Reinforced polymer composites processing, characterization and post life cycle assessment wiley-vch

Page 1


https://ebookmass.com/product/reinforced-polymer-composites-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Wool Fiber Reinforced Polymer Composites Sabu Thomas

https://ebookmass.com/product/wool-fiber-reinforced-polymercomposites-sabu-thomas/

ebookmass.com

Techno-economics and Life Cycle Assessment of Bioreactors: Post-COVID-19 Waste Management Approach Puranjan Mishra

https://ebookmass.com/product/techno-economics-and-life-cycleassessment-of-bioreactors-post-covid-19-waste-management-approachpuranjan-mishra/

ebookmass.com

Sustainable Construction Technologies: Life-Cycle Assessment Vivian W.Y. Tam

https://ebookmass.com/product/sustainable-construction-technologieslife-cycle-assessment-vivian-w-y-tam/

ebookmass.com

METODOLOGIA DE LA INVESTIGACION LAS RUTAS CUANTITATIVA CUALI (Spanish Edition) Roberto Hernandez-Sampieri

https://ebookmass.com/product/metodologia-de-la-investigacion-lasrutas-cuantitativa-cuali-spanish-edition-roberto-hernandez-sampieri/

ebookmass.com

Launch Your Inner Entrepreneur: 10 Mindset Shifts for Women to Take Action, Unleash Creativity, and Achieve Financial Success Charlene Walters [Charlene Walters]

https://ebookmass.com/product/launch-your-innerentrepreneur-10-mindset-shifts-for-women-to-take-action-unleashcreativity-and-achieve-financial-success-charlene-walters-charlenewalters/ ebookmass.com

Social support from bonding and bridging relationships in disaster recovery: Findings from a slow-onset disaster Kien Nguyen-Trung

https://ebookmass.com/product/social-support-from-bonding-andbridging-relationships-in-disaster-recovery-findings-from-a-slowonset-disaster-kien-nguyen-trung/ ebookmass.com

Fevered Planet 1st Edition John Vidal

https://ebookmass.com/product/fevered-planet-1st-edition-john-vidal/

ebookmass.com

Introduction to Unity ML-Agents: Understand the Interplay of Neural Networks and Simulation Space Using the Unity ML-Agents Package 1st Edition Dylan Engelbrecht

https://ebookmass.com/product/introduction-to-unity-ml-agentsunderstand-the-interplay-of-neural-networks-and-simulation-spaceusing-the-unity-ml-agents-package-1st-edition-dylan-engelbrecht/ ebookmass.com

Green Sustainable Process for Chemical and Environmental Engineering and Science: Switchable Solvents Dr. Inamuddin

https://ebookmass.com/product/green-sustainable-process-for-chemicaland-environmental-engineering-and-science-switchable-solvents-drinamuddin/ ebookmass.com

https://ebookmass.com/product/towards-more-effective-global-drugpolicies-1st-ed-edition-caroline-chatwin/

ebookmass.com

ReinforcedPolymerComposites

ReinforcedPolymerComposites

Processing,CharacterizationandPostLifeCycleAssessment

Editedby

PramendraK.Bajpai

InderdeepSingh

Editors

Prof.PramendraK.Bajpai

NetajiSubhasUniversityofTechnology DivisionofManufacturingProcessesand AutomationEngineering AzadHindFauzMarg Sector3 Dwarka 110078NewDelhi India

Prof.InderdeepSingh IndianInstituteofTechnologyRoorkee DepartmentofMechanicaland IndustrialEngineering HaridwarHighway Roorkee 247667Uttarakhand India

Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek The DeutscheNationalbibliothekliststhis publicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>

©2020Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34599-1

ePDFISBN: 978-3-527-82096-2

ePubISBN: 978-3-527-82099-3

oBookISBN: 978-3-527-82097-9

CoverDesign SCHULZGrafik-Design, Fußgönheim,Germany

Typesetting SPiGlobal,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

Contents

1OverviewandPresentStatusofReinforcedPolymer Composites 1

FurkanAhmad,InderdeepSingh,andPramendraK.Bajpai

1.1Introduction 1

1.2FRPCs 4

1.2.1FabricationofFiberReinforcedComposites 4

1.2.2PresentStatusofFRPCs 5

1.3FRPCsApplicationsandFutureProspects 9

1.4Conclusion 12 References 12

2FabricationofShortFiberReinforcedPolymerComposites 21 UjendraK.Komal,ManishK.Lila,SaurabhChaitanya,andInderdeepSingh

2.1Introduction 21

2.2ChallengeswithCompositeMaterials 23

2.3PreprocessingofNaturalFibersandPolymericMatrix 25

2.3.1FiberSurfaceModification 25

2.3.2CompoundingofNaturalFibersandPolymericMatrix 25

2.4ProcessingofPolymericMatrixComposites 26

2.4.1SelectionofProcessingTechniques 28

2.4.2InjectionMolding 29

2.4.2.1OperatingParameters 29

2.4.2.2ChallengesinInjectionMoldingofNaturalFiber-Based Composites 33

2.4.2.3FabricationofPolymericCompositesbyInjectionMolding Process 34

2.4.2.4MechanicalPerformanceofInjectionMoldedComposites 34

2.5Conclusions 35 References 36

3FabricationofCompositeLaminates 39

SandhyaraniBiswasandJastiAnurag

3.1Introduction 39

3.2FabricationProcesses 40

3.2.1HandLay-upProcess 40

3.2.2FilamentWindingProcess 42

3.2.3CompressionMoldingProcess 43

3.2.4VacuumBaggingProcess 45

3.2.5AutoclaveMolding 46

3.2.6ResinTransferMolding(RTM)Process 46

3.2.7PultrusionProcess 48

3.3Conclusions 49 References 50

4ProcessingofPolymer-BasedNanocomposites 55 RameshK.Nayak,KishoreK.Mahato,andBankimC.Ray

4.1Introduction 55

4.2ClassificationofNanomaterials 58

4.2.1Nanocomposites 58

4.2.2PolymerMatrixNanocomposites 59

4.3FabricationTechniquesofPolymerMatrixNanocomposites 60

4.3.1UltrasonicandDualMixing 61

4.3.2Three-RollMixingofNano-fillersinPMC 63

4.3.3IntercalationMethod 64

4.3.4Sol–GelMethod 67

4.3.5DirectMixingofPolymerandNano-fillers 68

4.3.5.1MeltCompounding 68

4.3.5.2SolventMethod 69

4.4FuturePerspectiveandChallenges 70 Acknowledgment 71 References 71

5AdvancesinCuringMethodsofReinforcedPolymer Composites 77

AnkitManral,FurkanAhmad,andBhashaSharma

5.1Introduction 77

5.2CuringMethod 79

5.3ThermalCuringofFRPC 81

5.3.1AutoclaveCuring 81

5.3.1.1PropertiesofFRPCsInfluencedbyAutoclaveParameters 85

5.3.2InductionCuring 86

5.3.3ResistanceCuring 89

5.3.4MicrowaveCuring 90

5.3.4.1PropertiesInfluencedbyMicrowaveCuringofFRPC 92

5.3.5UltrasonicCuring 93

5.4RadiationCuringofFRPCs 93

5.4.1ElectronBeamRadiationCuring 96

5.4.2UltravioletCuring(UV) 98

5.5Conclusion 99 References 100

6FrictionandWearAnalysisofReinforcedPolymer Composites 105

PawanKumarRakeshandLalitRanakoti

6.1Introduction 105

6.1.1FiberReinforcedPlastics 105

6.1.2FailureMechanismofFiberReinforcedPlastics 106

6.1.3AdhesionWear 107

6.1.4AbrasiveWear 109

6.1.5FatigueWear 109

6.1.6WearTestingMethod 111

6.2ResultsandDiscussion 114

6.3Conclusions 116 References 116

7CharacterizationTechniquesofReinforcedPolymer Composites 119 ManishK.Lila,UjendraK.Komal,andInderdeepSingh

7.1Introduction 119

7.2FiberReinforcedPolymers 120

7.3CharacterizationofFRPs 121

7.4ChemicalCharacterization 122

7.5PhysicalCharacterization 126

7.5.1MicroscopicCharacterization 126

7.5.2Density 128

7.5.3VoidFraction 129

7.5.4SurfaceHardness 130

7.5.5SurfaceRoughness 131

7.6MechanicalCharacterization 132

7.6.1Tensiletest 133

7.6.2CompressionTest 134

7.6.3FlexuralTest 135

7.6.4ImpactTest 136

7.6.5ShearTest 136

7.7ThermalCharacterization 137

7.7.1ThermalProperties 138

7.7.2ThermogravimetricAnalysis 139

7.7.3DifferentialThermalAnalysis(DTA)andDifferentialScanning Calorimetry(DSC) 139

7.7.4DynamicMechanicalAnalysis(DMA) 140

7.8DurabilityCharacterization 140

7.8.1CreepTesting 141

7.8.2FatigueTesting 141

7.8.3WearTesting 142

7.8.4FireTesting 143

7.8.5EnvironmentalTesting 143

7.9Conclusion 144 References 144

8DetectionofDelaminationinFiberMetalLaminatesBasedon LocalDefectResonance 147 TanmoyBose,SubhankarRoy,andKishoreDebnath

8.1Introduction 147

8.2LocalDefectResonanceBasedNondestructiveEvaluation 149

8.2.1ConceptofLocalDefectResonance 149

8.2.2ModelingofGLARE-FiberMetalLaminate 150

8.2.3DeterminationofLDRFrequencyfromSteadyStateAnalysis 152

8.3Super-HarmonicandSubharmonicExcitationinFiberMetal Laminates 153

8.4DetectionofLDRFrequencyUsingBicoherenceAnalysis 155

8.4.1TheoryofBicoherenceEstimation 155

8.4.2CaseStudyofaFlatBottomHole 157

8.4.2.1ModelingofaFlatBottomHole 157

8.4.2.2DeterminationofLDRFrequencyUsingFastFourierTransform(FFT) Plot 159

8.4.2.3DeterminationofLDRFrequencyUsingBicoherenceAnalysis 159

8.4.2.4ValidationoftheLDRFrequencyUsingSteadyStateAnalysis 161

8.5ConcludingRemarks 161 References 162

9SecondaryProcessingofReinforcedPolymerCompositesby ConventionalandNonconventionalManufacturing Processes 165 ManpreetSingh,SarbjitSingh,andParveshAntil

9.1Introduction 165

9.2SecondaryProcessingofReinforcedPolymerMatrixCompositesby ConventionalMachining 166

9.2.1ConventionalDrillingofReinforcedPolymerMatrixComposites 166

9.2.2GrindingAssistedDrillingofReinforcedPolymerMatrix Composites 167

9.2.3VibrationAssistedDrilling(VAD)ofReinforcedPolymerMatrix Composites 168

9.2.4HighSpeedDrilling(HSD)ofReinforcedPolymerMatrix Composites 168

9.2.5DrillingofReinforcedPolymerMatrixCompositeswithDrillBit GeometryofDifferentMaterials 168

9.2.6MillingofReinforcedPolymerMatrixComposites 171

9.2.7TurningofReinforcedPolymerMatrixComposites 171

9.3SecondaryProcessingofReinforcedPolymerMatrixCompositesby NonconventionalMachining 173

9.3.1LaserBeamMachiningofReinforcedPolymerMatrix Composites 173

9.3.2UltrasonicMachiningofReinforcedPolymerMatrixComposites 174

9.3.3AbrasiveWaterJetMachiningofReinforcedPolymerMatrix Composites 175

9.3.4ElectricalDischargeMachiningofReinforcedPolymerMatrix Composites 178

9.3.5ElectrochemicalDischargeMachiningofReinforcedPolymerMatrix Composites 179

9.4ConcludingRemarks 180 References 181

10HybridGlassFiberReinforcedPolymerMatrixComposites: MechanicalStrengthCharacterizationandLife Assessment 189

ParveshAntil,SarbjitSingh,andManpreetSingh

10.1Introduction 189

10.2PolymerMatrixComposites(PMCs) 191

10.2.1Matrix 191

10.2.2Reinforcement 191

10.2.3FabricationofHGFRPC 192

10.2.4MorphologyofNormalandHybridPMC 193

10.2.5MechanicalStrengthAnalysis 194

10.2.6EnergyDispersiveSpectroscopy 197

10.3EnvironmentalDegradationofPMCs 199

10.4LifeAssessmentofPMCs 201

10.4.1MorphologicalInspection 202

10.5Conclusions 205 References 206

11FirePerformanceofNaturalFiberReinforcedPolymeric Composites 209

DivyaZindani,KaushikKumar,andJoãoPauloDavim

11.1Introduction 209

11.2FlammabilityAspectsandThermalPropertiesofNaturalFibersand NaturalFiberReinforcedPolymericComposites 210

11.3FireRetardants 216

11.4FlameRetardants 216

11.4.1MineralFlameRetardants 216

11.4.2BulgingofFlameRetardants 217

11.5FirePerformanceforUsabilityasMaterialsinTransportation 218

11.6FirePerformanceforUsabilityasBuildingMaterials 219

11.7Summary 220 References 221

12PostLifeCycleProcessingofReinforcedThermoplasticPolymer Composites 225 N.H.Salwa,S.M.Sapuan,M.T.Mastura,andM.Y.M.Zuhri

12.1Introduction 225

12.2PolymerComposites 226

12.2.1ThermoplasticPolymer 227

x Contents

12.2.2ReinforcingFibersinComposites 228

12.2.3GreenBio-composites 229

12.3LifeCycleAssessment(LCA) 230

12.3.1Definition 230

12.3.1.1GoalandScope 233

12.3.1.2LifeCycleInventory(LCI) 234

12.3.1.3LifeCycleImpactAssessment(LCIA) 235

12.3.1.4LifeCycleResultsInterpretation 237

12.4LCAStudiesonBio-composites 238

12.4.1LCABio-composites 238

12.4.1.1LCANaturalFiber 239

12.4.2LCABiopolymer 240

12.5LCALimitations 241

12.6Conclusions 243 Acknowledgment 244 References 244

13ReprocessingandDisposalMechanismsforFiberReinforced PolymerComposites 249

VijayChaudhary,KhushiRam,andFurkanAhmad

13.1Introduction 249

13.2ReprocessingorRecyclingMethodsofFiberReinforcedPolymer Composites 251

13.3MechanicalRecycling 252

13.4ChemicalRecycling 254

13.5HydrolyticDegradationofFiberReinforcedPolymerComposite 255

13.6PhotodegradationofPolymerComposite 256

13.7BiodegradationofFiberReinforcedPolymerComposites 257

13.8Conclusion 258

References 262

Index 267

OverviewandPresentStatusofReinforcedPolymer Composites

FurkanAhmad 1 ,InderdeepSingh 2 ,andPramendraK.Bajpai 1

1 NetajiSubhasUniversityofTechnology,MPAEDivision,Sector-3,Dwarka,NewDelhi,110078,India

2 IndianInstituteofTechnologyRoorkee,DepartmentofMechanicalandIndustrialEngineering,Roorkee, Uttarakhand,247667,India

1.1Introduction

Humanshavebeenusinganumberofmaterialstoimprovetheirlivingstandardssinceages.Infact,theprogressofhumancivilizationhasbeenclassified intothreecategories,popularlyknownastheStoneAge,theBronzeAge,andthe IronAge,onthebasisofmaterialsonly.Lookingatthecurrentrateofdemand andconsumptionofplastics,itwouldnotbewrongifsomebodycategorizesthe presentageas“TheAgeofPlastics”or“PlasticAge”.Newmaterialsformthe foundationfornewtechnologiesandhelpinunderstandingnature.Themost complexdesignsintheworldcanbeofnouseifsuitablematerialisnotused duringthefabricationofproductswiththatdesign.Inactualrealizationofa design,theroleofmaterialsisquiteindispensable.Thelimitedavailabilityofnaturalresourceshasforcedmaterialengineerstousematerialsinamoreconscious manner.Therefore,materialscientistsandengineersaretryingtooptimizethe useofmaterialsineverypossiblefieldofapplication.Inthepresentage,transportationindustryisthebiggestcontributorofcarbonfootprintsintheenvironment.Lowerfuelconsumptionofautomotivevehiclescanlowerthecarbon footprints.Inthequestforachievinglowfuelconsumption,transportationindustryisleaningtowardmaterialshavinghighstrengthtoweightratio.Reinforced polymercomposites(RPCs),alsoknownasfiberreinforcedpolymercomposites (FRPCs)aresuchpromisingmaterialsforalmosteveryindustrylookingforlow weightandhighstrengthmaterials[1].TheapplicationspectrumofFRPCshas spreadinalmosteverysectorstartingfromengineereddomesticproductstothe highlysensitivebiomedicalindustry.FRPCsarenotonlyjustareplacementfor conventionalalloysbuttheyalsoprovideengineeredproperties.Rahmanietal. [2]fabricatedthecarbon/epoxy-basedFRPCswith40wt%offiber.Thissystem ofFRPCswasabletoachieveatensilestrengthof2500MPa,whichisquiteclose tothetensilestrengthofsteel.Theauthorsconcludedthatfiberorientationwas themostinfluencingfactoramongotherfactors,namelynumberoflaminates andresintype.Theauthorssuggestedtheuseof ±35∘ angleofpliestoobtain

ReinforcedPolymerComposites:Processing,CharacterizationandPostLifeCycleAssessment, FirstEdition.EditedbyPramendraK.BajpaiandInderdeepSingh. ©2020Wiley-VCHVerlagGmbH&Co.KGaA.Published2020byWiley-VCHVerlagGmbH&Co.KGaA.

1OverviewandPresentStatusofReinforcedPolymerComposites bettertensilepropertiesalongwithgoodflexuralproperties.Modificationinthe matrixmaterialcanenhancetheoverallpropertiesofFRPCs.Islametal.[3] modifiedtheepoxymatrixbyincorporatingnanoclayandmultiwalledcarbon nanotubes(MWCNTs).Theauthorsfoundsignificantimprovementinthestatic anddynamicmechanicalpropertiesofthedevelopedcarbonfiber-basedFRPCs. Choetal.[4]enhancedthein-planeshearstrengthandshearmodulusofcarbonfiberreinforcedepoxycompositesbyincorporatinggraphitenanoplatelets intheepoxymatrixusingthesonicationmethod.Increasingthevolumefraction ofreinforcementcanincreasethemechanicalpropertiesofthedevelopedFRPCs. Aramideetal.[5]fabricatedglassfiber/epoxy-basedFRPCswithvaryingvolume fractionoffibersfrom5%to30%.Theauthorsfoundthatthemechanicalstrength increasedasthefibervolumefractionincreasedupto30%.Treinyteetal.[6] fabricatedpoly(vinylalcohol)-basedpots.Forestryandwoodprocessingwaste wasusedasfillerinthematrix.Theauthorsclaimedthatthemanufacturedpots showed45%lowerwaterevaporationrateincomparisontoregularpeatpots. Architectureofthereinforcementalsoaffectsthemechanicalperformanceof developedFRPCsproducts.Arangeofreinforcementarchitecturesisavailable inthemarketsuchasshortfiber,unidirectionalprepregs,2Dand3Dwoven mats,braidedmats,andknittedmats.Everyarchitecturehasitsownmeritsand demerits–2Dwovenmatsshowbetterin-planemechanicalpropertiesbutthey lackinout-ofplanepropertieswhile3Dwovenmatsofferbetterout-of-plane propertiesincomparisontoothers[7].Eroletal.[8]investigatedtheeffectof yarnmaterialandweavingpatternonthemacroscopicpropertiesofFRPCsand concludedthatweavepatterngreatlyinfluencedthetensileandshearpropertiesofthedevelopedcomposites.Someauthors[9]haveevenused3Dand5D braidedreinforcementforthedevelopmentofFRPCs.Theauthorsconcluded thatbraidedarchitectureaffectsthefracturemechanisminasignificantway. Kostaretal.[10]usedtwo-sidedco-braidedcarbonandKevlarhybridreinforcementforthedevelopmentofFRPCsandconcludedthatthetensilestrengthand modulusofhybridreinforcement-basedFRPCswere13%and80%higherthan thosewithsimplereinforcement.FRPshaveevolvedoveralongtimeperiodas showninFigure1.1.

Environmentalproblemsanddifficultyintherecyclingassociatedwith syntheticcompositeshaveledtothedevelopmentofbiocomposites/green composites.Biocompositesareeco-friendlymaterialswithadequatemechanical properties.Fombuenaetal.[11]fabricatedbiocompositesusingbio-fillers derivedfromsea-shellwasteasreinforcementinbio-basedepoxymatrix.The authorsfoundimpressiveimprovementinmechanicalpropertiesofbio-based epoxywhenreinforcedwithbio-fillers.Endoflife(EOL)impactofsynthetic fibersandpolymersisnegativetotheenvironment.Duflouetal.[12]showed thatlowmechanicalstrengthofflaxfiberisanobstructioninthereplacement ofglassfiberbutitcanbeusedinmanyapplicationswherehighmechanical strengthisnottheprimaryrequirement.Effectofmoistureonthemechanical performanceofnaturalfiber-basedbiocompositesisyetanotherconcernwhile usingbiocomposites.Baghaeietal.[13]developedpolylacticacid(PLA)-based biocompositesandanalyzedthemoistureabsorptionbehavior.Theauthors foundthatthemoistureabsorptioncharacteristicofthedevelopedcomposite

Improvements in polymeric materials

Optimization of process parameter

Evolution of fabrication techniques for fiber reinforced plastics

Development of high performance fibers

Improvements at macroscopic level

(Chemical treatment and fabric architecture, etc.)

Use of FRPs in automobile and aerospace industries

Improvement at microscopic level

(Surface coating, use of nano-fillers, etc.)

Figure1.1 DevelopmentstagesofFRPs.

Development of green composites

Development of functional FRPs

(Improvement in electrical properties)

wasreducedwhenthereinforcementwasusedinthewovenforminsteadofthe nonwovenform.

Hybridizationcanimprovethemechanicalstrengthofgreencomposites. Hassaninetal.[14]developedabiocompositeparticleboardusingamixture ofwoodparticlesandshortglassfiberscoveredwithanouterlayerofjute fabric.Theparticleboardshowedexcellentmechanicalandphysicalproperties incomparisontocommerciallyavailableparticleboards.Chaudharyetal.[15] hybridizedthereinforcementandfoundimprovedmechanicalandthermal propertiesofthedevelopedbiocomposites.Theauthorsusedthreetypesof wovenfibersmats,namelyjute,hemp,andflax,asreinforcementinepoxymatrix.

Chemicaltreatmentoffibers/surfacemodificationoffibersisalsoapromising methodforimprovementinthemechanicalpropertiesofFRPCs.Alkali,acryl, benzyl,andsilanesolutionsarecommonlyusedforthetreatmentoffibers[16]. Asaithambietal.[17]treatedbananafibersbeforeusingthemasreinforcement inPLA-basedFRPCs.Bananafiberswerefirstpretreatedwith5%NaOHsolution atroomtemperatureforaroundtwohours,andthenthechemicaltreatmentof thefiberwascompletedusingbenzoylperoxide.Significantimprovementinthe mechanicalpropertiesdevelopedwithtreatedFRPCswasfoundincomparison tothosedevelopedwithuntreatedFRPCs.RahmanandKhan[18]usedethylene dimethylacrylate(EMA)forthesurfacemodificationofcoirfibersalongwith UVtreatmentfortheagingoffibers.TheauthorsconcludedthatthemechanicalpropertiesofFRPCsdevelopedusingtreatedfiberwerebetterthanthoseof untreatedfiberreinforcedFRPCs.

1.2FRPCs

FRPCsaremultiphasematerialscomprisedofnatural/syntheticfiberasreinforcementandthermoset/thermoplasticpolymerasmatrix,resultinginsynergisticpropertiesthatcannotbeachievedfromasinglecomponentalone.Ingeneral, reinforcementisintheformoflongcontinuousfibersbuttheycanbeusedin variousotherformssuchasshortfibers,fillers,orwhiskers.Thefibrousform ofreinforcementisusedincompositematerialsbecausetheyarestrongerand stifferthananyotherform[19].Syntheticfibers(carbon,glass,aramid,etc.)can providemorestrengththanmostofthemetalsalongwithbeinglighterthan thosematerials.Ontheotherhand,naturalfibersarealsobeingusedinanumberofstructuralaswellasnonstructuralapplicationsduetotheenvironmentalproblemsassociatedwithsyntheticfibers.Matrixmaterial,whichisgenerallycontinuousinnature,protectsthereinforcementfromadverseenvironment andtransferstheloadtoreinforcementfromthepointofapplicationofload [12].Thematrixmaterialholdstheflexiblereinforcementstogethertomakeita solid.Matrixmaterialisalsoresponsibleforthefinishandtextureofthecompositematerial.Thepropertiesofcompositematerialsdependonthedispersionandpropertiesoftheconstituentsandtheirinterfacialinteraction.Tailoring thepropertiesofamaterialaccordingtotherequirementofapplicationcanbe easilydoneincompositematerials[20].Table1.1showsthecommonlyused naturalandsyntheticpolymersandfibersusedasmatrixandreinforcement, respectively.

1.2.1FabricationofFiberReinforcedComposites

FabricationmethodsofFRPCsstillrequirealotofattentioninordertoproducedefect-freehighqualityproducts.Someuniquefeaturesofprimaryand secondaryprocessingofFRPCsaretabulatedinTable1.2.

Table1.1 Matrixandreinforcementmaterialsusedinreinforcedpolymercomposites.

MatrixNaturalSynthetic

Polysaccharidessuchas homoglycans,cellulose,chitin, chitosan,heteroglycans,suchas alginate,agar,andagarose, carrageenan,pectins,gums,and proteoglycans,protein,peptides, andenzymes

Polyolefins,poly(tetrafluoroethylene) (PTFE),poly(vinylchloride)(PVC), silicone,methacrylates,aliphatic polyesters,polyethers,poly(amino acids),polyamides,polyurethanes, epoxy,polycarbonates

ReinforcementNaturalSynthetic

Animal-based–silk,wool,hair; Plant-based–bastfibers(jute, flax,ramie,hemp,kenaf,roselle, etc.),leaffibers(sisal,banana, agava,etc.),seed,fruit,wood,and stalkfibers

Carbon,glass,Aramid/Kevlar, graphite,aromaticpolyesterfibers, boron,silicacarbide

1.2.2PresentStatusofFRPCs

RPCproductssuchaspipesarebeingusedinvariousadverseconditionssuchas inoffshoreandmarineapplications.Thesepipesareexposedtosevereclimatic conditionsrangingfrom 40to80 ∘ C[21].Benyahiaetal.[21]testedthe mechanicalpropertiesofafilamentwoundglass/epoxypipeof86mmdiameter and6.2mmthickness.Theauthorsestimatedthattherewasdegradationof mechanicalpropertiesathighertemperatures.EllyinandMaser[22]investigated theeffectofmoistureatelevatedtemperatureonthemechanicalpropertiesof glassfiberreinforcedpolymer(GFRP)compositetubes.Atlowertemperature, theductilityofthespecimenwasfoundtobedecreaseddrasticallyandthe stiffnesswasincreased.Abovetheglasstransitiontemperature,therewassudden degradationinthemechanicalpropertiesofcompositepipes.Inrecentprogress, shapememoryalloy(SMA)wiresarebeingincorporatedintotheFRPCsas reinforcementtoincreasethefunctionalityofthedevelopedcompositessuch asshaperecovery,highdampingcapacity,generationofhighrecoverystresses, andcontrolledoverallthermalexpansion.SMAwiresnotonlyimprovethe functionalityoftheFRPCsbutalsoofferimprovedmechanicalproperties[23].

PaineandRogers[24]concludedthatthelowvelocityimpactpropertiesof FRPCscanbeimprovedbyincorporatingSMAwires.Incorporationofjust 2.8%volumefractionofSMAwiresasreinforcementwasabletoincreasethe impactdelaminationresistanceby25%incomparisontotheFRPCswithoutthe SMAwirereinforcement.Pappadaetal.[25,26]fabricatedhybridglassfiber reinforcedvinylester-basedFRPCmaterialandincorporatedSMAwiresintwo forms,namelyunidirectionalSMAwiresandknittedSMAwires.Theauthors assessedimpactpropertiesandfoundthatFRPCsreinforcedwithSMAwires achievedhigherimpactpropertiesthanFRPCswithunidirectionalSMAwires.

Polymernanocompositesarealsoarelativelynewclassofmaterials.Nanocompositesaregenerallyfabricatedbyincorporatingoneormoreconstituentsof thesizeoftheorderofnanometers.Theseconstituentsaregenerallyinorganic innatureandknownasfillers,andnotasreinforcement,duetotheirsmallsize. Variousresearchershavereportedimpressivepropertiesofnanocompositessuch ashighmodulusandstrength,highresistancetoheat,andreducedflammability. However,effectivedispersionofthenano-sizedfillersthroughoutthepolymer matrixisstillachallenge,andmoreoverthisdispersioncontrolsanddetermines thephysical,chemical,andmechanicalpropertiesofthedevelopedFRPC products[27–29].Theauthorshaveusedaninsituapproachtohomogenize thedispersionofnano-sizedfillers.Inthisapproach,nano-fillersaredirectly synthesizedwiththepolymerusingsomesuitableprecursor[30,31].Although theinsituapproachprovidescontrolleddispersionofnano-fillers,itinvolves complexproceduresandprocessingstepsalongwithexpensivereactants[32,33]. Variousresearchersusedtheballmillingmethodtofabricatenanocomposites. Inthismethod,firstboththeconstituents,polymerandnano-fillers,aremixed witheachotherinsolidstateusingballmillsandthenthemixtureismelted topolymerize.Althoughthemorphologyofthefillerschangesintheballmill, thischangepositivelyaffectsthecompositesbyenrichingthefillercompatibility withthepolymer.Theballmillingmethodisnotjustanalternativetoexsitu

1OverviewandPresentStatusofReinforcedPolymerComposites

Table1.2 PrimaryandsecondaryprocessingmethodsforFRPCs.

Processing

Primary processing methods

Fabrication techniqueFeatures

Handlay-upMinimuminfrastructuralrequirement;lowinitialcapital requirement;onlyforthermosettingresins;lower productionrate;andlowvolumefractionofthe reinforcement

Spraylay-upExtensionofhandlay-uptechnique;reinforcementinthe formofchoppedfibersonly

Compression molding

Secondary processing methods

Injection molding

Pultrusion process

Resintransfer molding

Filament winding

Vacuumassisted resintransfer molding

Conventional machining

Useofheatandpressurebothsimultaneously; dimensionallyaccurateandfinishedproducts;process parametersneedtobeoptimized;boththermosettingand thermoplasticpolymerscanbeused;higherinitialcapital requirementcomparedtohandlay-up

Reinforcementonlyintheformofshortfibers;damageof fibersinbarrelduetoshearingactionofscrew.Highly accuratedimensionsoftheproduct;usedformass production

Resinimpregnatedcontinuousfibersarepassedthrough aheatingdieforcuring;automatedprocessusedfor continuousproduction;onlyproductswithconstant cross-sectionalareadependingonthediecanbe manufactured

Liquidresinsystemisforcedintothemold;highfiber volumefractioncanbeachieved.Goodsurfacefinish withminimummaterialwastage

Continuousfiberstrandsasreinforcement;controlled fiberorientation;highproductionrate;highcapital investment;notpossibletoproducefemalefeaturesof productsandexpensivemandrel

Usesvacuumtoensurezerovoids;superiorquality compositesusingautoclave(astrongheatingcontainer thatisusedforapplyingheatandpressureatthetimeof curingofthecompositelaminates)

Drillingwithtwistdrillisthemostusedconventional methodtoproduceholesinlaminates.Requiresmilling machineordrillingmachine.Spindlespeed,feedrate, anddrillgeometryareinfluentialparameters. Delamination,fiberlinting,andfiberpull-outarethe mostcommondefects

Unconventional machining

Abrasivewaterjet(AWJ)reducesthethermaldamage thatcouldbegeneratedinconventionalmachining. Laserbeam(LB)cuttingisalsobeingusedforholes generationincompositelaminates.Highenergyinputis required.

Ultrasonicmachining(USM)canalsobeusedforhole makinginthecompositelaminates

fabricationofFRPCsbutisalsoanenvironmentfriendlyandeconomicalmethod toproducenano-fillerreinforcedFRPCs[34].Someauthors[35]havealsoused reinforcingmetallicpowderssuchascopperpowderof29.5and260 μmsizein thepolyvinylbutyral(PVB)polymermatrixtofabricatepolymercomposites. FanandWang[36]developedatransparentprotectivepolymercomposite materialwithlightweightproperty,whichcouldbeusedagainsthighspeed impactloading.

ThebehaviorandperformanceofFRPCschangesfromapplicationtoapplication.FRPCsexposedtovarioustribologicalenvironmentsleadtothenecessityto evaluatethetribologicalperformance.TribologyofFRPCsisquitecomplexthan metaltribologyduetothefactthatpolymersdonotobeythewell-established lawsoffrictionathightemperature[37].XueandWang[38]studiedtheeffect offillerparticlesizeonthewearandfrictionalpropertiesofpolymercomposites.Theauthorsconcludedthatadditionofnano-sizedSiCparticlesintothe polymermatrixeffectivelyreducedthefrictionandwearoftheneatpolymer. Thenano-sizedparticlesformacontinuousandthinlayerbetweentheinterface, whichresultsinreductionoffrictionandwear.XingandLi[39]alsoconfirmed asimilarbehaviorofFRPCswiththeincorporationofnano-sizedfillers.Gears, bearings,shoesoles,andbrakepadsforautomobileapplicationsaresomeofthe mostlyusedtribologicalapplicationsofFRPCs[40–42].Researchershavesuggestedanumberofmethodstoreducethefrictionandwearattheinterface betweentheFRPCproductandthemetal/nonmetalsurface.Microencapsulation ofliquidlubricantwasfoundtobeaneffectivemethodtoimprovethetribologicalpropertiesofpolymers[43].Guoetal.[44,45]demonstratedthatthe frictioncoefficientofepoxy-basedFRPCscanbereducedupto75%byincorporatingjust10wt%oil-loadedmicrocapsules.Theauthorshaveclaimedtodevelop self-lubricatingpolymer-basedmaterialswiththehelpofencapsulationmethod. Khunetal.[46]andImanietal.[47]addedwax-loadedmicrocapsulesinepoxy matrixcompositesandfoundthatfrictionandwearwereverymuchreducedin comparisontothatintheneatepoxypolymercomposite.Inanotherstudy,Khun etal.[48]usedthetwotypesofmicrocapsulesinthepolymercomposite.One typeofmicrocapsuleswereloadedwithwaxandanothertypeofcapsuleswere loadedwithMWCNTs.Theauthorsconcludedthattribologicalandmechanical propertieswereenhancedsimultaneously.Wax-loadedcapsuleswerefoundto beresponsibleforimprovedtribologicalpropertieswhileMWCNTsloadedcapsulesresultinimprovedmechanicalproperties,whichwasachievablewithonly wax-loadedcapsules.Encapsulationmayhelpinthedevelopmentofself-healing materialsasexplainedbysomeauthors[49].

Self-reinforcedcomposites(SRCs)areyetanothercategoryofFRPCsinwhich onlyasinglepolymerisused.Hard/processedformofthesamepolymerisused asreinforcementthatisbeingusedasmatrixmaterial[50].Huang[51]developed apolypropylene(PP)-basedSRCusingmelt-flowinducedcrystallization.Li andYao[52]andMakelaetal.[53]developedPLApolymer-basedfibersthat couldbeusedasreinforcementintheSRCs.Similarly,Tormala[54]developed PLA-basedSRCsformedicalapplications.Inthesameseries,HineandWard [55]developedPET-basedSRCs,Gilbertetal.[56]developedpolymethyl

1OverviewandPresentStatusofReinforcedPolymerComposites

methacrylate(PMMA)-basedSRCs,andGindlandKeckes[57]manufactured cellulose-basedSRCs.

Gemi[58]developedglassandcarbon-basedhybridcompositepipes andstudiedtheeffectofstackingsequence.Theauthorsconcludedthat glass–carbon–glasssequenceofreinforcementduringthewindingoffibers leadstonoleakagepropertyofpipes.

Thesuperiorelectrical,mechanical,andthermalpropertiesofgraphenemake itveryusefulinthefieldofFRPCs[59].Graphene,intheformof3Dfoamand gelisbeingusedinFRPCsproductsinbiomedicalandelectronicsapplications [60,61].Variousauthors[62,63]reportedimpressiveimprovementinthe mechanicalpropertiesofepoxycompositeswiththeincorporationof3Dfoam. Sunetal.[64]reportedthattheincorporationof3Dgraphenefoaminpolymer significantlyimprovedelectricalproperties.Juszaetal.[65]developedluminescentcompositematerialsforpossibleapplicationsinopto-electronics,sensor networks,andimagingfield.Complextechnologyandexpensivemanufacturing methodsofopticallyactivetwo-phasecompositematerialshavemadethem commerciallyunavailable.

Carbonnanotubes,popularlyknownasCNTs,arefiller/reinforcementthatare beingusedinpolymerstofabricatecompositeswithimprovedphysical,mechanical,andelectricalproperties[66–69].Nanomaterialsarethosematerialsthat havedimensionsbelow100nm[70].Severalauthors[71,72]reportedanincrementofover300%inthetensilestrengthofFRPCsreinforcedwithCNT-based nano-fillers.Incorporationofnanocarbonsresultedintheincrementofelectrical propertiesuptoover14ordersofmagnitude[73].Carbonquantumdots(CQD), aformofnanocarbonmaterial,isalsobeingusedasreinforcementduetotheir tunableopticalandphotochemicalproperties.AnotheremergingclassofFRPCs isthermallyconductivepolymercompositesandnanocomposites[74].Studies [75,76]havereportedthatpolymersreinforcedwithalignedmolecularchaincan obtainhigherthermalconductivitythanthatofmanymetals.Rajapakseetal.[77] preparedelectronicallyconductivenanocompositesforpotentialapplicationas acathodematerial.

AnotheradvancementinthefieldofFRPCsistheproductionofshapememorypolymercompositesalongwithself-healingproperties[78].FRPCsarebeing widelyusedinthefieldofelectronicsandbiomedicalandenergyapplications fromthelastdecades.However,lowthermalconductivityandinsufficientthermalstabilityhaverestrictedFRPCsusagetoalimitednumberofapplications[79]. Alongwiththeiradvantages,therearesomedisadvantagesassociatedwith FRPCsaswell.ThedisadvantagewithFRPCsistheneedforrecyclinganddisposalmethodsafterthefinitelifeoftheFRPCproduct.Lietal.[80]investigated theenvironmentalandfinancialproblemsassociatedwiththemanufacturing ofcarbonFRPCs.Theauthorssuggestedtheuseofmechanicalrecyclingof FRPCsinsteadoflandfillingandincineration.Landfillingmethodfordisposal ofFRPCswasfoundtobemodestwithmoderatelandfillingtax.However, incinerationmethodresultsintheproductionofgreenhousegasescausing severedamagetoenvironment.Longanaetal.[81]suggestedanothermethod ofrecyclingknownasmultipleclosedlooprecyclingofcarbonFRPCs.In thismethod,reclaimedcarbonfibers(rCF)areagainusedtoremanufacturea

numberofproductsonceavirgincarbonfiber(vCF)producthascompletedits definedlife.

1.3FRPCsApplicationsandFutureProspects

ThehighstrengthtoweightratioofFRPCsmakesthemirreplaceableinanumberofapplicationsintheautomobileandaerospaceindustries[82–86].Dhruv, theadvancedlighthelicopter(ALH)manufacturedbyHindustanAeronautics LimitedfortheserviceoftheIndianarmy,hasaround60%ofstructuralarea madeupofFRPCcomponentsandsandwichstructures[87].Anumberofproductsarebeingsuccessfullyusedinvariousautomotiveandotherapplicationsas reportedinTable1.3.Anumberofmedicaldeviceshavebeendevelopedusing biodegradablepolymersalone.Drug-elutingstents,orthotropicdevices,disposablemedicaldevices,drugdeliverydevices,andstentsforurologicalapplications aresomebiomedicalapplicationsofpolymers[101].Tianetal.[101]statedthat alongwiththenontoxicnatureandlowbiodegradabilityofpolymers,mechanical strengthisalsorequiredinanumberofmedicalapplications.Tostrengthenthese biodegradablepolymers,fibersarebeingincorporatedinthepolymersaccordingtotherequirementofapplication.Carbonfiberreinforcedepoxycomposite materialsarebeingusedtofabricateexternalfixationequipmentusedforfracturedbones.Boneplatesarebeingusedforthedevelopmentofinternalfixation equipment.Theauthors[102]havereportedcarbonfiberreinforcedpolyether etherketone(PEEK)-basedcompositeasabiocompatiblematerialforboneplate. Linetal.[103]proposedshortglassfiberreinforcedPEEKcompositematerialfor thefabricationofintramedullarynails,whicharegenerallyusedtofixfracturesof longbones.Thesenailsarefixedintheintramedullarycavityusingascrewmechanism.Kettunenetal.[104]usedcarbonfibertofabricatecompositematerialfor thesenails.Someauthors[105,106]havesuccessfullyusedFRPCsasbonegraftingmaterials.Carbonfiber-basedFRPCsareintensivelybeingusedtofabricate stemsfortotalhipreplacement[107,108].Dengandshalaby[109]usedultrahigh molecularweightpolyethylene(UHMWPE)tofabricateself-reinforcedcompositematerialsforpossibleapplicationinkneereplacement.Indentalapplications, CF/epoxy-basedFRPCsarebeingusedtofabricatedentalpost[110].Usually, goldbridgeswereusedtoreplaceoneormoreteethbuttheirhighcostand time-consumingfabricationprocesshaveledtothedevelopmentofFRPCs-based bridges[111].FRPCsarealsobeingusedtofabricateorthodonticarch-wires. Thesewiresaregenerallyfittedovertheteethinordertoalignthem[112,113]. Artificiallegs,usedtosupportamputeesduringwalk,weregenerallymadeof metallicmaterials.Owingtothehighweightofmetalsandlowcorrosionresistance,FRPCshavereplacedthesemetallicprostheticlimbs.Asofnow,allthe threecomponentsofprostheticleg,namelyshaft,socket,andfoot,arebeing manufacturedusingFRPCs[114–116].Movingtables,usedinCTandMRIscanners,arebeingmanufacturedusingFRPCsduetotherequirementoflightweight andhighstrengthmaterial[117].Calciumphosphate(CaP)/polymercomposite materialsarehighlyrecommendedmaterialsinbonereplacementduetohigh compressiveandflexuralstrength[118].

Table1.3 Applicationsofreinforcedpolymercomposites.

S.No.CompositeProcessingtechniqueApplicationfieldComponentReferences

1. Glassfiber/unsaturatedpolyesterHandlay-upmethodAutomobileFrontbumper[88]

2. Sisal,rosellefiber,banana/epoxy grade3554A Handlay-upmethodAutomobileVisorintwo-wheeler[89] Indicatorcover Pillionseatcover Rearviewmirrorcover

3. Glass,carbonfiber/epoxy—AerospaceVerticalstabilizer[89]

4. GFRPC/epoxy/polyester/pp—ElectronicComputer,electricmotorcoverscell phones [90] HomeandfurnitureRoofsheet,sunshade,bookracks,etc. AerospaceLuggagerack,bulkheads,ducting,etc. BoatsandmarineBoatframe MedicalX-raybeds AutomobileBodypanel,seatcover,bumper,and enginecover

5. CFRPlaminatesVacuumbaggingAerospaceUpperdeckfloorberns[91] Pressurebulkhead Centrewingbox, finbox,rudderHTPbox

6. Glass,carbon,aramid/polyester, vinylester,epoxy Filamentwinding,resin infusion,prepreg,etc. EnergyindustriesWindturbineblades[92]

7. CFRP—AutomobileCitroencarbody[93]

CF-GF/epoxy(hybrid)—AerospacePilot’scabindoor[94] Boron–graphite(hybrid)—Fighteraircraftcomponents CF–aramid/thermoplastichybrid—SafetyHelmet GFPR,CFPR(hybrid)—CivilBridgegirder

9. CF/epoxyExtrusion,compression molding AutomobileStiffener,floorpanel,sidesillinner[95]

10. CFRP—AutomobileDoorsillstiffeners[96] Enginebaysubframe

11. CFRP/vinylesterCompressionmoldingAutomobileFendersupport,headlampsupports, doorcomponents [97] GFRP/vinylester Doorinnerpanel,windshieldsurround outerandinnerpanel,doorcomponents

12. CF/Epoxy—BiomedicalProstheticlimbs(foot)[98]

13. Kevlar/CF/PMMA—BiomedicalBonecement(usedforfixingthebones)[99]

14. E-glass/epoxyPultrusionElectrical applications

Insulatingmaterialforhighvoltageline[100]

1.4Conclusion

RPCsareengineeredmaterialsusedinawidespectrumofapplicationsranging fromdomesticproductstobiomedicaldevices.Naturalandsyntheticfibers arebothbeingreinforcedinFRPCsaccordingtotheapplication.FRPCsoffera numberofadvantagesoverconventionalmonolithicmaterialssuchascorrosion resistance,lightweightandhighstrengthtoweightratio.Automobiles,aircrafts, boats,ships,recreationalgoods,chemicalequipment,andcivilbuildingand bridgesaresomecommonapplicationsofFRPCs.Biomedicalapplications suchasprostheticlegsandbonecementarerelativelynewapplicationsof FRPCs-basedmaterials.TheconsumptionofFRPCsinthenearfutureis expectedtoincreasebutalotresearchisneededintherecyclinganddisposal methodsofsyntheticFRPCs.

References

1 Bajpai,P.K.,Ahmad,F.,andChaudhary,V.(2017).Processingandcharacterizationofbio-composites.In: HandbookofEcomaterials (ed.L.M. Torres-Martinez,O.V.KharissovaandB.I.Kharisov).SpringerInternational PublishingAG,https://doi.org/10.1007/978-3-319-48281-1_98-1.

2 Rahmani,H.,Najafi,S.H.M.,andAshori,A.(2014).Mechanicalperformance ofepoxy/carbonfiberlaminatedcomposites. JournalofReinforcedPlastics andComposites 33(8):733–740.

3 Islam,M.E.,Mahdi,T.H.,Hosur,M.V.,andJeelani,S.(2015).Characterizationofcarbonfiberreinforcedepoxycompositesmodifiedwithnanoclay andcarbonnanotubes. ProcediaEngineering 105:821–828.

4 Cho,J.,Chen,J.Y.,andDaniel,I.M.(2007).Mechanicalenhancementofcarbonfiber/epoxycompositesbygraphitenanoplateletreinforcement. Scripta Materialia 56:685–688.

5 Aramide,F.O.,Atanda,P.O.,andOlorunniwo,O.O.(2012).Mechanical propertiesofapolyesterfiberglasscomposite. InternationalJournalof CompositeMaterials 2:147–151.

6 Treinyte,J.,Bridziuviene,D.,Fataraite-Urboniene,E.etal.(2018).Forestry wastesfilledpolymercompositesforagriculturaluse. JournalofCleaner Production 205:388–406.

7 Liu,Q.andHughes,M.(2008).Thefracturebehaviourandtoughness ofwovenflaxfibrereinforcedepoxycomposites. Composites:PartA 39: 1644–1652.

8 Erol,O.,Powers,B.M.,andKeefe,M.(2017).Effectsofweavearchitecture andmesoscalematerialpropertiesonthemacroscalemechanicalresponse ofadvancedwovenfabrics. Composites:PartA 101:554–566.

9 Yuanyuan,Z.,Ying,S.,Jialu,L.etal.(2016).Tensileresponseof carbon-aramidhybrid3Dbraidedcomposites. MaterialsandDesign 116: 246–252.

10 Kostar,T.D.,Chou,T.W.,andPopper,P.(2000).Characterizationandcomparativestudyofthree-dimensionalbraidedhybridcomposites. Journalof MaterialScience 35:2175–2183.

11 Fombuena,V.,Bernardi,L.,Fenollar,O.etal.(2014).Characterizationof greencompositesfrombiobasedepoxymatricesandbio-fillersderivedfrom seashellwastes. MaterialsandDesign 57:168–174.

12 Duflou,J.R.,Yelin,D.,Acker,K.V.,andDewulf,W.(2014).Comparative impactassessmentforflaxfibreversusconventionalglassfibrereinforced composites:arebio-basedreinforcementmaterialsthewaytogo? CIRP Annals–ManufacturingTechnology https://doi.org/10.1016/j.cirp.2014.03 .061.

13 Baghaei,B.andSkrifvars,M.(2016).Characterisationofpolylactic acidbiocompositesmadefromprepregscomposedofwovenpolylactic acid/hemp–Lyocellhybridyarnfabrics. Composites:PartA 81:139–144.

14 Hassanin,A.H.,Hamouda,T.,Candan,Z.etal.(2016).Developing high-performancehybridgreencomposites. CompositesPartB https:// doi.org/10.1016/j.compositesb.2016.02.051.

15 Chaudhary,V.,Bajpai,P.K.,andMaheshwari,S.(2018).Studiesonmechanicalandmorphologicalcharacterizationofdevelopedjute/hemp/flax reinforcedhybridcompositesforstructuralapplications. JournalofNatural Fibers 15(1):80–97.

16 Ahmad,F.,Chaudhary,V.,Ahmad,Z.,andBajpai,P.K.(2017).Effectoffiber selectionandfibertreatmentonthecompositeperformance. International JournalofScientificandEngineeringResearch 8:55–57.

17 Asaithambi,B.,Ganesan,G.,andKumar,S.A.(2014).Bio-composites:developmentandmechanicalcharacterizationofbanana/sisalfibrereinforced polylacticacid(PLA)hybridcomposites. FibersandPolymers 15:847–854.

18 Rahman,M.M.andKhan,M.A.(2007).Surfacetreatmentofcoir(Cocosnucifera)fibersanditsinfluenceonthefibers’physico-mechanicalproperties. CompositesScienceandTechnology 67:2369–2376.

19 Shah,D.U.,Schubel,P.J.,andClifford,M.J.(2013).CanflaxreplaceE-glass instructuralcomposites?Asmallwindturbinebladecasestudy. Composites:PartB 52:172–181.

20 Ahmad,F.andBajpai,P.K.(2017).Finiteelementanalysisandsimulation offlax/epoxycompositesundertensileloading. InternationalJournalof AdvancedResearchScienceandEngineering 6(2):436–441.

21 Benyahia,H.,Tarfaoui,M.,ElMoumen,A.etal.(2018).Mechanicalpropertiesofoffshoringpolymercompositepipesatvarioustemperatures. CompositesPartB:Engineering 152:231–240.

22 Ellyin,F.andMaser,R.(2004).Environmentaleffectsonthemechanical propertiesofglass-fiberepoxycompositetubularspecimens. Composite ScienceandTechnology 64(12):1863–1874.

23 Cohades,A.andMichaud,V.(2018).Shapememoryalloysin fibre-reinforcedpolymercomposites. AdvancedIndustrialandEngineering PolymerResearch https://doi.org/10.1016/j.aiepr.2018.07.001.

1OverviewandPresentStatusofReinforcedPolymerComposites

24 Paine,J.S.N.andRogers,C.A.(1994).TheresponseofSMAhybridcompositematerialstolowvelocityimpact. JournalofIntelligentMaterialSystems andStructures 5:530–535.

25 Pappada,S.,Gren,P.,Tatar,K.etal.(2009).Mechanicalandvibrationcharacteristicsoflaminatedcompositeplatesembeddingshapememoryalloy superelasticwires. JournalofMaterialEngineeringandPerformances 18: 531–537.

26 Pappada,S.,Rametta,R.,Largo,A.,andMaffezzoli,A.(2012).Low-velocity impactresponseincompositeplatesembeddingshapememoryalloywires. PolymerComposites 33:655–664.

27 Alexandre,M.andDubois,P.(2000).Polymer-layeredsilicatenanocomposites:preparation,propertiesandusesofanewclassofmaterials. Material ScienceandEngineering:R:Reports 28:1–63.

28 Manias,E.,Touny,A.,Wu,L.etal.(2001).Polypropylene/montmorillonite nanocomposites.Reviewofthesyntheticroutesandmaterialsproperties. ChemistryofMaterials 13:3516–3523.

29 Ma,P.-C.,Siddiqui,N.,Marom,G.,andKim,J.-K.(2010).Dispersionand functionalizationofcarbonnanotubesforpolymer-basednanocomposites:areview. CompositesPartA:AppliedScienceandManufacturing 41: 1345–1367.

30 Liu,T.,Burger,C.,andChu,B.(2003).Nanofabricationinpolymermatrices. ProgressinPolymerScience 28:5–26.

31 Ajayan,P.M.,Schadler,L.S.,andBraun,P.V.(eds.)(2003). Nanocomposite ScienceandTechnology.Weinheim:FRG:Wiley-VCHVerlagGmbH&Co. KGaA.

32 Wilberforce,S.I.J.,Finlayson,C.E.,Best,S.M.,andCameron, R.E.(2011).Theinfluenceofthecompoundingprocessandtestingconditionsonthecompressivemechanicalpropertiesofpoly (d,l-lactide-co-glycolide)/a-tricalciumphosphatenanocomposites. Journalof MechanicalBehaviourofBiomedicalMaterials 4:1081–1089.

33 Sorrentino,A.,Gorrasi,G.,andVittoria,V.(2007).Potentialperspectivesof bio-nanocompositesforfoodpackagingapplications. TrendsinFoodScience andTechnology 18:84–95.

34 Delogu,F.,Gorrasi,G.,andSorrentino,A.(2017).Fabricationofpolymer nanocompositesviaballmilling:presentstatusandfutureperspectives. ProgressinMaterialsScience 86:75–126.

35 Eichner,E.,Heinrich,S.,andSchneider,G.A.(2018).Influenceofparticle shapeandsizeonmechanicalpropertiesincopper-polymercomposites. PowderTechnology https://doi.org/10.1016/j.powtec.2018.07.100.

36 Fan,J.andWang,C.(2018).Dynamiccompressiveresponseofadeveloped polymercompositeatdifferentstrainrates. CompositesPartB https://doi .org/10.1016/j.compositesb.2018.06.025.

37 Friedrich,K.(2018).Polymercompositesfortribologicalapplications. AdvancedIndustrialandEngineeringPolymerResearch https://doi.org/10 .1016/j.aiepr.2018.05.001.

38 Xue,Q.andWang,Q.(1997).Wearmechanismsofpolyetheretherketone compositesfilledwithvariouskindsofSiC. Wear 213:54–58.

39 Xing,X.S.andLi,R.K.Y.(2004).Wearbehaviorofepoxymatrixcomposites filledwithuniformsizedsubmicron-sphericalsilicaparticles. Wear 256: 21–26.

40 Yousef,S.(2016).Polymernanocompositecomponents:acasestudyon gears.In: LightWeightCompositeStructuresinTransportDesign,Manufacturing,AnalysisandPerformance (ed.J.Njuguna),385–420.Woodhead Publishing.

41 Koike,H.,Kida,K.,Santos,E.C.etal.(2012).SelflubricationofPEEK polymerbearingsinrollingcontactfatigueunderradialloads. Tribology International 49:30–38.

42 Friedrich,K.andSchlarb,A.K.(2008). TribologyofPolymericNanocomposites.Amsterdam:Elsevier.

43 Su,F.H.,Zhang,Z.Z.,Wang,K.etal.(2006).Frictionandwearpropertiesofcarbonfabriccompositesfilledwithnano-Al2 O3 andnano-Si3 N4 . CompositesPartA:AppliedScienceandManufacturing 37:1351–1357.

44 Guo,Q.B.,Lau,K.T.,Rong,M.Z.,andZhang,M.Q.(2010).Optimizationof tribologicalandmechanicalpropertiesofepoxythroughhybridfilling. Wear 269:13–20.

45 Guo,Q.B.,Lau,K.T.,Rong,M.Z.,andZhang,M.Q.(2009).Imparting ultra-lowfrictionandwearratetoepoxybytheincorporationofmicroencapsulatedlubricant? MacromolecularMaterialEngineering 294:20–24.

46 Khun,N.W.,Zhang,H.,Yue,C.Y.,andYang,J.L.(2014).Self-lubricatingand wearresistantepoxycompositesincorporatedwithmicroencapsulatedwax. JournalofAppliedMechanics 81:1–9.

47 Imani,A.H.,Zhang,H.,Owais,M.etal.(2018).Wearandfrictionofepoxy basednanocompositeswithsilicananoparticlesandwaxcontainingmicrocapsules. CompositesPartA:AppliedScienceandManufacturing 107: 607–615.

48 Khun,N.W.,Zhang,H.,Yang,J.L.,andLiu,E.(2013).Mechanicaland tribologicalpropertiesofepoxymatrixcompositesmodifiedwithmicroencapsulatedmixtureofwaxlubricantandmulti-walledcarbonnanotubes. Friction 1:341–349.

49 Oyman,Z.O.(2009). AnOverviewofResearchonSelfHealingCoatings,1–3. BoyaTurk,SpecialEdition.

50 Gao,C.,Yu,L.,Liu,H.,andChen,L.(2012).Developmentofself-reinforced polymercomposites. ProgressinPolymerScience 37:767–780.

51 Huang,H.X.(1998).Self-reinforcementofpolypropylenebyflow-induced crystallizationduringcontinuousextrusion. JournalofAppliedPolymer Science 67:2111–2118.

52 Li,R.andYao,D.(2008).Preparationofsinglepoly(lacticacid)composites. JournalofAppliedPolymerScience 107:2909–2916.

53 Makela,P.,Pohjonen,T.,Tormala,P.etal.(2002).Strengthretentionpropertiesofself-reinforcedpoly-l-lactide(SR-PLLA)suturescomparedwith polyglyconate(Maxon(R))andpolydioxanone(PDS)sutures:aninvitro study. Biomaterials 23:2587–2592.

1OverviewandPresentStatusofReinforcedPolymerComposites

54 Tormala,P.(1992).Biodegradableself-reinforcedcompositematerials;manufacturingstructureandmechanicalproperties. ClinicalMaterials 10: 29–34.

55 Hine,P.J.andWard,I.M.(2004).Hotcompactionofwovenpoly(ethylene terephthalate)multifilaments. JournalofAppliedPolymerScience 91: 2223–2233.

56 Gilbert,J.L.,Ney,D.S.,andLautenschlager,E.P.(1995).Self-reinforcedcompositepoly(methylmethacrylate):staticandfatigueproperties. Biomaterials 16:1043–1055.

57 Gindl,W.andKeckes,J.(2007).Drawingofself-reinforcedcellulosefilms. JournalofAppliedPolymerScience 103:2703–2708.

58 Gemi,L.(2018).Investigationoftheeffectofstackingsequenceonlow velocityimpactresponseanddamageformationinhybridcompositepipes underinternalpressure.Acomparativestudy. CompositesPartB:Engineering 153:217–232.

59 Idowu,A.,Boesl,B.,andAgarwal,A.(2018).3Dgraphenefoam-reinforced polymercomposites–areview. Carbon https://doi.org/10.1016/j.carbon .2018.04.024.

60 LiN,ZhangQ,GaoS,SongQ,HuangR,WangL.Biocompatibleand conductivescaffold.2013,doi:https://doi.org/10.1038/srep01604.

61 Bello,A.,Fashedemi,O.O.,Lekitima,J.N.etal.(2013).High-performance symmetricelectrochemicalcapacitorbasedongraphenefoamandnanostructuredmanganeseoxide. AIPAdvances 3(8):82118.

62 Embrey,L.,Nautiyal,P.,Loganathan,A.etal.(2017).Three-dimensional graphenefoaminducesmultifunctionalityinepoxynanocompositesby simultaneousimprovementinmechanical,thermal,andelectricalproperties. AppliedMaterialsandInterfaces 9(45):39717–39727.

63 Qiu,Y.,Liu,J.,Lu,Y.etal.(2016).Hierarchicalassemblyoftungsten spheresandepoxycompositesinthree-dimensionalgraphenefoamand itsenhancedacousticperformanceasabackingmaterial. ACSApplied MaterialsInterfaces 8:18496–18504.

64 Sun,X.,Liu,X.,Shen,X.etal.(2015).Graphenefoam/carbonnanotube/poly(dimethylsiloxane)compositesforexceptionalmicrowave shielding. CompositesPartA:AppliedScienceandManufacturing 85: 199–206.

65 Jusza,A.,Anders,K.,Polis,P.etal.(2014).Luminescentpropertiesinthe visibleofEr3+/Yb3+ activatedcompositematerials. OpticalMaterials https://doi.org/10.1016/j.optmat.2014.03.018.

66 Kroto,H.W.,Heath,J.R.,Obrien,S.C.etal.(1985).C-60–Buckminsterfullerene. Nature 318:162–163.

67 Hirsch,A.(2010).Theeraofcarbonallotropes. NaturalMaterials 9: 868–871.

68 Iijima,S.(1991).Helicalmicrotubulesofgraphiticcarbon. Nature 354: 56–58.

69 Novoselov,K.S.,Geim,A.K.,Morozov,S.V.etal.(2004).Electricfieldeffect inatomicallythincarbonfilms. Science 306:666–669.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Reinforced polymer composites processing, characterization and post life cycle assessment wiley-vch by Education Libraries - Issuu