Reservoir engineering handbook fifth edition 2019 tarek ahmed - Download the full ebook version righ

Page 1


https://ebookmass.com/product/reservoir-engineeringhandbook-fifth-edition-2019-tarek-ahmed/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Descartes's Method Tarek Dika

https://ebookmass.com/product/descartess-method-tarek-dika/

ebookmass.com

GATE 2019 Civil Engineering Trishna Knowledge Systems

https://ebookmass.com/product/gate-2019-civil-engineering-trishnaknowledge-systems/

ebookmass.com

The Handbook of Health Behavior Change, Fifth Edition

https://ebookmass.com/product/the-handbook-of-health-behavior-changefifth-edition/

ebookmass.com

Sexually Transmitted Diseases Sourcebook 7th Edition

https://ebookmass.com/product/sexually-transmitted-diseasessourcebook-7th-edition-angela-l-williams/

ebookmass.com

Emergency Psychiatry (PRIMER ON

SERIES)

1st Edition Tony Thrasher (Editor)

https://ebookmass.com/product/emergency-psychiatry-primer-onseries-1st-edition-tony-thrasher-editor/

ebookmass.com

AVR Workshop: A Hands-On Introduction with 60 Projects (NOT genuine pdf) 1st Edition John Boxall

https://ebookmass.com/product/avr-workshop-a-hands-on-introductionwith-60-projects-not-genuine-pdf-1st-edition-john-boxall/

ebookmass.com

An Unreliable Magic Rin Chupeco

https://ebookmass.com/product/an-unreliable-magic-rin-chupeco-2/

ebookmass.com

Insight into 2019 novel coronavirus — an updated intrim review and lessons from SARS-CoV and MERS-CoV Mingxuan Xie

https://ebookmass.com/product/insight-into-2019-novel-coronavirus-anupdated-intrim-review-and-lessons-from-sars-cov-and-mers-cov-mingxuanxie/

ebookmass.com

Practice Makes Perfect: English Grammar for ESL Learners, Premium Fourth Edition Ed Swick

https://ebookmass.com/product/practice-makes-perfect-english-grammarfor-esl-learners-premium-fourth-edition-ed-swick/

ebookmass.com

https://ebookmass.com/product/claimed-by-the-savior-a-scifi-alienromance-fated-mates-of-hogar-book-4-elena-starr/

ebookmass.com

Chapter1 FundamentalsofReservoirFluid Behavior

Naturallyoccurringhydrocarbonsystemsfoundinpetroleumreservoirsare mixturesoforganiccompoundsthatexhibitmultiphasebehavioroverwide rangesofpressuresandtemperatures.Thesehydrocarbonaccumulationsmay occurinthegaseousstate,theliquidstate,thesolidstate,orinvariouscombinationsofgas,liquid,andsolid.

Thesedifferencesinphasebehavior,coupledwiththephysicalpropertiesof reservoirrockthatdeterminetherelativeeasewithwhichgasandliquidare transmittedorretained,resultinmanydiversetypesofhydrocarbonreservoirs withcomplexbehaviors.Frequently,petroleumengineershavethetasktostudy thebehaviorandcharacteristicsofapetroleumreservoirandtodeterminethe courseoffuturedevelopmentandproductionthatwouldmaximizetheprofit.

Theobjectiveofthischapteristoreviewthebasicprinciplesofreservoir fluidphasebehaviorandillustratetheuseofphasediagramsinclassifyingtypes ofreservoirsandthenativehydrocarbonsystems.

CLASSIFICATIONOFRESERVOIRSANDRESERVOIRFLUIDS

Petroleumreservoirsarebroadlyclassifiedasoilorgasreservoirs.Thesebroad classificationsarefurthersubdivideddependingon:

Thecompositionofthereservoirhydrocarbonmixture

Initialreservoirpressureandtemperature

Pressureandtemperatureofthesurfaceproduction

Theconditionsunderwhichthesephasesexistareamatterofconsiderablepracticalimportance.Theexperimentalorthemathematicaldeterminationsofthese conditionsareconvenientlyexpressedindifferenttypesofdiagramscommonly called phasediagrams. Onesuchdiagramiscalledthe pressure-temperature diagram.

Pressure-TemperatureDiagram

Figure1-1 showsatypicalpressure-temperaturediagramofamulticomponent systemwithaspecificoverallcomposition.Althoughadifferenthydrocarbon

Atypicalp-Tdiagramforamulticomponentsystem.

systemwouldhaveadifferentphasediagram,thegeneralconfigurationis similar.

Thesemulticomponentpressure-temperaturediagramsareessentiallyusedto:

Classifyreservoirs

Classifythenaturallyoccurringhydrocarbonsystems

Describethephasebehaviorofthereservoirfluid

Tofullyunderstandthesignificanceofthepressure-temperaturediagrams,itis necessarytoidentifyanddefinethefollowingkeypointsonthesediagrams:

Cricondentherm(Tct)—TheCricondenthermisdefinedasthemaximum temperatureabovewhichliquidcannotbeformedregardlessofpressure (pointE).ThecorrespondingpressureistermedtheCricondenthermpressurepct

Cricondenbar(pcb)—TheCricondenbaristhemaximumpressureabove whichnogascanbeformedregardlessoftemperature(pointD).ThecorrespondingtemperatureiscalledtheCricondenbartemperatureTcb.

Criticalpoint—Thecriticalpointforamulticomponentmixtureisreferred toasthestateofpressureandtemperatureatwhichallintensiveproperties ofthegasandliquidphasesareequal(pointC).Atthecriticalpoint,the correspondingpressureandtemperaturearecalledthecriticalpressurepc andcriticaltemperatureTc ofthemixture.

Phaseenvelope(two-phaseregion)—Theregionenclosedbythebubblepointcurveandthedew-pointcurve(lineBCA),whereingasandliquid

2-Phase region
FIGURE1-1

coexistinequilibrium,isidentifiedasthephaseenvelopeofthehydrocarbonsystem.

Qualitylines—Thedashedlineswithinthephasediagramarecalledquality lines.Theydescribethepressureandtemperatureconditionsforequalvolumesofliquids.Notethatthequalitylinesconvergeatthecriticalpoint (pointC).

Bubble-pointcurve—Thebubble-pointcurve(lineBC)isdefinedasthe lineseparatingtheliquid-phaseregionfromthetwo-phaseregion.

Dew-pointcurve—Thedew-pointcurve(lineAC)isdefinedastheline separatingthevapor-phaseregionfromthetwo-phaseregion.

Ingeneral,reservoirsareconvenientlyclassifiedonthebasisofthelocationof thepointrepresentingtheinitialreservoirpressurepi andtemperatureTwith respecttothepressure-temperaturediagramofthereservoirfluid.Accordingly, reservoirscanbeclassifiedintobasicallytwotypes.Theseare:

Oilreservoirs—IfthereservoirtemperatureTislessthanthecriticaltemperatureTc ofthereservoirfluid,thereservoirisclassifiedasanoil reservoir.

Gasreservoirs—Ifthereservoirtemperatureisgreaterthanthecriticaltemperatureofthehydrocarbonfluid,thereservoirisconsideredagasreservoir.

OilReservoirs

Dependinguponinitialreservoirpressurepi,oilreservoirscanbesubclassified intothefollowingcategories:

1. Undersaturatedoilreservoir. Iftheinitialreservoirpressurepi (asrepresentedbypoint1on Figure1-1),isgreaterthanthebubble-pointpressurepb ofthereservoirfluid,thereservoirislabeledanundersaturatedoilreservoir.

2. Saturatedoilreservoir. Whentheinitialreservoirpressureisequaltothe bubble-pointpressureofthereservoirfluid,asshownon Figure1-1 bypoint 2,thereservoiriscalledasaturatedoilreservoir.

3. Gas-capreservoir. Iftheinitialreservoirpressureisbelowthebubblepoint pressureofthereservoirfluid,asindicatedbypoint3on Figure1-1,thereservoiristermedagas-caportwo-phasereservoir,inwhichthegasorvapor phaseisunderlainbyanoilphase.

Crudeoilscoverawiderangeinphysicalpropertiesandchemicalcompositions, anditisoftenimportanttobeabletogroupthemintobroadcategoriesofrelated oils.Ingeneral,crudeoilsarecommonlyclassifiedintothefollowingtypes:

Ordinaryblackoil

Low-shrinkagecrudeoil

High-shrinkage(volatile)crudeoil

Near-criticalcrudeoil

4 ReservoirEngineeringHandbook

Atypicalp-Tdiagramforanordinaryblackoil.

Theaboveclassificationsareessentiallybaseduponthepropertiesexhibitedby thecrudeoil,includingphysicalproperties,composition,gas-oilratio,appearance,andpressure-temperaturephasediagrams.

1. Ordinaryblackoil. Atypicalpressure-temperaturephasediagramforordinaryblackoilisshownin Figure1-2.Itshouldbenotedthatqualitylines, whichareapproximatelyequallyspacedcharacterizethisblackoilphase diagram.Followingthepressurereductionpathasindicatedbythevertical lineEFon Figure1-2,theliquidshrinkagecurve,asshownin Figure1-3,is preparedbyplottingtheliquidvolumepercentasafunctionofpressure.The liquidshrinkagecurveapproximatesastraightlineexceptatverylowpressures.Whenproduced,ordinaryblackoilsusuallyyieldgas-oilratios between200–700scf/STBandoilgravitiesof15to40API.Thestocktank oilisusuallybrowntodarkgreenincolor.

2. Low-shrinkageoil. Atypicalpressure-temperaturephasediagramforlowshrinkageoilisshownin Figure1-4.Thediagramischaracterizedbyquality linesthatarecloselyspacednearthedew-pointcurve.Theliquid-shrinkage curve,asgivenin Figure1-5,showstheshrinkagecharacteristicsofthiscategoryofcrudeoils.Theotherassociatedpropertiesofthistypeofcrudeoil are:

Oilformationvolumefactorlessthan1.2bbl/STB

Gas-oilratiolessthan200scf/STB

Oilgravitylessthan35° API

FIGURE1-2

FIGURE1-3 Liquid-shrinkagecurveforblackoil.

Quality lines are distant from the bubble-point curve

FIGURE1-4 Atypicalphasediagramforalow-shrinkageoil.

Blackordeeplycolored Substantialliquidrecoveryatseparatorconditionsasindicatedbypoint Gonthe85%qualitylineof Figure1-4.

3. Volatilecrudeoil. Thephasediagramforavolatile(high-shrinkage)crude oilisgivenin Figure1-6.Notethatthequalitylinesareclosetogethernear thebubble-pointandaremorewidelyspacedatlowerpressures.Thistypeof crudeoiliscommonlycharacterizedbyahighliquidshrinkageimmediately

Oil-shrinkagecurveforlow-shrinkageoil.

FIGURE1-6 Atypicalp-Tdiagramforavolatilecrudeoil.

belowthebubble-pointasshownin Figure1-7.Theothercharacteristic propertiesofthisoilinclude:

Oilformationvolumefactorlessthan2bbl/STB

Gas-oilratiosbetween2,000-3,200scf/STB

Oilgravitiesbetween45-55° API

LowerliquidrecoveryofseparatorconditionsasindicatedbypointGon

Figure1-6

Greenishtoorangeincolor

AnothercharacteristicofvolatileoilreservoirsisthattheAPIgravityofthe stock-tankliquidwillincreaseinthelaterlifeofthereservoirs.

FIGURE1-5

FIGURE1-7 Atypicalliquid-shrinkagecurveforavolatilecrudeoil.

4. Near-criticalcrudeoil.IfthereservoirtemperatureTisnearthecritical temperatureTc ofthehydrocarbonsystem,asshownin Figure1-8,the hydrocarbonmixtureisidentifiedasanear-criticalcrudeoil.Becauseall thequalitylinesconvergeatthecriticalpoint,anisothermalpressuredrop (asshownbytheverticallineEFin Figure1-8)mayshrinkthecrudeoil from100%ofthehydrocarbonporevolumeatthebubble-pointto55% orlessatapressure10to50psibelowthebubble-point.Theshrinkagecharacteristicbehaviorofthenear-criticalcrudeoilisshownin Figure1-9.The

FIGURE1-8 Aschematicphasediagramforthenear-criticalcrudeoil.

FIGURE1-9 Atypicalliquid-shrinkagecurveforthenear-criticalcrudeoil.

How near are the quality lines to the bubblepoint curve will determine the type of crude oil

(A) Low-shrinkage oil

(B)Ordinarybalckoil

(C) High-shrinkage oil

(D)Nearcriticaloil

FIGURE1-10 Liquidshrinkageforcrudeoilsystems.

near-criticalcrudeoilischaracterizedbyahighGORinexcessof3,000scf/ STBwithanoilformationvolumefactorof2.0bbl/STBorhigher.Thecompositionsofnear-criticaloilsareusuallycharacterizedby12.5to20mol% heptanes-plus,35%ormoreofethanethroughhexanes,andtheremainder methane.

Figure1-10 comparesthecharacteristicshapeoftheliquid-shrinkagecurvefor eachcrudeoiltype.

GasReservoirs

Ingeneral,ifthereservoirtemperatureisabovethecriticaltemperatureofthe hydrocarbonsystem,thereservoirisclassifiedasanaturalgasreservoir.Onthe basisoftheirphasediagramsandtheprevailingreservoirconditions,natural gasescanbeclassifiedintofourcategories:

Retrogradegas-condensate

Near-criticalgas-condensate

Wetgas

Drygas

Retrogradegas-condensatereservoir. IfthereservoirtemperatureTlies betweenthecriticaltemperatureTc andcricondenthermTct ofthereservoir fluid,thereservoirisclassifiedasaretrogradegascondensatereservoir.This categoryofgasreservoirisauniquetypeofhydrocarbonaccumulationinthat thespecialthermodynamicbehaviorofthereservoirfluidisthecontrollingfactorinthedevelopmentandthedepletionprocessofthereservoir.Whenthe pressureisdecreasedonthesemixtures,insteadofexpanding(ifagas)orvaporizing(ifaliquid)asmightbeexpected,theyvaporizeinsteadofcondensing.

Considerthattheinitialconditionofaretrogradegasreservoirisrepresented bypoint1onthepressure-temperaturephasediagramof Figure1-11.Because thereservoirpressureisabovetheupperdew-pointpressure,thehydrocarbon systemexistsasasinglephase(i.e.,vaporphase)inthereservoir.Asthereservoirpressuredeclinesisothermallyduringproductionfromtheinitialpressure (point1)totheupperdewpointpressure(point2),theattractionbetweenthe moleculesofthelightandheavycomponentscausesthemtomovefurtherapart

FIGURE1-11 Atypicalphasediagramforaretrogradesystem.

furtherapart.Asthisoccurs,attractionbetweentheheavycomponentmolecules becomesmoreeffective;thus,liquidbeginstocondense.

Thisretrogradecondensationprocesscontinueswithdecreasingpressure untiltheliquiddropoutreachesitsmaximumatpoint3.Furtherreductionin pressurepermitstheheavymoleculestocommencethenormalvaporization process.Thisistheprocesswherebyfewergasmoleculesstriketheliquidsurfaceandcausesmoremoleculestoleavethanentertheliquidphase.Thevaporizationprocesscontinuesuntilthereservoirpressurereachesthelowerdewpointpressure.Thismeansthatalltheliquidthatformedmustvaporizebecause thesystemisessentiallyallvaporsatthelowerdewpoint.

Figure1-12 showsatypicalliquidshrinkagevolumecurveforacondensate system.Thecurveiscommonlycalledthe liquiddropoutcurve. Inmostgascondensatereservoirs,thecondensedliquidvolumeseldomexceedsmorethan 15%–19%oftheporevolume.Thisliquidsaturationisnotlargeenoughto allowanyliquidflow.Itshouldberecognized,however,thataroundthewellborewherethepressuredropishigh,enoughliquiddropoutmightaccumulate togivetwo-phaseflowofgasandretrogradeliquid.

Theassociatedphysicalcharacteristicsofthiscategoryare:

Gas-oilratiosbetween8,000and70,000scf/STB.Generally,thegas-oil ratioforacondensatesystemincreaseswithtimeduetotheliquiddropout andthelossofheavycomponentsintheliquid.

Condensategravityabove50° API

Stock-tankliquidisusuallywater-whiteorslightlycolored.

Thereisafairlysharpdividinglinebetweenoilsandcondensatesfromacompositionalstandpoint.Reservoirfluidsthatcontainheptanesandareheavierin concentrationsofmorethan12.5mol%arealmostalwaysintheliquidphasein thereservoir.Oilshavebeenobservedwithheptanesandheavierconcentrations

Atypicalphasediagramforanear-criticalgascondensatereservoir.

aslowas10%andcondensatesashighas15.5%.Thesecasesarerare,however, andusuallyhaveveryhightankliquidgravities.

Near-criticalgas-condensatereservoir. Ifthereservoirtemperatureis nearthecriticaltemperature,asshownin Figure1-13,thehydrocarbonmixture isclassifiedasanear-criticalgas-condensate.Thevolumetricbehaviorofthis categoryofnaturalgasisdescribedthroughtheisothermalpressuredeclinesas shownbytheverticalline1-3in Figure1-13 andalsobythecorrespondingliquiddropoutcurveof Figure1-14.Becauseallthequalitylinesconvergeatthe criticalpoint,arapidliquidbuildupwillimmediatelyoccurbelowthedewpoint (Figure1-14)asthepressureisreducedtopoint2.

Thisbehaviorcanbejustifiedbythefactthatseveralqualitylinesare crossedveryrapidlybytheisothermalreductioninpressure.Atthepointwhere theliquidceasestobuildupandbeginstoshrinkagain,thereservoirgoesfrom theretrograderegiontoanormalvaporizationregion.

Wet-gasreservoir. Atypicalphasediagramofawetgasisshownin Figure1-15,wherereservoirtemperatureisabovethecricondenthermofthe hydrocarbonmixture.Becausethereservoirtemperatureexceedsthecricondenthermofthehydrocarbonsystem,thereservoirfluidwillalwaysremain inthevaporphaseregionasthereservoirisdepletedisothermally,alongthe verticallineA-B.

Astheproducedgasflowstothesurface,however,thepressureandtemperatureofthegaswilldecline.Ifthegasentersthetwo-phaseregion,aliquid phasewillcondenseoutofthegasandbeproducedfromthesurfaceseparators. Thisiscausedbyasufficientdecreaseinthekineticenergyofheavymolecules

FIGURE1-13

FIGURE1-14 Liquid-shrinkage(dropout)curveforanear-criticalgas-condensatesystem.

FIGURE1-15 Phasediagramforawetgas. (AfterClark,N.J.ElementsofPetroleumReservoirs, SPE, 1969).

withtemperaturedropandtheirsubsequentchangetoliquidthroughtheattractiveforcesbetweenmolecules.

Wet-gasreservoirsarecharacterizedbythefollowingproperties: Gasoilratiosbetween60,000to100,000scf/STB Stock-tankoilgravityabove60° API

Phasediagramforadrygas. (AfterClark,N.J.ElementsofPetroleumReservoirs, SPE,1969).

Liquidiswater-whiteincolor

Separatorconditions,i.e.,separatorpressureandtemperature,liewithinthe two-phaseregion

Dry-gasreservoir. Thehydrocarbonmixtureexistsasagasbothinthereservoirandinthesurfacefacilities.Theonlyliquidassociatedwiththegasfroma dry-gasreservoiriswater.Aphasediagramofadry-gasreservoirisgivenin Figure1-16.Usuallyasystemhavingagas-oilratiogreaterthan100,000 scf/STBisconsideredtobeadrygas.

Kineticenergyofthemixtureissohighandattractionbetweenmoleculesso smallthatnoneofthemcoalescetoaliquidatstock-tankconditionsoftemperatureandpressure.

Itshouldbepointedoutthattheclassificationofhydrocarbonfluidsmight bealsocharacterizedbytheinitialcompositionofthesystem. McCain(1994) suggestedthattheheavycomponentsinthehydrocarbonmixtureshavethe strongesteffectonfluidcharacteristics.Theternarydiagram,asshownin Figure1-17,withequilateraltrianglescanbeconvenientlyusedtoroughly definethecompositionalboundariesthatseparatedifferenttypesofhydrocarbonsystems.

Fromtheforegoingdiscussion,itcanbeobservedthathydrocarbonmixtures mayexistineitherthegaseousorliquidstate,dependingonthereservoirand operatingconditionstowhichtheyaresubjected.Thequalitativeconceptspresentedmaybeofaidindevelopingquantitativeanalyses.Empiricalequations ofstatearecommonlyusedasaquantitativetoolindescribingandclassifying thehydrocarbonsystem.Theseequationsofstaterequire:

Detailedcompositionalanalysesofthehydrocarbonsystem Completedescriptionsofthephysicalandcriticalpropertiesofthemixture individualcomponents

FIGURE1-16

A- Dry gas

B- Wet gas

C- Retrograde gas

D- Near critical

E- Volatile oil

F- Ordinary oil

G- Low shrinkage oil

Manycharacteristicpropertiesoftheseindividualcomponents(inotherwords, puresubstances)havebeenmeasuredandcompiledovertheyears.Thesepropertiesprovidevitalinformationforcalculatingthethermodynamicpropertiesof purecomponents,aswellastheirmixtures.Themostimportantofthesepropertiesare:

Criticalpressure,pc

Criticaltemperature,Tc

Criticalvolume,Vc

Criticalcompressibilityfactor,zc

Acentricfactor,T

Molecularweight,M

Table1-2 documentstheabove-listedpropertiesforanumberofhydrocarbon andnonhydrocarboncomponents.

KatzandFiroozabadi(1978) presentedageneralizedsetofphysicalpropertiesforthepetroleumfractionsC6 throughC45.Thetabulatedproperties includetheaverageboilingpoint,specificgravity,andmolecularweight. Theauthors’proposedasetoftabulatedpropertiesthatweregeneratedbyanalyzingthephysicalpropertiesof26condensatesandcrudeoilsystems.These generalizedpropertiesaregivenin Table1-1.

C2-C6+CO2
FIGURE1-17 Compositionsofvariousreservoirfluidtypes.

450.884677.375614.394

Ahmed(1985) correlatedKatz-Firoozabadi-tabulatedphysicalproperties withthenumberofcarbonatomsofthefractionbyusingaregressionmodel. Thegeneralizedequationhasthefollowingform:

Where:

θ ¼ anyphysicalproperty

n ¼ numberofcarbonatoms,i.e.,6.7 ,45

a1 a5 ¼ coefficientsoftheequationandaregivenin Table1-3

UndefinedPetroleumFractions

Nearlyallnaturallyoccurringhydrocarbonsystemscontainaquantityofheavy fractionsthatarenotwelldefinedandarenotmixturesofdiscretelyidentified components.Theseheavyfractionsareoftenlumpedtogetherandidentifiedas theplusfraction,e.g.,C7+ fraction.

Aproperdescriptionofthephysicalpropertiesoftheplusfractionsandother undefinedpetroleumfractionsinhydrocarbonmixturesisessentialinperformingreliablephasebehaviorcalculationsandcompositionalmodelingstudies. Frequently,adistillationanalysisorachromatographicanalysisisavailable forthisundefinedfraction.Otherphysicalproperties,suchasmolecularweight andspecificgravity,mayalsobemeasuredfortheentirefractionorforvarious cutsofit.

Touseanyofthethermodynamicproperty-predictionmodels,e.g.,equation ofstate,topredictthephaseandvolumetricbehaviorofcomplexhydrocarbon mixtures,onemustbeabletoprovidetheacentricfactor,alongwiththecritical temperatureandcriticalpressure,forboththedefinedandundefined(heavy)

fractionsinthemixture.Theproblemofhowtoadequatelycharacterizethese undefinedplusfractionsintermsoftheircriticalpropertiesandacentricfactors hasbeenlongrecognizedinthepetroleumindustry. Whitson(1984) presented anexcellentdocumentationontheinfluenceofvariousheptanes-plus(C7+) characterizationschemesonpredictingthevolumetricbehaviorofhydrocarbon mixturesbyequations-of-state.

RiaziandDaubert(1987) developedasimpletwo-parameterequationfor predictingthephysicalpropertiesofpurecompoundsandundefinedhydrocarbonmixtures.Theproposedgeneralizedempiricalequationisbasedontheuse ofthemolecularweightMandspecificgravity γ oftheundefinedpetroleum fractionasthecorrelatingparameters.Theirmathematicalexpressionhasthe followingform:

where

θ ¼ anyphysicalproperty

a f ¼ constantsforeachpropertyasgivenin Table1-4

γ ¼ specificgravityofthefraction

M ¼ moleclarweight

Tc ¼ cirticaltemperature, °R

Pc ¼ criticalpressure,psia(Tabl1-4)

Tb ¼ boilingpointtemperature, °R

Vc ¼ criticalvolume,ft3/lb

Edmister(1958) proposedacorrelationforestimatingtheacentricfactorTof purefluidsandpetroleumfractions.Theequation,widelyusedinthepetroleum industry,requiresboilingpoint,criticaltemperature,andcriticalpressure.The proposedexpressionisgivenbythefollowingrelationship:

¼ 3logpc =14:70 ðÞ ½ 7Tc =Tb 1 ½ðÞ 1(1-3)

TABLE1-4 CorrelationConstantsforEquation 1-2

where

T ¼ acentricfactor

pc ¼ criticalpressure,psia

Tc ¼ criticaltempterature, °R

Tb ¼ normalboilingpoint, °R

Iftheacentricfactorisavailablefromanothercorrelation,theEdmisterequationcanberearrangedtosolveforanyofthethreeotherproperties(providing theothertwoareknown).

Thecriticalcompressibilityfactor“Zc”isanotherpropertythatisoftenused inthermodynamic-propertypredictionmodels.Itisdefinedasthecomponent compressibilityfactorcalculatedatitscriticalpoint.Thispropertycanbeconvenientlycomputedbytherealgasequation-of-stateatthecriticalpoint,or

where

R ¼ universalgasconstant,10.73psia-ft3/lb-mol. °R

Vc ¼ criticalvbolume,ft3/lb

M ¼ molecularweight

TheaccuracyofEquation 1-4 dependsontheaccuracyofthevaluesofpc,Tc, andVc usedinevaluatingthecriticalcompressibilityfactor. Table1-5 presents asummaryofthecriticalcompressibilityestimationmethods.

Example1-1

Estimatethecriticalpropertiesandtheacentricfactoroftheheptanes-plus fraction,i.e.,C7+,withameasuredmolecularweightof150andspecificgravity of0.78.

TABLE1-5 CriticalCompressibilityEstimationMethods

Solution

Step1. UseEquation 1-2 toestimateTc,pc,Vc,andTb: Tc ¼ 544.2(150).2998 (.78)1.0555 exp[–1.3478 10–4 (150) –0.61641(.78)+0] ¼ 1139.4 °R pc ¼ 4.5203 104 (150)–.8063 (.78)1.6015 exp[–1.8078 10–3 (150) – 0.3084(.78)+0] ¼ 320.3psia Vc ¼ 1.206 10–2 (150).20378 (.78)–1.3036 exp[–2.657 10–3 (150) +0.5287(.78) ¼ 2.6012 10–3 (150)(.78)] ¼ .06035ft3/lb Tb ¼ 6.77857(150).401673 (.78)–1.58262 exp[3.77409 10–3 (150)+ 2.984036(0.78) – 4.25288 10–3 (150)(0.78)] ¼ 825.26 °R

Step2. UseEdmister’sEquation(Equation 1-3)toestimatetheacentricfactor:

PROBLEMS

1. Thefollowingisalistofthecompositionalanalysisofdifferenthydrocarbonsystems.Thecompositionsareexpressedinthetermsofmol%.

ComponentSystem#1System#2System#3System#4

2. Classifythesehydrocarbonsystems.

3. Ifapetroleumfractionhasameasuredmolecularweightof190andaspecificgravityof0.8762,characterizethisfractionbycalculatingtheboiling point,criticaltemperature,criticalpressure,andcriticalvolumeofthefraction.UsetheRiaziandDaubertcorrelation.

4. Calculatetheacentricfactorandcriticalcompressibilityfactorofthecomponentintheaboveproblem.

REFERENCES

Ahmed,T.,1985.CompositionmodelingofTylerandMissionCanyonformationoilswithCO2 and leangases. FinalreportsubmittedtotheMontana’sonaNewTrackforScience(MONTS)program(MontanaNationalScienceFoundationGrantProgram)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.