Resolving spectral mixtures with applications from ultrafast time-resolved spectroscopy to super-res

Page 1


Fundamentals of Digital Logic with VHDL Design 4th Edition

https://ebookmass.com/product/fundamentals-of-digital-logic-with-vhdldesign-4th-edition-stephen-brown/

ebookmass.com

Optics and Modern Physics for JEE (Advanced), 3rd edition

https://ebookmass.com/product/optics-and-modern-physics-for-jeeadvanced-3rd-edition-b-m-sharma/

ebookmass.com

Twisted Emotions (The Camorra Chronicles Book 2) Cora Reilly

https://ebookmass.com/product/twisted-emotions-the-camorra-chroniclesbook-2-cora-reilly/

ebookmass.com

European Economic Governance: Theories, Historical Evolution, and Reform Proposals Fabio Masini

https://ebookmass.com/product/european-economic-governance-theorieshistorical-evolution-and-reform-proposals-fabio-masini/

ebookmass.com

Facing Authority: A Theory of Political Legitimacy Thomas Fossen

https://ebookmass.com/product/facing-authority-a-theory-of-politicallegitimacy-thomas-fossen/

ebookmass.com

First Raise a Flag: How South Sudan Won the Longest War But Lost the Peace Peter Martell

https://ebookmass.com/product/first-raise-a-flag-how-south-sudan-wonthe-longest-war-but-lost-the-peace-peter-martell/

ebookmass.com

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Firstedition2016

Copyright © 2016ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’s permissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-444-63638-6

ISSN:0922-3487

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/

Publisher: JohnFedor

AcquisitionEditor: KathrynMorrissey

EditorialProjectManager: JillCetel

ProductionProjectManager: VijayarajPurushothaman

CoverDesigner: VictoriaPearson

TypesetbySPiGlobal,India

R.Tauler(5,101),InstituteofEnvironmentalAssessmentandWaterResearch (IDÆA)SPANISHCOUNCILOFSCIENTIFICRESEARCH(CSIC),Barcelona, Spain

J.A.Timlin(381),SandiaNationalLaboratories,Albuquerque,NM,UnitedStates

L.Tits(551),FlemishInstituteforTechnologicalResearch(VITO),RemoteSensing Unit,Boeretang200,BE-2400Mol,Belgium

A.Ulrici(613),UniversityofModenaandReggioEmilia,ReggioEmilia,Italy

E.Wetherley(551),UniversityofCalifornia,SantaBarbara,CA,UnitedStates

W.Windig(53),EigenvectorResearchInc.,Manson,WA,UnitedStates

Preface

Thisbookdealswithwaysandmeanstoresolvespectralmixtures,alongstandingbuttopicalissuethatistackledinmanyresearchfields,withan unlimitednumberofpossibleapplications.Inchemistry,spectralmixtureresolutioninvestigatessituationswherethespectralsignaturesofasampleresult fromthesuperpositionofthevariouschemicalsormaterialscomposingit,as observedinprocessspectroscopyorhyperspectralimaging.Morebroadly, resolvingaspectralmixtureisaninverseproblemthatisaddressedindifferentwaysinchemistryandinthedifferentfieldsofscienceandtechnology. Thishasledtothedevelopmentofawealthofmethods.

Spectralmixtureresolutionremainsahotissueinchemometricsstatistics orsignalandimageprocessing.However,thediversityofmethods(multivariatecurveresolution,blindsourceseparation,linearunmixing,etc.)canbea seriousimpedimenttowiderunderstandinganddisseminationofthespectral mixtureproblem.Bytakingamulti-angleandcross-disciplinaryapproach, thisbookhastheambitiontoturnthislimitationintoanassetandtoprovide acomprehensiveandcomprehensibledescriptionofthecurrentstateof theart.

Thebookismulti-authored,writtenasacollectionofindependentchapters thatprovidedifferentperspectivesandapplications.Expressedaltogether, theseperspectivestranslateintoarealinterplaybetweenthechapters.Basic conceptsandmainmethodsarepresentedinthefirstpartofthebook,whereas thesecondpartismoreorientedtowardapplicationsinchemistryandremote sensing.Somechaptersarewrittenastutorials,othersarereviews.Overall, thebookpresentsanextensivebibliographywhichisincomplete— consideringtheamountofscientificliteratureonthesubject—butgoodlist tostartwith.

Writtenbyinvitedauthorsthatarerecognizedexpertsintheirfield,the bookisaddressedtograduatestudents,researchers,andpractitionersinanalyticalscience,emphasizingapplicationsdealingwithanytypeofspectral data.Somebackgroundindataanalysis(chemometrics,statistics,signalor imageprocessing,etc.)andknowledgeofthebasicsoflinearalgebrawillhelp readability.However,eachchapterwasmeanttocontainenoughinformation tobe,byitself,sufficientandtobereadindependentlyoftheotherchapters.

Preface

Lastly,Iwouldliketoexpressmygratitudetoalltheinvitedauthorsthat haveacceptedtocooperateandcontributedtothisbook,andtothenumerous peoplewho,onewayoranother,wereinvolvedinthisproject.

CyrilRuckebusch Lille,January2016

Foreword

Thetopicofthisvolumeis,ofcourse,veryinterestinganditistherighttime foritspublicationasarapidlygrowingnumberofresearchersrelyonthe methodsdescribedherefortheanalysisoftheirdata.Verylikelythisnumber willincreasesignificantlyinthenearfuture.

Allworkpresentedheredealswithaseriesofmeasuredspectra,andthe goaloftheanalysesistheresolutionofthiscollectionofspectraintotheproductofcontributionsofthecomponentsintermsoftheirconcentrationsand theirspectralresponses.Thetaskis,insomeways,bothsurprisinglysimple andsurprisinglydifficult.

Allanalysesarebasedonthemodelthattheoverallsignalataparticular wavelengthorchannelisthesumoverthecontributionsofallcomponents whereeachcomponentcontributionistheproductofitsconcentrationtimes itssignalforunitconcentration.Thisismostclearlyrealizedinsolution absorptionspectroscopywhereBeer–Lambert’slawreigns;ateachwavelengththeabsorptionisthesumovertheproductsofthecomponentconcentrationstimestheirmolarabsorptivityattheparticularwavelength.Itis, therefore,notsurprisingthatmostmethodspresentedinthisvolumehave beendevelopedfortheresolutionofseriesofabsorptionspectra,typically anHPLCchromatogramequippedwithadiodearraydetector.Thisvolume demonstratesthatthemethodologieshavefoundmuchwiderapplication. However,thefollowingexplanationswillbebasedonthelanguageofabsorptionspectroscopy.

Eq. (1) describestherelationshipfortheabsorptionreadingofspectrum i measuredatwavelength j, Di, j isthesumovertheproductsofconcentration ofspecies k, Ci,k,timesitsmolarabsorptivityatwavelength j, Ak, j:

TheEquation (1) canmostconvenientlybewrittenasamatrixequation (Eq. 2) D ¼ CA (2) where D containsrow-wisethespectratakentypicallyduringaprocess,itis known;thematrix C containstheconcentrationsofthecomponentsand A containstheirspectraorresponses.Thesematricesareunknownandthe goalistodeterminethem.Itisusefultorepresentthesituationgraphically:

Canadditionalconstraintsbeapplied?

(Chapters 3, 14, 17,and 18)

Nonnegativityoftheelementsofthematrices C and A istheuniversally appliedconstraint.Rotationalambiguitycanbereducedoreveneliminated altogetherbyapplicationofotherconstraintsorassumptions,suchasmaximumsmoothnessofordissimilaritybetweentheresults.

WhatifthesignalisnotstrictlyfollowingEqs. (1)and(2)?

(Chapter6,allimagechapters)

Eqs. (1)and(2) describetheidealcaseoflinearsignalcontribution;quite often,thisisnotstrictlythecase,anditcertainlyisonlyanapproximation inhyperspectralimages.Thisdoesnotrendertheanalysisirrelevant;theresult isanapproximationandoftenaveryusefulone.Chapter6specifically exploresthepossibilityofanonlinearrelationshipbetweencomponent concentrationandsignal.

Whatifthedatasetishuge?

(Chapters 9, 12,and 13)

Wavelettransformationisanoptionforthereductionofthesizeoftheoriginaldatamatrix D.Othercorrectionslikebaselinesubtraction,etc.,canalsobe useful.

Canthespatialresolutionbeimproved?

(Chapter15)

Hyperspectralimageshaveacertaingivenspacialresolution;surprisingly,it canbeimprovedbycleveralgorithms.

Howwidelycanthemethodsbeapplied?

(Chapters 11 and 16)

Therearetwochaptersthatreportontheapplicationofthemethodspresented hereinverydifferentfieldsofchemicalresearch.

Aretheresultsqualitativeorquantitative?

(Chapter2)

Thetypicalresultofmostanalysespresentedhereisasetofconcentration profiles/distributionsandresponsevectors/spectra.Theycanberepresented ingraphs.Primarily,theresultsdonotallowquantitativeinterpretation.The extensionofthemethodstowardquantitativeanalysesismostimportant.

ToconcludethisforewordIwouldliketoaddanimportantcomment: Everyscientistknowsthatareportedvalueforaparametershouldbefurther characterizedbyanerrorestimate,e.g., K ¼ 350 25.Similarly,aspectral mixtureanalysiswithoutanalysisofrotationalambiguityshouldberejected. Inmyexperience,toomanyuserstaketheanalysisresultasafact,ratherthan

oneofarangeofpossiblesolution.Implementingfurtherconstraintsmay resultinuniquesolutions,butiftheadditionalconstraintisnotbasedon actualfactsbutratheronwishfulthinking,theuniqueoutcomemaywell notbethetrueone.Theauthorsinthisvolumearetheleadersinthefield andshouldeducatethenoviceorcasualuseraboutthisproblemandleadwith theproverbialgoodexample.(Iwillnotlisttheoffenders.).

Aswehaveseen,therearemanydifficulties,shouldthepresentmethods notbeused?Theanswerisaresoundingno!Themethodsareverypowerful andwhiletheymightnotgiveultimateanddetailedanswerstheynonetheless deliveralotofveryusefulinformationwhichwouldbedifficultifnotimpossibletogatherotherwise.Moreworkwillbedoneinthefield,thereis nodoubt.

UniversityofNewcastle,Australia

Chapter1 Introduction

C.Ruckebusch1

Universite´ deLille,SciencesetTechnologies,LASIRCNRS,Lille,France

1Correspondingauthor:e-mail:cyril.ruckebusch@univ-lille1.fr

1INTRODUCTION

Thischapterintroducesfirstverybasicinformationaboutthetopicofthe bookandsetstheoverallcontext.Itprovidesbroaddefinitionsandclarifies somepointsregardingtheterminology.Thesecondpartprovidesinformation abouttheorganizationofthebook.Afirstinsightintothecontentofthe 19chapterscomposingthebook,andtheirinterplay,isgiven.Theintention ofthesefewwordsofintroductionismainlythepresentationoftheissuesthat willbetackledmorecomprehensivelyalongthechaptersofthebook.These questionscanberoughlyputasfollows:

– Whatisaspectralmixture?

– Whatdoesresolvingaspectralmixturemean?

– Whatarethedifferentwaystotacklethespectralmixtureissues?

– Whatdifficultiesremain?

– Andwhataretheperspectives?

2THESPECTRALMIXTUREPROBLEM

Aspectralmixtureisadatathatresultsfromtheobservationofachemical systemcomposedof(mixed)individualcomponentsandsubmittedtosome variation.Thisvariationisrelatedtothechangeofanexternalfactor,which isusuallyaphysicalorchemicalvariable.Itcanbeforexamplesampling time,position,orpH.Thespectraldatathusconsistofasuperposition,ormixture,ofthepurespectraoftheindividualcomponentsandtheirassociated proportions.Whendealingwithevolvingsystemssuchaschemicalreactions orprocesses,theseproportionscorrespondtoconcentrationprofiles.

DataHandlinginScienceandTechnology,Vol.30. http://dx.doi.org/10.1016/B978-0-444-63638-6.00001-2

Spectralmixturedataareusuallyarrangedinamatrixwithcolumnsas spectralvariables(wavelength,wavenumbers,etc.)andobjects(time,position,etc.)asrows.Objectscanbeofdifferentnature,butshouldalwaysbe clearlyrelatedtothestateofthebeforementionedphysicalorchemicalvariable.Ideally,thevariationscontainedinthespectraldatatranslatewhatis supposedtoberelevantinformationfortheproblemathand.Spectralmixture resolutionaimstodecomposethevariationsofthespectraldataintoamodel ofthecontributionsfromtheindividualunknowncomponents.Thesecomponentsarecomposedofsourceproportionsandspectralsignatures.Itisimportanttorealizethat,morethanoften,thisdecompositionisaimedatsituations forwhichlittleaprioriinformationisavailable.Itshouldalsobenoted that,inpractice,somephysicalperturbationsorchemicalinterferencesmay complicatetheidealsituation.

Inchemistry,spectralmixtureresolutioncorrespondstotheresolutionof complexmixturespectraintopurecontributions,consistingofconcentration distributionsandspectraofthedifferentchemicalcomponents.Thebasic modelunderlyingthisdecomposition,usuallytermedmultivariatecurveresolution(MCR)inchemometrics,correspondstotheLambert-Beerlawwrittenina matrixform.Thisfactorialmodelstatesabilinearrelationbetweenthematrix ofobservationsandthetwomatricesofcontributionscontainingconcentration profilesandspectra,respectively.Itshouldbenotedthatthisextendstothe analysisofspectralandhyperspectralimageswheninvestigatingaspecimen (inmicroscopy)orascene(inremotesensing).Also,thebilinearmodelcan beextendedfortheanalysisofmultipledatasetsthataremeanttoconnectdifferentexperimentstogether.Overall,MCRcanbeappliedinsituationswherea reasonableapproximationofthebilinearmodel,oranyotherfundamentalbasic equationthathasthesamemathematicalstructure,holds.

ApplicationofMCRmethodsisbroad,quitestraightforward,andprovides resultswhicharereadilychemically/physicallyinterpretable.Theseassets explainwhyMCRhasspreadinthechemicalliteratureandinmanyotherscientificfields.However,consideringthemathematicalconditionsforexactresolutionoftheMCRproblem,sometheoreticalissuesremainandarecurrently thesubjectofintensiveresearch.Themostpuzzlingoftheseissuesisthe so-calledrotationalambiguityoftheresolution.Inmorecommonwords,this translatesintothefactthatauniquesolutioncannotbeobtainedingeneral. Then,particularattentionshouldbepaidtotheinitialcondition,ortotheconstraintsappliedduringresolution,anditisimportanttoassesstheextentof rotationalambiguitybeforeanydefinitiveconclusiontobedrawn.Consideringtheseaspects,onemaynoticeacertainantagonisminMCRbetweenwide applicabilityandhighinterpretabilityontheonehandandmathematicalcomplexityoftheresolutionontheotherhand.Thisexplainstoalargeextendthe continuousdevelopmentofthistopicintoaproperresearchfield,stillvery muchinprogress.

Takingabroaderperspective,spectralunmixingentersthemoregeneral categoryofinverseproblems,important,andubiquitousproblemsinanalyticalscienceanddataanalysis.Fromasetof(spectral)observations,oneaims toextracttheunknownsourcesthatproducedthedatabutcouldnotbe observeddirectly.Mixtureanalysis,MCR,blindsourceseparation,linear unmixing,etc.aremethodsthatsharethisobjectivebutweredevelopedindifferentscientificfields,chemistry,statistics,orsignalandimageprocessing.

3BOOKCONTENTANDORGANIZATION

Thebookstartswith Chapter2 thatintroducesthekeyconceptsandprovides anoverviewoftheprogressinMCRwithanemphasisonapplicationsto spectroscopicdata.Focusisonconstraints,multisetanalysis,andquantitative aspectsinmultivariatecurveresolutionalternatingleastsquares(MCR-ALS). Next, Chapter3 revisitstheconceptofvariablepurity,withpuritydefinedas theobservationofanonzerocontributionfromoneandonlyoneofthemixturecomponents.Issuesandsolutionsrelativetorotationalambiguityofthe MCRsolutions,currentlyaveryactiveresearchtopic,arethendiscussedin Chapters4 and 5. Chapter4 setsthebasisoftheproblemandfocusesona nonlinearconstrainedoptimizationapproachforthedirectcalculationofmaximumandminimumbandboundariesoffeasiblesolutions.Incontrast, Chapter5 aimstoprovideasystematicintroductiontotheconceptofarea offeasiblesolutions,fromwhichfeasiblesolutionscanbederived.With Chapter6,spectralunmixingandspectralmixtureanalysisareintroduced. Thesemethodsaimatextractingthespectralcharacteristicsandquantifying thespatialdistributionoveraspectralimage.Thischaptergoesbeyondthe stateofartbyintroducingnonlinearapproachestoSUwhichallowstotake intoconsiderationmorecomplexmixingprocessorspectralvariabilityof thesources. Chapter7 coversthebasicofindependentcomponentanalysis, asourceseparationmethodinitiallydevelopedinthefieldoftelecommunicationsandnowappliedindifferentdomainsincludingchemometricsandspectroscopy. Chapter8 dealswithaBayesianpositivesourceseparationapproach oftheMCRproblemwhichismotivatedbythesearchofuniquesolutions. Thesecondpartofthebook,orientedmoretowardsapplications,startswith Chapter9.Itintroducesawaveletcompressionstrategythatfacilitatesthe applicationofMCRtolargedatasets. Chapter10 dealswithchromatography coupledwithspectraldetection,thetypeofdatawhichoriginallymotivated developmentofMCR,andextendstotheapplicationoftrilinearapproaches. With Chapter11,thefocusisontheapplicationofMCR-ALSforultrafast time-resolvedabsorptionspectroscopydata. Chapter12 tacklestheanalysis ofhyperspectralimagesofbiologicalsampleswiththeuseofautomateddata preprocessingandimprovedMCRmethods,increasingthesensitivityand accuracyofthechemicalimagesobtained.In Chapter13,theintegrationof

wavelettransformwithmultivariateimageanalysisinamultiresolutionanalysisapproachopensthepossibilityofsimultaneouslyaccomplishingdenoisingandfeatureselection.With Chapter14,anewconstraintthatallows forcingsomeinformationrelatedtothelow-frequencycharacterofthecomponentsprofilesanddistributionmapsinMCR-ALSisintroduced. Chapter15 discussesthepotentialofsuper-resolutioninvibrationalspectroscopyimaging,merginginstrumentalandalgorithmicdevelopments. Chapter16 dealswiththecurrenttopicofbiomarkerimagingforearlycancer detectionapplyingMCRtomagneticresonanceimages. Chapters17and18 providewaysandmeanstodealwithremotelysenseddata. Chapter17 focusesontheuseofspectrallibrariesforspectralmixturesanalysis.How tocompose,handle,andoptimizeendmemberlibrariesaretheissuesdiscussedindetail. Chapter18 reviewstherecentdevelopmentsofspectral unmixingalgorithmsthatincorporatespatialinformation,termedspatialspectralunmixing.Toclose, Chapter19 presentsasparseapproachforspectralunmixingofhyperspectralimages,whichprovidesbetterinterpretability oftheresultsobtained.

FIG.1 (A)BilinearmodelofanHPLC–DADchromatogramand(B)bilinearmodelofa thermal-dependentprocessmonitoredbycirculardichroism.

ofMCR,i.e.,thebilinearityofspectroscopicdata.Indeed,thenaturalfulfillmentoftheBeer–Lambertlawmaybeaffectedbysignalartifacts,suchas scatteringinnearinfraredspectroscopy [8,9],orfluorescencecontributions inRamanspectra [10].Mostofthetimes,thebilinearbehavioriseasily recoveredbysuitablepreprocessing,e.g.,scatterorbaselinecorrection, adaptedtothespectroscopicmeasurementofinterest [11–14].Becauseof thenatureofthespectroscopyused,sometechniquesneedmorededicated andintensivepreprocessing,likeultrafastspectroscopymeasurements(see Chapter11) [15,16] and,inextremecases,nonlinearunmixingmethodscan beapplied(see Chapter6).

2MCR-ALS:ALGORITHMANDDATASETCONFIGURATION

MultivariateCurveResolution-AlternatingLeastSquares(MCR-ALS)isan iterativealgorithmthatsolvesthebilinearMCRmodelbyoptimizing

Fig.2B).Theregularmultisetsareoptimizedineachiterativecycleandthe minimizationfunctionoptimizesallresidualsfromallcalculatedbilinear modelsinasimultaneousway(seeEq. 8).

Averagedprofilesorselectedprofilesfromthedifferentregularmultisets optimizedareprovidedastheresolvedprofilesineachiterativecycleorasthe finalMCRsolution [22,23].

Althoughtheequationsandminimizationspresentedtakeasabasisan ordinaryleastsquaresoptimization,thesamealgorithmcanbeusedwhen informationaboutthenoiselevelandstructureisavailable.Inthiscase, weightedMCR-ALSvariantsarealsoavailable [24–28]

TheflexibilityofdataconfigurationsandthepossibilitytointroducegeneralinformationinMCR-ALSmodelsisoutstanding,butallMCRalgorithms areaffectedbytheso-calledambiguityphenomenon.Thismeansthatdifferentcombinationsofconcentrationprofilesandspectracandescribeequally well,intermsofmodelfit,theoriginaldataset [19,29].Indeed,threemain modalitiesofthisphenomenoncanbeencountered

(a) Permutationambiguity.ThereisnosortingorderontheMCRcomponents.Therefore,theycanbeshuffledintheconcentrationandspectra matrix(alwayskeepingtherightcorrespondenceofthedyads)andprovideidenticalresult.

(b) Intensityambiguity.Dyadsofprofileshavingthesameshapebutdifferentrelativescalesbetweenconcentrationprofileandspectrumreproduce equallywelltheoriginaldataset.Indeed,concentrationvaluesandpure spectraintensitiesin ci and si T profilesarealwaysinarbitraryunitsunless referenceinformationonrealintensitiesisavailableandactivelyusedin theresolutionprocess.ThiscanbeseentakingEq. (2) asinitialexpressionofthebilinearmodelskippingtheerrorterm.Eq. (2) canbeeasily transformedintoEq. (9) byintroducinganunknownanddifferentscaling factorforeach i-thcomponent, ki,todefinetherelateddyad cisi T .

(c) Rotationalambiguity.Setsofconcentrationprofilesandspectrawithdifferentshapescanreproducetheoriginaldatasetwiththesamefitquality. Thisisthemostrelevantkindofambiguityandcanbeexpressedtaking asabasisthebilinearmodelinEq. (3) andmodifyingitintoEq. (10), byintroducinga T transformationmatrix,asfollows:

Nonnegativity

FIG.3 Examplesofconstraints.(A)Nonnegativity,(B)unimodality,and(C)closure.Unconstrainedprofileis blackbold and constrainedprofileis redbold (lightgraybold inprintversion).

Closure

Therearemanyapproachestoimplementconstraints:smoothleastsquares [39,40] orpenalty-based [41,42] proceduresandothermethodologiesthat workdirectlyreplacingerroneousprofilesorelementsinaprofilebydifferent values.Thedegreeoftoleranceinthefulfillmentofconstraintscanalsobe tunedaccordingtothepropertiesofthedatasettobetreated,e.g.,depending onthenoiselevelofthedata.

IntheMCR-ALSframework,flexibilityintheapplicationofconstraintsis akeyelement.Thereisnodefaultlistofconstraints,becausedefaultchemical datasetsdonotexist.SelectionofconstraintsisanactivestepthatMCRusers havetoberesponsibleforsincetheyknowthepropertiesoftheirdatasetsand oftheprofilestoberesolved.Hence,applicationofallconstraintsisoptional andtheycanbeuseddifferently(a)mode-wise,i.e.,theconcentrationandthe spectralprofilesmayhavedifferentproperties,(b)compound-wise,i.e.,the differentcompounds(profiles)withinthe C or ST matrixmaybehaveinadifferentway,and(c)subset-wise,i.e.,thepropertiesofdifferentsubmatricesin C or ST inamultisetstructuremaybeverydiverse.

Themostcommonconstraints,applicabletoanykindofdataset structureare

(a) Nonnegativity.Forcestheprofilestobeformedbypositivevalues.Can beimplementedreplacingnegativevaluesbyzerosorwithsofteralgorithms,suchasnonnegativeleastsquaresorfastnonnegativeleast squares [39].Itappliestoallconcentrationprofilesandtomanyspectroscopicresponses.Itshouldbeavoidedincertainkindsofspectroscopic profiles,suchasthosecomingfromcirculardichroismorelectronicparamagneticresonance,whichprovidenaturalnegativemeasurements,or whenworkingwithderivativespectra.

(b) Unimodality.Allowsthepresenceofasinglemaximumperprofile.It referstopeak-shapedprofiles,suchaselutionprofilesinchromatography,andtomonotonicprofiles,i.e.,steadilyincreasingordecreasing, likesomereactionprofiles.Leastsquaresimplementationsofthisconstraintexist,usuallylinkedsimultaneouslytononnegativity [40].Inconstraintsworkingbyreplacementofnonunimodalvalues,variabledegrees oftoleranceonthefulfillmentoftheconstraintcanalsobeset [43]. Whenworkingwithmultisets,unimodalityisappliedseparatelytothe profilesofeachofthesubsetsoftheaugmented C or ST matrix.

(c) Closure.Itistheexpressionofthemassbalancecondition.Appliesto someconcentrationprofilesofreactionsystemsandrescalestheconcentrationprofilessothatthetotalsumoftheconcentrationofcompoundsin theclosureamountstoaconstantvalueduringallthereaction.Itcanbe appliedasastrictequalityorusingaleastsquaresimplementation [44]. Whenworkingwithmultisets,closureisappliedseparatelytotheprofiles ofeachofthesubsetsoftheaugmented C matrix.

(d) Selectivityandlocalrank.Thisconstraintreflectsthatthelocalrankin someconcentrationwindowsorspectralrangescanbelowerthanthe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.