Riemannian geometric statistics in medical image analysis pennec x (ed.) - Read the ebook online or

Page 1


https://ebookmass.com/product/riemannian-geometric-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Deep Learning for Medical Image Analysis 1st Edition S. Kevin Zhou

https://ebookmass.com/product/deep-learning-for-medical-imageanalysis-1st-edition-s-kevin-zhou/

ebookmass.com

Applied medical statistics 1st Edition Jingmei Jiang

https://ebookmass.com/product/applied-medical-statistics-1st-editionjingmei-jiang/

ebookmass.com

Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis Hetroy-Wheeler

https://ebookmass.com/product/geometric-and-topological-mesh-featureextraction-for-3d-shape-analysis-hetroy-wheeler/

ebookmass.com

Pharmaceutical Applications of Dendrimers 1st Edition Abhay Singh Chauhan (Editor)

https://ebookmass.com/product/pharmaceutical-applications-ofdendrimers-1st-edition-abhay-singh-chauhan-editor/

ebookmass.com

Royal Defender (Twin City U Book 3) A MM college soccer enemies-to-lovers romance Cecelia Storm

https://ebookmass.com/product/royal-defender-twin-city-u-book-3-a-mmcollege-soccer-enemies-to-lovers-romance-cecelia-storm/

ebookmass.com

Democracy Inside: Participatory Innovation in Unlikely Places Albert W. Dzur

https://ebookmass.com/product/democracy-inside-participatoryinnovation-in-unlikely-places-albert-w-dzur/

ebookmass.com

Aerosol Filtration 1st Edition Edition Dominique Thomas

https://ebookmass.com/product/aerosol-filtration-1st-edition-editiondominique-thomas/

ebookmass.com

Agriculture for Economic Development in Africa. Evidence from Ethiopia Emelie Rohne Till

https://ebookmass.com/product/agriculture-for-economic-development-inafrica-evidence-from-ethiopia-emelie-rohne-till/

ebookmass.com

(eTextbook PDF) for Peak Performance: Success in College and Beyond 10th Edition

https://ebookmass.com/product/etextbook-pdf-for-peak-performancesuccess-in-college-and-beyond-10th-edition/

ebookmass.com

Schamanismus für Anfänger: Erkunden Sie die schamanischen Rituale, Philosophien und Praktiken amerikanischer, nordischer, keltischer und sibirischer Schamanen Silvia Hill https://ebookmass.com/product/schamanismus-fur-anfanger-erkunden-siedie-schamanischen-rituale-philosophien-und-praktiken-amerikanischernordischer-keltischer-und-sibirischer-schamanen-silvia-hill/ ebookmass.com

RIEMANNIAN GEOMETRIC STATISTICSIN MEDICALIMAGE ANALYSIS

THEELSEVIERANDMICCAISOCIETY

BOOKSERIES

AdvisoryBoard

NicholasAyache

JamesS.Duncan

AlexFrangi

HayitGreenspan

PierreJannin

AnneMartel

XavierPennec

TerryPeters

DanielRueckert

MilanSonka

JayTian

KevinZhou

Titles:

Balocco,A.,etal.,ComputingandVisualizationforIntravascularImagingandComputer AssistedStenting,9780128110188

Dalca,A.V.,etal.,ImagingGenetics,9780128139684

Depeursinge,A.,etal.,BiomedicalTextureAnalysis,9780128121337

Pennec,X.,etal.,RiemannianGeometricStatisticsinMedicalImageAnalysis,9780128147252

Wu,G.,andSabuncu,M.,MachineLearningandMedicalImaging,9780128040768

ZhouK.,MedicalImageRecognition,SegmentationandParsing,9780128025819

Zhou,K.,etal.,DeepLearningforMedicalImageAnalysis,9780128104088

Zhou,K.,etal.,HandbookofMedicalImageComputingandComputerAssistedIntervention, 9780128161760

RIEMANNIAN GEOMETRIC STATISTICSIN MEDICALIMAGE ANALYSIS

XAVIERPENNEC
STEFANSOMMER TOMFLETCHER

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2020ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-814725-2

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionEditor: TimPitts

EditorialProjectManager: LeticiaM.Lima

ProductionProjectManager: KameshRamajogi

Designer: MilesHitchen

TypesetbyVTeX

4.3Thediffeomorphismgroupinshapeanalysis..................138

5.1Introduction...

5.4Left,right,andbiinvariantRiemannianmetricsonaLiegroup..191

5.5StatisticsonLiegroupsassymmetricspaces..

5.6Thestationaryvelocityfields(SVF)frameworkfor

5.7ParalleltransportofSVFdeformations........................213

5.8Historicalnotesandadditionalreferences.....................223

StephenM.Pizer,JunpyoHong,JaredVicory,ZhiyuanLiu,J.S.Marron, Hyo-youngChoi,JamesDamon,SungkyuJung,BeatrizPaniagua, JörnSchulz,AnkurSharma,LiyunTu,JiyaoWang

6.1Introductiontoskeletalmodels.

6.2Computingans-repfromanimageorobjectboundary

6.7Howtocomparerepresentationsandstatisticalmethods...

6.8Resultsofclassification,hypothesistesting,andprobability

6.9Thecodeanditsperformance................................265

6.10Weaknessesoftheskeletalapproach..........................266

Contributors

MartinBauer

FloridaStateUniversity,DepartmentofMathematics,Tallahassee,FL,UnitedStates

RudrasisChakraborty

UniversityofFlorida,CISEDepartment,Gainesville,FL,UnitedStates

BenjaminCharlier

IMAG,Univ.Montpellier,CNRS,Montpellier,France

InstitutduCerveauetdelaMoëlleÉpinière,ARAMIS,Paris,France

NicolasCharon

JohnsHopkinsUniversity,CenterofImagingSciences,Baltimore,MD,UnitedStates

Hyo-youngChoi

UNC,ChapelHill,NC,UnitedStates

JamesDamon

UNC,ChapelHill,NC,UnitedStates

LoicDevilliers

UniversitéCôted’AzurandInria,Epioneteam,SophiaAntipolis,France

AasaFeragen

UniversityofCopenhagen,DepartmentofComputerScience,Copenhagen,Denmark

TomFletcher

UniversityofVirginia,DepartmentsofElectrical&ComputerEngineeringandComputer Science,Charlottesville,VA,UnitedStates

JoanGlaunès

MAP5,UniversitéParisDescartes,Paris,France

PolinaGolland

MassachusettsInstituteofTechnology,ComputerScienceandArtificialIntelligenceLab, Cambridge,MA,UnitedStates

PietroGori

TélécomParisTech,LTCI,équipeIMAGES,Paris,France

JunpyoHong

UNC,ChapelHill,NC,UnitedStates

SarangJoshi

UniversityofUtah,DepartmentofBioengineering,ScientificComputingandImagingInstitute, SaltLakeCity,UT,UnitedStates

SungkyuJung

SeoulNationalUniversity,Seoul,RepublicofKorea

ZhiyuanLiu

UNC,ChapelHill,NC,UnitedStates

MarcoLorenzi

UniversitéCôted’AzurandInria,Epioneteam,SophiaAntipolis,France

J.S.Marron

UNC,ChapelHill,NC,UnitedStates

StephenMarsland

VictoriaUniversityofWellington,SchoolofMathematicsandStatistics,Wellington, NewZealand

NinaMiolane

UniversitéCôted’AzurandInria,Epioneteam,SophiaAntipolis,France

StanfordUniversity,DepartmentofStatistics,Stanford,CA,UnitedStates

JanModersitzki

InstituteofMathematicsandImageComputing,UniversityofLübeck,Lübeck,Germany

FraunhoferMEVIS,Lübeck,Germany

KlasModin

ChalmersUniversityofTechnologyandtheUniversityofGothenburg,Departmentof MathematicalSciences,Göteborg,Sweden

MarcNiethammer

DepartmentofComputerScience,UniversityofNorthCarolinaatChapelHill,ChapelHill,NC, UnitedStates

BiomedicalResearchImagingCenter(BRIC),ChapelHill,NC,UnitedStates

TomNye

NewcastleUniversity,SchoolofMathematics,StatisticsandPhysics,NewcastleuponTyne, UnitedKingdom

BeatrizPaniagua

UNC,ChapelHill,NC,UnitedStates

XavierPennec

UniversitéCôted’AzurandInria,Epioneteam,SophiaAntipolis,France

StephenM.Pizer

UNC,ChapelHill,NC,UnitedStates

ThomasPolzin

InstituteofMathematicsandImageComputing,UniversityofLübeck,Lübeck,Germany

LaurentRisser

InstitutdeMathématiquesdeToulouse,CNRS,UniversitédeToulouse,UMRCNRS5219, Toulouse,France

PierreRoussillon

ENSCachan,CNRS,UniversitéParis-Saclay,CMLA,Cachan,France

JörnSchulz

ArcticUniversityofNorway,Tromsø,Norway

AnkurSharma

UNC,ChapelHill,NC,UnitedStates

StefanSommer

UniversityofCopenhagen,DepartmentofComputerScience,Copenhagen,Denmark

AnujSrivastava

FloridaStateUniversity,Tallahassee,FL,UnitedStates

LiyunTu

UNC,ChapelHill,NC,UnitedStates

BabaC.Vemuri

UniversityofFlorida,CISEDepartment,Gainesville,FL,UnitedStates

François-XavierVialard

Laboratoired’informatiqueGaspardMonge,UniversitéParis-EstMarne-la-Vallée,UMRCNRS 8049,ChampssurMarne,France

JaredVicory

UNC,ChapelHill,NC,UnitedStates

JiyaoWang

UNC,ChapelHill,NC,UnitedStates

WilliamM.WellsIII

HarvardMedicalSchool,DepartmentofRadiology,Boston,MA,UnitedStates

MiaomiaoZhang

WashingtonUniversityinSt.Louis,ComputerScienceandEngineering,St.Louis,MO, UnitedStates

RuiyiZhang

FloridaStateUniversity,Tallahassee,FL,UnitedStates

Introduction

Introduction

Overthelasttwodecades,therehasbeenagrowingneedin themedicalimagecomputingcommunityforprincipledmethodstoprocessnonlineargeometricdata.Typicalexamplesofdata inthisdomainincludeorganshapesanddeformationsresulting fromsegmentationandregistrationincomputationalanatomy, andsymmetricpositivedefinitematricesindiffusionimaging. Inthiscontext,Riemanniangeometryhasgraduallybeenestablishedasonethemostpowerfulmathematicalandcomputational paradigms.

Thisbookaimsatbeinganintroductiontoandareference onRiemanniangeometricstatisticsanditsuseinmedicalimage analysisforresearchersandgraduatestudents.Thebookprovides bothdescriptionsofthecoremethodologyandpresentationsof state-of-the-artmethodsusedinthefield.Wewishtopresentthis combinationoffoundationalmaterialandcurrentresearchtogetherwithexamples,applications,andalgorithmsinavolume thatiseditedandauthoredbytheleadingresearchersinthefield. Inaddition,wewishtoprovideanoverviewofcurrentresearch challengesandfutureapplications.

Beyondmedicalimagecomputing,themethodsdescribedin thisbookmayalsoapplytootherdomainssuchassignalprocessing,computervision,geometricdeeplearning,andotherdomains wherestatisticsongeometricfeaturesappear.Assuch,thepresentedcoremethodologytakesitsplaceinthefieldof geometric statistics,thestatisticalanalysisofdatabeingelementsofnonlineargeometricspaces.Wehopethatboththefoundationalmaterialandtheadvancedtechniquespresentedinthelaterpartsof thebookcanbeusefulindomainsoutsidemedicalimagingand presentimportantapplicationsofgeometricstatisticsmethodology.

Contents

Part 1 ofthiseditedvolumedescribesthefoundationsofRiemanniangeometriccomputingmethodsforstatisticsonmanifolds.Thebookhereemphasizesconceptsratherthanproofswith thegoalofprovidinggraduatestudentsincomputersciencethe

mathematicalbackgroundneededtostartinthisdomain.Chapter 1 presentsanintroductiontodifferential,Riemannianand Liegroupgeometry,andchapter 2 coversstatisticsonmanifolds. Chapters 3–5 presentintroductionstogeometryofSPDmatrices, shapeanalysisthroughtheactionofthediffeomorphismgroup, andgeometryandstatisticalanalysisbeyondtheRiemanniansettingwhenanaffineconnection,notametric,isavailable.

Part 2 includescontributionsfromleadingresearchersinthe fieldonapplicationsofstatisticsonmanifoldsandshapespaces inmedicalimagecomputing.Inchapter 6,StephenPizer,Steve Marron,andcoauthorsdescribeshaperepresentationviaskeletalmodelsandhowthisallowsapplicationofnonlinearstatisticalmethodsonshapespaces.Chapter 7 byRudrasisChakraborty andBabaVemuriconcernsestimationoftheiterativeRiemannian barycenter,acandidateforthegeneralizationoftheEuclidean meanvalueonselectedmanifolds.Inchapter 8,AasaFeragenand TomNyediscussthestatisticsonstratifiedspacesthatgeneralize manifoldbyallowingvariationofthetopologicalstructure.Estimationoftemplatesinquotientspacesisthetopicofchapter 9 byNinaMiolane,LoicDevilliers,andXavierPennec.StefanSommerdiscussesparametricstatisticsonmanifoldsusingstochastic processesinchapter 10.Inchapter 11,RuiyiZhangandAnujSrivastavaconsidershapeanalysisoffunctionaldatausingelastic metrics.

Part 3 ofthebookfocusesondiffeomorphicdeformationsand theirapplicationsinshapeanalysis.NicolasCharon,Benjamin Charlier,JoanGlaunès,PierreRoussillon,andPietroGoripresent currents,varifolds,andnormalcyclesforshapecomparisonin chapter 12.Numericalaspectsoflargedeformationregistration isdiscussedinchapter 13 byThomasPolzin,MarcNiethammer, François-XavierVialard,andJanModersitzki.Francois-Xavierand LaurentRisserpresentspatiallyvaryingmetricsforlargedeformationmatchinginchapter 14.Chapter 15 byMiaomiaoZhang, PolinaGolland,WilliamM.Wells,andTomFletcherpresentsa frameworkforlow-dimensionalrepresentationsoflargedeformationsanditsuseinshapeanalysis.Finally,inchapter 16,Martin Bauer,SarangJoshi,andKlasModinstudydensitiesmatchingin thediffeomorphicsetting.

Weareextremelygratefulforthisbroadsetofexcellentcontributionstothebookbyleadingresearchersinthefield,andwehope thatthebookinitsentiretywillinspirenewdevelopmentsand researchdirectionsinthisexcitingintersectionbetweenapplied mathematicsandcomputerscience.

Theeditors: XavierPennec UniversityCôted’AzurandInria,SophiaAntipolis,France StefanSommer

DIKU,UniversityofCopenhagen,Copenhagen,Denmark TomFletcher UniversityofVirginia,Charlottesville,VA,UnitedStates February,2019

Introductiontodifferentialand Riemanniangeometry

a UniversityofCopenhagen,DepartmentofComputerScience,Copenhagen, Denmark. b UniversityofVirginia,DepartmentsofElectrical&Computer EngineeringandComputerScience,Charlottesville,VA,UnitedStates.

c UniversitéCôted’AzurandInria,Epioneteam,SophiaAntipolis,France

1.1Introduction

Whendataexhibitnonlinearity,themathematicaldescription ofthedataspacemustoftendepartfromtheconvenientlinear structureofEuclideanvectorspaces.Nonlinearitypreventsglobal vectorspacestructure,butwecanneverthelessaskwhichmathematicalpropertiesfromtheEuclideancasecanbekeptwhilestill preservingtheaccuratemodelingofthedata.Itturnsoutthatin manycases,localresemblancetoaEuclideanvectorspaceisone suchproperty.Inotherwords,uptosomeapproximation,thedata spacecanbelinearizedinlimitedregionswhileforcingalinear modelontheentirespacewouldintroducetoomuchdistortion.

TheconceptoflocalsimilaritytoEuclideanspacesbringsus exactlytothesettingofmanifolds.Topological,differential,and Riemannianmanifoldsarecharacterizedbytheexistenceoflocal maps,charts,betweenthemanifoldandaEuclideanspace.These chartsarestructurepreserving:Theyarehomeomorphismsinthe caseoftopologicalmanifolds,diffeomorphismsinthecaseofdifferentialmanifolds,and,inthecaseofRiemannianmanifolds, theycarrylocalinnerproductsthatencodethenon-Euclideangeometry.

Thefollowingsectionsdescribethesefoundationalconcepts andhowtheyleadtonotionscommonlyassociatedwithgeometry:curves,length,distances,geodesics,curvature,paralleltransport,andvolumeform.InadditiontothedifferentialandRiemannianstructure,wedescribeoneextralayerofstructure,Liegroups thataremanifoldsequippedwithsmoothgroupstructure.Lie groupsandtheirquotientsareexamplesofhomogeneousspaces. Thegroupstructureprovidesrelationsbetweendistantpointson thegroupandtherebyadditionalwaysofconstructingRiemannianmetricsandderivinggeodesicequations.

RiemannianGeometricStatisticsinMedicalImageAnalysis https://doi.org/10.1016/B978-0-12-814725-2.00008-X

Topological,differential,andRiemannianmanifoldsareoftencoveredbyseparategraduatecoursesinmathematics.Inthis muchbrieferoverview,wedescribethegeneralconcepts,often sacrificingmathematicalrigortoinsteadprovideintuitivereasons forthemathematicaldefinitions.Foramorein-depthintroductiontogeometry,theinterestedreadermay,forexample,refer tothesequenceofbooksbyJohnM.Leeontopological,differentiable,andRiemannianmanifolds[17,18,16]ortothebookon RiemanniangeometrybydoCarmo[4].Moreadvancedreferences include[15],[11],and[24].

1.2Manifolds

Amanifoldisacollectionofpointsthatlocally,butnotglobally,resemblesEuclideanspace.WhentheEuclideanspaceisof finitedimension,wecanwithoutlossofgeneralityrelateitto Rd forsome d> 0.Theabstractmathematicaldefinitionofamanifoldspecifiesthetopological,differential,andgeometricstructurebyusingcharts,mapsbetweenpartsofthemanifoldand Rd , andcollectionsofchartsdenotedatlases.Wewilldiscussthisconstructionshortly,however,wefirstfocusonthecasewherethe manifoldisasubsetofalargerEuclideanspace.Thisviewpointis oftenlessabstractandclosertoournaturalintuitionofasurface embeddedinoursurrounding3DEuclideanspace.

Letusexemplifythisbythesurfaceoftheearthembeddedin R3 .Weareconstrainedbygravitytoliveonthesurfaceoftheearth. Thissurfaceseemslocallyflatwithtwodimensionsonly,andwe usetwo-dimensionalmapstonavigatethesurface.Whentravelingfar,wesometimesneedtochangefromonemaptoanother. Wethenfindchartsthatoverlapinsmallparts,andweassume thatthechartsprovideroughlythesameviewofthesurfacein thoseoverlappingparts.Foralongtime,theearthwasevenconsideredtobeflatbecauseitscurvaturewasnotnoticeableatthe scaleatwhichitwasobserved.Whenconsideringtheearthsurfaceasatwo-dimensionalrestrictionofthe3Dambientspace,the surfaceisanembeddedsubmanifoldof R3 .Ontheotherhand, whenusingmapsandpiecingtheglobalsurfacetogetherusing thecompatibilityoftheoverlappingparts,wetaketheabstract viewusingchartsandatlases.

1.2.1Embeddedsubmanifolds

Arguablythesimplestexampleofatwo-dimensionalmanifold isthesphere S2 .Relatingtothepreviousexample,whenembeddedin R3 ,wecanviewitasanidealizedmodelforthesurfaceof

theearth.Thespherewithradius 1 canbedescribedasthesetof unitvectorsin R3 ,thatis,theset S2 ={(x 1 ,x 2 ,x 3 ) ∈ R3 | (x 1 )2 + (x 2 )2 + (x 3 )2 = 1} . (1.1)

Noticefromthedefinitionofthesetthatallpointsof S2 satisfythe equation (x 1 )2 + (x 2 )2 + (x 3 )2 1 = 0.Wecangeneralizethisway ofconstructingamanifoldtothefollowingdefinition.

Definition1.1 (Embeddedmanifold).Let F : Rk → Rm beadifferentiablemapsuchthattheJacobianmatrix dF(x) = ( ∂ ∂x j F i (x))ij hasconstantrank k d forall x ∈ F 1 (0).Thenthezero-levelset M = F 1 (0) isanembeddedmanifoldofdimension d

Figure1.1. Anembeddedmanifoldarisesasthezero-levelsubset M = F 1 (0) of themap F : Rk → Rm .Here F : R3 → R isgivenbythesphereequation x → (x 1 )2 + (x 2 )2 + (x 3 )2 1,andthemanifold M = S2 isofdimension 3 1 = 2

Themap F issaidtogiveanimplicitrepresentationofthe manifold.Inthepreviousexample,weusedthedefinitionwith F(x) = (x 1 )2 + (x 2 )2 + (x 3 )2 1 (seeFig. 1.1).

Thefactthat M = F 1 (0) isamanifoldisoftentakenasthe consequenceofthesubmersionlevelsettheoreminsteadofa definition.Thetheoremstatesthatwiththeaboveassumptions, M hasamanifoldstructureasconstructedwithchartsandatlases. Inaddition,thetopologicalanddifferentiablestructureof M isin acertainwaycompatiblewiththatof Rk lettingusdenote M as embedded in Rk .Fornow,wewillbesomewhatrelaxedaboutthe detailsandusetheconstructionasaworkingdefinitionofwhat wethinkofasamanifold.

Themap F canbeseenasasetof m constraintsthatpoints in M mustsatisfy.TheJacobianmatrix dF(x) atapointin x ∈ M linearizestheconstraintsaround x ,anditsrank k d indicates

IntroductiontodifferentialandRiemanniangeometry howmanyofthemarelinearlyindependent.Inadditiontothe unitlengthconstraintsofvectorsin R3 defining S2 ,additionalexamplesofcommonlyoccurringmanifoldsthatwewillseeinthis bookarisedirectlyfromembeddedmanifoldsorasquotientsof embeddedmanifolds.

Example1.1. d -dimensionalspheres Sd embeddedin Rd +1 .Here weexpresstheunitlengthequationgeneralizing(1.1)by

Thesquarednorm x 2 isthestandardsquaredEuclideannorm on Rd +1 .

Example1.2. Orthogonalmatrices O(k) on Rk havetheproperty thattheinnerproducts Ui ,Uj ofcolumns Ui , Uj ofthematrix U ∈ M(k,k) vanishfor i = j andequal 1 for i = j .Thisgives k 2 constraints,andO(k) isthusanembeddedmanifoldinM(k,k) bythe equation O(k) = U ∈ M(k,k)

withIdk beingtheidentitymatrixon Rk .WewillseeinSection 1.7.3 thattherankofthemap F(U) = UU Idk is k(k +1) 2 on O(k),anditfollowsthatO(k) hasdimension k(k 1) 2 .

1.2.2Chartsandlocaleuclideaness

Wenowdescribehowcharts,localparameterizationsofthe manifold,canbeconstructedfromtheimplicitrepresentation above.Wewillusethistogiveamoreabstractdefinitionofadifferentiablemanifold.

Whennavigatingthesurfaceoftheearth,weseldomuse curvedrepresentationsofthesurfacebutinsteadrelyoncharts thatgiveaflat,2Drepresentationofregionslimitedinextent.It turnsoutthatthisanalogycanbeextendedtoembedmanifolds witharigorousmathematicalformulation.

Definition1.2. Achartona d -dimensionalmanifold M isadiffeomorphicmapping φ : U → U fromanopenset U ⊂ M toan openset ˜ U ⊆ Rd .

Thedefinitionexactlycapturestheinformalideaofrepresentingalocalpartofthesurface,theopenset U ,withamappingtoa Euclideanspace,inthesurfacecase R2 (seeFig. 1.2).

Whenusingcharts,weoftensaythatwework incoordinates.Insteadofaccessingpointson M directly,wetakeachart

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.