Regenerated organs: future perspectives 1st edition chandra p. sharma - Download the ebook in PDF wi

Page 1


https://ebookmass.com/product/regenerated-organs-futureperspectives-1st-edition-chandra-p-sharma/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Challenges

in Science

Education:

Global

Perspectives

for the Future Gregory P. Thomas

https://ebookmass.com/product/challenges-in-science-education-globalperspectives-for-the-future-gregory-p-thomas/

ebookmass.com

Unravelling Plant-Microbe Synergy 1st Edition Dinesh Chandra

https://ebookmass.com/product/unravelling-plant-microbe-synergy-1stedition-dinesh-chandra/

ebookmass.com

Phytoremediation Potential of Perennial Grasses 1st

Edition Vimal Chandra Pandey

https://ebookmass.com/product/phytoremediation-potential-of-perennialgrasses-1st-edition-vimal-chandra-pandey/

ebookmass.com

An Extraordinary Lord Anna Harrington

https://ebookmass.com/product/an-extraordinary-lord-anna-harrington-3/

ebookmass.com

Chapman & Nakielny’s Guide to Radiological Procedures 7th Edition Nick Watson

https://ebookmass.com/product/chapman-nakielnys-guide-to-radiologicalprocedures-7th-edition-nick-watson/

ebookmass.com

Atlas of Laparoscopic and Robotic Urologic Surgery 3rd Edition Jay T. Bishoff

https://ebookmass.com/product/atlas-of-laparoscopic-and-roboticurologic-surgery-3rd-edition-jay-t-bishoff/

ebookmass.com

The Year-Long Adventures of the Blue Shoes & Their Friends: A Pedagogical Experiment in Visual Blogging and Tutoring University Athletes at the University of Nebraska-Lincoln Michael R. Hill

https://ebookmass.com/product/the-year-long-adventures-of-the-blueshoes-their-friends-a-pedagogical-experiment-in-visual-blogging-andtutoring-university-athletes-at-the-university-of-nebraska-lincolnmichael-r-hill/ ebookmass.com

A Michaelmas Truce (The Mercer's House Book 4) Mary Kingswood

https://ebookmass.com/product/a-michaelmas-truce-the-mercers-housebook-4-mary-kingswood/

ebookmass.com

Mathematics for Elementary School Teachers 1st Edition, (Ebook PDF)

https://ebookmass.com/product/mathematics-for-elementary-schoolteachers-1st-edition-ebook-pdf/

ebookmass.com

of Interventional Cancer Pain Management 1st ed. 2019 Edition, (Ebook PDF)

https://ebookmass.com/product/essentials-of-interventional-cancerpain-management-1st-ed-2019-edition-ebook-pdf/

ebookmass.com

REGENERATEDORGANS

REGENERATED ORGANS FuturePerspectives

DepartmentofPharmaceuticalBiotechnology,ManipalCollegeofPharmaceuticalSciences, ManipalUniversity,Manipal,Karnataka CollegeofBiomedicalEngineering&AppliedSciences,PurbanchalUniversity,Kathmandu,Nepal BiomedicalTechnologyWing,SreeChitraTirunalInstituteforMedicalSciences&Technology(SCTIMST), Thiruvananthapuram,India

AcademicPressisanimprintofElsevier

125LondonWall,LondonEC2Y5AS,UnitedKingdom

525BStreet,Suite1650,SanDiego,CA92101,UnitedStates

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-821085-7

ForInformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher:StacyMasucci

AcquisitionsEditor:ElizabethBrown

EditorialProjectManager:BillieJeanFernandez

ProductionProjectManager:SelvarajRaviraj

CoverDesigner:MarkRogers

TypesetbyMPSLimited,Chennai,India

Listofcontributorsix

Prefacexiii 1

EngineeringApproaches:From ScaffoldingtoBioprinting Applications

1.Tissueandorganregeneration:An introduction

WilliPaulandChandraP.Sharma

1.1Introduction3

1.2Guidedtissueregeneration4

1.3Stemcellsintissueregeneration5

1.4Conclusionandfutureperspective8 References8

2.Tissuerepairwithnaturalextracellular matrix(ECM)scaffolds

2.1Summary11

2.2Background12

2.3Smallintestinalsubmucosa15

2.4Acellulardermis18

2.5Bladderacellularmatrix18

2.6Amnioticmembrane19

2.7Pericardiumandfascialata24

2.8ECMforrepairofdamagedmuscle26

2.9Stemcellsforskeletalmuscle regeneration27

2.103Dbioprintingfororganregeneration27

2.11Nanosystemdeliveryofcellularmediators29

2.12Perspective31 References32

3.Engineeredsurfaces:Aplausible alternativeinoverviewingcriticalbarriers forreconstructingmoderntherapeuticsor biomimeticscaffolds

PreetamGuhaRay,RagaviRajasekaran,TrinaRoy,AbirDutta, BaisakheeSaha,HemaBora,SubrataK.DasandSantanuDhara

3.1Introduction39

3.2Currentstatusofmedicaldevicesandrelative complicationsinvolved40

3.3Substratesdeployedinbiomedical applications41

3.4Typesofsurfacemodificationtechniques towardsligandspecificactivation44

3.5Surfaceengineeringofpolymeric substrates45

3.6Surfaceactivationofmetallicsubstrates50

3.7Engineeringorganoids54

3.8Theconceptofengineered invivo system (organ-on-chipdevices)57

3.9Engineeredbactericidalsystems amodern paradigmtoregenerativemicrodevices63

3.10Futureperspectivesandchallenges71 References71

4.Strategiesof3Dbioprintingand parametersthatdeterminecellinteraction withthescaffold-Areview

GreeshmaRatheesh,CedryckVaquette,PrashantSonarand YinXiao

4.1Introduction81

4.2Typesofbioprinting82

4.3Hydrogelsfor3Dbioprinting85

4.4Propertiesofabioink87

4.5Parametersthatdeterminesthecellresponses ontissueengineeredscaffold87

4.6Conclusion90 References91

5.Multipotentnatureofdentalpulpstem cellsfortheregenerationofvaried tissues Apersonalizedmedicine approach

5.1Introduction97

5.2ImportanceofDPSCsinpersonalized regenerativemedicine98

5.3UsefulnessofDPSCsinosteogenicregeneration therapy99

5.4DPSCsfortheregenerationofneuronaltissues andcentralnervoussystem101

5.5ApplicabilityofDPSCsasastemcellsourcefor theregenerationofmyocardialandvascular tissues102

5.6Dentalpulpstemcellsasmediatorsofoptic systemregeneration104

5.7RegenerativetherapeuticpotentialofDPSCsin diabetes105

5.8DPSCsasatherapeutictoolforthe regenerationofcartilageandtendon106

5.9Futureperspectivesandconclusions108

References114

2

CardiovascularSystem

6.Regeneratingtheheart:Thepast, present,&future

AdityaSenguptaandRaghavA.Murthy

6.1Introduction121

6.2Cardiomyocyteregenerative potential122

6.3Cell-basedstrategies122

6.4Cardiacstemcells123

6.5Pluripotentstemcells123

6.6Cell-freestrategies124

6.7Growthfactors124

6.8Exosomes&microRNAtechnology124

6.9Directreprogramming125

6.10Endogenousrepair&regeneration126

6.11Thefuture127

6.12Conclusion128 References128

7.Engineeredcardiactissue:Conceptsand future

SoumyaK.Chandrasekhar,FinoshG.Thankam,JoshiC.Ouseph andDevendraK.Agrawal

7.1Introduction133

7.2CardiacECM134

7.3Post-MIscarring135

7.4Cardiactissueengineering136

7.5BiomaterialsforCTE139

7.6DecellularizedECM140

7.7Tissue biomaterialinteraction140

7.8FunctionalmodificationsforCTE scaffolds143

7.9Bottlenecksandfuture145 References146

8.Vascularregenerationandtissue engineering:Progress,clinicalimpact,and futurechallenges

SantanuHati,SwatiAgrawalandVikrantRai

8.1Introduction153

8.2Regenerativetherapies155

8.3Conclusionandfuturedirections162 References163

3 MusculoskeletalRegenerationof Tissues

9.Oraltissueregeneration:Currentstatus andfutureperspectives

MajiJose,VrindaRajagopalandFinoshG.Thankam

9.1Introduction169

9.2Histologyoforaltissues169

9.3Oralmicrobiologyinhealthanddiseases170

9.4Oraldiseases,prevalenceand management171

9.5Oralmucosallesions173

9.6Oralcancer174

9.7Oro-dentaltissueengineering:amodern epochintoothmanagement175

9.8Strategiesadaptedforperiodontaltissue regeneration177

9.9ECMregenerationwithECM-based scaffolds177

9.10Biomaterialscaffoldsfororo-dentaltissue regeneration178

9.11Stemcellbiologyupdatesfororo-dentaltissue regeneration180

9.12Summary182 References182

Furtherreading187

10.Regenerativetechnologiesfororal structures

PrachiHanwatkarandAjayKashi

10.1Introduction189

10.2Embryologyoforalstructures190

10.3Regenerationofteeth190

10.4Regenerationofmuscles/tongue194

10.5Regenerationofbone195

10.6RegenerationofTMJ196

10.7Regenerationofsalivaryglands196

10.8Microgravity197

10.9Ethicalconsiderations198 References198

11.State-of-the-artstrategiesand futureinterventionsinboneand cartilagerepairforpersonalized regenerativetherapy

YogendraPratapSingh,JosephChristakiranMoses,Ashutosh Bandyopadhyay,BibritaBhar,BhaskarBirru,NandanaBhardwaj andBimanB.Mandal

11.1Introduction203

11.2State-of-the-artstrategiesfor regeneration205

11.3Diseasemodels223

11.4Graftsubstitutes229

11.5Clinicalstatus232

11.6Conclusionandfutureperspectives237 Acknowledgment239 References239

12.Muscletissueengineering A materialsperspective

JohnP.Bradford,GerardoHernandez-MorenoandVinoyThomas

12.1Introduction249

12.2Bio-interfacingmaterials254

12.3Engineeringapproaches(scaffolds)263

12.4Summary265

12.5Futureperspective268 References269

RegenerativeNeuroscience

13.Recentdevelopmentsandnew potentialsforneuroregeneration

SreekanthSreekumaran,AnithaRadhakrishnanandSanjuP.Joy

13.1Nervoussystem,neurodegenerationand regeneration anutshell278

13.2Strategiesforneuralregenerationand repair281

13.3Futureperspectives285 References285 5

RespiratoryResearch

14.Lungdiseaseandrepair Is regenerationtheanswer?

S.S.PradeepKumarandA.MayaNandkumar

14.1Embryonicdevelopment293

14.2Stemcellsinthelung294

14.3Epithelial mesenchymalinteractions295

14.4Roleofmechanicalforcesinlung architecture296

14.5Lungregenerationindisease296

14.6Invivo Animalmodels297

14.7Invitromodels297

14.8Lung-on-achip(LOC)model298

14.9Threedimensionalprintingofthe lung299

14.10Futureperspectiveslatest4D printing299

Acknowledgments299 Conflictofinterest300 References300 Furtherreading301

KeyEnablingTechnologiesfor RegenerativeMedicineFuture OutlookandConclusions

15.3Dprintinginregenerativemedicine AynurUnalandNidhiArora

15.1Introduction305

15.2Conclusions326 References327

16.Roleofumbilicalcordstemcellsin tissueengineering MerlinRajeshLalandOormilaKovilam

16.1UmbilicalcordandMSCs332

16.2TransplantationbiologyofUCMSCs: biomaterials,differentiationand regeneration332

16.3Concernsandperspective335 References336

Index339

Listofcontributors

DevendraK.Agrawal Departmentof TranslationalResearch,WesternUniversityof HealthSciences,Pomona,CA,UnitedStates

SwatiAgrawal DepartmentofSurgery, CreightonUniversitySchoolofMedicine, Omaha,NE,UnitedStates

NidhiArora SSInfotech,Indore,MP,India

AshutoshBandyopadhyay Biomaterialand TissueEngineeringLaboratory,Departmentof BiosciencesandBioengineering,IndianInstitute ofTechnologyGuwahati,Guwahati,India

BibritaBhar BiomaterialandTissueEngineering Laboratory,DepartmentofBiosciencesand Bioengineering,IndianInstituteofTechnology Guwahati,Guwahati,India

NandanaBhardwaj Departmentof Biotechnology,NationalInstituteof PharmaceuticalEducationandResearch Guwahati,Guwahati,India

BhaskarBirru BiomaterialandTissue EngineeringLaboratory,Departmentof BiosciencesandBioengineering,IndianInstitute ofTechnologyGuwahati,Guwahati,India

HemaBora BiomaterialsandTissueEngineering Laboratory,SchoolofMedicalScienceand Technology(SMST),IndianInstituteof Technology Kharagpur,Kharagpur,India

JohnP.Bradford Polymers&Healthcare Materials/Devices,DepartmentofMaterials Science&EngineeringUniversityofAlabama atBirmingham(UAB),Birmingham,AL, UnitedStates

SoumyaK.Chandrasekhar Departmentof Zoology,KKTMGovernmentCollege,Pullut, CalicutUniversity,Kerala,India;Department ofZoology,ChristCollege,Irinjalakuda, CalicutUniversity,Kerala,India

ThomasChandy PhillipsMedisizeLLC, Hudson,WI,UnitedStates

SubrataK.Das BiomaterialsandTissue EngineeringLaboratory,SchoolofMedical ScienceandTechnology(SMST),IndianInstitute ofTechnology Kharagpur,Kharagpur,India

SantanuDhara BiomaterialsandTissue EngineeringLaboratory,SchoolofMedical ScienceandTechnology(SMST),Indian InstituteofTechnology Kharagpur, Kharagpur,India

AbirDutta BiomaterialsandTissueEngineering Laboratory,SchoolofMedicalScienceand Technology(SMST),IndianInstituteof Technology Kharagpur,Kharagpur,India

PrachiHanwatkar RochesterGeneralHospital, Rochester,NY,UnitedStates

SantanuHati DepartmentofBiomedical Science,CreightonUniversitySchoolof Medicine,Omaha,NE,UnitedStates

GerardoHernandez-Moreno Polymers& HealthcareMaterials/Devices,Departmentof MaterialsScience&EngineeringUniversity ofAlabamaatBirmingham(UAB), Birmingham,AL,UnitedStates

MajiJose DepartmentofOralPathology& Microbiology,YenepoyaDentalCollege, Yenepoya(DeemedtobeUniversity), Mangalore,India

SanjuP.Joy Neurology,NationalInstituteof MentalHealthandNeuro-Sciences,Bangalore, India

AjayKashi PrivatePractice,Rochester,NY, UnitedStates

OormilaKovilam StJoseph’sHospital, Indiana,UnitedStates

MerlinRajeshLal LifeCellInternational(Pvt) Ltd,Chennai,India

BimanB.Mandal BiomaterialandTissue EngineeringLaboratory,Departmentof BiosciencesandBioengineering,Indian InstituteofTechnologyGuwahati,Guwahati, India;CentreforNanotechnology,Indian InstituteofTechnologyGuwahati,Guwahati, India

A.MayaNandkumar DivisionofMicrobial Technology,SreeChitraTirunalInstitutefor MedicalSciences&Technology Thiruvananthapuram,India

JosephChristakiranMoses Biomaterialand TissueEngineeringLaboratory,Department ofBiosciencesandBioengineering,Indian InstituteofTechnologyGuwahati,Guwahati, India

RaghavA.Murthy Departmentof CardiovascularSurgery,IcahnSchoolof MedicineatMountSinai,NewYork,NY, UnitedStates

PrabhaD.Nair DivisionofTissueEngineering andRegenerationTechnologies,Biomedical TechnologyWing,SreeChitraTirunal InstituteforMedicalSciencesand Technology(SCTIMST),Poojapura, Thiruvananthapuram,India

JoshiC.Ouseph DepartmentofZoology, ChristCollege,Irinjalakuda,Calicut University,Kerala,India

WilliPaul BiomedicalTechnologyWing,Sree ChitraTirunalInstituteforMedicalSciences &Technology,Thiruvananthapuram,India

S.S.PradeepKumar DivisionofMicrobial Technology,SreeChitraTirunalInstitutefor MedicalSciences&Technology Thiruvananthapuram,India

AnithaRadhakrishnan Researchand DevelopmentDepartment,Pharmaceutical Corporation(IndianMedicine),Thrissur, India

D.P.Rahul DepartmentofOrthodonticsand DentofacialOrthopedics,SchoolofDentistry, AmritaVishwaVidyapeetham,Amrita InstituteofMedicalSciences,Kochi,India

VikrantRai DepartmentofBiomedical Science,CreightonUniversitySchoolof Medicine,Omaha,NE,UnitedStates

VrindaRajagopal Departmentof Biochemistry,UniversityofKerala, Karyavattom,India

RagaviRajasekaran BiomaterialsandTissue EngineeringLaboratory,SchoolofMedical ScienceandTechnology(SMST),Indian InstituteofTechnology Kharagpur, Kharagpur,India

GreeshmaRatheesh InstituteofHealthand BiomedicalInnovation,QueenslandUniversity ofTechnology,Brisbane,QLD,Australia

PreetamGuhaRay BiomaterialsandTissue EngineeringLaboratory,SchoolofMedical ScienceandTechnology(SMST),Indian InstituteofTechnology Kharagpur, Kharagpur,India

TrinaRoy BiomaterialsandTissue EngineeringLaboratory,SchoolofMedical ScienceandTechnology(SMST),Indian InstituteofTechnology Kharagpur, Kharagpur,India

BaisakheeSaha BiomaterialsandTissue EngineeringLaboratory,SchoolofMedical ScienceandTechnology(SMST),Indian InstituteofTechnology Kharagpur, Kharagpur,India

AdityaSengupta DepartmentofCardiovascular Surgery,IcahnSchoolofMedicineatMount Sinai,NewYork,NY,UnitedStates

ChandraP.Sharma BiomedicalTechnology Wing,SreeChitraTirunalInstitutefor MedicalSciences&Technology, Thiruvananthapuram,India

YogendraPratapSingh BiomaterialandTissue EngineeringLaboratory,Departmentof BiosciencesandBioengineering,IndianInstitute ofTechnologyGuwahati,Guwahati,India

V.P.Sivadas DivisionofTissueEngineering andRegenerationTechnologies,Biomedical TechnologyWing,SreeChitraTirunal InstituteforMedicalSciencesand Technology(SCTIMST),Poojapura, Thiruvananthapuram,India

PrashantSonar SchoolofChemistryand Physics,QueenslandUniversityof Technology,Brisbane,QLD,Australia

SreekanthSreekumaran Departmentof Biochemistry,UniversityofKerala, Thiruvananthapuram,India

FinoshG.Thankam Departmentof TranslationalResearch,WesternUniversityof HealthSciences,Pomona,CA,UnitedStates

VinoyThomas Polymers&Healthcare Materials/Devices,DepartmentofMaterials Science&EngineeringUniversityofAlabama atBirmingham(UAB),Birmingham,AL, UnitedStates

AynurUnal DigitalMonzoukuri,PaloAlto, CA,UnitedStates

CedryckVaquette SchoolofDentistry,The UniversityofQueensland,Brisbane,QLD, Australia

YinXiao InstituteofHealthandBiomedical Innovation,QueenslandUniversityof Technology,Brisbane,QLD,Australia; Australia-ChinaCentreforTissue EngineeringandRegenerativeMedicine, CentreforBiomedicalTechnologies, QueenslandUniversityofTechnology, Brisbane,QLD,Australia

Preface

Regeneratedorgansisanemergingarea toencouragethepatientspecificorgan developmentarealityinfuture.Therefore, theobjectiveofthisbookistobringallthe relatedinterdisciplinaryconceptstogether anddiscussthecomprehensivedevelopmentspossibleofthisfieldcurrentlywith futuredirections.Thebookcontainssixsections Section1:Engineeringapproaches: fromscaffoldingtobioprintingapplications, Section2:Cardiovascularsystem,Section3: Musculoskeletalregenerationoftissues, Section4:RegenerativeNeuroscience, Section5:Respiratoryresearch,Section6: Keyenablingtechnologiesforregenerative medicinefutureoutlookandconclusions. Eachchapterhasbeenwrittenbyexperts intheirspecializedarea.

Thisbookisexpectedtobeanessential referenceresourceforyounggraduatestudents,academicfacultyandcollaborating industrialpartnerswhoareinterestedin advancingtheknowledgeandtranslational researchintheareaofRegeneratedOrgans.

Ithankalltheauthorsfortheireffortsof preparingexcellentcontributionsandMs. BillieJeanFernandezforhereffectivecoordinationofthisproject.

Ialsoappreciateverymuchandthank mywifeArunaSharmaforhersustained supportduringthecourseofthisproject.

1

Tissueandorganregeneration:An introduction

BiomedicalTechnologyWing,SreeChitraTirunalInstituteforMedicalSciences&Technology, Thiruvananthapuram,India

1.1Introduction

Tissuerepairorhealingisanatural,complicatedandcontinuousprocessinanyliving organism,i.e.restorationoftissuefunctionandarchitectureaftertheinjury.Itcomprisesof twoessentialcomponents;RegenerationandRepair.Repairafterinjurycanoccurbyregenerationofcellsortissuesthatrestoresnormaltissuestructure,orbyhealing,whichleadstothe formationofascar.Incaseofregeneration,thedamagedorlosttissueisreplacedbytheproliferationofsurroundingundamagedcellsandtissue.Thenormalstructureofthetissueis restoredorcompleteregenerationoccursinepidermis,GItractepitheliumandhematopoietic systemwherethecellshavehighproliferativecapacity.Inthecaseofstabletissueslikeliver andkidney,compensatorygrowthoccursratherthantrueregeneration.However,repairpredominantlyisthedepositionofcollagentoformascar.Butwillcertainlydependuponthe abilityofthetissuetoregenerateandtheextentoftheinjury.Woundsonsuperficialskin healthroughregenerationofsurfaceepithelium(regeneration);however,restorationoforiginalECMdamagedbysevereinjuryinvolvescollagendepositionandscarformation(repair) therebythenormalstructureofthetissueispermanentlyaltered.Chronicinflammationmay causemassivefibrosis.

Differentcelltypeshavedifferentcapacityforregeneration.Labilecellswhichactsasphysicalbarriershaveunlimitedregenerativecapacity.Theyarecellsfoundonskin,GItract,respiratorytractandurinarytractthatarecharacterizedbycontinuousregeneration.Quiescent celltypesfoundinmostoftheinternalorgans likeliver,kidney,endocrineandmesenchymal cells(fibroblasts,smoothmuscle,vascular) havelimitedregenerativecapacityandarein responsetostimuli.Itrequiresanintactbasementmembranefororganizedregeneration.

PermanentcelltypeslikeCNSneurons,skeletalandcardiacmusclecellshaveverylittle regenerativecapacityanditsrepairformsscar.

Mammalsandhumansaregenerallyconsideredasapoorexampleforregeneration whencomparedwithmostvertebratespeciesduetothedifferencesingenetics,development,immunesystemsandtissuecomplexity [1].Incaseofmammals,scar-freehealing andregenerationnormallyoccursduringtheearlystagesoflife.Theabilitytoregenerate islostduringadulthood,butmanynon-mammalianvertebratesretainthecapacityto regenerateorgansandlimbsafterinjuryasdepictedin Fig.1.1[1].Physiologicalregenerationinmammalsislimitedtotissueswithhighproliferativecapacity.Theepitheliaofthe skinandgastrointestinaltract,thehematopoieticsystem(redbloodcellreplacement),hair cyclingandantlerregenerationareexamples.Thisformsthebasisofguidedtissueregenerationwhichmaybenecessaryforefficientrestorationofdamagedtissues.Thustheoriginalfunctionandformseemstobemimickedascloselyaspossiblebytheregenerated tissues.Regenerationthusrequiresanintactconnectivetissuescaffold.

1.2Guidedtissueregeneration

Guidedtissueregenerationisaprocedurewhereabiodegradableconduitprovidescontactguidanceforenhancingtheopportunityforonecelltypetopopulateanareafor regeneratingtissue.Theconduitorabiomaterialconstructshouldbebiocompatibleand shouldnotmakeanydamageorberejectedbythehosttissue.Regenerationisclassified intoguidedtissueregeneration(GTR)whichreferstotheregenerationofperiodontal attachmentandguidedboneregeneration(GBR)thatreferstoridgeaugmentationand focusedondevelopmentofhardtissuesinadditiontothesofttissueregeneration.

Ridgeaugmentationtechniqueisrequiredforsuccessfulimplantplacementintheright prosthodonticpositions.Guidedtissueregenerationisonetechniqueusedforridgeaugmentationinrehabilitationofatrophicjawswithdentalimplants [2].Itusesbarriermembraneswithorwithoutbonegraftsorsubstitutesforosseousregenerationforexclusionof cellsimpedingboneformation.Epitheliumandconnectivetissueareexcludedfromthe rootsurfaceinthebeliefthattheyinterferewithregeneration.Thiswasbasedonthe assumptionthatonlyperiodontalligamentcellshavethepotentialforregeneration. TheoreticallyguidedtissueregenerationwasdevelopedbyMelcherin1976 [3].Primarily, therearefourstagesforasuccessfulboneortissueregeneration,whicharegenerally abbreviatedasPASS.(1)Primaryclosureofthewoundtopromoteundisturbedanduninterruptedhealing;(2)angiogenesistoprovidenecessarybloodsupplyandundifferentiated mesenchymalcells;(3)spacecreationandmaintenancetofacilitatespaceforboneingrowth,and(4)stabilityofthewoundtoinducebloodclotformationandallowuneventfulhealing.

AdvantagesofGTRmembranesarethatothertissuesthatinterferewiththeosteogenesisandboneformationcanbepreventedbyusingabarrier.Thisbarrieralsoactsasa dressingforthewoundcoverageandanchorageforthebloodclot.Preventbacterialinvasionandinflammationandprovidesuitablemicroenvironmentforregeneration.There areseveralGTRmembranesusedclinicallywhichrangesfromacellulardermalallograft topolymericmembranesbothresorbableaswellasnonresorbable.

FIGURE1.1 Tissueregenerationindifferentspecies. Thecapacityoftissueandorganregenerationvariesin differentanimalspecies.(A)Inmice,thecapacityforscar-freerepairdecreasesbetweenembryonicday15(E15) andE16.Thecapacityforheartandspinalcordregenerationislostinearlypostnatallifebetweenpostnatalday1 (P1)andP7.Limbregenerationislostearlyindevelopment(beforeE15).Wholedigitscanberegenerateduntil E16,anddigittipregenerationismaintainedthroughoutthedevelopmentstages.(B)Inhumans,theregenerative potentialislimitedtoearlydevelopmentalstages,similartomice.(C)Insalamanders,theabilityforscar-free repairandtheregenerationoflimbs,heart,brain,spinalcord,tailandretinaaremaintainedthroughouttheirlife. AdaptedfromXiaHM,etal.Tissuerepairandregenerationwithendogenousstemcells.NatRevMater,2018;3(7):174 93, underlicensefromSpringerNature.

1.3Stemcellsintissueregeneration

Stemcellsarethecoreofthemodernregenerativemedicine.Stemcellshaveprolonged self-renewalcapacityandabilitytoasymmetricreplicationandarefoundinspecialized

nicheswithineachtissue.Duringnormalhomeostasisthedeadcellswillbereplenishedby thestemcells,andalsorepairdamagedtissue.Theextrinsicsignalsinteractwiththeproteins expressedbythestemcellsinadynamicmannerinthenichemicroenvironmentthatinfluencetheabilityofstemcellstoself-renew.Inasymmetricreplication,ineverycelldivision, onecellwillbeidenticaltotheoriginalstemcellwhereastheotheroneterminallydifferentiates.Instochasticdifferentiation,onestemcelldevelopsintotwodifferentiateddaughter cells.Whereasasecondoneproducestwostemcellsidenticaltotheoriginal.

Therearedifferentsourcesforstemcells.Somecomefromembryosthatare3 5days oldcalledembryonicstemcells.Theyarepluripotentcells,candevideintomanystemcells andcandifferentiateintoanytypeofcellinabody.Thusthesecellsareversatileandcan beusedtoregenerateandrepairofanydiseasedtissueororgan.Adultstemcellsarefound insmallnumbersinadulttissuesuchasbonemarroworfatandhavelimiteddifferentiation potential.Bygeneticreprogramming,adultcellscanbetransformedintoembryonicstem cells.Stemcellsarealsofoundinamnioticfluidaswellasumbilicalcordblood,andare calledperinatalstemcells,whichalsohavetheabilitytochangeintospecializedcells.

Ithasbeenreportedthatstemcellsexistintwodistinctstatesdependingupontheirrelativeactivityandwound-inducedregeneration.Theamountoftissuegeneratedisaffected bythetimingandlengthofstemcellactivity.Arecentstudyonhairfolliclehasshown thatsignalsemanatingfrombothheterologousnichecellsandfromlineageprogenyinfluencethetimingandlengthofstemcellactivity [4].Thecapacityofbonetoregenerateand repairitselfdependsonthesizeofthewoundandthepresenceofcertaindiseases.Large bonedefectsmayrequiresurgicalintervention.Implantationofthebonestemandprogenitorcellswithtissueengineeredscaffoldshasimmensepotentialinfracturebonehealing [5].Mesenchymalstemcellsdifferentiatesintoosteoblasts,chondrocytes,andadipocytes andarecriticallyimportantformusculoskeletaltissueregenerationandrepair [6].Stem cellshavebeenexploredforitsregenerativeabilitywidelyinboneregenerationstudies. Bothadiposederivedmesenchymalstemcells(ASC)andbonemarrowstemcells(BMSC) haveshowedalmostsimilarpotentialinboneregeneration,althoughBMSChasshown betterresultsinvitro.Anewmethodfortherepairofinjuredboneorperiodontaldisease usingbonemarrowstemcells(BMSC)hasbeenreported [7].Proliferationandosteogenic differentiationtoosteoblastcellshasbeenachievedusingred-lightabsorbingcarbon nitridesheetsusedalongwithBMSC.Ithasbeenshownthatthematerialabsorbsredlightandemitsfluorescencethatspeedsupboneregeneration.BMSCtherapyhasbeen shownasapromisingchoiceinboneregenerationandrepairparticularlyforcritical-sized defects.However,studyonthecellularandlocalinteractionintheprocessofboneregenerationisrequiredfortheapprovalofFoodandDrugAdministration.

Traumaticmuscleinjuriesarechallengingtotreat.Cellbasedapproachhaveshown promisingresultsinmanypre-clinicalstudies.Myogenicstemcellsaswellasnonmyogeniccellsarestudiedinmuscleregeneration.Satellitecells(SC)giverisetolargenumber ofprogenywhichformsmyofibersandrepopulatetheSCnicheinhostmuscles.Mesenchymal stemcells(MSC)canmodulatethefunctionofmyoblastssuchastheirfusionintomyotubes,and theirmigrationandproliferationkinetics.BonemarrowderivedMSChasbeenshownto improvecontractilemusclefunctionafterintramuscularimplantation [8].Aclinicalstudy reportstheimplantationofanacellularbiologicalscaffoldatthemuscleinjurysiteandprovidingthepatientwithaggressivephysicaltherapyhasshownsignificantfunctional

FIGURE1.2 Site-appropriatetissueremodelingbyECMbioscaffolds. (A C)Massonstrichromestainingof humanmusclebiopsiesshowsislandsofskeletalmusclepresentat6 8weeks,10 12weeksand24 28weekspostsurgery,respectively.(D F)Humanmusclebiopsiesarecharacterizedbydesminexpressionatalltimepoints,indicating newmuscleformationwithinthesiteofimplantation.(G I)ECMbioscaffoldimplantationisassociatedwiththepresence ofCD146 1 NG2 1 perivascularstemcells.(J L)PVSCswereshowntomigrateawayfromtheirnormalvesselassociatedanatomiclocationatalltimepoints.ArrowsindicateCD146 1 PVSCsmigratingawayfromvessels.(M,N) MigratingPVSCsandvascularitywasquantifiedusingCellProfilerimageanalysissoftware.(O)At24 28weekspost surgery,ECMbioscaffoldimplantationwasassociatedwiththepresenceof β-IIItubulin 1 cells,implicatinginnervated skeletalmuscle.(Scalebars 5 50 μm). AdaptedfromDzikiJ,etal.Anacellularbiologicscaffoldtreatmentforvolumetricmuscleloss:resultsofa13-patientcohortstudy NpjRegenerativeMed2016;1,underCreativeCommonsLicense.

improvementinthirteenpatientswithvolumetricmuscleloss.Asthescaffoldsstarted degradingthestemcellsmigratetotheareaandgetdifferentiatedintomusclecells [9]. Newmuscleformationandpresenceofneurogeniccellsattheremodelingsiteisevident in Fig.1.2.Althoughvariousstudieshaveprovidedapositiveoutlook,aninnovativecellbasedtherapyisyettobestandardizedfortraumaticmuscleinjuries.

1.4Conclusionandfutureperspective

Tissueengineeringconceptshavebeenwidelyexperimentedforcartilage,skin,bone,vascularandnervetissueregeneration.The3Dstructureanditsphysicalpropertiesareequally importantlikeitscombinationofmaterials,thecell-cellandthecell-matrixinteractions. Traditionalscaffoldfabricationtechniquehasitslimitationthatthecomplexstructureofthe realorganscannotbeduplicated.3Dbioprintingtechniquehasbeenstudiednowadayasa strategytoimproveregenerationoforgans.Theinventionofstereolithographyin1983laterled tothedevelopmentof3Dbioprintingmethodforprintingartificialhumanorgans.It’saversatile3Dprintingmethodutilizingbio-inkforprintingartificialorganslikebloodvessel,skeleton andskin.3Dbioprintingtechnologyishighlypreciseandfast,andhasthebenefitofindividualizedmedicaltreatment.Ithasbeendemonstratedwithtricalciumphosphatethat3Dprinted scaffoldscanhavepreciseandcontrollableporestructurewithoptimalmechanicalstrength comparablewithhumancancellousbone [10].Thisscaffoldwasbiocompatible,andhadadherenceandrapidproliferationofbonemesenchymalstemcells(hMSC)foritsapplicationinloadbearingbone.Anewbio-inkwithprecisecontroloverprintability,mechanicalanddegradation propertieshasdemonstratedendochondraldifferentiationofencapsulatedhMSCs [11].This could3Dprintpatientspecificbonetissueforregenerationofdiseasedbone.Similarly3Dprintingcouldalsobeusedinbioprintingofheartvalvesandheartmusclesforthetreatmentofcardiacpatients [12].AcriticalreviewbyDeoetal. [13] discussesvariousdesigncriteriaand processingparametersofbioinktohelpfabricationofcomplexstructuresforbioartificialorgan manufacturing.Thereisashortageofdonororgansworldwidewhichprojectstheurgencyof developmentofbiocompatible3Dprintedartificialorgans.Thestrategiesandprocessparametersforbioprintingoforganslikeskin,cardiactissue,bone,cartilage,liver,lung,neuraltissues,pancreasetc.arereviewedindetailbyMataietal. [14].Theprogressmadeinorganbio printinginregenerationhasmadeconsiderableprogress;however,stillvariouschallengeslike structuralstabilityinvivoanddegradation,biocompatibility,maintenanceofsterilityetc.need tobeoptimizedbeforeclinicaltranslation.Theversatilityofthebioprintingcouldimprove withthelatestinnovationlike5Dprintingofadditivemanufacturing (wheretheprintingcan achievecurvedpathsmakingtheartificialorgansmorerealistic).Theadventof4Dprinting wherethereisafourthdimensionaddedseemsmoredynamicwhichmakesasmartmaterial thatrespondstoastimulus.Theseseemtobemoresuitableforbioartificialorganregeneration.

References

[1] XiaHM,etal.Tissuerepairandregenerationwithendogenousstemcells.NatRevMater2018;3(7):174 93.

[2] LiuJ,KernsDG.Mechanismsofguidedboneregeneration:areview.OpenDentJ2014;8:56 65.

[3] MelcherAH.Ontherepairpotentialofperiodontaltissues.JPeriodontol1976;47(5):256 60.

1.EngineeringApproaches:FromScaffoldingtoBioprintingApplications

[4] BlanpainC,FuchsE.Stemcellplasticity,plasticityofepithelialstemcellsintissueregeneration.Science 2014;344(6189):1243- 1

[5] WalmsleyGG,etal.Stemcellsinboneregeneration.StemCellRevRep2016;12(5):524 9.

[6] ChenY,etal.Mesenchymalstemcells:apromisingcandidateinregenerativemedicine.IntJBiochemCell Biol2008;40(5):815 20.

[7] TiwariJN,etal.Acceleratedboneregenerationbytwo-photonphotoactivatedcarbonnitridenanosheets.Acs Nano2017;11(1):742 51.

[8] QaziTH,etal.Celltherapytoimproveregenerationofskeletalmuscleinjuries.JCachexiaSarcopenia Muscle2019;10(3):501 16.

[9] DzikiJ,etal.Anacellularbiologicscaffoldtreatmentforvolumetricmuscleloss:resultsofa13-patient cohortstudy.NpjRegenerativeMed2016;1.

[10] ManX,etal.Researchonsinteringprocessoftricalciumphosphatebonetissueengineeringscaffoldbased onthree-dimensionalprinting.ShengWuYiXueGongChengXueZaZhi2020;37(1):112 18.

[11] ChimeneD,etal.Nanoengineeredosteoinductivebioinkfor3Dbioprintingbonetissue.ACSApplMater Interfaces2020.

[12] BirlaRK,WilliamsSK.3Dbioprintinganditspotentialimpactoncardiacfailuretreatment:anindustry perspective.APLBioeng2020;4(1):010903.

[13] DeoK,etal.Bioprinting101:design,fabricationandevaluationofcell-laden3Dbioprintedscaffolds.Tissue EngPartA2020.

[14] MataiI,etal.Progressin3Dbioprintingtechnologyfortissue/organregenerativeengineering.Biomaterials 2020;226:119536.

Tissuerepairwithnatural extracellularmatrix(ECM)scaffolds

PhillipsMedisizeLLC,Hudson,WI,UnitedStates

2.1Summary

Extracellularmatrix(ECM)scaffoldsthatprovideaconduciveenvironmentfornormal cellulargrowth,differentiationandangiogenesisareimportantcomponentsoftissueengineeredgraftsforlongtermviability.ECMhasshowntobeaneffectivescaffoldfortherepair andreconstitutionofseveraltissues,includingbloodvessels,skingraft,duralrepair,soft tissuegrafts,herniarepair,myocardialrepair,urinarytractstructures,ophthalmicreconstructionandnervetissueregeneration.TheseECMscaffoldsarecompletelydegraded invivoandinduceahostcellularresponsethatsupportsconstructiveremodelingrather thanscartissueformation.Severalnaturallyoccurringscaffoldmaterialshavebeeninvestigated,includingsmallintestinalsubmucosa(SIS),acellulardermis(AlloDerm)bladder acellularmatrixgraft(UBM),amnioticmembranetissue(anthromatrix,ambiodry,amniograft),cadavericfascia(Tutoplast)andporcinepericardium(IOpatch).Commonfeaturesof ECM-associatedtissueremodelingincludeextensiveangiogenesis,recruitmentofcirculating progenitorcells,rapidscaffolddegradationandconstructiveremodelingofdamagedor missingtissues.Thesources,themethodsofprocurementandprocessing,andtheeffectsof thesenaturallyoccurring,materialsonangiogenesisandtissuedepositionarereviewed.SIS hasfounditsapplicationinavarietyoftissueinterfacesfortissuerepairandreconstruction. ThebladderacellularmatrixisverysimilartoSISstructurally.However,extensiveprocessingmethodsareneededtoseparatetheattachedmuscularbladderwallfromthesubmucosalmembrane.Theseharshchemicalandenzymatictreatmentsonbladdermatrixcauses deleteriousresultsonlongtermimplantsontissuereconstructionandrepair.Acellular humanamnioticmembraneshowspromisingintissuerepairandneovascularizationdueto theirimprovedstrength,flexibility,suturability, antibacterialeffectsandlowimmunogenicity. Itseemshumanamnion,whichisprocessedtoyieldauniform,acellularbiofabric,isa superiormaterialforavarietyofproductapplications.

https://doi.org/10.1016/B978-0-12-821085-7.00002-6

Crosslinkingisaneffectivemeansofcont rollingthebiodegradationrateofcollagenbasedbiomaterials.Crosslinkedcollagenorcollagenbasedmaterialshasagreatermodulusofelasticity(Young’smodulus),greaterresistancetoproteases,andalowerdegreeof swellingthanuncrosslinkedcollagen.Glutaraldehydefixationofbio-prosthetictissue hasbeenusedsuccessfullyforalmost40years.However,itisgenerallyrecognizedthat glutaraldehydefixationofbio-prosthesesis associatedwiththeoccurrenceofcalcification.Accordingly,manyeffortshavebeenun dertakentodeveloptechniquesforthe fixationofbio-prostheses,whichwillnotleadt ocalcification.Severalalternativecrosslinkingtechniqueshavebeenexploredindifferentapplications,includingphysicalmethodssuchasUVirradiation,dehydrothermal, freezedrying,etc.andtheuseofchemical reagents,suchasdiepoxides,diisocyanates,carbodiimides,diisothiocyanates,and glycidylethers.

Thecrosslinkingoftissuesreducesimmunogenicityofthematerialandincreaseresistancetodegradationbyhostandbacterialen zymes.Itissuggestedthatthefunctionality oftheamnioticmembranemaybeimprovedviaselectingasuitablecrosslinkingtechniquetosuitaspecificapplication.However,thesuccessfulutilizationofmammalian ECMasatherapeuticdevicewilldependinlargepartuponourabilitytounderstand andtakeadvantageofthenativestructure/fun ctionrelationshipsofthebiologicalscaffoldmaterial.

Thisreviewalsopresentstherecentadvancesinthe3Dbioprintingandtheirrelative components,includingthebioinks,thecells,andapplicationsfororganregeneration. Althoughchallengesstillremaininthisresearchfield,furthermultidisciplinaryresearch toadvanceprintingtechniques,printablebioinkmaterialsandengineeringdesignscan addressthecurrentchallengesandrealizetheemergingpotentialof3Dorganbioprinting. Weconcludethischapterbyhighlightingongoingchallengesandopportunitiesassociated withgrowthfactor(GF)deliveryandaddressthebiomaterialsselectioncriteriaforthefabricationoftraditionalandmodernnanodeliverysystemsthataccomplishthespatiotemporalreleaseofsingle/multipleGFsforfunctionalregenerationofcomplextissues.

2.2Background

Effectiverepairandregenerationofinjuredtissuesandorgansdependsonearlyreestablishmentofthebloodflowneededforcellularinfiltrationandmetabolicsupport. Implantablebiomaterialsdesignedtoreplacedamagedordiseasedtissuesmustactassupports(i.e.,scaffolds)intowhichcellscanmigrateandestablishthisneededbloodsupply [1 4].Oneapproachtotreatingdamagedordiseasedtissuesreliesuponsynthetically derivedbiocompatiblepolymerscaffoldstoserveasbackbonesfortissuerepairandregeneration.Althoughmanysyntheticbiopolymershavebeenusedtoreplacedamagedvascularstructures,andwhilelong-termpatencyrateshaverisenovertheyears,theideal vasculargraftscaffoldremainselusive.Forexample,nosyntheticbiopolymercurrently availableforclinicalusecanrestorenormalstructureandfunctiontoinjuredvasculartissueswhileavoidingseverecomplicationssuchasthrombosis,neointimalhyperplasia, acceleratedatherosclerosis,and/orapproachtorepairandregenerationofdamaged

tissuesusesintactextracellularmatrixobtainedfromanimaltissuesasthegrowthsupport forhostcells.Theextracellularmatrix(ECM)isacomplexmixtureofstructuralfunctional proteins,proteoglycansandglycoproteinsarrangedinaunique,tissuespecificthreedimensionalultrastructure.Theseproteinsprovidestructuralsupportandtensilestrength fortheorgansandtheydeliverdiversehostprocessesasangiogenesisandvasculogenesis, cellmigration,cellproliferationandorientation,inflammation,immuneresponsiveness andwoundhealing.Implantablebiomaterialsdesignedtoreplacedamagedordiseased tissuesmustactassupports(i.e.,scaffolds)intowhichcellscanmigrateandestablishthis neededbloodsupply [1,2].Similarly,thisECMmustbestrongenoughtowithstandthe physiologicdemandsplaceduponthemwhenimplantedintoasite-specificorgansystem andmustretaintheirmechanicalpropertiesovertime.

ThemostcommonconstituentoftheECMisthestructuralprotein,collagen.Whenharvestedfromthetissuesourceandfabricatedintoagraftprosthesis,theseECMmaterials maybereferredtoasnaturallyoccurringpolymericscaffolds,bio-scaffolds,biomatrices, ECMScaffolds,ornaturallyoccurringbiopolymers [3,5 7].Thesematerialsareharvested fromseveraldifferentbodysystems,buttheysharesimilaritieswhenprocessedintoa graftmaterial.Specifically,sincetheyaresubjectedtominimalprocessingaftertheyare removedfromthesourceanimal,theyretainastructureandcompositionnearlyidentical totheirnativestate.Thehostcellsareremovedandthescaffoldsareimplantedacellularly toreplacediseasedordamagedtissues(Table2.1).

Naturallyoccurringbiopolymersincludesmallintestinalsubmucosa,acellular dermis,cadavericfascia,porcinepericardia,thebladderacellularmatrixgraftand

TABLE2.1 ECMScaffoldsandselectedinvestigationaluses.

Scaffoldmaterial/ commercialnameTissuesourcePrimaryuses(Ref.)

Smallintestinalsubmucosa (Surgisiss softtissuegraft, Cook)

Acellulardermis (AlloDerms )

Bladderacellularmatrix (AcellvetV1000-LY)

Amnioticmembrane (Ambiodry,Amniograft, Anthromatrix)

PorcinesmallintestineVascularconduits [8],Skingraft [9] Duralrepair, Softtissuegraft [10] Herniarepair [11],Ligament reconstruction [12] Myocardialrepair [5],Urinary reconstruction [13]

PigskinSkingraft [14],Duralrepair [15],Urinary reconstructionPlasticandcosmeticsurgery [16]

PorcinebladderVascularconduits [17],Bladderreconstruction [18] Esophagusreconstruction,Cardiactissuerepair f13J,

HumanamnionSkingraft [19],Urinarytractreconstruction, Ophthalmology [20],Abdominalherniarepair, Closureofpericardium [21],Vascularrepair [22] Nervetissueregeneration [23]

FasciaLata(Tutoplastt)HumancadaverFascialataLigamentreconstruction,Duralrepair [24], Craniofacialreconstruction,Heartvalves [25]

Pericardium(IOpatcht)MammalianPericardium (porcine,calf)

Heartvalves [26],Cornealrepair,Skingraft

amnioticmembrane [5,27].Thesenaturallyoccurringmaterialsofferpromisingalternatives tosyntheticallyengineeredpolymericscaffoldsfortissuerepairandregeneration [28 30]. Thesenaturallyoccurringscaffoldscanbeprocessedinsuchawayastoretaingrowthfactors,suchasbasicfibroblastgrowthfactor(FGF-2),transforminggrowthfactor-β,vascular endothelialcellgrowthfactor(VEGF),andepidermalgrowthfactor(EGF) [31 33],glycosaminoglycans,suchasheparin,hyaluronicacid,dermatansulfate,chondroitinsulfateAand C [15,34],andstructuralelementssuchasfibronectin,elastinandcollagen [27,34].AllECMs sharethecommonfeaturesofprovidingstructuralsupportandservingasareservoirof growthfactorsandcytokines [1,5].Thesematerialspreventmanyofthecomplicationsassociatedwithforeignmaterialimplantsbecausetheyprovideanaturalenvironmentonto whichcellscanattachandmigrate,withinwhichtheycanproliferateanddifferentiate. Thesenaturallyoccurringbiopolymershavebeenshowntointeractquicklywiththehost’s tissues,inducethedepositionofcellsandadditionalECM,andpromoterapidangiogenesisfunctionsthatareessentialtotherestorationoffunctionalsofttissue.Inthismanner,the ECMaffectslocalconcentrationsandbiologicactivityofgrowthfactorsandcytokinesand makestheECManidealscaffoldfortissuerepairandreconstruction.

Theidealbiomaterialmustallowtissueincorporationandresultinremodeled,functionaltissue(Fig.2.1)withoutleadingtoencapsulation,breakdownofthematerial,tissueerosion,or adhesionformation.Thepurposeofthisliteratureanalysisistopresentanoverviewdetailing theuseofnaturallyoccurringpolymersasacellularbio-scaffoldsandreviewthecurrentknowledgeaboutthebiochemicalcompositionofthesematerialsthatcontributetotheirabilitytoelicit anappropriateangiogenicresponse.ItisassumedthattheECMscaffoldsthatretainessentially unchangedfromnativeECMelicitahostresponsethatpromotecellinfiltrationandrapidscaffolddegradation,depositionofhostderivedneo-matrixandeventuallyconstructivetissue remodelingwithminimumofscartissue [1,35].Severalofthesematerialsandtheirprimary usesarelistedinTable2.1theirknownbiochemicalcompositionissummarizedin Table2.2.

FIGURE2.1 Remodeledtissue.

TABLE2.2 BiochemicalcompositionofECMscaffolds.

ScaffoldmaterialComponentsidentified

Smallintestinal Submucosa

(30 μm)

Size:2 3 3cm upto7 3 10cm

CollagenTypes:I,III,IV,V,VI

OtherProteins:fibronectin

Proteoglycan,laminin. Glycosaminoglycans:hyaluronicacid,Heparin,heparinsulfate,chondroitin SulfateA,dermatansulfate,ChondroitinsulfateC

Growthfactors:FGF 2TGF 8,VEGF

Acellulardermis(40 μm)CollagenTypes:I,IV,VII

OtherProteins:elastin

Glycosaminoglycans:Notdetected(ND)

Growthfactors:ND

Bladderacellularmatrix (60 μm)

Size:10 3 7cm

Amnioticmembrane (20 30 μm)

Sizes:1 3 2cm,2 3 3cm 4 3 4cm

Fascialata (400 650pm)

Size:0.3 3 15cm

Pericardium

(400 1000 μm)

Size:1 3 3cm 1.5 3 1.5cm

CollagenTypes:I,III,IV

OtherProteins:elastin,fibronectin. Glycosaminoglycans:hyaluronicacid,Heparin,heparinsulfate,chondroitin SulfateA,dermatansulfate, Growthfactors:FGF-2.TGF-0.VEGF

CollagenTypes:I,III,IV,V,VII

OtherProteins:laminin,fibronectin,decorin. Glycosaminoglycans:hyaluronicacid,heparinsulfate, Growthfactors:EGF.FGF-2.TGF-8.TGF-o,KGF

CollagenType:I

OtherProteins:ND. Glycosaminoglycans:ND Growthfactors:ND

Collagen:Type:I

OtherProteins:ND.

Glycosaminoglycans:ND Growthfactors:ND

2.3Smallintestinalsubmucosa

Smallintestinalsubmucosa(SIS)isaresorbable,acellularbio-scaffoldcomposedofextracellularmatrix(ECM)proteinsderivedfromthe jejunumofpigs.SIShascharacteristicofan idealtissueengineeredbiomaterialandcanactasabioscaffoldforremodelingofmanybody tissuesincludingskin,bodywall,musculoskeletalstructure,urinarybladder,bloodvessels,and supportsnewbloodvesselgrowth [8,11 13].SISconsistsofthreedistinctlayersofthemammaliansmallintestine:thelaminapropriaandmuscularismucosaeoftheintestinalmucosa,and thetunicasubmucosa(Fig.2.2) [1].Thetunicasubmucosaisthelayerofconnectivetissue arrangedimmediatelyunderthemucosalayeroftheintestineandisa100 200 μmthickinterstitialECM:itmakesupthebulkoftheSISbiopolymerscaffold.SISinducessite-specificremodelingofbothorgansandthetissuedependingonthesiteofimplantation [27].SISstimulates hostcellstoproliferateanddifferentiateintosite-specificconnectivetissuestructures,andthis replacestheSISmaterialwithin90days [36].SIS’sabilitytoinducetissueremodelingisassociatedwithangiogenesis,cellmigrationanddifferentiationanddepositionofECM [36].

BovinetypeIcollagen(i.e.,reconstitutedcollagen)isperhapsthemostwidelyusedbiologicalscaffoldfortherapeuticapplicationsduetoitsabundantsourceanditshistoryof

successfuluse.Scaffoldsfortissuereconstructionandreplacementmusthavebothappropriatestructuralandfunctionalproperties.CollagentypesotherthantypeIexistnaturally occurringECMlikeSIS [8 10].Thesealternativecollagentypeseachprovidedistinct mechanicalandphysicalpropertiestotheECMandcontributetotheutilityoftheintact ECM(asopposedtotheisolatedcomponentsofECM)asascaffoldfortissuerepair. Structurally,SISconsistsoftypeI,III,IV,VandVIcollagen [9 11] inadditiontoother componentsasshownin Table2.2.ThisdiversityofcollagensandtheirstructuralarrangementwithinasinglescaffoldmaterialisparticularlyresponsibleforthedistinctivebiologicalactivityofSISscaffoldwhencomparedtosinglereconstitutedcollagenmatrix.

SISispreparedfromporcinejejunum [10] immediatelyafterharvestingtheintestine. Thesuperficiallayersofthetunicamucosaareremovedbymechanicaldelamination.The tissueisthenturnedtotheoppositesideandthetunicamuscularisexternaandtunica serosalayersaremechanicallyremoved.TheremainingtissuerepresentedtheSISand consistedofthetunicasubmucosaandbasilarlayersofthetunicamucosa.Thebiopolymer isthoroughlyrinsedinwater,treatedwithanaqueoussolutionof0.1%peraceticacid,and rinsedinsequentialexchangesofwaterandphosphatebufferedsaline.Itisthenstoredin antibioticsolutioncontaining0.05%Gentamycinsulfate [10,34].

SURGISISESsheetshaveathicknessandmechanicalstrengththatisseveraltimesthat ofasingle-layerSURGISISsheet [1].NominalpropertiesforSURGISISESandsingle-layer SURGISISsheetsarelistedin Table2.3.

ThemechanicalpropertiesandcomplementactivationofSISisindicatedin Tables2.3 and2.4.respectively.Thematerialhasgoodmechanicalandsutureretentionstrengthand hasnocomplementactivation.SIShasfounditsapplicationinavarietyoftissueinterfaces fortissuerepairandreconstruction.SIShassignificantpotentialasavasculargraftmaterial andwasexperimentallyevaluatedtorepairlargediameter( 10mmID)vasculargraft [37], smalldiameterarteriesandveins,venacava,carotidarteriesandheartvalves [37,38].In additiontovascularapplications,theSISbiomaterialhasbeenusedextensivelyinthegenitourinarysystemtorepaircongenitalabnormalitiesofthebladderpatch [13] hasshown rapidandaggressiveregenerationofbladdertissuewithin2 4weeks.SIShasbeenusedto

FIGURE2.2 Cross-sectiondiagramof smallintestine.

treatabdominalherniasandrepairbodywall,totreatchronicdermalwounds,torepair duramater,andtoreplacetendonandligamentinorthopedicapplications [1,5,9,27].Inall ofthesecases,SISsupportedangiogenesisandcausedreplacementofdamagedstructures leadingtotherestorationoffunctionaltissues.However,mildinflammationandanti-SIS antibodyproductionhavebeenreportedfollowingimplantation,theimmuneresponseelicitedbySIShavenotleadtoarejectionimmuneresponse [39].

Table2.5 providestheinvivo(Dogimplantationbodywallrepairmodel)degradation ofSISandtissuerepairprofile.Thereisarapiddecreaseinstrengthoftherepairdeviceat

TABLE2.3 MechanicalpropertiesofSIS.

PropertySURGISISa singlelayerSURGISISb enhancedstrength

NominalThickness(mm)0.200.42

asingle-layerSURGISISsheetsaredesignedtotoleratethemechanicalstressesassociatedwithlow-stressbodysystems. bSURGISISESsheets(2sheets)aredesignedtotoleratethemechanicalstressesassociatedwithhigher-stressbodysystems. *5-0suturewith2mmbitedepth. **9.5mmdiametersphere.

TABLE2.4 ComplementactivationwithSIS.

MaterialC3complementactivation(ng/mL)

Negativecontrol148 6 42 SISmaterial115 6 24

Positivecontrol2449 6 930

TABLE2.5 MechanicalpropertiesofexplantedSISHRDusingtheballbursttesta

Survivaltime(days)

Burstload(lb)

aImplantreadySISdevices(n 5 40)weretestedforpreimplantstrengthvalues.Themeanburstloadwas 73.37 6 11.45lb.*P , 0.05.

thesurgicalsiteduringthefirst10dayspostsurgerytoavalueof40.0pounds.Allsubsequenttimepointsofevaluationrangingfrom1monthto2yearsshowaprogressive increaseinstrengthofthesurgicalsite [37,39].ItappearsthatthenaturallyoccurringSIS showrapiddegradationwithassociatedandsubsequentremodelingtoatissuewith strengththatexceedsthatofthenativetissuewhenusedasabodywallrepairdevice. Thus,theSISconsistsofacomplexmixtureofstructuralandfunctionalproteinsand servesanimportantroleintissueandorganmorphogenesis,maintenanceofcellandtissuestructureandfunction,andinthehostresponsetoinjury.

2.4Acellulardermis

Skiniscomprisedoftwoprimarylayersthatdifferinfunction,thicknessandstrength: theepidermisandthedermis.Thedermisunderliestheepidermisandisthethickerlayer oftheskin.Thedermisiscomposedoffibroblasts,whichproduceacollagen-containing ECMthatprovideselasticityandsupporttoskin.Acellulardermisismainlythenormal dermaltissuestructuresthatremainafterthecellsareremoved.Likeothernaturally occurringbiopolymers,acellulardermisisrichincollagenType1.CollagentypeIVand typeVIIarealsoretainedduringprocessinginthedermalskin [15] alongwithelastin.

Acellulardermisisharvestedfromeitherpigskinorhumancadaverskin.Theepidermisisremovedbysoakingtheskinin1MNaCIfor8h.Dermalfibroblastsandepithelial cellsareremovedbyincubationofthematerialin2%deoxycholicacidcontaining10mM ethylenediaminetetraacetate(EDTA).Whenimplantedasanacellulartissuegraft,acellulardermissupportedreendothelializationofrepairedvascularstructures,inhibitedexcessivewoundcontractionandsupportedhostcellincorporationandcapillaryingrowthinto thegraftedsite [15,40,41].

Allogenicacellulardermisisusedclinicallytomanagefull-thicknessburns.Theskin healedwithminimalscarformationincomparisontoanuntreatedsiteonpatient’s [14]. Thisstudydemonstratedthatcellulardermissupportedfibroblastinfiltration,neovascularization,andepithelializationintheabsenceofaninflammatoryresponse [14,16]. Acellulardermishasbeenusedinseveralothertissuerepairapplications,includingdermalreplacement,internalsoft-tissuerepair,andsmall-diametervascularreplacement [16,42].However,theallograftuseforlong-termperformanceofthetissuesremainsquestionsregardingtheirsourcetissue,intermsofviralandotherdiseasetransfer.

2.5Bladderacellularmatrix

Bladderacellularmatrixgraft(BAMG)wasfirstdescribedin1975 [43] andwasderived fromalayeroftheurinarybladderthatisanalogoustothesubmucosaltissuecomprising thebulkoftheSISbiomaterial.Structurally,theBAMGisdeterminedtobecomposedof typeI,typeIIIandtypeIVcollagenandelastin,butalsocontainsotherECMcomponents, includingfibronectin,Glycosamino-glycans(hyaluronicacid,heparinsulfate,chondroitin sulfateA,dermatansulfate)andseveralgrowthfactors(FGF-2,TGF-β,VEGF)(Fig.2.3).

1.EngineeringApproaches:FromScaffoldingtoBioprintingApplications

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.