Relativity in modern physics nathalie deruelle - The ebook in PDF and DOCX formats is ready for down

Page 1


https://ebookmass.com/product/relativity-in-modern-physics-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

University Physics with Modern Physics (15th Edition)

https://ebookmass.com/product/university-physics-with-modernphysics-15th-edition/

ebookmass.com

University Physics with Modern Physics 14th Edition, (Ebook PDF)

https://ebookmass.com/product/university-physics-with-modernphysics-14th-edition-ebook-pdf/

ebookmass.com

University Physics with Modern Physics (Third Edition) Wolfgang Bauer

https://ebookmass.com/product/university-physics-with-modern-physicsthird-edition-wolfgang-bauer/

ebookmass.com

Advances in Aerogel Composites for Environmental Remediation 1st Edition Aftab Aslam Parwaz Khan (Editor)

https://ebookmass.com/product/advances-in-aerogel-composites-forenvironmental-remediation-1st-edition-aftab-aslam-parwaz-khan-editor/ ebookmass.com

Savage Covenant: Part of the Gallo Mafia Empire Jade Marshall & Sofa Aves

https://ebookmass.com/product/savage-covenant-part-of-the-gallo-mafiaempire-jade-marshall-sofa-aves/

ebookmass.com

(eBook PDF) Universe Solar System, Stars and Galaxies 8th Edition

https://ebookmass.com/product/ebook-pdf-universe-solar-system-starsand-galaxies-8th-edition/

ebookmass.com

Studies in Natural Products Chemistry Volume 52 1st Edition Edition Atta-Ur-Rahman (Eds.)

https://ebookmass.com/product/studies-in-natural-products-chemistryvolume-52-1st-edition-edition-atta-ur-rahman-eds/

ebookmass.com

Late Europeans and Melancholy Fiction at the Turn of the Millennium Ian Ellison

https://ebookmass.com/product/late-europeans-and-melancholy-fictionat-the-turn-of-the-millennium-ian-ellison/

ebookmass.com

Financial Accounting 9th Edition Robert Libby

https://ebookmass.com/product/financial-accounting-9th-edition-robertlibby-2/

ebookmass.com

https://ebookmass.com/product/wings-of-stars-fallen-destinybook-1-r-l-caulder-m-sinclair/

ebookmass.com

RelativityinModernPhysics

RelativityinModernPhysics

Jean-PhilippeUzan

NathalieDeruelle

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

EnglishEdition c OxfordUniversityPress2018

Anearlierversionofthisbookhasappearedas Th´eoriesdelaRelativit´ e by NathalieDeruelleandJean-PhilippeUzan c EditionsBelin,2014

Themoralrightsoftheauthorshavebeenasserted

FirstEditionpublishedin2018

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2018933841 ISBN978–0–19–878639–9

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Thisbookisdedicatedtothosewhohavedevelopedrelativity inFrance,inparticular,HenriPoincar´e,PaulLangevin, ´ ElieCartan, Andr´eLichnerowicz,YvonneChoquet-Bruhat,andThibaultDamour

Foreword

Thephysicscommunityhasrecentlycommemoratedthecentenaryofthebirthofgeneral relativity,developedbyAlbertEinsteinbetween1907and1915.Thismagnificenttheory, whichunitesrelativityandgravitywithintheframeworkofnon-Euclideangeometry,haslong beenviewedasauniquefeatureinthephysicslandscape.Itsloftyheighthasintimidated themajorityofphysicists,andfewhaveventuredtoclimbitsmathematicallysteepslopes, especiallywhiletheconnectionofthistheorytoobservablerealityremainedtenuous.

Thaterahasvanished,becausegeneralrelativityhasnowcometoplayanessentialrole intheremarkablerecentadvancesinastrophysicsandcosmology.Astrophysicshasrevealed theexistenceof‘compact’starslikeneutronstars,whosematterissoconcentratedthat thedeformationoftimeandspacepredictedbygeneralrelativitybecomestangible.And thentherearethecelebratedblackholes,whichhaveoutgrowntheboundsofmathematical abstractionandsciencefictiontobecomepartofthedailylifeofastrophysicists.Adefinitive proofoftheirexistencehasrecentlybeenprovidedbythedetectionofthegravitationalwaves emittedwhentheymerge,thusopeninganewwindowinastronomy.

Onthecosmologicalside,generalrelativityliesattheheartofourcurrentunderstandingoftheexpansionoftheuniverse.Cosmologicalobservationshaverecentlyrevealedthe presenceofamysterious‘darkenergy’whichmaycorrespondtothecosmologicalconstant initiallyintroducedbyEinsteintoobtainastaticuniverse,andthenquicklyabandoned, beforeitscurrentrevivaltoexplaintheobservationaldata.Owingtotheenormousprogress whichhasbeenmadeinmeasurementaccuracy,relativityhasevenbecomeapartofthe dailylifeofanordinaryperson:theaccuratefunctioningoftheGPSactuallyrequiresthe inclusionofeffectsduetospecialandgeneralrelativity.

Allthesefascinatingaspectsofrelativity,andothers,arepresentedandexplainedrigorouslyandaccuratelyinthisbookbyNathalieDeruelleandJean-PhilippeUzan.Thetheory ofgeneralrelativityconstitutestheclimaxofthisimpressivework,whichassemblesand summarizes,inacoherentandextremelydeepmanner,thevariousrelativisticaspectsof ‘classical’(thatis,non-quantum)theoreticalphysics,startingfromthedescriptionofNewtonianmechanicsandgravitation.

Oneofthestrengthsofthisbookisitsrevelationofthecontinuedrelevanceofanumberof principlesandmathematicaltoolsbeyondtheconceptualrupturewhichrelativityrepresents comparedtothetheoriesofclassicalphysics.Forexample,theauthorsstudyNewtonian physicsinanacceleratedreferenceframeandarbitrarycoordinatesusingthesameformalism asthatusedtodescribespacetimeingeneralrelativity.Theechoesbackandforthbetweenthe chaptersonelectromagneticwavesandgravitationalwavesemphasizeboththeconceptual differencesandthesimilaritiesinthetreatmentofthesetwoconcepts.Thesimultaneous embraceofNewtoniangravity,specialrelativity,andgeneralrelativityallowsthereaderto beledgraduallyfromfamiliar,gentleterraintothehighestpeaks.

Manyofthesectionsinthisbookareenrichedbyresearchtopics,andpresentviewpoints andresultswhichthereaderwillfindonlyrarely,ifatall,inothertextbooksonthese

viii Foreword

subjects.Thisbookthereforeconstitutesaremarkablereferencework,fromwhichthereader canextractagreatvarietyofinformationaswellasmanycalculationtechniques,anditcan serveasapointofentrytoresearcharticles.Itiswrittenequallyforthestudentpassionate abouttheoreticalphysicsandfortheresearcherwishingtoacquireadeeperunderstanding ofrelativity,aswellasforthecuriousreaderwithascientificbackgroundwhowishesto independentlyexplorevariousfacetsofrelativityunderthetutelageofexperiencedguides.

Ihavehadtheprivilegeofsharingmyprofessionallifewiththetwoauthorsofthis book,andofbeingawitnesstotheirinsatiablecuriosityandpassionfortransmittingtheir knowledgetoothers.IhavealsohadthegreatfortunetosharewithNathalieDeruelle manyyearsofteachinggeneralrelativity,andithasbeenapleasuretorediscoverinthis bookvariouspathswhichsheexploredduringourpedagogicaladventure.Thisbookattests admirablytoapassionateencounterbetweenademandingbutfascinatingscientificdomain andtwoscientistswhoaresimultaneouslyparticipantsinthecontinuingdevelopmentofthe fieldandtransmittersoftheirknowledgetofuturegenerations.

DavidLanglois June2018

PARTIIIELECTROMAGNETISM

PARTIVELECTRODYNAMICS

PARTIVFRIEDMANN–LEMAˆıTRESOLUTIONSANDCOSMOLOGY

PARTVELEMENTSOFRIEMANNIANGEOMETRY

Space,time,andgravityin

Newton’stheory

PARTIIDYNAMICS

PartI Kinematics

Idonotdefine Time, Space, Place and Motion,asbeingwellknowntoall.OnlyImust observe,thatthevulgarconceivethosequantitiesundernoothernotionsbutfromtherelation theybeartosensibleobjects.Andthencearisecertainprejudices,fortheremovingofwhich, itwillbeconvenienttodistinguishtheminto Absolute and Relative, True and Apparent, Mathematical and Common

AbsoluteSpace,initsownnature,withoutregardtoanythingexternal,remainsalways similarandimmovable.

Absolute,True,andMathematicalTime,ofitself,andfromitsownnatureflowsequably withoutregardtoanythingexternal,andbyanothernameiscalledDuration...

SirIsaacNewton, PhilosophiæNaturalisPrincipiaMathematica,London,1687;English translationbyAndrewMotte, TheMathematicalPrinciplesofNaturalPhilosophy, London,1729

1

Cartesiancoordinates

InthisfirstchapterwegiveanelementaryandbriefpresentationofEuclideangeometry,which providesthemathematicalframeworkinwhichthelawsofNewtonianphysicsareformulated.

1.1Absolutespaceandtime

InNewtonianphysics,‘space’and‘relative,apparent,andcommon’placearerepresented byamathematicalensembleofpoints,the‘absolute’space E3 ,whichispostulatedtobe Euclidean.

Eachpointofthisspaceisthuscharacterizedbythreerealnumbers,itscoordinates, whichdefineitsposition.Inaddition,thereexistsystemsofcoordinatescalledCartesian coordinatessuchthatthe distance r12 betweentwopointswithcoordinates(X1 ,Y1 ,Z1 )and (X2 ,Y2 ,Z2 )isgivenbythePythagoreantheorem

Itvanishesonlyifthetwopointscoincide.

The lengthelement,thatis,thesquareofthedistance dl (≥ 0)betweentwoinfinitesimally separatedpointswithCartesiancoordinates(seeFig.1.1) X i and X i + dX i ,whichisusedto measurelengthsofcurvesandtodisplaythemetricpropertiesoffigures,isthenwrittenas

Fig.1.1 Cartesiancoordinatesandframeintwodimensions.

Book1.PartI:Kinematics

Thesecondequalitydefinesthe Kroneckerdelta δij ;inthisgeometricalcontextitssix components(δij =1if i = j , δij =0otherwise)arereferredtoasthecoefficientsofthe EuclideanmetricinCartesiancoordinates.Thethirdequalitydefinesthe Einsteinsummation convention,accordingtowhichrepeatedindicesaresummedover(theyarethenreferredtoas dummyindices).Theoriginwithcoordinates(0, 0, 0)andthethreeaxes(X,Y,Z )constitute a Cartesianframe S

Asforthe‘apparent’time,itisrepresentedbyarealnumber,the‘absolute’oruniversal time t ∈ R.

Fig.1.2 Absoluteframeandmotion.

ItisthereforepossibletorepresentNewtonianspacetime N4 asa‘foliation’,thatis,a stackofcopiesofEuclideanspace E3 orderedbyincreasingtime t: N4 = E3 × R.Theensemble ofcopiesofapointin E3 thenbecomesa‘fiber’of N4 representingapointatabsoluterest. InthiskinematicalcontexttheensembleofCartesianframesindexedby t isreferredtoas anabsoluteframe.1 (SeeFig.1.2.)

Themotionofaphysicalobjectwithoutextentorinternalstructure,calledapointparticle,isrepresentedbyacurveinspacetimecalleda worldline or,equivalently,a trajectory, thatis,acurvein E3 : t → P (t) ∈E3 ,wheretheparameter t istheabsolutetime.

1.2Theabsolutereferenceframe

Theabsolutetime t ismadeconcretebyclocksandwatches,thatis,byrepetitivephenomenanumberedinincreasingorder.Agoodclockisultimatelyadevicewhichmeasures,no matterwhatsortofmotionitundergoes,timeintervals,expressedforexampleinseconds, inaccordancewiththepredictionsofthelawsofdynamicswrittenasafunctionofabsolute time.

ACartesianframeofabsolutespaceismaterializedin‘relative,apparent,andcommon’ spacebya referenceframe.Specifically,thisreferenceframeisasolidtrihedron,thatis, anensembleofphysicalobjectswhoserelativedistancesareconstantintimeandforwhich anorientationoftheaxeshasbeenchosen(byusingtheright-handrule,forexample). Itisconstructedbymeansofinstrumentswhichqualifyasrigid(i.e.,theyarealsosolids)

1 Wenotethat t belongstotherealline R andnottothecircle S 1 :inNewtonianmechanicstimehasno beginningandnoend.

Chapter1:Cartesiancoordinates 13 throughoutrepeatedusesuchasrulers,compasses,andsoon,usingthePythagoreantheorem anditsconsequences.Finally,alengthstandard,forexample,themeter,ischosen.This referenceframe,whichestablishesagridonphysicalspace,is‘good’ifalltheEuclidean propertiesoffiguresareverifiedtowithinthemeasurementaccuracy.2

The absolutereferenceframe whichmaterializestheabsoluteframeofNewtonianspacetimeisareferenceframewhichmustbeatrestinorderforittobepossibletoidentify thefibersof N4 withphysicalobjectsatrest.ForNewton,theabsolutereferenceframewas formedbythesolarsystemandthestarsfarenoughawaytoappearfixed,whichhepostulatedtobeatabsoluterest.Wenotethatsincetheuniverseappearstobeessentiallyempty, thepointsof E3 areforthemostpartonly‘virtuallymaterialized’,acontradictioninterms whichshockedDescartesandKant.Beginningintheseventeenthcentury,thisdifficultywas circumventedbyintroducingtheconceptofthe aether,anebulousmediumresponsiblefor materializing E3

IfspaceandtimedoactuallyembodythestructureattributedtothembyNewton,we canpredictanelementarybutimportantresult.Letusimaginetwotravelers A and B who simultaneouslydepartfromacertainplaceandreturntothesameplaceaftertheirseparate peregrinations.Thedurationsofthetripsmeasuredby A and B mustbethesame, i.e., theirwatches,whicharesynchronizedwhentheystartout,mustindicatethesametimeat arrival.3

1.3ChangeofCartesiancoordinates

Wepostulatethatifthelabelingofthepointsof E3 ischanged,thedistancebetween twopointsremainsunchanged.Here,werestrictourselvestotransformations X i → X i whichpreservethe form ofthelengthelement,thatis,transformationssuchthat dl 2 ≡ δij dX i dX j = δij dX i dX j .Then,bydefinition,thenewcoordinates X i arealsoCartesian, andthetransformationsaregivenby

WeimposetheconditiondetR =+1,wheredetR isthedeterminantoftherotationmatrix R i j (i numbersthelinesand j thecolumns);thetransformationthereforepreserves theorientationoftheaxes.Suchtransformationsformthe(proper)groupoftransformationsofCartesianframes,agroupwith n(n +1)/2parameters, n ofthemtranslationaland n(n 1)/2rotational,where n isthedimensionofthespace.4

2 IfmeasurementsgiveresultswhichsystematicallycontradicttheEuclideanpredictions(e.g.,ifthesum oftheanglesofatriangleisnotequalto π ),itcanbededucedthattherepresentationoftheactualspace(the surfaceoftheEarth,forexample)byaEuclideanplaneisinadequate.Foramasterfulandconciseexposition oftheinterplaybetweenphenomenaandtheirmathematicalrepresentationseetheletterofA.Einsteinto M.Solovinein, e.g.,J.Eisenstaedt(2002).

3 Ifinasingleexperimentthiswerenotthecase,itwouldmostlikelyindicatethattheirwatchesarenot accurate.However,ifalargenumberofcarefullyperformedexperimentsgavearesultsystematicallydifferent fromtheprediction,onewouldconclude,inagreementwithEinstein,thattheabsolutespacetimeofNewton doesnotadequatelyrepresenttheactualuniverse.

4 Notethatwealwaysassumethatthe topology oftheabsolutespaceistrivialandthataglobalorientation exists,therebyexcludingspacesoftheM¨obius-striptypeintwodimensionsortheKlein-bottletypeinthree dimensions.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.