Rice bran and rice bran oil: chemistry, processing and utilization ling-zhi cheong - Get the ebook i

Page 1


RiceBranandRiceBranOil:Chemistry,Processing andUtilizationLing-ZhiCheong

https://ebookmass.com/product/rice-bran-and-rice-bran-oilchemistry-processing-and-utilization-ling-zhi-cheong/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Rice Is Life Caryl Levine

https://ebookmass.com/product/rice-is-life-caryl-levine/

ebookmass.com

Peanuts : genetics, processing, and utilization 1st Edition Stalker

https://ebookmass.com/product/peanuts-genetics-processing-andutilization-1st-edition-stalker/

ebookmass.com

Oil and Oilseed Processing: Opportunities and Challenges

Tomás Lafarga

https://ebookmass.com/product/oil-and-oilseed-processingopportunities-and-challenges-tomas-lafarga/

ebookmass.com

From Socratic Insights To Platonic Wits: Your Complete Guide To Socratic Virtue And Platonic Wisdom For A Sharper, Smarter, And Strategic You Wisdom University

https://ebookmass.com/product/from-socratic-insights-to-platonic-witsyour-complete-guide-to-socratic-virtue-and-platonic-wisdom-for-asharper-smarter-and-strategic-you-wisdom-university/ ebookmass.com

McGraw Hill SAT Elite 2023 Christopher Black

https://ebookmass.com/product/mcgraw-hill-sat-elite-2023-christopherblack/

ebookmass.com

You Were Always There : Notes and Recipes for Living a Life You Love Danielle Kartes

https://ebookmass.com/product/you-were-always-there-notes-and-recipesfor-living-a-life-you-love-danielle-kartes/

ebookmass.com

Lawyer Negotiation: Theory, Practice, and Law (Aspen Casebook Series) 3rd Edition – Ebook PDF Version

https://ebookmass.com/product/lawyer-negotiation-theory-practice-andlaw-aspen-casebook-series-3rd-edition-ebook-pdf-version/

ebookmass.com

Design of Hybrid Molecules for Drug Development Michael Decker

https://ebookmass.com/product/design-of-hybrid-molecules-for-drugdevelopment-michael-decker/

ebookmass.com

Governing Security After War Louis-Alexandre Berg

https://ebookmass.com/product/governing-security-after-war-louisalexandre-berg/

ebookmass.com

The Pureblood Princess: A Regency-Inspired Paranormal Vampire Romance Emberly Wyndham

https://ebookmass.com/product/the-pureblood-princess-a-regencyinspired-paranormal-vampire-romance-emberly-wyndham/

ebookmass.com

RICEBRANAND RICEBRANOIL

RICEBRANAND RICEBRANOIL Chemistry,Processing

andUtilization

LING-ZHICHEONG

XUEBINGXU

AcademicPressandAOCSPress

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright © 2019AOCSPress.PublishedbyElsevierInc.Allrightsreserved.

PublishedincooperationwithAmericanOilChemists’Society www.aocs.org Director,ContentDevelopment: JanetBrown

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN978-0-12-812828-2

ForinformationonallAcademicPresspublicationsvisit ourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: AndreGerhardWolff

AcquisitionEditor: NancyMaragioglio

EditorialProjectManager: SusanIkeda

ProjectManager: NileshKumarShah

TypesetbySPiGlobal,India

Preface xi

1.ChemistryofRiceBranOil1

NurhanTurgutDunford

1. Introduction1

2. Oilcontentofricebran1

3. Fattyacidcompositionofricebranoil2

4. Freefattyacidcontentofricebranoilandvariousneutralization approaches3

5. Ricebranoiloxidation11

6. Otherchemicalreactionswithricebranoil14

7. Conclusions15 References15

2.NutritionalStudiesofRiceBranOil19

Oi-MingLai,J € orgJ.Jacoby,Wai-FunLeong,Wee-TingLai

1. Introduction19

2. Oryzanol29

3. Phytosterolsandsqualene37

4. Waxesandpolicosanol39

5. VitaminE41

6. Concludingremarks46 References46

3.ProcessingTechnologyofRiceBranOil55 PradoshPrasadChakrabarti,RamChandraReddyJala

1. Introduction55

2. Stabilizationofricebran57

3. Preferredprocessforrefiningofricebranoil59

4. Problemswithphysicalrefining62

5. Qualityrequirementofoilsmeantforphysicalrefining62

6. Pretreatment thekeyfactor63

7. Degummingofricebranoil64

8. Commonlyuseddegummingtechniques66

9. Bleachingofricebranoil71

10. Dewaxingofricebranoil78

11. Winterizationofricebranoil81

12. Deodorization/deacidificationofricebranoil82

13. Valueadditiontoricebranoilrefiningbyproducts87

14. Conclusion88 References89 FurtherReading94

4.BioprocessingTechnologyofRiceBranOil97 YuanrongJiang

1. Introduction97

2. Enzymaticstabilizingofricebran97

3. Enzymaticdegummingofricebranoil98

4. Enzymaticdeacidificationofricebranoil108

5. Enzymaticinteresterificationofricebranoil115

6. Chaptersummary119 References120 FurtherReading123

5.MicronutrientsinRiceBranOil125 RiantongSinganusong,UmarGarba

1. Introduction125

2. Gamma-oryzanol127

3. Tocopherols132

4. Tocotrienols136

5. Phytosterol139

6. Squalene144

7. Phospholipids148

8. Conclusion152 References152 FurtherReading158

6.ApplicationsofRiceBranOil159 YongWang

1. Introduction159

2. Foodapplications159

3. Functionalfoodapplications162

4. Pharmaceuticalapplications163

5. Cosmeticapplications165

6. Industrialapplications166

7. Conclusion166 References167

7.AnalyticalAspectsofRiceBranOil169 DongpingHe,LingyiLiu

1. Compositionalanalysis169

2. QualityAnalysis173

3. Challengesconcerningtheanalysisofricebranoil178 References179

8.DevelopmentofRiceBranFunctionalFoodandEvaluation ofItsHealthfulProperties183 Md.Alauddin,SadiaRahman,JahidulIslam,HitoshiShirakawa, MichioKomai,MdZakirHossenHowlader

1. Introduction183

2. Basiccompositionofricebran186

3. Fermentedricebranpreparationandfunctionalimprovement189

4. RiceBran-basedfunctionalfood,adrugalternative192

5. Fermentedricebranmodulatesmultifactorialmetabolicdisease andItssensor(glucose,insulin,andtranscriptionfactors)196

6. Conclusion199 References201 FurtherReading205

9.RiceHusk,RiceHuskAshandTheirApplications207 YanpingZou,TiankuiYang

1. Introduction207

2. Characterizationsofricehusk/ricehuskash208

3. Productionofsilicafromricehuskash218

4. Productionofsilicaaerogelfromricehuskash226

5. Applicationofricehusk/ricehuskashasbioadsorbent231

6. Conclusion241 References242

10.NutritionalIngredientsandActiveCompositions ofDefattedRiceBran247

1. Introduction247

2. Nutritionalingredientsandtheircontentsinricebran anddefattedricebran248

3. Starchinriceandricebran249

4. Nonstarchpolysaccharides254

5. RiceBranProteins259

6. Otheractivephytochemicalsindefattedricebran260

7. TheDevelopmentprospectofdefattedricebran263 References264

11.RiceBranProtein:Extraction,NutraceuticalProperties, andPotentialApplications271

1. Introduction271

2. Nutraceuticalpropertiesandhealthbenefitsofricebranprotein272

3. Extractionofricebranprotein275

4. Ricebranproteinapplication283

5. Closingremarks288 References288

CONTRIBUTORS

Md.Alauddin

DepartmentofNutritionandFoodTechnology,JessoreUniversityofScienceandTechnology,Jessore,Bangladesh

PradoshPrasadChakrabarti

CentreforLipidScienceandTechnology,CSIR-IndianInstituteofChemicalTechnology, Hyderabad,India

NurhanTurgutDunford

OklahomaStateUniversity,DepartmentofBiosystemsandAgriculturalEngineering, RobertM.KerrFood&AgriculturalProductsCenter,Stillwater,OK,UnitedStates

NisiGao

WilmarGlobalResearchandDevelopmentCenter,Shanghai,China

UmarGarba

DepartmentofAgro-Industry,FacultyofAgriculture,NaturalResourcesandEnvironment, NaresuanUniversity,Phitsanulok,Thailand;DepartmentofFoodScienceandTechnology, FacultyofAgriculture,BayeroUniversity,Kano,Nigeria

WeiHan

AcademyofStateAdministrationofGrain,Beijing,China

DongpingHe

WuhanPolytechnicUniversity,Wuhan,China

MdZakirHossenHowlader

DepartmentofBiochemistryandMolecularBiology,UniversityofDhaka,Dhaka, Bangladesh

JahidulIslam

LaboratoryofNutrition,DepartmentofScienceofFoodFunctionandHealth,Graduate SchoolofAgriculturalScience,TohokuUniversity,Sendai,Japan

JorgJ.Jacoby

WilmarBiotechnologyResearchandDevelopmentCenter,Shanghai,China

RamChandraReddyJala

CentreforLipidScienceandTechnology,CSIR-IndianInstituteofChemicalTechnology, Hyderabad,India

YuanrongJiang

WilmarBiotechnologyResearch&DevelopmentCenter,Shanghai,China

MichioKomai

LaboratoryofNutrition,DepartmentofScienceofFoodFunctionandHealth,Graduate SchoolofAgriculturalScience,TohokuUniversity,Sendai,Japan

Contributors

Oi-MingLai

DepartmentofBioprocessTechnology,FacultyofBiotechnologyandBiomolecular Sciences,UniversitiPutraMalaysia,Selangor,Malaysia

Wee-TingLai

InstituteofBioscience,UniversitiPutraMalaysia,Selangor,Malaysia

Wai-FunLeong

DepartmentofFoodScience,ThePennsylvaniaStateUniversity,CollegeofAgricultural Sciences,UniversityPark,PA,UnitedStates

LingyiLiu

WuhanPolytechnicUniversity,Wuhan,China

SadiaRahman

DepartmentofBiochemistryandMolecularBiology,UniversityofDhaka,Dhaka, Bangladesh

HitoshiShirakawa

LaboratoryofNutrition,DepartmentofScienceofFoodFunctionandHealth,Graduate SchoolofAgriculturalScience,TohokuUniversity,Sendai,Japan

RiantongSinganusong

CentreofExcellenceinFatsandOils;DepartmentofAgro-Industry,FacultyofAgriculture, NaturalResourcesandEnvironment,NaresuanUniversity,Phitsanulok,Thailand

YongWang

Wilmar(Shanghai)BiotechnologyResearch&DevelopmentCenterCo.,Ltd,Shanghai, China

JuanWu

WilmarGlobalResearchandDevelopmentCenter,Shanghai,China

TiankuiYang

WilmarGlobalResearchandDevelopmentCenter,Shanghai,China

TieYin

AcademyofStateAdministrationofGrain,Beijing,China

BaoruYin

WilmarGlobalResearchandDevelopmentCenter,Shanghai,China

XiaolinZhang

AcademyofStateAdministrationofGrain,Beijing,China

YanZheng

WilmarGlobalResearchandDevelopmentCenter,Shanghai,China

XuhuiZhuang

AcademyofStateAdministrationofGrain,Beijing,China

YanpingZou

WilmarGlobalResearchandDevelopmentCenter,Shanghai,China

PREFACE

Ricebranisthebyproductofpaddyricemilling.Afterharvestingfromthe ricefields,paddyriceiscollectedforfurtherhandlingandtransportation. Paddyriceistheindividualricekernelsintheirnaturalandunprocessed state.Paddyricecontainstheprotectivehull(around20%ofthedrybase). Thehullshouldberemovedduringtheinitialmillingprocessing.Thehullis notusuallyedible,butitcanbeusedforboilerburning,wheretheashcan alsobeusedforsilicaoractivatedcarbonextraction.Thedehulledricekernelcanbeusedforconsumptionasbrownrice.Althoughbrownriceiscurrentlyrecommendedforhealthyeating,manyriceproducersaremoving ontofurtherprocessingtoproducewhiterice.Thebrownskinandrice germisremovedasricebran(around10%ofthedrypaddy).Thericebran mainlycontainsfiber,protein,oil,andresidualstarch.Ricebranismainly usedasfeedstufforasrawmaterialforoilextraction.Thewholericebrancan beconsideredforedibleusesifthequalityiscontrolled.Thispossibilityis currentlyunderexplorationintheindustryduetohighhealthvaluesin termsoffiber,protein,andoil-solublebioactivecompoundssuchasoryzanols,phytosterol,tocopherols,tocotrienols,etc.However,ricebrancontainsactivelipasethatcanhydrolyzetheoilinthebran.Thisleadsto poorqualityforuseinfoodandbringschallengesinricebranoilprocessing foredibleuses.Becausethericemillingindustryvariesfromcountryto country,andduetoculturalvariationforfoodpreferences,thereisahuge technicalchallengeingeneralforthebetteruseofricebranandricebranoil forfoodorhighervalue-addedapplications.Thisisanareafacinghightechnologyandoperationdifficulty,andthereisaneedforintensivetechnology andoperationinnovations.

Riceisoneoftheoldestcultivatedplantsintheworld,cultivatedmainly intropicalandsubtropicalregions.Itisimpossibletostatepreciselywhereit originated,butwildvarietiessuggestthatitmusthavecomefromAsia, Africa,ortheAmericas.RicewascultivatedinChinaandIndiaasfarback as700BCFromthesecountries,cultivationextendedtoJapan,Indonesia, andasfarasPersia.ItwasintroducedtoVirginia(UnitedStates)in1647and toBrazilin1750.Today,90%ofglobalproductionoriginatesinEastern Asia.InEurope,riceiscultivatedinItaly,Spain,andPortugal.Ricecan becultivatedbetween45° Northand40° South,butitrequiresatemperaturerangeof25–30°C.Highprecipitation(wetrice)orirrigation(watered rice)andsoilrichinhumusarealsocommonrequirements.

FromtheFoodandAgricultureOrganizationreportin2018,global paddyproductionisaround740–750millionmetrictons(MMT),whereas thenumberwasaround600MMTin2000.Onthecountrybase,theproductionineachcountry(productionamount,percentage)islistedasfollows: China(211MMT,28.4%),India(159MMT,21.4%),Indonesia(77MMT, 10.4%),Bangladesh(53MMT,7.1%),Vietnam(43MMT,5.8%),Myanmar (26MMT,3.5%),Thailand(25MMT,3.4%),Philippines(18MMT,2.4%), Brazil(11MMT,1.5%),Pakistan(10MMT,1.3%),UnitedStates(10 MMT,1.3%),Cambodia(10MMT,1.3%),Japan(8MMT,1.1%),and Others(82MMT,11.0%).Withricebranproductionof10%andoilbased onricebranat10%–16%,aconservativeestimateofricebranoilproduced globallyperyearshouldbemorethan7.5MMT.However,anonofficial estimationofcurrentproductionofricebranoilisnotmorethan2 MMT.Forexample,only10%–15%ofnaturalresourcesofricebranoil hasbeenexploredinChina.Alargevolumeofresourceshasnotyetbeen usedwellforfoodapplications.

Ontheotherhand,ricebranoilisoneofthemostnutritiousandfunctionaloilsinnature.Moredetailshavebeenelaboratedinchaptersofthis book.Furthermore,ricebranafteroilextractionhasalotofpotentialfor foodandotherapplicationsintermsoffibersandproteinsinmodernfood recommendationcriteria.Thisleavesvastpotentialitytoutilizericebranin betterways.

Ricebranandricebranoilisnotwellrecognizedbyconsumersand industry.BecausericeisprimarilygrowninAsia(morethan90%),mainstreamresearcheffortsinthewesternworldarenotwidelypursuedcomparedtomanyotheroil-bearingmaterials.EveninAsiancountries,the effortsarerelativelyweakandscattered.Technologyandapplicationsvary fromcountrytocountry.Regulationandstandardizedpracticearealso varied.Morepromotionandcommunicationarethereforehighlyneeded andatacriticalstage.

Withthisinformationinmind,theInternationalAssociationofRice BranOil(IARBO)wasinitiated.In2011,a1-daysymposiumonricebran oilwasheldinBeijing,whereProf.MiyazawafromJapanandDr.Prasad fromIndiawereinvitedtogivelectures,aswellastwonutritionistsfrom Thailand.Duringthesymposium,anideawasproposedtoformanorganizationforbetterpromotionoftheawarenessofthisoil.Althoughformingan internationalorganizationwasnothighintermsofmotivationandinspiration,anditwasnotconcludedasanactionpoint,manyparticipantsthought itwasagoodidea.Theconclusiontoactwasduetotheuncertaintyofforminganinternationalorganization.

In2012,wemadeatriptoJapanandparticipatedinalocaloilsandfats conferenceinIndiaforthepurposetomeetmorepeopleandtomaterialize plansforformingaricebranoilorganization.DuringtheIndianconference, wemetDr.MehtawhointroducedthesymposiuminThailandonricebran oil,whichwasorganizedbyDr.SinganusongfromNaresuanUniversity, Thailand,in2013.WeagreedtojointheconferenceatNaresuanUniversity andengagedallinterestedpartiessofaratthattime,wheretheorganization wasproposedandagreeduponbytheparticipatingparties.Thegeneral structurewasproposed,andtheinitialboardstructurewassettled.Following thefirstboardmeetinginlate2013inBangkok,theorganizationwascreated andshaped,includingapprovalofthebylaws.XuebingXuwasselectedas thefirstpresidentoftheIARBO.Thefirstannualmeetingwasproposedin Wuhan,China,in2014.Inthefollowingyears,theannualmeetingswere successfullyheldinMumbai(2015),Tokyo(2016),Bangkok(2017),and Hanoi(2018).IARBOhasdevelopedintoastableorganizationandismakingastrongimpactonthecommunity,inparticularintheassociatecountries.Moreandmoreparticipantsarejoiningtheannualconferences.There isbetterawarenessofricebranoilthroughtheeffortsoftheorganization.

ThisbookispartoftheIARBOeffort.Theeditorsappreciatethe IARBOboardforitsencouragementandinspiration.ThanksalsotoAOCS PressandtheElsevierpublicationteamformakingthisbookareality. ThanksparticularlygotoMs.JanetBrownfromAOCSforhereverlasting efforttopushforwardthebook’spublication.Withouttheirefforts,this bookwouldnothavecometrue.Lastbutnottheleast,weappreciatethe effortsfromalltheauthors.Theyprovidedbigsupportforthefinishing ofthisbook.

XuebingXu LingzhiCheong

ChemistryofRiceBranOil

OklahomaStateUniversity,DepartmentofBiosystemsandAgriculturalEngineering,RobertM.KerrFood& AgriculturalProductsCenter,Stillwater,OK,UnitedStates

1.INTRODUCTION

Rice(Oryzasativa L.)isamemberofthe Poaceae or Graminaceae familynative tosoutheastAsia.Ithasbeencultivatedasafoodcropforcenturies.Ricestill isaveryimportantstaplefoodforalargesegmentoftheworld’spopulation. Itiscommonlyconsumedasmilledorwhiterice,whichisproducedby removingthehullandbranlayersoftheroughricekernelduringthedehullingandmillingprocesses,respectively.Thebran,whichcomprises3%–8% ofthekernelandcontainspericarp,aleurone,andsubaleuronefractions,isa valuablebyproductofriceprocessingbecauseitcontainsahighconcentrationofhealthbeneficialbioactivecompounds,includingediblelipids.

Althoughitisnotwidelyusedasacookingoilworldwide,demandfor ricebranoil(RBO)asa“healthyoil”inspecialtyapplicationsandfunctional foodhassteadilyincreased(AliandDevarajan,2017).

Processingaspects,nutritionalproperties,andvariousapplicationsof RBOarediscussedintheotherchaptersofthisbook.ThischapterspecificallyfocusesonthechemicalcompositionandotherpropertiesofRBO.

2.OILCONTENTOFRICEBRAN

Chemicalcompositionofbrandependsonricevariety,treatmentofthegrain priortomilling,millingtechnologyused,degreeofmilling,andthedownstreamprocessingofbran,thatis,fractionation.Typicaloilcontentinricebran variesbetween10%and23%.Genotypesignificantlyaffectstheoilcontentin bran(Goffmanetal.,2003).Oilcontentsofacollectionof204riceaccessions growninBeaumont,Texas,USAwereexamined.Ageneticallydiverse germplasmcollectionincludinghistoricalandpresent-dayU.S.cultivars,as wellasAsian,European,SouthAmerican,andAfricanricecultivars,were includedintheinvestigation(Goffmanetal.,2003).Oilcontentsofthegenotypesexaminedvariedfrom17%to27%.Over75%ofthelineshadoilcontentshigherthan22%(weight/weight[w/w]).Anotherstudyexamining

RiceBranandRiceBranOil

Copyright © 2019AOCSPress https://doi.org/10.1016/B978-0-12-812828-2.00001-9

PublishedbyElsevierInc. Allrightsreserved.

15ricevarietiesgrowninGhana(Amissahetal.,2003)revealedthatoilcontentinthesamples(13%–20%)wassimilartotheoilcontentreportedinother varieties(Goffmanetal.,2003).Glutinousriceisshowntocontainmoreoil thannonglutinousbrownrice(Taira,1984).

Thedegreeofmillinghasasignificanteffectontheoilcontentofbran (Saunders,1985).Forexample,0%–8%millingproducedbranwithabout 17%–18%oilcontent,whereasincreasedmillingfrom6%–9%to9%–10% decreasedtheoilcontentfrom16.5%to14.2%,respectively.Increasedmillingcontaminatesbranwithendosperm,whichislowinoilcontent.Ingeneral,branfromparboiledricecontainsaconsiderablyhigheramountofoil thanbranfromrawrice(Islametal.,2002; Raoetal.,1965).Accordingto Raoetal.(1965),oilcontentofparboiledricebranwashigher(28%–34%) thanthatinrawbranat5%degreeofmilling(24%–26%).Theresearchers speculatedthatoilinthealeuronelayermigratedtothebranduringparboiling andincreasedtheoilcontentinthebran.Also,branfromparboiledricecontainslessstarch,increasingtheoilfractioninthebran.

3.FATTYACIDCOMPOSITIONOFRICEBRANOIL

Similartotheothergrainsandoilseeds,chemicalandfattyacidcompositions ofricevarysubstantiallywithvariety,agronomicpractices,andenvironmental conditions.Thestudieson24lowlandnonglutinousricevarietiesgrownon theHiroshimaAgriculturalExperimentStation,Japan,in1976and1977 foundthatvarietyhadasignificanteffectonstearic,oleic,andlinoleicacid contentsinbran(Tairaetal.,1979).Cropyearhadthemostsignificanteffect onpalmitoleicandlinolenicacidcontents.Asignificantpositivecorrelation betweenthedailymeantemperatureduringripeningandpalmitoleic,stearic, oleic,andarachidicacidcontentswasobserved.Thecorrelationsbetween myristic,palmitic,linoleic,andlinolenicacidcontentsanddailymeantemperatureswerenegativeandsignificantinyear1976butnotin1977.Thelatterresultswereexplainedbythelackofsignificanttemperaturevariation duringthe1977cropyear.Asignificantnegativecorrelationbetweenoleic andlinoleicandlinolenicacidcontentsandapositivecorrelationbetween linoleicandlinolenicacidcontentswereobservedinbothyears.Although theseresultsindicatetheeffectofenvironmentalconditionsandvarietyon fattyacidcomposition,itisimportanttonotethata2-yearstudyatonelocationmightnotbeenoughtoestablishreliablecorrelations.

Astudycarriedouton204ricegenotypesidentifiedtwogroups:one withlowpalmiticacid(<17.5%withameanof16%)andonewithpalmitic

acidintherangeof17.5%and22%(LugayandJuliano,1964).Thecultivar Indicahadahighersaturated/unsaturatedfattyacidratio(S/U)than Japonica.Anotherstudyconfirmedthelatterfindingsdemonstratingthat Indicacultivars,PetaandMalagkitSungsongPuti,hadloweriodinevalue (I.V.)thantheJaponicacultivar(Taira,1984).Ithasbeenalsoreportedthat glutinous-typericehadhighermyristic,palmitic,andstearicacidandlower oleicacidcontentthatthoseofnonglutinousrice. LugayandJuliano(1964) examinedfattyacidcompositionofRBOprocessedindifferentcountries andfoundsignificantdifferences.ThereporteddifferencesintheI.V.of RBOmaybeduetothecropvarietyprocessed,environmentalconditions, andthetypeanddegreeofprocessing.Forexample,adewaxingprocess removesmoresaturatedfattyacidsthanunsaturatedones.

Ingeneral,saturatedfattyacidcompositionofRBOisquitehigh, between19%and35%(Firestone,1999).Palmiticacidisthemajorsaturated fattyacid.UnsaturatedfattyacidscomprisemostofthefattyacidsinRBO (55%–87%).Monounsaturatedfattyacid,oleicacid,isthemostabundant unsaturatedfattyacid(38%–48%)followedbypolyunsaturatedfattyacid linoleicacid(16%–36%).Manyotherstudiesreportedsimilarfattyacid compositionforRBO(RukminiandRaghuram,1991; Lathaand Nasirullah,2014).

Abouthalfofthetriacylglycerides(TAG)inRBOwastriunsaturated, meaningthatallthreefattyacidsontheglycerolbackbonewereunsaturated (see Table1)( Jinetal.,2016).Only7%oftheTAGwasmonounsaturated.PLO(palmitic-linoleic-oleic),OLL(oleic-linoleic-linoleic),and OOL(oleic-oleic-linoleic)werethemostabundantspecies,at19.3%, 16.4%,and18.0%,respectively.

About50%ofthefattyacidsonthesn-2positionontheglycerolbackboneinRBOTAGwaslinoleicacid(Table2)(Bergeretal.,2005).Oleic acidonthesn-2positioncomprisedabout45%ofthefattyacids.Themost abundantfattyacidonthesn-1,3positionwasoleicacid(42.5%),followed bylinoleic(29.6%)andpalmiticacid(21.5%).

4.FREEFATTYACIDCONTENTOFRICEBRANOILAND VARIOUSNEUTRALIZATIONAPPROACHES

4.1FreeFattyAcidContent

Theshelflifeofbrownriceisquiteshort,about3–6months.Thisispartly duetotherapidhydrolysisoflipidsinricegrain.Lipasesnaturallypresentin thegrainhydrolyzeTAGgeneratingfreefattyacids(FFA),whicharenot

Table1 TriacylglyceridecompositionofRBO Triacylglyceridea Amount(%)

a Tri-UTAG,triunsaturatedtriacylglycerols;Di-UTAG,diunsaturatedtriacylglycerols;Mono-UTAG, monounsaturatedtriacylglycerols;M,myristic;P,palmitic;S,stearic;O,oleic;L,linoleic;Ln,linolenic. AlthoughTAGswithlowlevelssuchasOLLn,LLM,OOLn,PLnO,SLL,andSOOarenotlistedinthe table,theyareincludedinMono-UTAG,Di-UTAG,andTri-UTAG.

AdaptedfromJin,J.,Xie,D.,Chen,H.,Wang,X.,Jin,Q.,Wang,X.,2016.ProductionofRicebranoil withlightcolorandhighoryzanolcontentbymulti-stagemoleculardistillation.J.Am.OilChem.Soc. 93(1),145–153.

Table2 RegiospecificdistributionoffattyacidsontheglycerolbackboneofTAG

AdaptedfromBerger,A.,Rein,D.,Schafer,A.,Monnard,I.,Gremaud,G.,Lambelet,P.,etal.,2005. Similarcholesterol—loweringpropertiesofricebranoil,withvaried γ-oryzanol,inmildly hypercholesterolemicmen.Eur.J.Nutr.44(3),163–173.

desirableinedibleoils.FFAacceleratesoilqualitydegradationbyproducing off-flavors,off-odors,andotheroxidationproducts.Riceneedstobestabilizedtominimizelipolytichydrolysisbyinactivatingendogenouslipases priortomillingandstorage.

FFAcontentofRBOvariessignificantlydependingonthequalityof branusedforoilextraction.Ingeneral,FFAcontentofRBOisbetween 2%and5%.However,extremelyhighFFAcontentsrangingfrom15% to40%havealsobeenreported(BhattacharyyaandBhattacharyya,1989).

VariousresearchgroupsexaminedtheeffectsofdifferentricestabilizationtechniquesonFFAformationduringstorage(Kimetal.,2014; Ramezanzadehetal.,1999).TotalFFAcontentoftheoilinthebranincreased from2.5%to54.9%duringstorageat25°Cundervacuumfor16weeks (Ramezanzadehetal.,1999).Whenbranwasstoredatalowertemperature (4–5°C),FFAformationsloweddownto25.4%.Microwavetreatmentof thebranpriortostorageat25°CundervacuumfurtherreducedtheFFA formationto6.9%.Storageofthemicrowave-treatedbranat4–5°Cfor 16weeksretainedtheinitialFFAcontentat2.5%.Astudycarriedoutby ChampagneandHron(1992) demonstratedthatFFAcontentinbrownrice treatedwithethanolvapordidnotincreasesignificantlyduringstorageat 36°Cfor6months.Ethanoldenaturesanddeactivatesendogenousenzymes includinglipasesandreduceslipolytichydrolysesreactionsthatproduce FFA.However,ethanol-treatedricekernelsweremoresusceptibletooxidativedeteriorationduetothedisruptedcaryopsiscoatandkernelfissuring, whichincreasedtheporosityofthekernelmakingitpronetooxidation. Furthermore,heattreatmentdegradesantioxidants,thatis,tocopherols,naturallypresentinthekernel.

Severalresearchgroupsdemonstratedtheefficacyofinfraredheatingfor stabilizingricebranandreducingFFAformationduringstorage(Wang etal.,2017a; Yılmaz,2016; Dingetal.,2015).Otherstabilizationtechniques suchaschemicaltreatmentbysprayinghydrochloricacidoverricebranto reducepH(PrabhakarandVenkatesh,1986),ohmicheating(Lakkakula etal.,2004),andextrusion(Sayreetal.,1985)havebeenshowntobequite effectiveinextendingthebranqualityduringstorage.However,mostofthe latteradvancedstabilizationtechniquesarestillintheresearchphase.Further researchanddevelopmentworkisneededtodemonstrateefficacyatthe commercialscaleandeconomicviabilityfortheindustrytoadoptthese techniques.

4.2RiceBranOilNeutralizationTechniques

FFAcontentofoilsisreportedaseitheraweightpercentageofoiloracid value,whichisdefinedastheweightofKOH(mg)neededtoneutralize theorganicacidspresentin1gofoil.Ingeneral,goodqualityoilseedsproduce oilwith <1%FFAincrudeoil.Thevoluntaryindustrystandardforrefined ediblequalityoilis0.05%FFAorless.Usually,refinededibleoilssoldinthe U.S.containabout0.01%FFA.TheIndianStandardspecificationforrefined RBOallowsamaximumacidvalueof0.5(0.25%FFA)(Krishnaetal.,2006).

CrudeRBOgoesthroughaseriesofrefiningprocessestoremoveundesirablecompounds,meetedibleoilqualitystandards,andextenditsshelflife. Usually,neutralization,alsoreferredtoasrefiningordeacidification,isthe secondstepafterdegumminginconventionalcrudeedibleoilrefiningoperations.However,crudeRBOcontainsarelativelyhighamountofwax, 1%–2%ofoil,whichinterfereswiththerefiningprocess.Hence,adewaxing stepisincludedintheRBOrefiningprocessprecedingdegumming,which removesphospholipids(alsoreferredtoasgums)(Orthoefer,1996a).NeutralizationprocesseitherconvertsFFAtoneutralacylglycerides,which remainintheoil,orremovesthemfromtheoil.

Theconventionalneutralizationtechnique,alkalirefining,utilizescausticsodatoconvertFFAtosodiumorpotassiumsaltsoffattyacids(soap stock).Then,soapstockisremovedfromtheoilbycentrifugation (BhattacharyyaandBhattacharyya,1987).Althoughthelattermethodis quiteefficientinneutralizingoil,highneutraloil(TAG)lossandlarge amountofwaterusagearethemajordisadvantagesofalkalirefining.

RBOwithveryhighFFAcontentisusuallydeacidifiedbymiscellarefiningusingalcohols,thatis,ethanol,isopropanol,oramixtureoftwoalcohols, afterhexaneextractionandpriortoremovalofthesolventfromoil(desolventizing)(Bhattacharyyaetal.,1986; Rodriguesetal.,2014; Oliveiraetal., 2012).Neutralizationbysolventextraction,alsoreferredtoasliquid-liquid extraction,isbasedonthedifferenceinthesolubilityofFFAandTAGina suitablesolvent.Theadvantagesoftheliquid-liquidextractionmethod includemildprocesstemperatureandpressure,andminimalTAGlossduringneutralization(Rodriguesetal.,2006).

NeutralizationofRBOusingporousandnonporousmembraneswithor withoutsolventadditionhasbeenexamined(Deetal.,1998; Kaleetal., 1999; ManjulaandSubramanian,2006).ThemolecularweightsofFFA andTAGare <300Daandhigherthan800Da,respectively.Intheory,a hydrophobicmembranewithmolecularweightcutofabout300–500Da couldeffectivelyseparateFFAfromTAG.However,irregularitiesinpore sizeofthecommercialmembranesandverysmalldifferencesinmolecular weightsofFFAandTAGleadtoinefficientseparationusingnanofiltration membranesalone.Combinationofconventionalrefiningwithmembrane processingappearstobemoreeffectiveinreducingFFAinRBO.Forexample,acombinationofsolventextractionofFFAwithethanolfollowedby membraneseparationisshowntobetechnicallyfeasible(Deetal.,1998). Yet,introductionofanothersolventintheprocessandneedforsolventresistantmembranesmakethismethodlessattractivethandirectmembrane

processingofoil,whichhasitsowndisadvantagessuchasinefficientremoval ofFFAfromTAGandlowflux.Theneutralizationtestsrunwithnonporousmembraneswerenotverysuccessfulduetoeitherlowselectivity,poor flux,orboth(ManjulaandSubramanian,2006).Atitscurrentstatus,membranerefiningsystemsdonotappeartobeviablecommercialoptionsfor replacingtheexistingconventionaltechnology.

PhysicalrefiningorneutralizationreferstoremovalofFFAundervacuumandhightemperature.Duringtheprocess,unsaponifiableandodor compoundsarealsoremoved(Cvengros,1995).Thisprocess,whichwill bediscussedindetailinanotherchapterinthisbook,issuitableforhigh FFAcontentoilssuchasRBO.Physicalneutralizationeliminatessoapstock production,reducesneutraloillosses,andproducesahighpurityFFA byproductthatcanbeusedasfeedstockbyoleochemicalindustry.Physical neutralizationutilizeslesswater,steam,andpower,andrequireslowercapitalinvestmentthantheconventionalrefining.Theimpactofoilrefiningon theenvironmentisalsoreduced.However,efficiencyofphysicalFFA removaldependsonthequalityofincomingoil.Anycompoundthatmight gothroughadversechangesandreactionsathightemperature,thatis,metals orchlorophyll,needstoberemovedpriortophysicalneutralizationtoproduceahighqualityfinalproduct. Kimetal.(1985) reportedthatsteamrefiningwaslesseffectivethancausticrefininginremovingFFAfromRBO. Moleculardistillationinawipedfilmshort-pathevaporator(Martins etal.,2006)producesahigherqualityproductthansteam-strippedoil, butthisprocessmightbecostinhibitiveforcommodityoils.

RefiningofRBOresultsinoillossesof20%–50%(w/woftotaloil)duringconventionaloilprocessing(Orthoefer,1996a,b; Gingras,2000).Furthermore,conventionalrefiningprocessessignificantlyreduce(about50%) healthbeneficialbioactivecomponentsinrefinedoil(Orthoefer,1996a). High-pressureextractionandfractionationtechnologyemployingsupercriticalcarbondioxide(SC-CO2)isanalternativetechniqueforvegetable oilrefining.SC-CO2 extractionandfractionationofRBOathighpressures andlowtemperatureresultinaproductwithhighTAGandlowFFA, waxes,andunsponifiablecontentsduetothelowerselectivityof SC-CO2 forthelattercompounds(Zhaoetal.,1987).

DunfordandKingdevelopedapatentedRBOfractionationprocessthat significantlyreducesFFAcontentandincreasesoryzanolandotherphytosterolestercontentsintheTAG-richphase(DunfordandKing,2004).Lowpressureandhigh-temperatureconditionswerefoundtobefavorablefor minimizingTAGandphytosterollossesduringFFAremovalfromcrude

RBO(DunfordandKing,2000).Oilfractionswith1%FFA,about95% TAG,and0.35%freesterolwith1.8%oryzanolcontentcouldbeobtained withthedescribedSC-CO2 fractionationtechnique,whichutilizedapilot scalepackedfractionationcolumn.Alaterstudybythesameresearchers (Dunfordetal.,2002)usedasimilarapproachtotheonedescribedearlier (DunfordandKing,2000)butimprovedtheFFAremovalandphytosterol enrichmentintheTAGphaseusingatwo-stepprocessingscheme.Initially, FFAwereremovedinthefirstcolumn,andthenalowacidityphytosterolenrichedoilfractionwasobtainedwithasecondstepfractionationprocess (Dunfordetal.,2002).Lowpressure(138bar)andhightemperature(80°C) effectivelyremovedFFAfromcrudeRBOwithoutsignificantoryzanolloss intheTAG-richphase.Oryzanolcontentoftheraffinatefraction,lowin FFAandhighinTAG,wasthreetimeshigherthanthatoftheoriginal RBO.Phytosterolfattyacidestercontentoftheraffinatefractionwasalso increasedduringthedeacidificationprocess;however,enrichmentofthese moietieswasnotashighasthatfoundfororyzanol.

BiologicalneutralizationofhighFFAcontentoilscanbeachievedusing eitherintactmicroorganismsorisolatedenzymes.Moredetaileddiscussion onbiologicalneutralizationcanbefoundinanotherchapterinthisbook. Cho,Kwon,andYoon(Choetal.,1990)haveshownthat Pseudomonas strain(BG1)assimilateslong-chainfattyacidswithoutsecretingextracellular lipases.Unfortunately,thismicroorganismdoesnotdigestshort-chainfatty acids,having <12carbonatomsandlinoleicacid.Thelatterfattyacids sometimesinhibitcellgrowth.Althoughbutyric,valeric,caproic,caprylic, andcapricacidshavehighersolubilityinwaterthanoleicacid,theywerenot utilized.Thiscouldbeduetothetoxicityofshort-chainfattyacidstomicroorganisms.Usingintactmicroorganismsratherthanpurifiedenzymesmay improvetheeconomicviabilityoftheprocess.However,BG1hasnot yetbeentestedwithvegetableoils.Furthermore,usingintactcellslimits masstransfer,adverselyaffectingreactionkinetics.Hence,thisprocessisstill intheproof-of-conceptphase.

NeutraloilyieldissignificantlyreducedwhenconventionalRBOneutralizationtechniquesareusedforrefining,adverselyaffectingtheeconomic viabilityoftherefinedRBOproduction.Therehavebeenattemptsto improvetheRBOrefiningprocesstoachievehigherrefinedoilyieldby reesterifiyingFFA.EsterificationofFFAwithglycerolordi-ormonoacylglyceridestoproduceneutralacylglycerideseliminatestheneedtoremove FFAfromoilandminimizesoilloss(BhattacharyyaandBhattacharyya, 1989; BhosleandSubramanian,2005).Esterificationreactionscanbecarried

outwithorwithoutachemicalcatalystorusingenzymes.Thestudieson chemicalesterificationofFFAathightemperatures,200–270°C,goback tothe1850s(BhosleandSubramanian,2005).Therehavebeenafewrecent applicationsofhightemperatureesterificationtoRBO.Forexample,chemicalesterificationofdegummedRBOFFAat200°Cwith70%excessglycerolfor4hinthepresenceof0.2%catalyst(SnCl2)reducedtheacidvalue from24.3%to3.0%(SinghandSingh,2009).Anotherstudy(Bhattacharyya andBhattacharyya,1987)examinedcatalytic(stannouschlorideand p-toluenesulphonicacid)esterificationofFFAincrudeRBOwithglycerol inanitrogenatmosphere.Theeffectofcatalystontheesterificationreaction ratewassignificantonlyduringtheinitial2h.EsterificationofRBOcontaining15%–30%FFAwithglycerolundervacuuminthepresenceof p-toluenesulphonicacidfollowedbydegumminganddewaxingresulted inaproductwith1.6%–4.0%FFA. DeandBhattacharyya(1999) demonstratedthathigh-temperature(210°C)andlow-pressure(1.3kPa)esterificationofdegummed,dewaxed,andbleachedRBOcontaining9.5%–35.0% FFAwithmonoacylglyceridesat210°Cand1.3kPareducedtheFFAcontentto0.5%–3.5%.Itappearsthatchemicalesterificationmethodshavenot beenadoptedbythevegetableoilrefiningindustry,probablyduetothevery highreactiontemperaturesrequired.

Biorefiningofedibleoilscouldbemoreacceptabletoconsumerswaryof residualchemicalsintheirfoodandchemicalprocessingingeneral.Enzymes isolatedfrommicroorganismshavebeenusedforesterificationofFFAto glycerol,phytosterols,andmono-anddiglycerides(Bhattacharyyaand Bhattacharyya,1989; Lietal.,2018,2017,2016).Enzymaticneutralization ofdegummedanddewaxedhighacid,30%FFA,RBOwascarriedoutusing Mucormiehei lipase(Lipozyme™)inthepresenceofglycerolinthereaction mixture(Saunders,1985).FFAcontentoftheRBOcouldbereducedfrom 30%to3.6%in10hunderthefollowingconditions:theoreticalamountof glycerol,10%enzyme,and10%waterbasedontheoilweight,at10mmHg and70°C.Asexpected,lower(50°C)andhigher(80°C)reactiontemperaturesthantheoptimumtemperaturefor M.miehei lipase(70°C)lowered esterificationrate,consequently,reducingFFAneutralizationefficiency. Additionof30%excessglyceroloverthetheoreticalamountinthereaction mediumdidnotimproveesterificationefficiency.

AmultistepenzymaticesterificationmethodreducedtheFFAcontentof RBOoilfrom45%to4%(Lakshmananetal.,1992).LipozymeIM 20(M.miehei immobilizedonanionexchangeresin)wasusedasacatalyst at70°Cand10mmHg.Thereactiontimewas4h.Firstphaseofthereaction

reducedtheFFAcontentto15.7%.Freshenzymeandglyceroladditionsto thereactionmixtureinmultiplestepsfollowingthefirstphasefurther reducedtheFFAcontentto4%afterthethirdaddition.

Severalanimalandhumanclinicalstudiesindicatedthatdiacylglycerol (DAG)consumptiondecreasespostprandialTAGlevelsinserumand suppressesaccumulationofTAGinbodyfatandliver(Hibietal.,2011; Kawashimaetal.,2008).Hence,inanefforttoproduceDAG-enriched RBOwhileneutralizingit,degummed,dewaxed,andbleachedRBOwith 20.2%FFAand0.3%DAGcontentwasreactedwithMAGusinglipaseRM IMasabiocatalyst(Songetal.,2012).Theoptimumreactionconditions weredeterminedas56°C,4.77%enzymeloading,5.75hreactiontime, andMAG/RBOratioof0.25.Afinalproductwith0.28%FFAand 27.98%DAGcontentwasobtainedunderthelatterreactionconditions. Theenzymecouldbeusedninetimeswith90%ofitsoriginalcatalyticactivitystillremaining.

PresenceofactivelipaseinricebrannotonlyleadstoFFAformationbut alsogeneratesasignificantamountofpartialglycerides,monoacylglycerol (MAG),andDAG.Thelattercompoundsadverselyaffectdownstream refining,potentiallyleadingtotheformationofglycidylestersduring deodorization(VanHoedetal.,2010; Craftetal.,2012).Glycidylesters arereportedtobecarcinogenicandgenotoxic(Craftetal.,2012). ArelativelynewstudyexaminedproductionofMAG-andDAG-free RBO(Lietal.,2017).First,MAGandDAGinRBOwerehydrolyzed toFFAusingimmobilizedlipase Malasseziaglobose,SMG1-F278N,followed byesterificationofFFAusingthesameenzyme.Hydrolysisprocesswascarriedoutat30°CandpH6.Finalproductafterhydrolysiscontained66.3% TAG,33.3%FFA,and0.1%DAG.Deacidifactionreactioncarriedoutat substrate(ethanol)toFFAmolarratioof1.5:1andenzymeloadingof 40Unit/g(basedonoilweight)at30°Cresultedin99.8%deacidification efficiency.

Freephytosterolanditsestershavebeenreportedtopossessmanyhealth benefitsincludingcholesterol-lowering(Miettinenetal.,1996),antiinflammatory,antiatherogenic,andanticancereffects(Rudkowska,2010; Brufau etal.,2008; AwadandFink,2000; Bouic,2001).Wangetal.(Wangetal., 2016)reportedaprocessthatdescribesenzymaticneutralizationofhighacid RBObyesterifyingFFAtophytosterols.LipozymeRMIM,whichisa sn-1,3-specificlipase,wasusedfortheesterificationreaction.Thereaction ofRBO(10g)andphytosterol(2.34g)inhexaneat70°Cfor60hreduced theFFAcontentfrom15.8%to1.2%.Phytosterolestercontentintheoil

increasedfrom0%to29.3%,andmostofthevitaminEnaturallypresentin RBOwasretainedduringtheenzymaticneutralizationprocess.

Fattyacidethanolamidesarelipid-signalingmoleculesthatareubiquitousinnature,foundinanimalandplantcells.Theyhavebeenreported tohaveantiinflammatory,anticancer,antiproliferative,andneuroprotective functions(Kilaruetal.,2007; Calignanoetal.,1998).Someethanolamides canreducepainsensationandallergicreaction,inhibitmastcelldegranulation,andlessenenergyhomeostasis(Astaritaetal.,2006; Lucanicetal., 2011).Arecentstudyexaminedtheeffectoftypeofacylacceptor,including ethanolamine,ontheneutralizationofFFAinRBO(Wangetal.,2017b). OptimumconditionsforFFA/ethanolaminereactionweredeterminedas follows:2%Lipozyme435,1:1massratioofoiltosolvent(hexane), 1:1MratioofFFAtoethanolamine,5%molecularsievetoremovewater at76°C.AcidvalueofRBOcouldbereducedfrom21.5to1.6mg/gafter 4hreaction.Thefinaloilwasrichinfattyacidethanolamides(11.9%).FFA neutralizationreactionusingglycerolorMAGasacylacceptortooklonger andresidualaciditywashigherthanthatachievedbyamidationevenafter 16hofreaction.Thedifferencesbetweenamidationandesterificationreactionsareduetothechemicalstructureoftheacylacceptorsusedinthereactions.EthanolaminehasbothNH2 andOHgroups.NH2 preferentially reactswithCOOHgroupsonfattyacidsformingfattyacidethanolamine. AlthoughNH2 groupmayalsoformfattyacidesteramines,spontaneousacyl migrationrapidlyconvertsfattyacidesteraminestofattyacidethanolamides.

5.RICEBRANOILOXIDATION

RBOispromotedasastableproductduetohighconcentrationsofantioxidants,thatis,oryzanol,tocopherols,andtocotrienols,naturallypresentin theoil(LathaandNasirullah,2014; MishraandSharma,2014).SeveralstudiesexaminedtheoxidativestabilityofpureRBOandoilblendscontaining RBOundervariousconditionsincludingfrying(LathaandNasirullah, 2014; MishraandSharma,2014; Debnathetal.,2012).Commercialrefined, bleached,anddeodorized(RBD)RBOcontaining22.6%palmitic,43.7% oleic,and29.2%linoleicacidswasheatedat180°Cupto8htodetermineits stability(LathaandNasirullah,2014).Themostsignificantchangewas observedinitsperoxidevalue(PV),whichincreasedfrom0.2to2.9Meq O2 in8h.Underthesameexperimentalconditions,about9%ofthepolyunsaturatedfattyacidswerelostthroughdegradationtooxidationproducts.No trans-fattyacidwasdetectedintheheatedoil.Althoughasignificantdecrease

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.