
https://ebookmass.com/product/reinforced-polymer-composites-

Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Wool Fiber Reinforced Polymer Composites Sabu Thomas
https://ebookmass.com/product/wool-fiber-reinforced-polymercomposites-sabu-thomas/
ebookmass.com
Techno-economics and Life Cycle Assessment of Bioreactors: Post-COVID-19 Waste Management Approach Puranjan Mishra
https://ebookmass.com/product/techno-economics-and-life-cycleassessment-of-bioreactors-post-covid-19-waste-management-approachpuranjan-mishra/
ebookmass.com
Sustainable Construction Technologies: Life-Cycle Assessment Vivian W.Y. Tam
https://ebookmass.com/product/sustainable-construction-technologieslife-cycle-assessment-vivian-w-y-tam/
ebookmass.com



METODOLOGIA DE LA INVESTIGACION LAS RUTAS CUANTITATIVA CUALI (Spanish Edition) Roberto Hernandez-Sampieri
https://ebookmass.com/product/metodologia-de-la-investigacion-lasrutas-cuantitativa-cuali-spanish-edition-roberto-hernandez-sampieri/
ebookmass.com

Launch Your Inner Entrepreneur: 10 Mindset Shifts for Women to Take Action, Unleash Creativity, and Achieve Financial Success Charlene Walters [Charlene Walters]
https://ebookmass.com/product/launch-your-innerentrepreneur-10-mindset-shifts-for-women-to-take-action-unleashcreativity-and-achieve-financial-success-charlene-walters-charlenewalters/ ebookmass.com
Social support from bonding and bridging relationships in disaster recovery: Findings from a slow-onset disaster Kien Nguyen-Trung
https://ebookmass.com/product/social-support-from-bonding-andbridging-relationships-in-disaster-recovery-findings-from-a-slowonset-disaster-kien-nguyen-trung/ ebookmass.com
Fevered Planet 1st Edition John Vidal
https://ebookmass.com/product/fevered-planet-1st-edition-john-vidal/
ebookmass.com
Introduction to Unity ML-Agents: Understand the Interplay of Neural Networks and Simulation Space Using the Unity ML-Agents Package 1st Edition Dylan Engelbrecht
https://ebookmass.com/product/introduction-to-unity-ml-agentsunderstand-the-interplay-of-neural-networks-and-simulation-spaceusing-the-unity-ml-agents-package-1st-edition-dylan-engelbrecht/ ebookmass.com
Green Sustainable Process for Chemical and Environmental Engineering and Science: Switchable Solvents Dr. Inamuddin
https://ebookmass.com/product/green-sustainable-process-for-chemicaland-environmental-engineering-and-science-switchable-solvents-drinamuddin/ ebookmass.com





Edition Caroline Chatwin
https://ebookmass.com/product/towards-more-effective-global-drugpolicies-1st-ed-edition-caroline-chatwin/
ebookmass.com


ReinforcedPolymerComposites
ReinforcedPolymerComposites
Processing,CharacterizationandPostLifeCycleAssessment
Editedby
PramendraK.Bajpai
InderdeepSingh
Editors
Prof.PramendraK.Bajpai
NetajiSubhasUniversityofTechnology DivisionofManufacturingProcessesand AutomationEngineering AzadHindFauzMarg Sector3 Dwarka 110078NewDelhi India
Prof.InderdeepSingh IndianInstituteofTechnologyRoorkee DepartmentofMechanicaland IndustrialEngineering HaridwarHighway Roorkee 247667Uttarakhand India
Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.
LibraryofCongressCardNo.: appliedfor
BritishLibraryCataloguing-in-Publication Data
Acataloguerecordforthisbookis availablefromtheBritishLibrary.
Bibliographicinformationpublishedby theDeutscheNationalbibliothek The DeutscheNationalbibliothekliststhis publicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>
©2020Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany
Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw.
PrintISBN: 978-3-527-34599-1
ePDFISBN: 978-3-527-82096-2
ePubISBN: 978-3-527-82099-3
oBookISBN: 978-3-527-82097-9
CoverDesign SCHULZGrafik-Design, Fußgönheim,Germany
Typesetting SPiGlobal,Chennai,India PrintingandBinding
Printedonacid-freepaper 10987654321
Contents
1OverviewandPresentStatusofReinforcedPolymer Composites 1
FurkanAhmad,InderdeepSingh,andPramendraK.Bajpai
1.1Introduction 1
1.2FRPCs 4
1.2.1FabricationofFiberReinforcedComposites 4
1.2.2PresentStatusofFRPCs 5
1.3FRPCsApplicationsandFutureProspects 9
1.4Conclusion 12 References 12
2FabricationofShortFiberReinforcedPolymerComposites 21 UjendraK.Komal,ManishK.Lila,SaurabhChaitanya,andInderdeepSingh
2.1Introduction 21
2.2ChallengeswithCompositeMaterials 23
2.3PreprocessingofNaturalFibersandPolymericMatrix 25
2.3.1FiberSurfaceModification 25
2.3.2CompoundingofNaturalFibersandPolymericMatrix 25
2.4ProcessingofPolymericMatrixComposites 26
2.4.1SelectionofProcessingTechniques 28
2.4.2InjectionMolding 29
2.4.2.1OperatingParameters 29
2.4.2.2ChallengesinInjectionMoldingofNaturalFiber-Based Composites 33
2.4.2.3FabricationofPolymericCompositesbyInjectionMolding Process 34
2.4.2.4MechanicalPerformanceofInjectionMoldedComposites 34
2.5Conclusions 35 References 36
3FabricationofCompositeLaminates 39
SandhyaraniBiswasandJastiAnurag
3.1Introduction 39
3.2FabricationProcesses 40
3.2.1HandLay-upProcess 40
3.2.2FilamentWindingProcess 42
3.2.3CompressionMoldingProcess 43
3.2.4VacuumBaggingProcess 45
3.2.5AutoclaveMolding 46
3.2.6ResinTransferMolding(RTM)Process 46
3.2.7PultrusionProcess 48
3.3Conclusions 49 References 50
4ProcessingofPolymer-BasedNanocomposites 55 RameshK.Nayak,KishoreK.Mahato,andBankimC.Ray
4.1Introduction 55
4.2ClassificationofNanomaterials 58
4.2.1Nanocomposites 58
4.2.2PolymerMatrixNanocomposites 59
4.3FabricationTechniquesofPolymerMatrixNanocomposites 60
4.3.1UltrasonicandDualMixing 61
4.3.2Three-RollMixingofNano-fillersinPMC 63
4.3.3IntercalationMethod 64
4.3.4Sol–GelMethod 67
4.3.5DirectMixingofPolymerandNano-fillers 68
4.3.5.1MeltCompounding 68
4.3.5.2SolventMethod 69
4.4FuturePerspectiveandChallenges 70 Acknowledgment 71 References 71
5AdvancesinCuringMethodsofReinforcedPolymer Composites 77
AnkitManral,FurkanAhmad,andBhashaSharma
5.1Introduction 77
5.2CuringMethod 79
5.3ThermalCuringofFRPC 81
5.3.1AutoclaveCuring 81
5.3.1.1PropertiesofFRPCsInfluencedbyAutoclaveParameters 85
5.3.2InductionCuring 86
5.3.3ResistanceCuring 89
5.3.4MicrowaveCuring 90
5.3.4.1PropertiesInfluencedbyMicrowaveCuringofFRPC 92
5.3.5UltrasonicCuring 93
5.4RadiationCuringofFRPCs 93
5.4.1ElectronBeamRadiationCuring 96
5.4.2UltravioletCuring(UV) 98
5.5Conclusion 99 References 100
6FrictionandWearAnalysisofReinforcedPolymer Composites 105
PawanKumarRakeshandLalitRanakoti
6.1Introduction 105
6.1.1FiberReinforcedPlastics 105
6.1.2FailureMechanismofFiberReinforcedPlastics 106
6.1.3AdhesionWear 107
6.1.4AbrasiveWear 109
6.1.5FatigueWear 109
6.1.6WearTestingMethod 111
6.2ResultsandDiscussion 114
6.3Conclusions 116 References 116
7CharacterizationTechniquesofReinforcedPolymer Composites 119 ManishK.Lila,UjendraK.Komal,andInderdeepSingh
7.1Introduction 119
7.2FiberReinforcedPolymers 120
7.3CharacterizationofFRPs 121
7.4ChemicalCharacterization 122
7.5PhysicalCharacterization 126
7.5.1MicroscopicCharacterization 126
7.5.2Density 128
7.5.3VoidFraction 129
7.5.4SurfaceHardness 130
7.5.5SurfaceRoughness 131
7.6MechanicalCharacterization 132
7.6.1Tensiletest 133
7.6.2CompressionTest 134
7.6.3FlexuralTest 135
7.6.4ImpactTest 136
7.6.5ShearTest 136
7.7ThermalCharacterization 137
7.7.1ThermalProperties 138
7.7.2ThermogravimetricAnalysis 139
7.7.3DifferentialThermalAnalysis(DTA)andDifferentialScanning Calorimetry(DSC) 139
7.7.4DynamicMechanicalAnalysis(DMA) 140
7.8DurabilityCharacterization 140
7.8.1CreepTesting 141
7.8.2FatigueTesting 141
7.8.3WearTesting 142
7.8.4FireTesting 143
7.8.5EnvironmentalTesting 143
7.9Conclusion 144 References 144
8DetectionofDelaminationinFiberMetalLaminatesBasedon LocalDefectResonance 147 TanmoyBose,SubhankarRoy,andKishoreDebnath
8.1Introduction 147
8.2LocalDefectResonanceBasedNondestructiveEvaluation 149
8.2.1ConceptofLocalDefectResonance 149
8.2.2ModelingofGLARE-FiberMetalLaminate 150
8.2.3DeterminationofLDRFrequencyfromSteadyStateAnalysis 152
8.3Super-HarmonicandSubharmonicExcitationinFiberMetal Laminates 153
8.4DetectionofLDRFrequencyUsingBicoherenceAnalysis 155
8.4.1TheoryofBicoherenceEstimation 155
8.4.2CaseStudyofaFlatBottomHole 157
8.4.2.1ModelingofaFlatBottomHole 157
8.4.2.2DeterminationofLDRFrequencyUsingFastFourierTransform(FFT) Plot 159
8.4.2.3DeterminationofLDRFrequencyUsingBicoherenceAnalysis 159
8.4.2.4ValidationoftheLDRFrequencyUsingSteadyStateAnalysis 161
8.5ConcludingRemarks 161 References 162
9SecondaryProcessingofReinforcedPolymerCompositesby ConventionalandNonconventionalManufacturing Processes 165 ManpreetSingh,SarbjitSingh,andParveshAntil
9.1Introduction 165
9.2SecondaryProcessingofReinforcedPolymerMatrixCompositesby ConventionalMachining 166
9.2.1ConventionalDrillingofReinforcedPolymerMatrixComposites 166
9.2.2GrindingAssistedDrillingofReinforcedPolymerMatrix Composites 167
9.2.3VibrationAssistedDrilling(VAD)ofReinforcedPolymerMatrix Composites 168
9.2.4HighSpeedDrilling(HSD)ofReinforcedPolymerMatrix Composites 168
9.2.5DrillingofReinforcedPolymerMatrixCompositeswithDrillBit GeometryofDifferentMaterials 168
9.2.6MillingofReinforcedPolymerMatrixComposites 171
9.2.7TurningofReinforcedPolymerMatrixComposites 171
9.3SecondaryProcessingofReinforcedPolymerMatrixCompositesby NonconventionalMachining 173
9.3.1LaserBeamMachiningofReinforcedPolymerMatrix Composites 173
9.3.2UltrasonicMachiningofReinforcedPolymerMatrixComposites 174
9.3.3AbrasiveWaterJetMachiningofReinforcedPolymerMatrix Composites 175
9.3.4ElectricalDischargeMachiningofReinforcedPolymerMatrix Composites 178
9.3.5ElectrochemicalDischargeMachiningofReinforcedPolymerMatrix Composites 179
9.4ConcludingRemarks 180 References 181
10HybridGlassFiberReinforcedPolymerMatrixComposites: MechanicalStrengthCharacterizationandLife Assessment 189
ParveshAntil,SarbjitSingh,andManpreetSingh
10.1Introduction 189
10.2PolymerMatrixComposites(PMCs) 191
10.2.1Matrix 191
10.2.2Reinforcement 191
10.2.3FabricationofHGFRPC 192
10.2.4MorphologyofNormalandHybridPMC 193
10.2.5MechanicalStrengthAnalysis 194
10.2.6EnergyDispersiveSpectroscopy 197
10.3EnvironmentalDegradationofPMCs 199
10.4LifeAssessmentofPMCs 201
10.4.1MorphologicalInspection 202
10.5Conclusions 205 References 206
11FirePerformanceofNaturalFiberReinforcedPolymeric Composites 209
DivyaZindani,KaushikKumar,andJoãoPauloDavim
11.1Introduction 209
11.2FlammabilityAspectsandThermalPropertiesofNaturalFibersand NaturalFiberReinforcedPolymericComposites 210
11.3FireRetardants 216
11.4FlameRetardants 216
11.4.1MineralFlameRetardants 216
11.4.2BulgingofFlameRetardants 217
11.5FirePerformanceforUsabilityasMaterialsinTransportation 218
11.6FirePerformanceforUsabilityasBuildingMaterials 219
11.7Summary 220 References 221
12PostLifeCycleProcessingofReinforcedThermoplasticPolymer Composites 225 N.H.Salwa,S.M.Sapuan,M.T.Mastura,andM.Y.M.Zuhri
12.1Introduction 225
12.2PolymerComposites 226
12.2.1ThermoplasticPolymer 227
x Contents
12.2.2ReinforcingFibersinComposites 228
12.2.3GreenBio-composites 229
12.3LifeCycleAssessment(LCA) 230
12.3.1Definition 230
12.3.1.1GoalandScope 233
12.3.1.2LifeCycleInventory(LCI) 234
12.3.1.3LifeCycleImpactAssessment(LCIA) 235
12.3.1.4LifeCycleResultsInterpretation 237
12.4LCAStudiesonBio-composites 238
12.4.1LCABio-composites 238
12.4.1.1LCANaturalFiber 239
12.4.2LCABiopolymer 240
12.5LCALimitations 241
12.6Conclusions 243 Acknowledgment 244 References 244
13ReprocessingandDisposalMechanismsforFiberReinforced PolymerComposites 249
VijayChaudhary,KhushiRam,andFurkanAhmad
13.1Introduction 249
13.2ReprocessingorRecyclingMethodsofFiberReinforcedPolymer Composites 251
13.3MechanicalRecycling 252
13.4ChemicalRecycling 254
13.5HydrolyticDegradationofFiberReinforcedPolymerComposite 255
13.6PhotodegradationofPolymerComposite 256
13.7BiodegradationofFiberReinforcedPolymerComposites 257
13.8Conclusion 258
References 262
Index 267
OverviewandPresentStatusofReinforcedPolymer Composites
FurkanAhmad 1 ,InderdeepSingh 2 ,andPramendraK.Bajpai 1
1 NetajiSubhasUniversityofTechnology,MPAEDivision,Sector-3,Dwarka,NewDelhi,110078,India
2 IndianInstituteofTechnologyRoorkee,DepartmentofMechanicalandIndustrialEngineering,Roorkee, Uttarakhand,247667,India
1.1Introduction
Humanshavebeenusinganumberofmaterialstoimprovetheirlivingstandardssinceages.Infact,theprogressofhumancivilizationhasbeenclassified intothreecategories,popularlyknownastheStoneAge,theBronzeAge,andthe IronAge,onthebasisofmaterialsonly.Lookingatthecurrentrateofdemand andconsumptionofplastics,itwouldnotbewrongifsomebodycategorizesthe presentageas“TheAgeofPlastics”or“PlasticAge”.Newmaterialsformthe foundationfornewtechnologiesandhelpinunderstandingnature.Themost complexdesignsintheworldcanbeofnouseifsuitablematerialisnotused duringthefabricationofproductswiththatdesign.Inactualrealizationofa design,theroleofmaterialsisquiteindispensable.Thelimitedavailabilityofnaturalresourceshasforcedmaterialengineerstousematerialsinamoreconscious manner.Therefore,materialscientistsandengineersaretryingtooptimizethe useofmaterialsineverypossiblefieldofapplication.Inthepresentage,transportationindustryisthebiggestcontributorofcarbonfootprintsintheenvironment.Lowerfuelconsumptionofautomotivevehiclescanlowerthecarbon footprints.Inthequestforachievinglowfuelconsumption,transportationindustryisleaningtowardmaterialshavinghighstrengthtoweightratio.Reinforced polymercomposites(RPCs),alsoknownasfiberreinforcedpolymercomposites (FRPCs)aresuchpromisingmaterialsforalmosteveryindustrylookingforlow weightandhighstrengthmaterials[1].TheapplicationspectrumofFRPCshas spreadinalmosteverysectorstartingfromengineereddomesticproductstothe highlysensitivebiomedicalindustry.FRPCsarenotonlyjustareplacementfor conventionalalloysbuttheyalsoprovideengineeredproperties.Rahmanietal. [2]fabricatedthecarbon/epoxy-basedFRPCswith40wt%offiber.Thissystem ofFRPCswasabletoachieveatensilestrengthof2500MPa,whichisquiteclose tothetensilestrengthofsteel.Theauthorsconcludedthatfiberorientationwas themostinfluencingfactoramongotherfactors,namelynumberoflaminates andresintype.Theauthorssuggestedtheuseof ±35∘ angleofpliestoobtain
ReinforcedPolymerComposites:Processing,CharacterizationandPostLifeCycleAssessment, FirstEdition.EditedbyPramendraK.BajpaiandInderdeepSingh. ©2020Wiley-VCHVerlagGmbH&Co.KGaA.Published2020byWiley-VCHVerlagGmbH&Co.KGaA.
1OverviewandPresentStatusofReinforcedPolymerComposites bettertensilepropertiesalongwithgoodflexuralproperties.Modificationinthe matrixmaterialcanenhancetheoverallpropertiesofFRPCs.Islametal.[3] modifiedtheepoxymatrixbyincorporatingnanoclayandmultiwalledcarbon nanotubes(MWCNTs).Theauthorsfoundsignificantimprovementinthestatic anddynamicmechanicalpropertiesofthedevelopedcarbonfiber-basedFRPCs. Choetal.[4]enhancedthein-planeshearstrengthandshearmodulusofcarbonfiberreinforcedepoxycompositesbyincorporatinggraphitenanoplatelets intheepoxymatrixusingthesonicationmethod.Increasingthevolumefraction ofreinforcementcanincreasethemechanicalpropertiesofthedevelopedFRPCs. Aramideetal.[5]fabricatedglassfiber/epoxy-basedFRPCswithvaryingvolume fractionoffibersfrom5%to30%.Theauthorsfoundthatthemechanicalstrength increasedasthefibervolumefractionincreasedupto30%.Treinyteetal.[6] fabricatedpoly(vinylalcohol)-basedpots.Forestryandwoodprocessingwaste wasusedasfillerinthematrix.Theauthorsclaimedthatthemanufacturedpots showed45%lowerwaterevaporationrateincomparisontoregularpeatpots. Architectureofthereinforcementalsoaffectsthemechanicalperformanceof developedFRPCsproducts.Arangeofreinforcementarchitecturesisavailable inthemarketsuchasshortfiber,unidirectionalprepregs,2Dand3Dwoven mats,braidedmats,andknittedmats.Everyarchitecturehasitsownmeritsand demerits–2Dwovenmatsshowbetterin-planemechanicalpropertiesbutthey lackinout-ofplanepropertieswhile3Dwovenmatsofferbetterout-of-plane propertiesincomparisontoothers[7].Eroletal.[8]investigatedtheeffectof yarnmaterialandweavingpatternonthemacroscopicpropertiesofFRPCsand concludedthatweavepatterngreatlyinfluencedthetensileandshearpropertiesofthedevelopedcomposites.Someauthors[9]haveevenused3Dand5D braidedreinforcementforthedevelopmentofFRPCs.Theauthorsconcluded thatbraidedarchitectureaffectsthefracturemechanisminasignificantway. Kostaretal.[10]usedtwo-sidedco-braidedcarbonandKevlarhybridreinforcementforthedevelopmentofFRPCsandconcludedthatthetensilestrengthand modulusofhybridreinforcement-basedFRPCswere13%and80%higherthan thosewithsimplereinforcement.FRPshaveevolvedoveralongtimeperiodas showninFigure1.1.
Environmentalproblemsanddifficultyintherecyclingassociatedwith syntheticcompositeshaveledtothedevelopmentofbiocomposites/green composites.Biocompositesareeco-friendlymaterialswithadequatemechanical properties.Fombuenaetal.[11]fabricatedbiocompositesusingbio-fillers derivedfromsea-shellwasteasreinforcementinbio-basedepoxymatrix.The authorsfoundimpressiveimprovementinmechanicalpropertiesofbio-based epoxywhenreinforcedwithbio-fillers.Endoflife(EOL)impactofsynthetic fibersandpolymersisnegativetotheenvironment.Duflouetal.[12]showed thatlowmechanicalstrengthofflaxfiberisanobstructioninthereplacement ofglassfiberbutitcanbeusedinmanyapplicationswherehighmechanical strengthisnottheprimaryrequirement.Effectofmoistureonthemechanical performanceofnaturalfiber-basedbiocompositesisyetanotherconcernwhile usingbiocomposites.Baghaeietal.[13]developedpolylacticacid(PLA)-based biocompositesandanalyzedthemoistureabsorptionbehavior.Theauthors foundthatthemoistureabsorptioncharacteristicofthedevelopedcomposite
Improvements in polymeric materials
Optimization of process parameter
Evolution of fabrication techniques for fiber reinforced plastics
Development of high performance fibers
Improvements at macroscopic level
(Chemical treatment and fabric architecture, etc.)
Use of FRPs in automobile and aerospace industries
Improvement at microscopic level
(Surface coating, use of nano-fillers, etc.)
Figure1.1 DevelopmentstagesofFRPs.
Development of green composites
Development of functional FRPs
(Improvement in electrical properties)
wasreducedwhenthereinforcementwasusedinthewovenforminsteadofthe nonwovenform.
Hybridizationcanimprovethemechanicalstrengthofgreencomposites. Hassaninetal.[14]developedabiocompositeparticleboardusingamixture ofwoodparticlesandshortglassfiberscoveredwithanouterlayerofjute fabric.Theparticleboardshowedexcellentmechanicalandphysicalproperties incomparisontocommerciallyavailableparticleboards.Chaudharyetal.[15] hybridizedthereinforcementandfoundimprovedmechanicalandthermal propertiesofthedevelopedbiocomposites.Theauthorsusedthreetypesof wovenfibersmats,namelyjute,hemp,andflax,asreinforcementinepoxymatrix.
Chemicaltreatmentoffibers/surfacemodificationoffibersisalsoapromising methodforimprovementinthemechanicalpropertiesofFRPCs.Alkali,acryl, benzyl,andsilanesolutionsarecommonlyusedforthetreatmentoffibers[16]. Asaithambietal.[17]treatedbananafibersbeforeusingthemasreinforcement inPLA-basedFRPCs.Bananafiberswerefirstpretreatedwith5%NaOHsolution atroomtemperatureforaroundtwohours,andthenthechemicaltreatmentof thefiberwascompletedusingbenzoylperoxide.Significantimprovementinthe mechanicalpropertiesdevelopedwithtreatedFRPCswasfoundincomparison tothosedevelopedwithuntreatedFRPCs.RahmanandKhan[18]usedethylene dimethylacrylate(EMA)forthesurfacemodificationofcoirfibersalongwith UVtreatmentfortheagingoffibers.TheauthorsconcludedthatthemechanicalpropertiesofFRPCsdevelopedusingtreatedfiberwerebetterthanthoseof untreatedfiberreinforcedFRPCs.
1.2FRPCs
FRPCsaremultiphasematerialscomprisedofnatural/syntheticfiberasreinforcementandthermoset/thermoplasticpolymerasmatrix,resultinginsynergisticpropertiesthatcannotbeachievedfromasinglecomponentalone.Ingeneral, reinforcementisintheformoflongcontinuousfibersbuttheycanbeusedin variousotherformssuchasshortfibers,fillers,orwhiskers.Thefibrousform ofreinforcementisusedincompositematerialsbecausetheyarestrongerand stifferthananyotherform[19].Syntheticfibers(carbon,glass,aramid,etc.)can providemorestrengththanmostofthemetalsalongwithbeinglighterthan thosematerials.Ontheotherhand,naturalfibersarealsobeingusedinanumberofstructuralaswellasnonstructuralapplicationsduetotheenvironmentalproblemsassociatedwithsyntheticfibers.Matrixmaterial,whichisgenerallycontinuousinnature,protectsthereinforcementfromadverseenvironment andtransferstheloadtoreinforcementfromthepointofapplicationofload [12].Thematrixmaterialholdstheflexiblereinforcementstogethertomakeita solid.Matrixmaterialisalsoresponsibleforthefinishandtextureofthecompositematerial.Thepropertiesofcompositematerialsdependonthedispersionandpropertiesoftheconstituentsandtheirinterfacialinteraction.Tailoring thepropertiesofamaterialaccordingtotherequirementofapplicationcanbe easilydoneincompositematerials[20].Table1.1showsthecommonlyused naturalandsyntheticpolymersandfibersusedasmatrixandreinforcement, respectively.
1.2.1FabricationofFiberReinforcedComposites
FabricationmethodsofFRPCsstillrequirealotofattentioninordertoproducedefect-freehighqualityproducts.Someuniquefeaturesofprimaryand secondaryprocessingofFRPCsaretabulatedinTable1.2.
Table1.1 Matrixandreinforcementmaterialsusedinreinforcedpolymercomposites.
MatrixNaturalSynthetic
Polysaccharidessuchas homoglycans,cellulose,chitin, chitosan,heteroglycans,suchas alginate,agar,andagarose, carrageenan,pectins,gums,and proteoglycans,protein,peptides, andenzymes
Polyolefins,poly(tetrafluoroethylene) (PTFE),poly(vinylchloride)(PVC), silicone,methacrylates,aliphatic polyesters,polyethers,poly(amino acids),polyamides,polyurethanes, epoxy,polycarbonates
ReinforcementNaturalSynthetic
Animal-based–silk,wool,hair; Plant-based–bastfibers(jute, flax,ramie,hemp,kenaf,roselle, etc.),leaffibers(sisal,banana, agava,etc.),seed,fruit,wood,and stalkfibers
Carbon,glass,Aramid/Kevlar, graphite,aromaticpolyesterfibers, boron,silicacarbide
1.2.2PresentStatusofFRPCs
RPCproductssuchaspipesarebeingusedinvariousadverseconditionssuchas inoffshoreandmarineapplications.Thesepipesareexposedtosevereclimatic conditionsrangingfrom 40to80 ∘ C[21].Benyahiaetal.[21]testedthe mechanicalpropertiesofafilamentwoundglass/epoxypipeof86mmdiameter and6.2mmthickness.Theauthorsestimatedthattherewasdegradationof mechanicalpropertiesathighertemperatures.EllyinandMaser[22]investigated theeffectofmoistureatelevatedtemperatureonthemechanicalpropertiesof glassfiberreinforcedpolymer(GFRP)compositetubes.Atlowertemperature, theductilityofthespecimenwasfoundtobedecreaseddrasticallyandthe stiffnesswasincreased.Abovetheglasstransitiontemperature,therewassudden degradationinthemechanicalpropertiesofcompositepipes.Inrecentprogress, shapememoryalloy(SMA)wiresarebeingincorporatedintotheFRPCsas reinforcementtoincreasethefunctionalityofthedevelopedcompositessuch asshaperecovery,highdampingcapacity,generationofhighrecoverystresses, andcontrolledoverallthermalexpansion.SMAwiresnotonlyimprovethe functionalityoftheFRPCsbutalsoofferimprovedmechanicalproperties[23].
PaineandRogers[24]concludedthatthelowvelocityimpactpropertiesof FRPCscanbeimprovedbyincorporatingSMAwires.Incorporationofjust 2.8%volumefractionofSMAwiresasreinforcementwasabletoincreasethe impactdelaminationresistanceby25%incomparisontotheFRPCswithoutthe SMAwirereinforcement.Pappadaetal.[25,26]fabricatedhybridglassfiber reinforcedvinylester-basedFRPCmaterialandincorporatedSMAwiresintwo forms,namelyunidirectionalSMAwiresandknittedSMAwires.Theauthors assessedimpactpropertiesandfoundthatFRPCsreinforcedwithSMAwires achievedhigherimpactpropertiesthanFRPCswithunidirectionalSMAwires.
Polymernanocompositesarealsoarelativelynewclassofmaterials.Nanocompositesaregenerallyfabricatedbyincorporatingoneormoreconstituentsof thesizeoftheorderofnanometers.Theseconstituentsaregenerallyinorganic innatureandknownasfillers,andnotasreinforcement,duetotheirsmallsize. Variousresearchershavereportedimpressivepropertiesofnanocompositessuch ashighmodulusandstrength,highresistancetoheat,andreducedflammability. However,effectivedispersionofthenano-sizedfillersthroughoutthepolymer matrixisstillachallenge,andmoreoverthisdispersioncontrolsanddetermines thephysical,chemical,andmechanicalpropertiesofthedevelopedFRPC products[27–29].Theauthorshaveusedaninsituapproachtohomogenize thedispersionofnano-sizedfillers.Inthisapproach,nano-fillersaredirectly synthesizedwiththepolymerusingsomesuitableprecursor[30,31].Although theinsituapproachprovidescontrolleddispersionofnano-fillers,itinvolves complexproceduresandprocessingstepsalongwithexpensivereactants[32,33]. Variousresearchersusedtheballmillingmethodtofabricatenanocomposites. Inthismethod,firstboththeconstituents,polymerandnano-fillers,aremixed witheachotherinsolidstateusingballmillsandthenthemixtureismelted topolymerize.Althoughthemorphologyofthefillerschangesintheballmill, thischangepositivelyaffectsthecompositesbyenrichingthefillercompatibility withthepolymer.Theballmillingmethodisnotjustanalternativetoexsitu
1OverviewandPresentStatusofReinforcedPolymerComposites
Table1.2 PrimaryandsecondaryprocessingmethodsforFRPCs.
Processing
Primary processing methods
Fabrication techniqueFeatures
Handlay-upMinimuminfrastructuralrequirement;lowinitialcapital requirement;onlyforthermosettingresins;lower productionrate;andlowvolumefractionofthe reinforcement
Spraylay-upExtensionofhandlay-uptechnique;reinforcementinthe formofchoppedfibersonly
Compression molding
Secondary processing methods
Injection molding
Pultrusion process
Resintransfer molding
Filament winding
Vacuumassisted resintransfer molding
Conventional machining
Useofheatandpressurebothsimultaneously; dimensionallyaccurateandfinishedproducts;process parametersneedtobeoptimized;boththermosettingand thermoplasticpolymerscanbeused;higherinitialcapital requirementcomparedtohandlay-up
Reinforcementonlyintheformofshortfibers;damageof fibersinbarrelduetoshearingactionofscrew.Highly accuratedimensionsoftheproduct;usedformass production
Resinimpregnatedcontinuousfibersarepassedthrough aheatingdieforcuring;automatedprocessusedfor continuousproduction;onlyproductswithconstant cross-sectionalareadependingonthediecanbe manufactured
Liquidresinsystemisforcedintothemold;highfiber volumefractioncanbeachieved.Goodsurfacefinish withminimummaterialwastage
Continuousfiberstrandsasreinforcement;controlled fiberorientation;highproductionrate;highcapital investment;notpossibletoproducefemalefeaturesof productsandexpensivemandrel
Usesvacuumtoensurezerovoids;superiorquality compositesusingautoclave(astrongheatingcontainer thatisusedforapplyingheatandpressureatthetimeof curingofthecompositelaminates)
Drillingwithtwistdrillisthemostusedconventional methodtoproduceholesinlaminates.Requiresmilling machineordrillingmachine.Spindlespeed,feedrate, anddrillgeometryareinfluentialparameters. Delamination,fiberlinting,andfiberpull-outarethe mostcommondefects
Unconventional machining
Abrasivewaterjet(AWJ)reducesthethermaldamage thatcouldbegeneratedinconventionalmachining. Laserbeam(LB)cuttingisalsobeingusedforholes generationincompositelaminates.Highenergyinputis required.
Ultrasonicmachining(USM)canalsobeusedforhole makinginthecompositelaminates
fabricationofFRPCsbutisalsoanenvironmentfriendlyandeconomicalmethod toproducenano-fillerreinforcedFRPCs[34].Someauthors[35]havealsoused reinforcingmetallicpowderssuchascopperpowderof29.5and260 μmsizein thepolyvinylbutyral(PVB)polymermatrixtofabricatepolymercomposites. FanandWang[36]developedatransparentprotectivepolymercomposite materialwithlightweightproperty,whichcouldbeusedagainsthighspeed impactloading.
ThebehaviorandperformanceofFRPCschangesfromapplicationtoapplication.FRPCsexposedtovarioustribologicalenvironmentsleadtothenecessityto evaluatethetribologicalperformance.TribologyofFRPCsisquitecomplexthan metaltribologyduetothefactthatpolymersdonotobeythewell-established lawsoffrictionathightemperature[37].XueandWang[38]studiedtheeffect offillerparticlesizeonthewearandfrictionalpropertiesofpolymercomposites.Theauthorsconcludedthatadditionofnano-sizedSiCparticlesintothe polymermatrixeffectivelyreducedthefrictionandwearoftheneatpolymer. Thenano-sizedparticlesformacontinuousandthinlayerbetweentheinterface, whichresultsinreductionoffrictionandwear.XingandLi[39]alsoconfirmed asimilarbehaviorofFRPCswiththeincorporationofnano-sizedfillers.Gears, bearings,shoesoles,andbrakepadsforautomobileapplicationsaresomeofthe mostlyusedtribologicalapplicationsofFRPCs[40–42].Researchershavesuggestedanumberofmethodstoreducethefrictionandwearattheinterface betweentheFRPCproductandthemetal/nonmetalsurface.Microencapsulation ofliquidlubricantwasfoundtobeaneffectivemethodtoimprovethetribologicalpropertiesofpolymers[43].Guoetal.[44,45]demonstratedthatthe frictioncoefficientofepoxy-basedFRPCscanbereducedupto75%byincorporatingjust10wt%oil-loadedmicrocapsules.Theauthorshaveclaimedtodevelop self-lubricatingpolymer-basedmaterialswiththehelpofencapsulationmethod. Khunetal.[46]andImanietal.[47]addedwax-loadedmicrocapsulesinepoxy matrixcompositesandfoundthatfrictionandwearwereverymuchreducedin comparisontothatintheneatepoxypolymercomposite.Inanotherstudy,Khun etal.[48]usedthetwotypesofmicrocapsulesinthepolymercomposite.One typeofmicrocapsuleswereloadedwithwaxandanothertypeofcapsuleswere loadedwithMWCNTs.Theauthorsconcludedthattribologicalandmechanical propertieswereenhancedsimultaneously.Wax-loadedcapsuleswerefoundto beresponsibleforimprovedtribologicalpropertieswhileMWCNTsloadedcapsulesresultinimprovedmechanicalproperties,whichwasachievablewithonly wax-loadedcapsules.Encapsulationmayhelpinthedevelopmentofself-healing materialsasexplainedbysomeauthors[49].
Self-reinforcedcomposites(SRCs)areyetanothercategoryofFRPCsinwhich onlyasinglepolymerisused.Hard/processedformofthesamepolymerisused asreinforcementthatisbeingusedasmatrixmaterial[50].Huang[51]developed apolypropylene(PP)-basedSRCusingmelt-flowinducedcrystallization.Li andYao[52]andMakelaetal.[53]developedPLApolymer-basedfibersthat couldbeusedasreinforcementintheSRCs.Similarly,Tormala[54]developed PLA-basedSRCsformedicalapplications.Inthesameseries,HineandWard [55]developedPET-basedSRCs,Gilbertetal.[56]developedpolymethyl
1OverviewandPresentStatusofReinforcedPolymerComposites
methacrylate(PMMA)-basedSRCs,andGindlandKeckes[57]manufactured cellulose-basedSRCs.
Gemi[58]developedglassandcarbon-basedhybridcompositepipes andstudiedtheeffectofstackingsequence.Theauthorsconcludedthat glass–carbon–glasssequenceofreinforcementduringthewindingoffibers leadstonoleakagepropertyofpipes.
Thesuperiorelectrical,mechanical,andthermalpropertiesofgraphenemake itveryusefulinthefieldofFRPCs[59].Graphene,intheformof3Dfoamand gelisbeingusedinFRPCsproductsinbiomedicalandelectronicsapplications [60,61].Variousauthors[62,63]reportedimpressiveimprovementinthe mechanicalpropertiesofepoxycompositeswiththeincorporationof3Dfoam. Sunetal.[64]reportedthattheincorporationof3Dgraphenefoaminpolymer significantlyimprovedelectricalproperties.Juszaetal.[65]developedluminescentcompositematerialsforpossibleapplicationsinopto-electronics,sensor networks,andimagingfield.Complextechnologyandexpensivemanufacturing methodsofopticallyactivetwo-phasecompositematerialshavemadethem commerciallyunavailable.
Carbonnanotubes,popularlyknownasCNTs,arefiller/reinforcementthatare beingusedinpolymerstofabricatecompositeswithimprovedphysical,mechanical,andelectricalproperties[66–69].Nanomaterialsarethosematerialsthat havedimensionsbelow100nm[70].Severalauthors[71,72]reportedanincrementofover300%inthetensilestrengthofFRPCsreinforcedwithCNT-based nano-fillers.Incorporationofnanocarbonsresultedintheincrementofelectrical propertiesuptoover14ordersofmagnitude[73].Carbonquantumdots(CQD), aformofnanocarbonmaterial,isalsobeingusedasreinforcementduetotheir tunableopticalandphotochemicalproperties.AnotheremergingclassofFRPCs isthermallyconductivepolymercompositesandnanocomposites[74].Studies [75,76]havereportedthatpolymersreinforcedwithalignedmolecularchaincan obtainhigherthermalconductivitythanthatofmanymetals.Rajapakseetal.[77] preparedelectronicallyconductivenanocompositesforpotentialapplicationas acathodematerial.
AnotheradvancementinthefieldofFRPCsistheproductionofshapememorypolymercompositesalongwithself-healingproperties[78].FRPCsarebeing widelyusedinthefieldofelectronicsandbiomedicalandenergyapplications fromthelastdecades.However,lowthermalconductivityandinsufficientthermalstabilityhaverestrictedFRPCsusagetoalimitednumberofapplications[79]. Alongwiththeiradvantages,therearesomedisadvantagesassociatedwith FRPCsaswell.ThedisadvantagewithFRPCsistheneedforrecyclinganddisposalmethodsafterthefinitelifeoftheFRPCproduct.Lietal.[80]investigated theenvironmentalandfinancialproblemsassociatedwiththemanufacturing ofcarbonFRPCs.Theauthorssuggestedtheuseofmechanicalrecyclingof FRPCsinsteadoflandfillingandincineration.Landfillingmethodfordisposal ofFRPCswasfoundtobemodestwithmoderatelandfillingtax.However, incinerationmethodresultsintheproductionofgreenhousegasescausing severedamagetoenvironment.Longanaetal.[81]suggestedanothermethod ofrecyclingknownasmultipleclosedlooprecyclingofcarbonFRPCs.In thismethod,reclaimedcarbonfibers(rCF)areagainusedtoremanufacturea
numberofproductsonceavirgincarbonfiber(vCF)producthascompletedits definedlife.
1.3FRPCsApplicationsandFutureProspects
ThehighstrengthtoweightratioofFRPCsmakesthemirreplaceableinanumberofapplicationsintheautomobileandaerospaceindustries[82–86].Dhruv, theadvancedlighthelicopter(ALH)manufacturedbyHindustanAeronautics LimitedfortheserviceoftheIndianarmy,hasaround60%ofstructuralarea madeupofFRPCcomponentsandsandwichstructures[87].Anumberofproductsarebeingsuccessfullyusedinvariousautomotiveandotherapplicationsas reportedinTable1.3.Anumberofmedicaldeviceshavebeendevelopedusing biodegradablepolymersalone.Drug-elutingstents,orthotropicdevices,disposablemedicaldevices,drugdeliverydevices,andstentsforurologicalapplications aresomebiomedicalapplicationsofpolymers[101].Tianetal.[101]statedthat alongwiththenontoxicnatureandlowbiodegradabilityofpolymers,mechanical strengthisalsorequiredinanumberofmedicalapplications.Tostrengthenthese biodegradablepolymers,fibersarebeingincorporatedinthepolymersaccordingtotherequirementofapplication.Carbonfiberreinforcedepoxycomposite materialsarebeingusedtofabricateexternalfixationequipmentusedforfracturedbones.Boneplatesarebeingusedforthedevelopmentofinternalfixation equipment.Theauthors[102]havereportedcarbonfiberreinforcedpolyether etherketone(PEEK)-basedcompositeasabiocompatiblematerialforboneplate. Linetal.[103]proposedshortglassfiberreinforcedPEEKcompositematerialfor thefabricationofintramedullarynails,whicharegenerallyusedtofixfracturesof longbones.Thesenailsarefixedintheintramedullarycavityusingascrewmechanism.Kettunenetal.[104]usedcarbonfibertofabricatecompositematerialfor thesenails.Someauthors[105,106]havesuccessfullyusedFRPCsasbonegraftingmaterials.Carbonfiber-basedFRPCsareintensivelybeingusedtofabricate stemsfortotalhipreplacement[107,108].Dengandshalaby[109]usedultrahigh molecularweightpolyethylene(UHMWPE)tofabricateself-reinforcedcompositematerialsforpossibleapplicationinkneereplacement.Indentalapplications, CF/epoxy-basedFRPCsarebeingusedtofabricatedentalpost[110].Usually, goldbridgeswereusedtoreplaceoneormoreteethbuttheirhighcostand time-consumingfabricationprocesshaveledtothedevelopmentofFRPCs-based bridges[111].FRPCsarealsobeingusedtofabricateorthodonticarch-wires. Thesewiresaregenerallyfittedovertheteethinordertoalignthem[112,113]. Artificiallegs,usedtosupportamputeesduringwalk,weregenerallymadeof metallicmaterials.Owingtothehighweightofmetalsandlowcorrosionresistance,FRPCshavereplacedthesemetallicprostheticlimbs.Asofnow,allthe threecomponentsofprostheticleg,namelyshaft,socket,andfoot,arebeing manufacturedusingFRPCs[114–116].Movingtables,usedinCTandMRIscanners,arebeingmanufacturedusingFRPCsduetotherequirementoflightweight andhighstrengthmaterial[117].Calciumphosphate(CaP)/polymercomposite materialsarehighlyrecommendedmaterialsinbonereplacementduetohigh compressiveandflexuralstrength[118].
Table1.3 Applicationsofreinforcedpolymercomposites.
S.No.CompositeProcessingtechniqueApplicationfieldComponentReferences
1. Glassfiber/unsaturatedpolyesterHandlay-upmethodAutomobileFrontbumper[88]
2. Sisal,rosellefiber,banana/epoxy grade3554A Handlay-upmethodAutomobileVisorintwo-wheeler[89] Indicatorcover Pillionseatcover Rearviewmirrorcover
3. Glass,carbonfiber/epoxy—AerospaceVerticalstabilizer[89]
4. GFRPC/epoxy/polyester/pp—ElectronicComputer,electricmotorcoverscell phones [90] HomeandfurnitureRoofsheet,sunshade,bookracks,etc. AerospaceLuggagerack,bulkheads,ducting,etc. BoatsandmarineBoatframe MedicalX-raybeds AutomobileBodypanel,seatcover,bumper,and enginecover
5. CFRPlaminatesVacuumbaggingAerospaceUpperdeckfloorberns[91] Pressurebulkhead Centrewingbox, finbox,rudderHTPbox
6. Glass,carbon,aramid/polyester, vinylester,epoxy Filamentwinding,resin infusion,prepreg,etc. EnergyindustriesWindturbineblades[92]
7. CFRP—AutomobileCitroencarbody[93]
CF-GF/epoxy(hybrid)—AerospacePilot’scabindoor[94] Boron–graphite(hybrid)—Fighteraircraftcomponents CF–aramid/thermoplastichybrid—SafetyHelmet GFPR,CFPR(hybrid)—CivilBridgegirder
9. CF/epoxyExtrusion,compression molding AutomobileStiffener,floorpanel,sidesillinner[95]
10. CFRP—AutomobileDoorsillstiffeners[96] Enginebaysubframe
11. CFRP/vinylesterCompressionmoldingAutomobileFendersupport,headlampsupports, doorcomponents [97] GFRP/vinylester Doorinnerpanel,windshieldsurround outerandinnerpanel,doorcomponents
12. CF/Epoxy—BiomedicalProstheticlimbs(foot)[98]
13. Kevlar/CF/PMMA—BiomedicalBonecement(usedforfixingthebones)[99]
14. E-glass/epoxyPultrusionElectrical applications
Insulatingmaterialforhighvoltageline[100]
1.4Conclusion
RPCsareengineeredmaterialsusedinawidespectrumofapplicationsranging fromdomesticproductstobiomedicaldevices.Naturalandsyntheticfibers arebothbeingreinforcedinFRPCsaccordingtotheapplication.FRPCsoffera numberofadvantagesoverconventionalmonolithicmaterialssuchascorrosion resistance,lightweightandhighstrengthtoweightratio.Automobiles,aircrafts, boats,ships,recreationalgoods,chemicalequipment,andcivilbuildingand bridgesaresomecommonapplicationsofFRPCs.Biomedicalapplications suchasprostheticlegsandbonecementarerelativelynewapplicationsof FRPCs-basedmaterials.TheconsumptionofFRPCsinthenearfutureis expectedtoincreasebutalotresearchisneededintherecyclinganddisposal methodsofsyntheticFRPCs.
References
1 Bajpai,P.K.,Ahmad,F.,andChaudhary,V.(2017).Processingandcharacterizationofbio-composites.In: HandbookofEcomaterials (ed.L.M. Torres-Martinez,O.V.KharissovaandB.I.Kharisov).SpringerInternational PublishingAG,https://doi.org/10.1007/978-3-319-48281-1_98-1.
2 Rahmani,H.,Najafi,S.H.M.,andAshori,A.(2014).Mechanicalperformance ofepoxy/carbonfiberlaminatedcomposites. JournalofReinforcedPlastics andComposites 33(8):733–740.
3 Islam,M.E.,Mahdi,T.H.,Hosur,M.V.,andJeelani,S.(2015).Characterizationofcarbonfiberreinforcedepoxycompositesmodifiedwithnanoclay andcarbonnanotubes. ProcediaEngineering 105:821–828.
4 Cho,J.,Chen,J.Y.,andDaniel,I.M.(2007).Mechanicalenhancementofcarbonfiber/epoxycompositesbygraphitenanoplateletreinforcement. Scripta Materialia 56:685–688.
5 Aramide,F.O.,Atanda,P.O.,andOlorunniwo,O.O.(2012).Mechanical propertiesofapolyesterfiberglasscomposite. InternationalJournalof CompositeMaterials 2:147–151.
6 Treinyte,J.,Bridziuviene,D.,Fataraite-Urboniene,E.etal.(2018).Forestry wastesfilledpolymercompositesforagriculturaluse. JournalofCleaner Production 205:388–406.
7 Liu,Q.andHughes,M.(2008).Thefracturebehaviourandtoughness ofwovenflaxfibrereinforcedepoxycomposites. Composites:PartA 39: 1644–1652.
8 Erol,O.,Powers,B.M.,andKeefe,M.(2017).Effectsofweavearchitecture andmesoscalematerialpropertiesonthemacroscalemechanicalresponse ofadvancedwovenfabrics. Composites:PartA 101:554–566.
9 Yuanyuan,Z.,Ying,S.,Jialu,L.etal.(2016).Tensileresponseof carbon-aramidhybrid3Dbraidedcomposites. MaterialsandDesign 116: 246–252.
10 Kostar,T.D.,Chou,T.W.,andPopper,P.(2000).Characterizationandcomparativestudyofthree-dimensionalbraidedhybridcomposites. Journalof MaterialScience 35:2175–2183.
11 Fombuena,V.,Bernardi,L.,Fenollar,O.etal.(2014).Characterizationof greencompositesfrombiobasedepoxymatricesandbio-fillersderivedfrom seashellwastes. MaterialsandDesign 57:168–174.
12 Duflou,J.R.,Yelin,D.,Acker,K.V.,andDewulf,W.(2014).Comparative impactassessmentforflaxfibreversusconventionalglassfibrereinforced composites:arebio-basedreinforcementmaterialsthewaytogo? CIRP Annals–ManufacturingTechnology https://doi.org/10.1016/j.cirp.2014.03 .061.
13 Baghaei,B.andSkrifvars,M.(2016).Characterisationofpolylactic acidbiocompositesmadefromprepregscomposedofwovenpolylactic acid/hemp–Lyocellhybridyarnfabrics. Composites:PartA 81:139–144.
14 Hassanin,A.H.,Hamouda,T.,Candan,Z.etal.(2016).Developing high-performancehybridgreencomposites. CompositesPartB https:// doi.org/10.1016/j.compositesb.2016.02.051.
15 Chaudhary,V.,Bajpai,P.K.,andMaheshwari,S.(2018).Studiesonmechanicalandmorphologicalcharacterizationofdevelopedjute/hemp/flax reinforcedhybridcompositesforstructuralapplications. JournalofNatural Fibers 15(1):80–97.
16 Ahmad,F.,Chaudhary,V.,Ahmad,Z.,andBajpai,P.K.(2017).Effectoffiber selectionandfibertreatmentonthecompositeperformance. International JournalofScientificandEngineeringResearch 8:55–57.
17 Asaithambi,B.,Ganesan,G.,andKumar,S.A.(2014).Bio-composites:developmentandmechanicalcharacterizationofbanana/sisalfibrereinforced polylacticacid(PLA)hybridcomposites. FibersandPolymers 15:847–854.
18 Rahman,M.M.andKhan,M.A.(2007).Surfacetreatmentofcoir(Cocosnucifera)fibersanditsinfluenceonthefibers’physico-mechanicalproperties. CompositesScienceandTechnology 67:2369–2376.
19 Shah,D.U.,Schubel,P.J.,andClifford,M.J.(2013).CanflaxreplaceE-glass instructuralcomposites?Asmallwindturbinebladecasestudy. Composites:PartB 52:172–181.
20 Ahmad,F.andBajpai,P.K.(2017).Finiteelementanalysisandsimulation offlax/epoxycompositesundertensileloading. InternationalJournalof AdvancedResearchScienceandEngineering 6(2):436–441.
21 Benyahia,H.,Tarfaoui,M.,ElMoumen,A.etal.(2018).Mechanicalpropertiesofoffshoringpolymercompositepipesatvarioustemperatures. CompositesPartB:Engineering 152:231–240.
22 Ellyin,F.andMaser,R.(2004).Environmentaleffectsonthemechanical propertiesofglass-fiberepoxycompositetubularspecimens. Composite ScienceandTechnology 64(12):1863–1874.
23 Cohades,A.andMichaud,V.(2018).Shapememoryalloysin fibre-reinforcedpolymercomposites. AdvancedIndustrialandEngineering PolymerResearch https://doi.org/10.1016/j.aiepr.2018.07.001.
1OverviewandPresentStatusofReinforcedPolymerComposites
24 Paine,J.S.N.andRogers,C.A.(1994).TheresponseofSMAhybridcompositematerialstolowvelocityimpact. JournalofIntelligentMaterialSystems andStructures 5:530–535.
25 Pappada,S.,Gren,P.,Tatar,K.etal.(2009).Mechanicalandvibrationcharacteristicsoflaminatedcompositeplatesembeddingshapememoryalloy superelasticwires. JournalofMaterialEngineeringandPerformances 18: 531–537.
26 Pappada,S.,Rametta,R.,Largo,A.,andMaffezzoli,A.(2012).Low-velocity impactresponseincompositeplatesembeddingshapememoryalloywires. PolymerComposites 33:655–664.
27 Alexandre,M.andDubois,P.(2000).Polymer-layeredsilicatenanocomposites:preparation,propertiesandusesofanewclassofmaterials. Material ScienceandEngineering:R:Reports 28:1–63.
28 Manias,E.,Touny,A.,Wu,L.etal.(2001).Polypropylene/montmorillonite nanocomposites.Reviewofthesyntheticroutesandmaterialsproperties. ChemistryofMaterials 13:3516–3523.
29 Ma,P.-C.,Siddiqui,N.,Marom,G.,andKim,J.-K.(2010).Dispersionand functionalizationofcarbonnanotubesforpolymer-basednanocomposites:areview. CompositesPartA:AppliedScienceandManufacturing 41: 1345–1367.
30 Liu,T.,Burger,C.,andChu,B.(2003).Nanofabricationinpolymermatrices. ProgressinPolymerScience 28:5–26.
31 Ajayan,P.M.,Schadler,L.S.,andBraun,P.V.(eds.)(2003). Nanocomposite ScienceandTechnology.Weinheim:FRG:Wiley-VCHVerlagGmbH&Co. KGaA.
32 Wilberforce,S.I.J.,Finlayson,C.E.,Best,S.M.,andCameron, R.E.(2011).Theinfluenceofthecompoundingprocessandtestingconditionsonthecompressivemechanicalpropertiesofpoly (d,l-lactide-co-glycolide)/a-tricalciumphosphatenanocomposites. Journalof MechanicalBehaviourofBiomedicalMaterials 4:1081–1089.
33 Sorrentino,A.,Gorrasi,G.,andVittoria,V.(2007).Potentialperspectivesof bio-nanocompositesforfoodpackagingapplications. TrendsinFoodScience andTechnology 18:84–95.
34 Delogu,F.,Gorrasi,G.,andSorrentino,A.(2017).Fabricationofpolymer nanocompositesviaballmilling:presentstatusandfutureperspectives. ProgressinMaterialsScience 86:75–126.
35 Eichner,E.,Heinrich,S.,andSchneider,G.A.(2018).Influenceofparticle shapeandsizeonmechanicalpropertiesincopper-polymercomposites. PowderTechnology https://doi.org/10.1016/j.powtec.2018.07.100.
36 Fan,J.andWang,C.(2018).Dynamiccompressiveresponseofadeveloped polymercompositeatdifferentstrainrates. CompositesPartB https://doi .org/10.1016/j.compositesb.2018.06.025.
37 Friedrich,K.(2018).Polymercompositesfortribologicalapplications. AdvancedIndustrialandEngineeringPolymerResearch https://doi.org/10 .1016/j.aiepr.2018.05.001.
38 Xue,Q.andWang,Q.(1997).Wearmechanismsofpolyetheretherketone compositesfilledwithvariouskindsofSiC. Wear 213:54–58.
39 Xing,X.S.andLi,R.K.Y.(2004).Wearbehaviorofepoxymatrixcomposites filledwithuniformsizedsubmicron-sphericalsilicaparticles. Wear 256: 21–26.
40 Yousef,S.(2016).Polymernanocompositecomponents:acasestudyon gears.In: LightWeightCompositeStructuresinTransportDesign,Manufacturing,AnalysisandPerformance (ed.J.Njuguna),385–420.Woodhead Publishing.
41 Koike,H.,Kida,K.,Santos,E.C.etal.(2012).SelflubricationofPEEK polymerbearingsinrollingcontactfatigueunderradialloads. Tribology International 49:30–38.
42 Friedrich,K.andSchlarb,A.K.(2008). TribologyofPolymericNanocomposites.Amsterdam:Elsevier.
43 Su,F.H.,Zhang,Z.Z.,Wang,K.etal.(2006).Frictionandwearpropertiesofcarbonfabriccompositesfilledwithnano-Al2 O3 andnano-Si3 N4 . CompositesPartA:AppliedScienceandManufacturing 37:1351–1357.
44 Guo,Q.B.,Lau,K.T.,Rong,M.Z.,andZhang,M.Q.(2010).Optimizationof tribologicalandmechanicalpropertiesofepoxythroughhybridfilling. Wear 269:13–20.
45 Guo,Q.B.,Lau,K.T.,Rong,M.Z.,andZhang,M.Q.(2009).Imparting ultra-lowfrictionandwearratetoepoxybytheincorporationofmicroencapsulatedlubricant? MacromolecularMaterialEngineering 294:20–24.
46 Khun,N.W.,Zhang,H.,Yue,C.Y.,andYang,J.L.(2014).Self-lubricatingand wearresistantepoxycompositesincorporatedwithmicroencapsulatedwax. JournalofAppliedMechanics 81:1–9.
47 Imani,A.H.,Zhang,H.,Owais,M.etal.(2018).Wearandfrictionofepoxy basednanocompositeswithsilicananoparticlesandwaxcontainingmicrocapsules. CompositesPartA:AppliedScienceandManufacturing 107: 607–615.
48 Khun,N.W.,Zhang,H.,Yang,J.L.,andLiu,E.(2013).Mechanicaland tribologicalpropertiesofepoxymatrixcompositesmodifiedwithmicroencapsulatedmixtureofwaxlubricantandmulti-walledcarbonnanotubes. Friction 1:341–349.
49 Oyman,Z.O.(2009). AnOverviewofResearchonSelfHealingCoatings,1–3. BoyaTurk,SpecialEdition.
50 Gao,C.,Yu,L.,Liu,H.,andChen,L.(2012).Developmentofself-reinforced polymercomposites. ProgressinPolymerScience 37:767–780.
51 Huang,H.X.(1998).Self-reinforcementofpolypropylenebyflow-induced crystallizationduringcontinuousextrusion. JournalofAppliedPolymer Science 67:2111–2118.
52 Li,R.andYao,D.(2008).Preparationofsinglepoly(lacticacid)composites. JournalofAppliedPolymerScience 107:2909–2916.
53 Makela,P.,Pohjonen,T.,Tormala,P.etal.(2002).Strengthretentionpropertiesofself-reinforcedpoly-l-lactide(SR-PLLA)suturescomparedwith polyglyconate(Maxon(R))andpolydioxanone(PDS)sutures:aninvitro study. Biomaterials 23:2587–2592.
1OverviewandPresentStatusofReinforcedPolymerComposites
54 Tormala,P.(1992).Biodegradableself-reinforcedcompositematerials;manufacturingstructureandmechanicalproperties. ClinicalMaterials 10: 29–34.
55 Hine,P.J.andWard,I.M.(2004).Hotcompactionofwovenpoly(ethylene terephthalate)multifilaments. JournalofAppliedPolymerScience 91: 2223–2233.
56 Gilbert,J.L.,Ney,D.S.,andLautenschlager,E.P.(1995).Self-reinforcedcompositepoly(methylmethacrylate):staticandfatigueproperties. Biomaterials 16:1043–1055.
57 Gindl,W.andKeckes,J.(2007).Drawingofself-reinforcedcellulosefilms. JournalofAppliedPolymerScience 103:2703–2708.
58 Gemi,L.(2018).Investigationoftheeffectofstackingsequenceonlow velocityimpactresponseanddamageformationinhybridcompositepipes underinternalpressure.Acomparativestudy. CompositesPartB:Engineering 153:217–232.
59 Idowu,A.,Boesl,B.,andAgarwal,A.(2018).3Dgraphenefoam-reinforced polymercomposites–areview. Carbon https://doi.org/10.1016/j.carbon .2018.04.024.
60 LiN,ZhangQ,GaoS,SongQ,HuangR,WangL.Biocompatibleand conductivescaffold.2013,doi:https://doi.org/10.1038/srep01604.
61 Bello,A.,Fashedemi,O.O.,Lekitima,J.N.etal.(2013).High-performance symmetricelectrochemicalcapacitorbasedongraphenefoamandnanostructuredmanganeseoxide. AIPAdvances 3(8):82118.
62 Embrey,L.,Nautiyal,P.,Loganathan,A.etal.(2017).Three-dimensional graphenefoaminducesmultifunctionalityinepoxynanocompositesby simultaneousimprovementinmechanical,thermal,andelectricalproperties. AppliedMaterialsandInterfaces 9(45):39717–39727.
63 Qiu,Y.,Liu,J.,Lu,Y.etal.(2016).Hierarchicalassemblyoftungsten spheresandepoxycompositesinthree-dimensionalgraphenefoamand itsenhancedacousticperformanceasabackingmaterial. ACSApplied MaterialsInterfaces 8:18496–18504.
64 Sun,X.,Liu,X.,Shen,X.etal.(2015).Graphenefoam/carbonnanotube/poly(dimethylsiloxane)compositesforexceptionalmicrowave shielding. CompositesPartA:AppliedScienceandManufacturing 85: 199–206.
65 Jusza,A.,Anders,K.,Polis,P.etal.(2014).Luminescentpropertiesinthe visibleofEr3+/Yb3+ activatedcompositematerials. OpticalMaterials https://doi.org/10.1016/j.optmat.2014.03.018.
66 Kroto,H.W.,Heath,J.R.,Obrien,S.C.etal.(1985).C-60–Buckminsterfullerene. Nature 318:162–163.
67 Hirsch,A.(2010).Theeraofcarbonallotropes. NaturalMaterials 9: 868–871.
68 Iijima,S.(1991).Helicalmicrotubulesofgraphiticcarbon. Nature 354: 56–58.
69 Novoselov,K.S.,Geim,A.K.,Morozov,S.V.etal.(2004).Electricfieldeffect inatomicallythincarbonfilms. Science 306:666–669.