Vee and Ven arethepotentialtermsduetotherepulsionbetweenthe electronsandtheattractionbetweenelectronsandnuclei.Theterm Vee clearly dependsonlyonthecoordinatesoftheelectrons,buttheterm Ven containsthecoordinatesofbothelectronsandnuclei.IntheBorn Oppenheimerapproximationthe nuclearcoordinatesaretreatedasparameters,andtheelectronicenergiesarecalculatedatfixedmoleculargeometries,withfixedvaluesofthenuclearcoordinates (clampednucleicalculations).Inthisway,thelastthreetermsin (1.35) arepureelectronicterms,andseparatedfromthevibrotationalpartoftheHamiltonian.However, anelectronorbit-rotationinteractioncanoccurintherotatingmolecule,duetothe termscontainingtheoperators Jα Πβ .Themapoftheelectroniceigenvaluescalculatedatdifferentmoleculargeometriescontainsinformationabouttheenergydependenceonthemoleculardeformations,thatis,onthepotential Vn( ~ Q )ineachgiven electronicstate.

Eq.(1.35) canbetransformedbytheuseofcommutatorsandsumrules,and Watson [12] hasshownthatitcanbecastinthesimpleform:

Theoccurrenceoftheverysmallterm U hasbeenquestionedbyWertheimer [13]. Wedescribeas “semirigid” avibratingmoleculewhoserotationalproperties,asthe elementsofthematrix μ,areconstantanddonotdependonthenormalcoordinates. Thisapproximationisbasedontheconsiderationthatthevibrationalmotionofthe nucleiismuchfasterthantherotationalmotion,sothatthemolecularrotationoccurs withaneffectivetensorofinertia,whoseelementsdependonthegivenvibrational state,butareconstantineachstate.Iftheprincipalaxesofinertiaarechosenasa molecule-fixedsystem,thematrix μ becomesdiagonal,anditselementsare theinverseoftheprincipalmomentsofinertia,1/Iαα.Thus,asfaras π and Π canbe disregarded,therovibronicHamiltonian Hð0Þ evr becomes:

Inafirstapproximation,itiscommonpracticetodisregardthedependenceofthe nuclearpotentialenergyVn ð ~ Q Þ onthecoordinatesoftheelectrons,inagivenelectronicstate,onthegroundthatthenucleiexperienceapotentialfieldaveragedover themuchfastermotionoftheelectrons(Born Oppenheimerapproximation [14]). Onealsodisregardsthedependenceoftheinteractionpotential Ven betweenelectrons andnucleionthenuclearcoordinates,assumingthattheyhaveconstantvaluesineach electronicstate,withthenucleiclampedintheirequilibriumpositions.Withthis approximation,inasemirigidmoleculewithoutvibronicangularmomentum,the threetermsoftheHamiltonian (1.38),electronic He,vibrational Hv,androtational Hr intheorder,becomeindependent,andtheeigenfunctionsareproductsofthepartial eigenfunctions, ψeψvψr.Theelectroniceigenfunctionsdependparametricallyonthe nuclearcoordinates,inthesensethatsetsofeigenfunctions ~ ψ e determinedatdifferent moleculargeometriesaredifferent.Conversely,itisfoundthatageometryofminimumenergy(equilibriumgeometry)correspondsateachelectronicstate.Thevariationsinenergywithmoleculardistortionsneartheequilibriumgeometryofan electronicstatedeterminethepotential Vn ð ~ Q Þ inthisstate.Inahigherapproximation, theeigenfunctions ψeψvψr arethecommonlyadoptedbasisforaperturbationtreatmentornumericalcalculations.

Notethat J isalwaysthetotalangularmomentum,inclusiveoftheorbitalcontributionduetotheelectronmotion,andofthevibrationalcontribution.Itisequalto

therotationalangularmomentumonlyinthelimitedcasethatthementionedcontributionscanbedisregarded.Thisisconsistentwiththefactthat,inamolecule-fixed frame,therotational-typeoperator J isindependentoftheinternalorbitalandvibrationaloperators Π and π,thentheuncoupledrepresentation ψeψvψr,where ψe includestheelectronspin,doesactuallyexist.Thiswouldnotbeallowedforthetrue rotationaloperator R,seeSectionsA3.1andA3.2.Thusacommonvibronicbasis, inclusiveofnuclearspin,is jeijv ij J ; k; M i ni j ,wherethelasttermisanuclearspin function,seeSection5,Nuclearspinstatisticalweights.

1.2.1LinearMolecules

Forlinearmolecules,where z istheinternuclearaxis, ω z vanishesand Eq.(1.29) appliesonlytothexand y components. I 0 isa2 3 2matrix,whichhasbeenfoundto bediagonal,with I 0 xx 5 I 0 yy,evenaccountingforthedependenceofitselementson thenormalcoordinates(seeRefs. [15,16]).Therefore ω α 5 (Jα

)/I 0 αα,with α 5 x, y,and Eq.(1.28) assumestheform:

with I 0 5 I

yy.

Watson [15] hasshownthatthequantummechanicalrovibronicHamiltonian H evr canbecastinthesameformastheclassicalexpression (1.39) ,replacingthe momentabythecorrespondingoperators,byintroducingafictitiousangleofrotation χ aboutthe z -axis.Contrarytononlinearmolecules,thisangleisnotavariable ofmotion,butisakindofphaseangledeterminingtheorientationinspaceofthe x and y axes.

References

[1] H.Margenau,G.M.Murphy,TheMathematicsofPhysicsandChemistry,D.VanNostrandCo., Inc.,Princeton,NJ,1956.

[2] E.B.Wilson,J.C.Decius,P.C.Cross,MolecularVibrations,McGraw-HillCo.Inc.,NewYork, 1955.

[3] D.Papouˇ sek,M.R.Aliev,MolecularVibrational-RotationalSpectra,ElsevierScientific.Publishing Co.,Amsterdam,Oxford,NewYork,1982.

[4] C.Eckart,Phys.Rev.47(1935)552.

[5] A.Sayvetz,J.Chem.Phys.6(1939)383.

[6] J.H.Meal,S.R.Polo,J.Chem.Phys.24(1956)1119.

[7] J.H.Meal,S.R.Polo,J.Chem.Phys.24(1956)1126.

[8] L.Henry,G.Amat,CahiersPhys.14(1960)230.

[9] P.R.Bunker,MolecularSymmetryandSpectroscopy,AcademicPress,NewYork,1979.

[10] P.R.Bunker,P.Jensen,MolecularSymmetryandSpectroscopy,seconded.,NRCResearchPress, Ottawa,ON,1998.

[11] B.T.Darling,D.M.Dennison,Phys.Rev.57(1940)128.

[12] J.K.G.Watson,Mol.Phys.15(1968)479.

[13] R.Wertheimer,Mol.Phys.27(1974)1673.

[14] M.Born,R.Oppenheimer,Ann.Phys.84(1927)457.

[15] J.K.G.Watson,Mol.Phys.15(1968)479.

[16] G.Amat,L.Henry,CahierPhys.95(1958)273.

CHAPTER2

INTERACTIONOFMATTERANDLIGHT

Contents

2.1 Time-DependentPerturbations15

2.2 AChargeinanElectromagneticField16

2.3 ASystemofChargedParticlesinaRadiationField18

2.3.1 ElectricDipoleTransitions20

2.3.2 AhigherApproximation:MagneticDipoleandElectricQuadrupoleTransitions22

2.4 MoreonElectricDipoleTransitions26

2.4.1 RadiationDensityandIntensity26

2.4.2 EinsteinCoefficientsandLineStrengths28

2.4.3 TheIntegratedAbsorptionCoefficient29

2.5 SpontaneousEmission30

References 31

2.1Time-DependentPerturbations

AsystemwhoseHamiltoniandependsexplicitlyontimecannotbeinastationary state.Itcanbedescribedbyafunctionofaset ~ r ofspatialvariablesandoftime,which obeysthetime-dependentSchrödingerequation:

Nowwesupposethat H consistsofatime-independentterm H(0),andasmall time-dependentterm H0 .Intheabsenceoftheperturbation H0 ,thesystemwillbein astationarystate,eigenstateof H(0) withenergy Em,describedbytheeigenfunction Ψ ð0Þ

.Ifthetimedependentperturbation H0 isswitchedon,thesystemwillnotremainintheinitial state,butwillbedescribedbyawavefunctionobeying Eq.(2.1),with

Atafixedvalueofthetime ψ isafunctionofthecoordinates,andcanbeexpanded intermsoftheeigenfunctionsof H(0).Thiscanbedoneatanyfixedvalueof t,and thenwecanwrite

wherethewavefunctionsappearascombinationsofstationarywavefunctions,with coefficientsparametricallydependingontime.Thus,applicationofthetimedependentSchrödinger Eq.(2.1),with H 5 H(0) 1 H0 ,yields H 0 ðÞ X n cn ðt ÞΨ ð0Þ n ð~ r ; t Þ 1 H

Thefirstandlasttermsofthisequationareequalandcancelout,becausethetimedependentSchrödingerequationholdsevenintheabsenceoftheperturbation H0 ,for any n-state,thus

:3Þ

Theprobabilityamplitudethatthesystemisinthestate Ψ ð0Þ n ð~ r ; t Þ attime t isequal to| cn ðt Þ |2.

Multiplyingbothsidesof (2.3) by Ψ ð0Þ m ð~ r ; t Þ ontheleft,integratingoverthespatial coordinatesandapplyingtheorthonormalityrelationoftheeigenfunctionsof H(0) , Ð ~ r ψ

0Þ l ð~ r Þ ψð0Þ n ð~ r Þd~ r 5 δ l ;n ,weobtain: dcm ðt Þ dt 52 i h X n cn ðt Þ

Theindex m specifiesaneigenfunctionof H(0),andwecanwriteasmanyequationsasthenumberofsucheigenfunctionsusedintheexpansions (2.2).Thusthe problemisinprincipledetermined,andthevaluesofthecoefficients cn(t)canbe determinedatanyvalueof t,forgiveninitialconditions(thatis,knowingthatthesystemisinagivenstate Ψ ð0Þ m ð~ r ; t Þ whentheperturbation H0 isswitchedon),thatis cm(t 5 0) 5 1, cn¼m(t 5 0) 5 0.SeeRefs. [1,2]

2.2AChargeinanElectromagneticField

Anelectricchargeeinanelectromagneticfieldissubjectedtotheforce

F 5 eE 1 1 c _ r 3 H ð2:5Þ where r isthepositionvectorofthecharge, _ r isitsvelocity(accordingtotheconventionthatadotonasymbolrepresentsitstimederivative),and c isthespeedofthe lightinthevacuum.Wecall e theelectricchargebecausewearemainlyinterestedin theelectroncharge,butthetreatmentisgeneral.

Figure2.1 Vectors E, H, A,and k ofapropagatingelectromagneticfield.Seetextforfurtherdetails.

Eq.(2.5) includestheeffectsoftheelectricfield E andtheLorentzforce.

Nowweintroducethescalarpotential φ andthevectorpotential A,suchthatthe electricandmagneticfieldsare:

and

Asanexample,weshowin Fig.2.1 avectorpotentialassociatedwitharadiation propagatinginthe z-directionandoscillatingalong x.Theassociatedelectricand magneticfieldscanbedeterminedfromthetwoequationsabove.Theelectricfield oscillatesinthesamedirectionof A,whereasthemagneticfieldoscillatesinadirection normaltothoseof A and E andofthewavepropagationvector k.Thefields E and H havethesamephase,andadephasing π/2withrespectto A.Theamplitudesof E and H arerelatedtothatof A,asindicatedinthefigure.

Thus,using (2.6) and (2.7),theforceactingonthechargecanberewritteninthe form

ItcanbeshownthattheLagrangianforthissystemis [1,3]:

Infact,theapplicationoftheEulerequationforthe x-coordinate,

yields:

Inthederivationof Eq.(2.10) usehasbeenmadeofthefactthat Ax isingenerala functionof t, x, y,and z,andthespatialcoordinates x, y, z arefunctionsof t. Eq.(2.10) canberearrangedintheform

andsimilarequationsforthecomponents y and z:Thesearejusttheequationsof motionundertheforcein Eq.(2.8).

Thecomponentsofthemomentum,definedasthederivativesoftheLagrangian withrespecttothevelocities,are:

Atthispoint,onecanworkouttheexpressionoftheclassicalHamiltonian, H 5 p _ r L.Itturnsoutthat

Thequantum-mechanicalHamiltonianisobtainedbyreplacingthecomponentsof themomentum pg (

)bythecorrespondingoperators

Thetermin x of (2.14) canbewrittenas 1

Ax and, expanding, 1

.Similarexpansionsholdfor thetermsin y and z,andtheHamiltonianbecomes:

Δ

2.3ASystemofChargedParticlesinaRadiationField

Ifweconsidertheelectromagneticfieldassociatedwitharadiationfield,thenthescalarpotential φ iszeroandthedivergenceof A vanishes(seeRef. [4]).Moreover,normallytheradiationfieldrepresentsaweakperturbation,andthesquareterm A A can bedisregarded.

Thereforewecanwriteforasystemofchargedparticles

where Aj isthevector A atthepositionofthe jthcharge.

Thefirsttwotermsin (2.16) arethekineticandpotentialtermsoftheunperturbed Hamiltonianofthesystem,intheabsenceofradiation;thethirdtermisthe Hamiltonian H0 ,representingtheperturbationoftheradiationfieldonthesystem. Therefore

Theoperator pj,associatedwiththemomentumofthe jthparticle,is ihð @ @xj 1 @ @yj 1 @ @zj Þ,therefore Eq.(2.17) canbecastintheform

Theexplicitdependenceontimeof H0 isduetothesinusoidaloscillationofthe vectors Aj

Ifwecall AF (F 5 X, Y, Z)thecomponentsofthevector A atthemasscenterof oursystem,andreferredtoaspace-fixedaxissystem,then

Thephaseof AjF,atthepositionofthecharge j,willbedifferent,dependingon thedisplacementvector ~ r j fromthemasscentertothe jthcharge.Inthecaseofa planewaveradiation,wehave

where k- isavectorofmagnitude2π/λ,pointinginthedirectionofthelightpropagation(wavevector),see Fig.2.1,forapolarizedlightbeam.

Eq.(2.20) showsthatonlythedisplacementinthedirectionofthelightpropagationcontributestogeneratingachangeofphase.

Thus,from Eq.(2.4) onefinds dcm ðt Þ dt 52 i h X n cn ðt Þ exp i Em En h t ð~ r

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.