Rare earth metal-organic framework hybrid materials for luminescence responsive chemical sensors bin

Page 1


RareEarthMetal-OrganicFrameworkHybrid MaterialsforLuminescenceResponsiveChemical SensorsBingYan

https://ebookmass.com/product/rare-earth-metal-organicframework-hybrid-materials-for-luminescence-responsivechemical-sensors-bing-yan/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications 1st Edition

Anish Khan (Editor)

https://ebookmass.com/product/metal-organic-frameworks-for-chemicalreactions-from-organic-transformations-to-energy-applications-1stedition-anish-khan-editor/ ebookmass.com

Novel strategies for the formulation and processing of aluminum metal-organic framework-based sensing systems toward environmental monitoring of metal ions Yongbiao Hua

https://ebookmass.com/product/novel-strategies-for-the-formulationand-processing-of-aluminum-metal-organic-framework-based-sensingsystems-toward-environmental-monitoring-of-metal-ions-yongbiao-hua/ ebookmass.com

Hierarchical architecture of two-dimensional Ti3C2 nanosheets@Metal-Organic framework derivatives as anode for hybrid li-ion capacitors Wenling Wu & Chunhui Zhao & Hao Liu & Tiantian Liu & Lei Wang & Jianfeng Zhu

https://ebookmass.com/product/hierarchical-architecture-of-twodimensional-ti3c2-nanosheetsmetal-organic-framework-derivatives-asanode-for-hybrid-li-ion-capacitors-wenling-wu-chunhui-zhao-hao-liutiantian-liu-lei-wang/ ebookmass.com

In

My Dreams I Hold a Knife Ashley Winstead

https://ebookmass.com/product/in-my-dreams-i-hold-a-knife-ashleywinstead-5/

ebookmass.com

American Social Welfare Policy: A Pluralist Approach

(Merrill Social Work and Human Services) 8th Edition, (Ebook PDF)

https://ebookmass.com/product/american-social-welfare-policy-apluralist-approach-merrill-social-work-and-human-services-8th-editionebook-pdf/

ebookmass.com

Why Nations Rise: Narratives and the Path to Great Power 1st Edition Manjari Chatterjee Miller

https://ebookmass.com/product/why-nations-rise-narratives-and-thepath-to-great-power-1st-edition-manjari-chatterjee-miller/

ebookmass.com

The Price of Football: Understanding Football Club Finance 3rd Edition Maguire

https://ebookmass.com/product/the-price-of-football-understandingfootball-club-finance-3rd-edition-maguire/

ebookmass.com

Electroculture For Beginners: The Complete Guide on How to Use Electricity to Grow Your Garden [5 Books in 1] Garrick Greene

https://ebookmass.com/product/electroculture-for-beginners-thecomplete-guide-on-how-to-use-electricity-to-grow-your-garden-5-booksin-1-garrick-greene/ ebookmass.com

Steel Structures Design for Lateral and Vertical Forces, Second Edition Williams

https://ebookmass.com/product/steel-structures-design-for-lateral-andvertical-forces-second-edition-williams/

ebookmass.com

Python & SQL Mastery: 5 Books in 1: Your Comprehensive Guide from Novice to Expert (2024 Edition) Andrew Reed

https://ebookmass.com/product/python-sql-mastery-5-books-in-1-yourcomprehensive-guide-from-novice-to-expert-2024-edition-andrew-reed/

ebookmass.com

RareEarthMetal-OrganicFramework

HybridMaterialsforLuminescence

ResponsiveChemicalSensors

WoodheadPublishingSeriesinElectronicand OpticalMaterials

BingYan

SchoolofChemicalScienceandEngineering,TongjiUniversity,Shanghai, People’sRepublicofChina

WoodheadPublishingisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright©2022ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,can befoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-91236-5(print)

ISBN:978-0-323-91430-7(online)

ForinformationonallWoodheadpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: KaylaDosSantos

EditorialProjectManager: IsabellaC.Silva

ProductionProjectManager: PrasannaKalyanaraman

CoverDesigner: GregHarris

TypesetbySTRAIVE,India

Introductionforrareearthmetal-organic frameworkshybridmaterials

1. Metal-organicframeworks(MOFs),rareearthMOFs, andrareearthfunctionalizedMOFhybridmaterials

1.1Metal-organicframeworks(MOFs)

3

1.1.1Synthesisofmetal-containingnodesorcoordination bondsandlinkerdesignforMOFs3

1.1.2Postsyntheticmodification(PSM)ofMOFs5

1.1.3MOFshybridsorcomposites8

1.1.4PotentialapplicationsofMOFs11

1.2Rareearthmetal-organicframeworks(REMOFs) 22

1.2.1REMOFstructures23

1.2.2SomeapplicationsofREMOFs24

1.3Rareearthfunctionalizedmetal-organicframeworkhybrid materials(REFMOFHs) 26 References 31

2. Rareearthluminescence,MOFsluminescence,rare earthMOFshybridmaterialsluminescence, luminescenceresponse,andchemicalsensing

2.1Rareearthionluminescence 41

2.1.1Atomicspectralterm(2S+1LJ)andenergyleveltransition oftrivalentrareearth(RE3+)ions42

2.1.2Luminescenceandspectroscopyoftrivalentrareearth (RE3+)ions42

2.2Rareearthcomplexmoleculeluminescence 45

2.3MOFsluminescence 49

2.4RareearthMOFshybridmaterialsluminescence 53

2.5LuminescenceforrareearthfunctionalizedMOFshybrid materials 54

2.6Luminescenceresponseforchemicalsensingofrareearth MOFshybridmaterials 63

2.6.1Luminescenceresponseandchemicalsensing inMOFs-basedmaterial63

2.6.2MOFs-basedmaterialsprimarilydisplayspecial advantagesforchemicalsensing66 References 67

PartII

Luminescentresponsemodeandsensing mechanismsinrareearthmetal-organic frameworkshybridmaterials

3. Singlemodeforluminescenceresponsivechemical sensinginrareearthmetal-organicframeworkhybrid materials

3.1Introductionforluminescenceresponseofmetal-organic frameworks 75

3.2“Turn-off”luminescenceresponsechemicalsensingforrare earthmetal-organicframeworkhybridmaterials 79

3.3“Turn-On”luminescenceresponsechemicalsensingforrare earthmetal-organicframeworkhybridmaterials 89

3.4“Turn-on-off-on”luminescenceresponsechemicalsensing forrareearthmetal-organicframeworkhybridmaterials 97

3.5Both“Turn-On”and“Turn-Off”luminescenceresponse chemicalsensingondifferentanalytesforrareearthMOF hybridmaterials 103 References 107

4. Dualmodeforratiometricluminescenceresponsive chemicalsensingforrareearthmetal-organic frameworkhybridmaterials

4.1Dualmodeforratiometricluminescence(RL)responsive chemicalsensingofMOFsmaterials 111

4.1.1MOFs’intrinsicdualemission112 4.1.2Single-emissiveMOFswithfluorescentguests114 4.1.3NonemissiveMOFswithencapsulated chromophores115

4.2Dualrareearthionluminescenceforratiometric luminescencesensinginrareearthmetal-organicframework hybridmaterials 116

4.3Ligand(linker)andRE3+ ionsthroughenergytransfer “antennaeffect”forratiometricluminescencesensinginrare earthmetal-organicframeworkhybridmaterials 124

4.4Embeddingadditionalluminescentspeciesforratiometric luminescencesensinginrareearthmetal-organicframework hybridmaterials 132

4.5Singlerareearthfunctionalizedmetal-organicframework hybridmaterialsforratiometricluminescencesensing 136

5. Luminescenceresponsivesensingmechanism inrareearthmetal-organicframeworkhybrid materials

5.1Theluminescenceresponsivesensingmechanism formetal-organicframework-basedmaterials 145

5.1.1Overlapmechanism145

5.1.2Structuralcollapsemechanism147

5.1.3Ionexchangemechanism147

5.1.4Linker-analytesinteractionmechanism148

5.1.5Commonmechanisticpathwaysinvolvedin luminescencesensing148

5.2TheLMETforluminescenceresponseonchemicalsensingin rareearthmetal-organicframeworkhybridmaterials 150

5.3Thephoto-inducedenergytransfer(PET)andfluorescence (F € orster)resonanceenergytransfer(FRET)forluminescence responseforchemicalsensinginrareearthmetal-organic frameworkhybridmaterials 156

5.3.1PETforluminescenceresponseinchemical sensing156

5.3.2FRETforluminescenceresponseinchemical sensing159

5.4Specialinteractionsforluminescenceresponseon chemicalsensinginrareearthmetal-organicframework hybridmaterials 165

5.4.1Hydrogenbondingforluminescenceresponseon chemicalsensing165

5.4.2Coordinationinteractionforluminescenceresponse onchemicalsensing168

5.4.3Reductionreactionforluminescenceresponse forchemicalsensing168

5.4.4Precipitationreactionforluminescenceresponse inchemicalsensing170

References 172

Rareearthmetal-organicframeworkshybrid materialsasluminescenceresponsechemical sensorsfortypicalionicanalytes

6. Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensingof metalions(I)

6.1LuminescenceresponsivesensingofFe3+ usingrareearth metal-organicframeworkhybridmaterials 179

6.2LuminescenceresponsivesensingofFe2+ orFe3+/Fe2+ using rareearthmetal-organicframeworkhybridmaterials 186

6.3LuminescenceresponsivesensingofCu2+ usingrareearth metal-organicframeworkhybridmaterials 190

6.4LuminescenceresponsivesensingofZn2+ usingrareearth metal-organicframeworkhybridmaterials 195

6.5Luminescenceresponsivesensingofmultimetalcationsusing rareearthmetal-organicframeworkhybridmaterials 198 References 202

7. Rareearthmetal-organicframeworkhybrid materialsforluminescenceresponsivesensing ofmetalions(II)

7.1LuminescenceresponsivesensingofHg2+ usingrareearth metal-organicframeworkhybridmaterials 209

7.2LuminescenceresponsivesensingofCd2+ usingrareearth metal-organicframeworkhybridmaterials 214

7.3LuminescenceresponsivesensingofPb2+ usingrareearth metal-organicframeworkhybridmaterials 218

7.4LuminescenceresponsivesensingofCr3+ usingrareearth metal-organicframeworkhybridmaterials 220

7.5LuminescenceresponsivesensingofAl3+ usingrareearth metal-organicframeworkhybridmaterials 223

7.6LuminescenceresponsivesensingofAg+ usingrareearth metal-organicframeworkhybridmaterials 226

7.7LuminescenceresponsivesensingofCo2+/Ni2+ usingrare earthmetal-organicframeworkhybridmaterials 228

7.8Luminescenceresponsivesensingoff-blockmetalionsusing rareearthmetal-organicframeworkhybridmaterials 230 References 236

8. Rareearthmetal-organicframeworkhybridmaterialfor luminescenceresponsivechemicalsensingofanions

8.1Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensing offluoride(F )ions 243

8.2Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensingofother simpleanions(S2 ,HS ,andSCN ) 246

8.3Rareearthmetal-organicframeworkhybridmaterialsfor luminescenceresponsivechemicalsensingofmaingroup elementoxysaltanions 252

8.4Rareearthmetal-organicframeworkhybridmaterialsfor luminescenceresponsivechemicalsensingoftransition metaloxysaltsanions 262 References 272

PartIV

Rareearthmetal-organicframeworkshybrid materialsasluminescenceresponsechemical sensorsfortypicalmolecularanalytes

9. Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensingof generalmolecules

9.1Rareearthmetal-organicframeworkhybridmaterialsfor luminescenceresponsivechemicalsensingofinorganic molecules 284

9.2Rareearthmetal-organicframeworkforluminescence responsivechemicalsensingofgeneralorganic molecules 300

9.3Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensingofgeneral organicpollutantmolecules 312 References 317

10. Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensingof specialmoleculespecies

10.1Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensing ofbiomolecularspecies 327

10.2Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensing ofantibioticsanddrugs 340

10.3Rareearthmetal-organicframeworkhybridmaterials forluminescencesensingofnitroaromaticexplosives(NAE) andotherspecialdangerousspecies 353 References 365

Contents

11. Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensingof biomarkers

11.1Biomarkersandtheirchemicalsensing 375

11.2Rareearthmetal-organicframeworkmaterialsfor luminescenceresponsivechemicalsensingof biomarkers 378

11.3Rareearthfunctionalizedmetal-organicframeworkhybrid materialsforluminescenceresponsivechemicalsensingof biomarkers 387 References 405

PartV

Rareearthmetal-organicframeworkshybrid materialsasluminescenceresponsechemical sensorsforothersandapplications

12. Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensingof temperatureandpHvalue

12.1Rareearthmetal-organicframeworkhybridmaterialsfor luminescencesensingoftemperature 411

12.2Rareearthmetal-organicframeworkhybridmaterialsfor luminescenceresponsivechemicalsensingofpHvalue 432 References 441

13. Molecularlogicgateoperationsofrareearth metal-organicframeworkhybridmaterialsfor luminescenceresponsivechemicalsensing

13.1MolecularBooleanlogicgates 445

13.1.1BasicmolecularBooleanlogicgateoperation446

13.1.2Implementationofatwo-outputcombinational logicgate449

13.1.3Implementationofacascadedlogicgate451

13.1.4Implementationoflogicdevices(4-to-2encoder andparitychecker)451

13.2Luminescenceresponsivesensingofrareearth metal-organicframeworkhybridmaterialsonluminescence forBooleanlogicgates 453

13.3Luminescenceresponsivechemicalsensingofrareearth metal-organicframeworkhybridmaterialsforintelligent molecularsearcherapplications 467 References 479

14. Rareearthmetal-organicframeworkhybridmaterials forluminescenceresponsivechemicalsensing imaging

PartVI

Summaryandprospectforrareearthmetal-organic frameworkshybridmaterialsasluminescence responsechemicalsensors

15. Summaryandprospects

15.1Postsyntheticmodificationtoconstructrareearth metal-organicframeworkhybridmaterials 503

15.2Luminescenceresponsivemodeandchemicalsensing mechanismforrareearthmetal-organicframeworkhybrid materials 506

15.3Luminescenceresponsivechemicalsensingofanalytes forrareearthmetal-organicframeworkhybrid materials 510

15.4Luminescenceresponsivechemicalsensingapplication forrareearthmetal-organicframeworkhybrid materials 513 References 517

Preface

Rareearths(REs),asstrategicresourcesofthe21stcentury,haveplayedagreat roleinbothindustryandtheeconomy.Duetotheuniqueelectronicstructure andphysiochemicalpropertiesofrareearthions,theircompoundsareimportant activecandidatesinfunctionalmaterials.Inparticular,rareearthionsdisplay excellentopticalbehaviors,suchassharpemissionspectraforhighcolorpurity, broademissionbandscoveringtheultraviolet(UV)-visible-near-infrared(NIR) region,awiderangeoflifetimesfrommicrosecondstothesecondlevel,high luminescencequantumefficiencies,andsoforth,whichmakesthemahuge treasuryofluminescentmaterials.Inrecentyears,REshaveattractedmuch attentionfortheirwidevarietyofapplicationsinthefieldsoflightingdevices (televisionandcomputerdisplays,opticalfibers,opticalamplifiers,andlasers) andbiomedicalanalysis(medicaldiagnosisandcellimaging).

Metal-organicframeworks(MOFs,alsoknownasporouscoordinationpolymers,orPCPs)areanemergingclassofporousmolecularmaterialsconstructed frommetal-containingnodes(alsoknownassecondarybuildingunits(SBUs)) andorganiclinkers(bridgingligands).Duetotheirstructuralandfunctional tunability,theareaofMOFshasbecomeoneofthefastestgrowingfieldsin chemistry.MOFsembodyversatilefunctionalapplicationsingasstorage,purification,orseparation;heterogeneouscatalysisorphotocatalysis;optic, electronic,ormagneticmaterialsordevices;aswellasbiomedicinesorbioimages.Certainly,MOFsareemployedasaplatformforluminescentmaterials basedontheirintrinsicopticalandphotonicpropertiesofmetalionsandorganic ligands,orguestspeciescollaborativelyassembledand/orencapsulatedinto theirframeworks.TheabundantluminescentresponsiveperformanceofMOFs providestheirgreatpotentialinchemicalsensing.

Rareearthmetal-organicframeworkhybridmaterialscombinethevirtuesof bothMOFmaterialsandrareearthions,whichcancreatenovelpropertiesas wellasfunctionalandphotofunctionalapplications.Inparticular,withrare earthionfunctionalizedMOFhybridmaterials,luminescentRE3+ ionsare incorporatedintoMOFhostswithlittlecontent,andthecharacteristicemission ofRE3+ isobtained.Thisisidenticaltothetraditionalrareearthiondopedphosphors.JustlikepureluminescentrareearthMOFmaterials,RE3+ canproduce an“antennaeffect”andcauseapronouncedincreaseintheluminescenceintensitythroughtheintramolecularenergytransferprocessfromlinkerstoRE3+.In addition,therelativelylimitedcontentofhybridmaterialsoftenallowsthe

existenceofluminescenceoforiginallinkersorMOFsthemselvesifthefunctionalizedamountofRE3+ iscontrolledappropriately.Thismakeitpossibleto exhibitmultiplecenterluminescenceforthesamehybridsystemandevenrealizeluminescencecolortuningorwhiteluminescenceintegration.Withregard tointegrity,thepurerareearthMOFmaterialsareconsideredinthisbook.Thus rareearthMOFhybridmaterialsencompasstwomainaspects:oneisthepure rareearthMOFs,andtheotherisrareearthfunctionalizedMOFhybrid materials.

Thisbookconsistsof6parts,coveredin15chapters.Thefirstpart(Chapters 1and2)isageneralintroductiontoMOFs,rareearthMOFs,andrareearthfunctionalizedMOFhybridmaterials(Chapter1);andrareearthluminescence, MOFluminescence,rareearthMOFluminescence,aswellasluminescence responseandchemicalsensing(Chapter2).Thesecondpart(Chapters3,4, and5)givesanoverviewoftheluminescentresponsemodeandsensingmechanismsinrareearthmetal-organicframeworkhybridmaterials:singleluminescentmodesensing(1D)(Chapter3),dualluminescentmode(2D)for ratiometricsensing(Chapter4),andluminescentresponsivesensingmechanisms(Chapter5).Thethirdpart(Chapters6,7,and8)shedslightonrareearth metal-organicframeworkhybridmaterialsasluminescenceresponsechemical sensorsfortypicalionicanalytes,metalcations(I)(Chapter6),(II)(Chapter7), andanions(Chapter8).Thefourthpart(Chapters9,10,and11)focusesonrare earthmetal-organicframeworkhybridmaterialsasluminescenceresponse chemicalsensorsformolecules:generalmolecularchemicals(Chapter9),specialorganicmolecules(Chapter10),andbiomarkers(Chapter11).Thefifthpart (Chapters12,13,and14)involvesrareearthmetal-organicframeworkhybrid materialsasluminescenceresponsechemicalsensorsforotherapplications: includingtemperatureandpHvalue(Chapter12),logicgateoperations (Chapter13),andimagingapplications(Chapter14).Thesixthpart (Chapter15)givesasummaryandprospectforrareearthMOFhybridmaterials asluminescenceresponsechemicalsensors.

Finally,IwanttoexpressmysinceregratitudetomyPhDandmaster’sstudents,whoseresearchworkmakesupthemaincontentofthisbook.Ialsowish toshowmyappreciationtomycolleagues,especiallytothescholarsinthe researchfieldsofrareearthmetal-organicframeworks,whichisanimportant componentofthisbook.Manycolleaguescholarshaveprovidedvaluable reviewsoftherelevanttopicsfortheinstructionandoutlineofthisbook.Ihope thatthisbookwillprovidereaderswithinsightsintotherecentdevelopmentsof rareearthmetal-organicframeworkhybridmaterialsforluminescentresponsivechemicalsensing.

PartI

Introductionforrareearth metal-organicframeworks hybridmaterials

Metal-organicframeworks (MOFs),rareearthMOFs,and rareearthfunctionalizedMOF hybridmaterials

1.1Metal-organicframeworks(MOFs)

Metal-organicframeworks(abbreviatedasMOFsandalsoknownasporous coordinationpolymers(PCPs))areaclassofporouspolymericmolecularmaterials,consistingofmetalionnodesconnectedtogetherbyorganicbridging ligands(linkers)(Schemein Fig.1.1),whichareanewdevelopmentintheinterdisciplinaryfieldofcoordinationchemistryandfunctionalmaterials [1–3]. Duetotheirstructuralandfunctionaltunability,MOFshavebecomeoneof thefastestgrowingresearchfieldsininorganicchemistry.TheessenceofMOFs chemistryisthattheframeworksareassembledbylinkingmolecularunitsof well-definedshapesbychemicalbondsintoperiodicframeworks.Animportant componentofreticularchemistryisthedeconstructionofsuchstructuresinto theirunderlyingnetstofacilitatedesignedsynthesisofmaterialswithtargeted porosity,poresize,andfunctionality.TheorganicligandsofMOFsgivethem flexibilityanddiversityintheirchemicalstructuresandfunctions.Thesynthesis ofMOFshasattractedextensiveattentionduetothepossibilityofobtaininga largevarietyofinterestingstructuresforarangeofapplicationsrelatedto porousmaterials [4–8].TheexplorationofMOFsmainlyinvolvesfourcategories:(1)synthesisofmetal-containingnodesorcoordinationbondsandlinker designforMOFs;(2)postsyntheticmodification(PSM)ofMOFs;(3)MOF hybridsorcomposites;and(4)potentialapplicationsofMOFs.

1.1.1Synthesisofmetal-containingnodesorcoordinationbonds andlinkerdesignforMOFs

InMOFsstructures,anoderepresentsaparticularenvironment(tetrahedra, octahedra,etc.)connectedtoafixednumberofrelatedpoints,whichdepends onthegeometry(tetrahedral ¼ 4,octahedral ¼ 6,cubic ¼ 8).Theirstructurescan thenberepresentedmathematicallyaseitheradiscrete(zero-dimensional—0D)

RareEarthMetal-OrganicFrameworkHybridMaterialsforLuminescenceResponsiveChemicalSensors https://doi.org/10.1016/B978-0-323-91236-5.00003-7 Copyright © 2022ElsevierLtd.Allrightsreserved. 3

4 PART I Introductionforrareearthmetal-organicframeworkshybridmaterials

FIG.1.1 ConceptualillustrationofstructuringofMOFsatmicroscopic/mesoscopicscales.The assemblyofmetalionswithorganicligandsconstructsmolecularframeworkstructures. (ReproducedwithpermissionfromS.Furukawa,J.Reboul,S.Diring,K.Sumida,S.Kitagawa,Structuring ofmetal-organicframeworksatthemesoscopic/macroscopicscale.Chem.Soc.Rev.43 (2014)5700–5734.Copyright2014RoyalSocietyofChemistry.)

oraninfinite(one-dimensional—1D),two-dimensional—2D),andthreedimensional—3D))periodicarrangementasanextendedrepresentationof thenodes.Thusthetopologyofanetdependsonthenumberofnodesinaparticularstructure.AsimplifieddescriptionofMOFsstructurewillbeconsidered asametalcenterormetalclusterofionsconnectedbyanorganiclinker.To derivethevertexsymbolandthecorrecttopologyforsuchstructures,itis importanttoidentifythenodesaccordingtocoordinationchemistry principles [9].

TounderstandMOFsstructures,thenodeandthenetconceptareusedto describethevertexsymbolsinsome2Dand3Dsystems. (1)3Dstructures. (a)Uninodalstructures arebasedononlyonetypeofnode,whichhave3(trigonal),4(squareplanar,tetrahedral),5(trigonalbipyramidal),6(octahedral),8 (cubic),andotherhigher(10or12)connectednodes. (b)Binodalstructures havetwogeometricallydifferentnodesinaMOFsconstitutes,formedusing trigonal-tetrahedral;tetrahedral-squareplanar;tetrahedral-octahedraland tetrahedral-cubicnodes. (2)2Dstructures.MOFswith2Dlayerstructures canbedescribedusingnodalconnectivity. (a)Uninodalstructures contain 3connectednodes,4connectednodes,5connectednodes,and6connected nodes,respectively. (b)Binodalstructures inthecontextofthetopologyof MOFsbasedoncommongeometricalnodesarerare,althoughsometopologies canbeobtainedbasedontrigonal-octahedralnodes. (3)3DMOFsbasedon2D layers.The3DMOFswith2Dnetworktopologiesarepillaredbyrigidlinkers, whichcanhaveeitherasimpleuninodalstructureorabinodalstructurewithin thelayersusingtheorganicligandsasthelinker.Eitherthesameligandora completelydifferentorganiclinkercanbeusedtoarriveatthe3Dstructure. (4)Zeoliticimidazolateframeworks(ZIFs).Imidazoleasthesimplemoleculehasanidealpositionbetweenthenitrogenatomsinthestructures,and behavesasalinkerbetweenthemetalcenters,addressingtheconcernsofcharge neutrality.Themostimportanttopologybasedonthetetrahedralnodeisthediamondtopology.TheseZIFcompoundshavebeenextensivelypreparedfor mimickingzeolitetopologies [9–16]

Ontheotherhand,thetermMOFsoriginatedfromitssecondarybuilding units(SBUs)asclustersbuiltentirelywithcovalentbonds [17–22].

ThesynthesisofSBUscanbeusedtodirecttheassemblyoforderedframeworkswithrigidorganiclinkers,whichmakesithighlypossibletopredict thechemistryoftheyieldedcrystallinematerials [17–30].Theorientationof organiclinkerswillresultintheassemblyofMOFswithpredeterminedstructuraltopologies [23–30].Generally,bothSBUs(asconnectors)andorganic ligands(aslinkers)combinetodeterminethefinalframeworktopology. (1) Ditopiccarboxylatelinkers.Theselinkerspossessbothreadyaccessibility andeasilyperceivablestructuresincombinationwithdifferentSBUs:4connectedpaddlewheelclusters,6-connectedoctahedralclusters,6-connected trigonal-prismaticclusters,12-connectedclusters,andinfinitechainclusters, respectively. (2)Tritopiccarboxylatelinkers.Theselinkersarerelatedtodifferentclusters:4-connectedpaddlewheelclusters,6-connectedoctahedralclusters,6-connectedtrigonal-prismaticclusters,andmultipleSBUs. (3) Tetratopiccarboxylatelinkers.Theselinkersappeartobeveryintriguing buildingunitsinMOFsconstructions,especiallythosewithtetrahedralgeometry.Tetrahedralcarboxylatelinkersarerelatedtodifferentclusters:8-connected cubicalclusters,4-connectedsquareplanarclusters,8-connectedhexagonalbipyramidalclusters,andnonregulartetrahedralcarboxylatelinkers. (4)Hexatopic carboxylatelinkers.Theselinkersarerelatedto1,3-atedbenzenedicarboxylate units,4,40 -azanediyldibenzoateunitsand1,10 :30 ,100 -terphenyl-4,400 -dicarboxylate units. (5)Octatopiccarboxylatelinkers.MOFswiththeselinkersarestillrare, possiblyduetothesyntheticchallengesinthelinkersthemselves,whoseframeworksarebasedonlinkerswithlongarmsthattendtoforminterpenetratedstructures. (6)Mixedlinkers.Theycontainfourtypes:ditopic-ditopiclinearlinkers, tritopiccarboxylate-ditopiccarboxylatelinkers,carboxylate-pyridinelinkers,and linkerscoordinativelyidenticalbutwithdistinctshapes. (7)Desymmetrized linkers (8)Metallo-linkers.Thesemainlyinvolvefourtypeswithdifferent donors:OandSdonors,NandPdonors,Cdonors,andmixeddonorgroups. (9)N-heterocycliclinkers.OrganiclinkerscontainingNdonors,suchaspyridine andazolederivatives,haveachievedstableMOFsviaN-metalcoordination, includingditopicN-heterocycliclinkersandpolytopicN-heterocyclic linkers [23].

1.1.2Postsyntheticmodification(PSM)ofMOFs

Postsyntheticmodifications(PSMs)areparticularlyattractiveforusewith MOFsmaterialsforavarietyofreasons. (I) ThesolvothermalreactionconditionstopreparemostMOFsgreatlylimitthetypesoffunctionalgroupsthatcan befunctionalizedbyPSM. (II) TheorganicligandsinMOFsopenthepossibilityofemployingawiderangeoforganictransformations. (III) MOFs’porous structuresallowreagentstoaccesstheinteriorofthesolidsfortheirfunctionalization [31–44].ThusvariousfunctionscanbeimpartedtoMOFsbyincorporatingdifferentpartsoftheMOFstructure,includingmetalions/clusters, organiclinkers,andemptyspacesinsidethecavities(Fig.1.2,left).Avariety

FIG.1.2 Schematicdepictionoffunctionalization (left) andPSMstrategies (right) ofMOFs:postsyntheticmodification(PSM),postsyntheticdeprotection(PSD), postsyntheticexchange(PSE),postsyntheticinsertion(PSI),andpostsyntheticpolymerization(PSP).SBUsarerepresentedasgoldspheres,andligandstrutsare representedby gray rods. (ReproducedwithpermissionfromS.A.A.Razavi,A.Morsali,Linkerfunctionalizedmetal-organicframeworks.Coord.Chem.Rev. 399(2019)213023andS.M.Cohen,Thepostsyntheticrenaissanceinporoussolids.J.Am.Chem.Soc.139(2017)2855 2863.Copyright2019Elsevierand 2014AmericanChemicalSociety.)

oforganicfunctionalgroupsarefunctionalizedtotuneandoptimizethehostguestchemistryofMOFs,whichisapracticalandrationalstrategytoimprove MOFefficiencyindifferentapplications.Moreover,functionalizationalsohas crucialinfluencesonthestructuralpropertiesofMOFs,suchascrystallinity, porosity,flexibility,stability,andtopologythroughinducedstructuralchanges anddifferenttypesofsecondaryinteractions.Subsequently,itispossibletosynthesizefunctionalMOFsandtheirhybridmaterialsusingPSM [42]

(1) RequirementsforPSM.MOFsrequirethefollowingparameters: (a) Beingsufficientlyporoustoallowaccessofallrequiredreagentstothe interiorofthelattice. (b) Possessinganavailablefunctionalgroupto undergoachemicaltransformation. (c) Beingstabletothereactionconditions. (d) Beingstabletoanybyproductsproducedbythereactionconditions.Todate,thechoicesofbothMOFsandreactiongovernthescopeof transformationsthatcanberealizedbyPSM.

(2) TypesofPSM.Broadlyspeaking,anychangeofthecompositionorstructureofMOFsmaybeconsideredaformofPSM,suchasthedesolvationor activationofMOFs,theexchangeofguestspeciesfromMOFs,theinclusionorencapsulationphenomenaofbeingperformedinaPSMmanner, etc.Inanarrowsense,however,itisimportanttodefinethedifferenttypes ofPSMtodistinguishthesechemicalreactionsfromthepreviouslymentionedroutinehandlingandguestinclusionphenomenaofMOFs.PSMof MOFscanbedividedintothreeareas:(a)covalentPSM,(b)dativePSM (coordinatecovalentPSM),and(c)postsyntheticdeprotection(PSD) (Fig.1.2,right).Thetypeofchemicalbondthatisformedorbrokenduring thePSMapproachdistinguisheseachofthesemethods.Itisimportantto notethatthesedifferentPSMmethodsarenotmutuallyexclusive,andperhapsutilizeacombinationofstrategiestoobtainmaterialsofhighcomplexityandfunctionality.Inadditiontoachievingthedesiredchemical transformation,itisimportantthattheMOFscannotbedestroyedunder thereactionconditions.Indeed,PSMmethodsareintendedtoproduce novelhybridmaterialsthatretainthecharacteristicfeaturesofMOFs [36].

(1)CovalentPSM.Thisisdefinedastheuseofareagenttomodifyacomponent oftheMOFsinaheterogeneous,postsyntheticmannertoformanewcovalent bond,whosetargetisgenerallytheorganiclinkeroftheMOFs.Currently,covalentPSMisthemostextensivelyinvestigatedofthedifferentPSMmethods,and isproventobeapowerfulandversatilemethodforintroducingabroadrangeof chemicalgroupsintoMOFs. (2)DativePSM.Thistypeisdefinedastheuseofa reagentthatformsadativebondwithacomponentoftheMOFsinaheterogeneous,postsyntheticmanner.Notonlycanaligandbeaddedtotheframeworkto coordinatetotheSBUoftheMOFs,butalsoametalsourcecanbeaddedtothe MOFstobindtotheorganiclinkeroftheMOFs,occurringthroughtheformation ofdativebonds. (3)PSD.ThisreactionisperformedontheMOFsina postsyntheticmannerresultinginthecleavageofachemicalbondwithinanintact

framework.Inprinciple,anykindofchemicalbondcanbebrokenduringaPSD reactiontorevealachemicalfunctionalityandproducematerialswithdifferent properties.WithinsomehighlystableMOFs,boththeeliminationandadditionof multitopiclinkersormetalionsarepossiblewithoutdestructionoftheframework. (4)Postsyntheticmetalexchange(PSME).Cationdopingisalsowidely employedinnanocrystalstotunetheirproperties. (5)Postsyntheticligand exchange(PSLE).Thisrepresentstheexchangeofthekeyextendingligand ofaframeworkbyanothersimilarligandofdifferentlengthorfunctionalgroup, withtheretentionoftheMOFstopology. (6)Postsyntheticeliminationand installation(PSE&I).Somelinkersconstitutingtheframeworkcanbeeliminatedwithcoordinationchangesinthemetalclusterbutpreservationoftheinfiniteframeworkconnection.Ifthecoordinationsiteoftheadjacentmetalcluster matcheswellwithanadditionallinker,PSImaysucceedincreatinganewMOFs withhigherconnectionnumbers. (7)TandemPSM.ThistypeisusedinproducingMOFswithmultiplefunctionalitiesotherwisedifficultorinfeasibletoacquire bydirectsyntheticmethods. (i)Engineeringporosityandporesbytandem PSM.Bothincreasedanddecreasedporositycanbeobtaineddependingon thesizeandspatialconfigurationofthemodifiedgroups,whosechangeinporosityismoderateandlimitedbytheconstanttopologyoftheframework. (ii) ImprovingstructuralstabilitybytandemPSM.Thedirectintroductionoftargetmetalionsmaybesubjectedtolowexchangerate,uncompletedconversion, decompositionoftheMOFs,andothers.Basedontheexchangingmechanismof differentmetalions,tandemPSMEisusefulforimprovingstructuralstability. (iii)ModifyingsurfaceandinteriorbytandemPSM.Basedonthereactivity andspatialeffectwithintheconfinedchannels,thetraditionaldesignofthereactionpathwaysprovidesachancetoengineereitherthesurfaceortheinteriorof MOFs(Fig.1.2,right) [31–44]

1.1.3MOFshybridsorcomposites

InordertosatisfythepracticalapplicationsofMOFs,itisdesirabletofurther enhancetheirpropertiesandcreatenewfunctionalities.MOFscomposites/ hybridsarematerialscomposedofoneMOFsandoneormoredistinctconstituentmaterials,includingotherMOFs,withpropertiesnoticeablydifferentfrom thoseoftheindividualcomponents.Incompositeorhybridmaterials,the advantagesofbothMOFs(structuraladaptivityandflexibility,highporosity withorderedcrystallinepores)andvariouskindsoffunctions(optical,electrical,magnetic,andcatalyticproperties)canbecombinedeffectively,accessing newphysicalandchemicalpropertiesalongwithenhancedperformancethatis notattainablewiththeindividualcomponents.Consequently,theremarkable featuresofcompositesorhybridsresultingfromthesynergisticcombination ofbothMOFsandotheractivecomponentsmakethemsuitableforawiderange ofapplications.Todate,MOFshybrids/compositeshavebeenmadewithversatileactivespecies,includingmetalnanoparticles/nanorods(NPs/NRs), oxides,quantumdots(QDs),polyoxometalates(POMs),polymers,graphene, 8 PART I Introductionforrareearthmetal-organicframeworkshybridmaterials

FIG.1.3 TheschemeforthecompositesofMOFsandfunctionalmaterials. (Reproducedwith permissionfromQ.Zhu,Q.Xu,Metal-organicframeworkcomposites.Chem.Soc.Rev.44 (2014)5468 5512.Copyright2014RoyalSocietyofChemistry.)

carbonnanotubes(CNTs),dyes,biomolecules,andsoon,resultinginperformanceunattainablebytheindividualconstituents(Fig.1.3).Moreover,these hybridsorcompositesofferthegreatadvantageofflexibleandoptimumdesign, whichisdesirabletoharnesstheusefulpropertiesthroughtheincorporationof variouskindsoffunctionalmaterialsintoMOFs [45–65]

(1) MOFs-metalormetaloxideNPcomposites.PorousMOFsarethermallyrobustandhavepermanentnanoscalecavitiesoropenchannelsthat providepowerfulconfinementeffects,whichcanbeutilizedassupports formetalNPswithcontrolledsizesinsidethepores,therebycircumventingthecommonissueofNPaggregationandbenefitingtheirutilizationin applications.Inaddition,someattemptshavebeenundertakentointegrate metaloxides(especiallythosewithmagneticorsemiconductingproperties)andMOFsintocore-shellnanostructures [45–53].

(2) MOFs-silicacomposites.TherearecurrentlytwomaintypesofMOFssilicacomposites: (a) incorporatingdispersedsilicaNPswithinthepores/ channelsofMOFsorgrowthofaMOFsshellonapreformedsilicasphere inMOFsprecursorsolutions(SiO2@MOFs); (b) usingasilicashellasa surfacecoatingorthemesoporouspropertiesandprocessabilityofsilica supportstopromotethegrowthofmicroporousMOFsparticlesthroughouttheporoussilicasupports(MOFs@SiO2) [45,54]

(3) MOFs-organicpolymercomposites.Confinedpolymersatnanometer scalesexhibitfascinatingandunexpectedpropertiesdifferentfromthose inthebulkstate.MOFs-organicpolymercompositesformedfromvarious combinationsofMOFsandorganicpolymerscanconstituteaclassof compositematerialswithcombinedproperties [45,55]

(4) MOFs-QDscomposites.TheversatilityoffunctionalMOFscanbe extendedbyintroducinghighlyluminescentsemiconductorQDswithin theframeworksofMOFs.InQD@MOFscomposites,QDscanbestabilizedagainstphotochemicaldegradationthroughthedepositionofananometerMOFsshell,whileretainingtheirvaluableopticalproperties [45].

(5) MOFs-POMcomposites.ThedispersionofPOMswithinMOFspreventsthePOMsfromconglomeratinganddeactivating.InsuchPOMbasedMOFs,theorganicligandssubstitutefortheoxogroupsofPOMs tocovalentlylinkthemetalliccenters.What’smore,POMscanbeencapsulatedintheporesofMOFsthroughhost-guestinteractionstoform POM@MOFscomposites [45]

(6) MOFs-carboncomposites.Theexceptionallymechanical,electrical, andthermalpropertiesofcarbonmaterials(grapheneandCNTs)commendthemasvaluablenanostructuredfillersinMOFcomposites.NumerousMOFs-nanocarboncompositeshavebeenmadewithactivated carbons,carbonmonoliths,grapheneoxide(GO),andCNTs,andhave beenintensivelyexploredfordiverseapplications [45].

(7) MOFsthinfilmsonsubstrates.Thedepositionofpatternedthinfilmsof MOFsonasubstratehaspavedthewayforthenanotechnologicalapplicationsofMOFs-baseddevices.Generally,twofabricationmethodshave beendistinguishedforthedirectgrowth/depositionofMOFsthinfilms: (a) ThesubstrateisaddedtoaMOFssynthesissolutionunderambient orsolvothermalconditions,growingonthesurfaceofthesubstrateand sometimesinsolutionatthesametime.Thisgrowthleadstotheformation ofpolycrystallinefilmswherecrystalsareattachedtothesubstratesurfaceinanintergrownandcontinuousfashion. (b) Thelayer-by-layer (LBL)methodwasdevelopedforthefacilepreparationofMOFsthin filmsonthesubstratesandreferredtoasliquidphaseepitaxy.Thistechniquereliesonthesequentialdepositionofmonolayersofmetalsaltsand organiclinkersonafunctionalizedsubstrate.TheLBLmethodpermits thegrowthofsmoothandhomogeneousMOFsultrathinfilmswithdiametersinthenanometerrange,whichachievegoodcontroloverthethickness,crystallographicorientation,andinterpenetrationoftheMOFs multilayers [45,56–59].

(8) MOFs@MOFscore-shellheterostructures.Theconstructionofmultifunctionalcore-shellheterostructuresinvolvestwostrategies. (a) HeteroepitaxialgrowthofashellMOFscrystalontheexternalsurfaceofanother seedMOFscrystalcouldgenerateacompositecrystal,inwhichthetwo coordinationcomponentsaresegregatedintodifferentregionsofthecrystal.Thisapproachisbasedonaclosecrystallatticematchbetweenthe underlyingMOFssubstrateandthedepositedMOFs. (b) PSMstrategies includetheselectivereactionofthereactiveresidueofanorganiclinker andthecontrolledreplacementoftheframeworkmetalionsorligands, whosemodificationisselectivelyconstrainedtoeithertheexternalsurfaceortheinternalcoreoftheMOFscrystals [45].

(9) MOFs-enzymecomposites.ThetunablebutuniformporesizesandfunctionalizableporewallsofporousMOFsmaymakethemappealingto accommodateenzymesforcatalyticapplications.Nevertheless,the microporesizeofmostMOFsprecludestheentryoflarge-sizedenzymes

Chapter 1 11

andcanresultinonlyexternalsurfaceattachmentwithlowenzymeloadingviaadsorptionand/orcovalentbondingreaction [60–65]

(10) MOFs-othermolecularspeciescomposites.Molecularmaterialssuchas organicdyes,organometalliccompounds,metalloporphyrins,biomolecules, andotherfunctionalmoleculescanalsobecomposedwithMOFsforvarious applications.TheuseofMOFsasmolecularencapsulatorstakesadvantage oftheirpowerfulconfinementeffectto protectmoleculesfromaggregation, heterogeneousdistribution,andleaching.Impregnationproceduresare mostlyusedtoencapsulatethesemolecularmaterials.Inaddition,the self-assemblyofMOFsinthepresenceofmolecularmoietiesintheMOFs precursorsolutionscanleadtoirreversiblein-situencapsulation [45]

1.1.4PotentialapplicationsofMOFs

MOFshaveuniquepropertiesaswellasanextraordinarydegreeofvariability forboththeorganic(ligands)andinorganic(metalionsorclusters)components oftheirstructures,makingthemofinterestforpotentialapplicationsinpractical fields(Fig.1.4).Withtheinputofindustrialpartners,someofthesepromising MOFsforimportantapplicationswillsoonbeimplementedinourdailylives [66–71].

FIG.1.4 GraphicillustrationofporeandfunctionengineeringtodevelopmultifunctionalMOF materials. (ReproducedwithpermissionfromB.Li,H.Wen,Y.Cui,W.Zhou,G.Qian,B.Chen, Emergingmultifunctionalmetal-organicframeworkmaterials.Adv.Mater.28(2016)8819–8860.Copyright2016Wiley.)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.