Randomly deployed wireless sensor networks 1st edition xi chen - The ebook is now available, just on

Page 1


https://ebookmass.com/product/randomly-deployed-wirelesssensor-networks-1st-edition-xi-chen/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Deploying Wireless Sensor Networks. Theory and Practice 1st Edition Mustapha Reda Senouci

https://ebookmass.com/product/deploying-wireless-sensor-networkstheory-and-practice-1st-edition-mustapha-reda-senouci/

ebookmass.com

Security in Wireless Communication Networks Yi Qian

https://ebookmass.com/product/security-in-wireless-communicationnetworks-yi-qian/

ebookmass.com

Malware Diffusion Models for Wireless Complex Networks. Theory and Applications 1st Edition Karyotis

https://ebookmass.com/product/malware-diffusion-models-for-wirelesscomplex-networks-theory-and-applications-1st-edition-karyotis/

ebookmass.com

Interdisciplinary Insights from the Plague of Cyprian: Pathology, Epidemiology, Ecology and History Mark Orsag

https://ebookmass.com/product/interdisciplinary-insights-from-theplague-of-cyprian-pathology-epidemiology-ecology-and-history-markorsag/ ebookmass.com

https://ebookmass.com/product/the-future-of-think-tanks-and-policyadvice-around-the-world-1st-edition-james-mcgann/

ebookmass.com

The Oxford Handbook of Criminal Process Darryl K Brown

https://ebookmass.com/product/the-oxford-handbook-of-criminal-processdarryl-k-brown/

ebookmass.com

Local Economic Development: Analysis, Practices, and Globalization

https://ebookmass.com/product/local-economic-development-analysispractices-and-globalization/

ebookmass.com

BASIC Essentials: A Comprehensive Review for the Anesthesiology BASIC Exam 1st Edition, (Ebook PDF)

https://ebookmass.com/product/basic-essentials-a-comprehensive-reviewfor-the-anesthesiology-basic-exam-1st-edition-ebook-pdf/

ebookmass.com

CompTIA A+ Certification Study Guide (Exams 220-1101 & 220-1102), 11th Edition Faithe Wempen

https://ebookmass.com/product/comptia-a-certification-study-guideexams-220-1101-220-1102-11th-edition-faithe-wempen/

ebookmass.com

Trouble déficit de l'attention-hyperactivité chez l'enfant et l'adulte: Guide d'une approche contemporaine du TDAH

1st Edition Thomas E. Brown

https://ebookmass.com/product/trouble-deficit-de-lattentionhyperactivite-chez-lenfant-et-ladulte-guide-dune-approchecontemporaine-du-tdah-1st-edition-thomas-e-brown/ ebookmass.com

RandomlyDeployed WirelessSensor Networks

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020TsinghuaUniversityPress.PublishedbyElsevierInc.Allrightsreserved.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission. TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook. Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstitute endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachorparticularuse oftheMATLAB® software.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-819624-3

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: GlynJones

EditorialProjectManager: NaomiRobertson

ProductionProjectManager: PoulouseJoseph Designer: GregHarris

TypesetbyVTeX

2.4.1HomogeneousWSNs .........................29

2.4.2HeterogeneousWSNs .........................31

2.5 Summary........................................32 References. ......................................32

CHAPTER3Percentagecoverageschemes .................. 35

3.1 Location-basedpercentagecoverage ...................36

3.1.1Occupationarea .............................37

3.1.2Percentagecoverageconfigurationprotocol .........40

3.1.3Simulationandanalysis ........................42

3.2 Location-freepercentagecoverage. ....................44

3.2.1Occupationarea .............................44

3.2.2Standingguardprotocol... ....................45

3.2.3Simulationandanalysis ........................48

3.3 Summary........................................51 References. ......................................51

CHAPTER4Dynamictargetdetection ........................ 53

4.1 Stateswitchingscheme .............................55

4.2 Analysisofdetectionprobability.. ....................55

4.2.1Detectionprobabilityofanindividualsensor ........56

4.2.2Detectionprobabilitywithgiventarget’spath .......58

4.2.3Numberofnodeswhichsuccessindetectingtarget...60

4.3 Performanceoptimization ...........................61

4.3.1Maximizingdetectionprobabilitywithgivennetwork lifetime....................................62

4.3.2Maximizingnetworklifetimewithbudgetlimit ......64 4.4 Summary........................................65 References. ......................................66

CHAPTER5Probabilisticforwardingprotocols ............... 67

5.1 Probabilisticforwarding(ProFor).. ....................69

5.1.1Modeldescription ............................69

5.1.2Analysisofrelayprobability ....................70

5.1.3Simulationandanalysis ........................73

5.2 Enhancedprobabilisticforwarding(EnProFor). ...........76

5.2.1Analysisofrelayprobability ....................77

5.2.2Simulationandanalysis ........................79

5.3 Analysisofenergyconsumption.. ....................81 Relayingbysiblingnodes.. ....................81 Simulationandanalysisofthenumberofrelays.....83 Multiplebasestations .........................86 Messagepriority.............................87

5.4 Summary........................................87 References. ......................................87

CHAPTER6Stochasticschedulingalgorithms

6.2

6.3

6.2.1Analysisofenergyconsumption

6.2.2Dynamictuningofworkingprobability...

6.2.3Performancetest..

6.3.1Modelofnodefailure

6.3.2Dynamicturningofworkingprobability..

6.4.1Reviseddynamicworkingprobability

CHAPTER7Energy-basedmultisourcelocalization

7.1

7.1.1Localizationusingmaximumlikelihoodestimation...105

7.1.2Locationinitializationforlocalization

7.1.3Simulationandanalysis

7.2 Sourcenumberestimation

7.2.1Estimationbasedonnodeselectionandclustering

7.2.2Estimationbasedonminimumdescriptionlength

7.2.3Simulationandanalysis

7.3

Acknowledgments

AlargeportionofthebookisbasedonmyworkonwirelesssensornetworkssinceI joinedintheCenterforIntelligentandNetworkedSystems,DepartmentofAutomation,TsinghuaUniversity.

IfirstwouldliketoexpressmysincerethankstoProf.Yu-ChiHoforhisadvice andhelp.Hisinsightsandinspirationhavehadagreatimpactonmyresearch.

IwouldliketothankProf.XiaohongGuanforhisleadershipandsupport.

Iwouldalsoliketothankallcolleaguesandstudentswhohaveworkedwith meandpublishedpapersonwirelesssensornetworks:HongxingBai,JunfengGe, DianfeiHan,QingshanJia,YonghengJiang,BingLi,JianghaiLi,JieLi,Chunkai Nie,WenTang,XingshiWang,YongcaiWang,LiXia,RuixiYuan,JiansongZhang, QianchuanZhao,andHongchaoZhou.

Mythanksalsogotothethreeanonymousreviewersofthebookproposal.Iappreciatetheirhelpfulcommentsandsuggestions.

Iamgratefultothosewhoreaddraftsofthismaterialandmadesuggestionsto improveit:GuanghongHan,ZixuanLi,AnbangLiu,RenlinLiu,JinghuiZhang,and XiweiZheng.IowethankstoElsevierandTsinghuaUniversityPress.

Finally,IwouldliketothankTsinghuaUniversity,NationalNaturalScience FoundationofChina,NationalKeyResearchandDevelopmentProjectofChinafor providingmewithfinancialsupportaswellasexcellentresearchenvironment.

ThisworkispartiallysupportedbytheNationalKeyResearchandDevelopment ProjectofChina(No.2017YFC0704100)andtheNationalNaturalScienceFoundationofChina(No.60574064and60574087).

XiChen DepartmentofAutomation TsinghuaUniversity Beijing,China December2019

Recentadvancesinwirelesscommunicationsandmicroelectromechanicalsystem haveenabledthedevelopmentoflow-cost,low-power,multi-functionalsensorsthat aresmallinsizeandcancommunicatewitheachotherfromshortdistances[1].In thetechnologyreviewofMIT’sMagazineofInnovationinFebruary2003,Wireless sensornetworks(WSNs)comefirstofthe10emergingtechnologiesthatwillchange theworld.

1.1 OverviewofWSNs

AWSNusuallyconsistsofsensornodes,sinknodes(orbasestations)andendusers. Sensornodesaredeployedintheareaofinteresttoformaself-organizednetwork RandomlyDeployedWirelessSensorNetworks. https://doi.org/10.1016/B978-0-12-819624-3.00006-9

tomonitortheenvironmentsandtransmitthephenomenontheysensedtosinknodes withsomeroutingprotocols.Sinknodesareoftenmorepowerfulincomputationand long-rangecommunication.AsshowninFig. 1.1,sensornodestransmittheirsensed datatothesinknodebymultihoprelays;thesinknodeimplementsdatafusionand thensendstheinformationtoendusersthroughInternet,satelliteormobileaccess point(e.g.unmannedaerialvehicle).Thisinformationhelpsuserstomonitorthe environments.Conversely,enduserscanalsosendcommandstothenetworkfortask configurationorinformationinquiring.

FIGURE1.1

TypicalWSNarchitecture.

AsshowninFig. 1.2,sensornodesareusuallycomposedofsensing,dataprocessing,communicatingandpowermodules.Inaddition,dependingontheapplication requirements,sensornodesmayalsoincludealocalizationsystem(e.g.GPS),an energyharvestingmodule(e.g.solarbattery),alocomotorymodule,etc.

FIGURE1.2

Compositionofasensornode.

Fig. 1.3 presentsthephotographofMica2,whichisanearlyproductionofCrossbowTechnology,Inc.ItispoweredbytwoAAbatteries.Theantennais10centime-

tersinlengthanditsCPUisATmega128L,4KRAMand128KFlash.Thesensor boardcanintegratevariousmicrosensors,suchasphotosensors,thermalsensors, magneticsensors,accelerometers,microphonesandbuzzers.

FIGURE1.3 Mica2mote(left)andMica2sensorboard(right).

Differentfromotherwirelessnetworks,e.g.mobilecommunicationnetworks, wirelesslocalareanetworksandbluetoothnetworks,WSNshavethefollowingfeatures.

1. Sensornodesarelimitedinpower,computationalcapacityandmemory.Assensor nodesareusuallypoweredbybatteries,energybalancingandenergyefficiency arecrucialforprolongingthenetworklifetime.Asenergyconsumptionisproportiontothe nth(n 2)powerofthecommunicationdistance,multihoproutingis preferable.

2. Therearealargenumberofsensornodesinanetwork.Moresensornodeswhich aredeployedintheareaofinterestcanperformbetterinmonitoringtheenvironment.However,moresensornodeswillreducethenetworkutilizationand increasethecost.Thekeypointisthetradeoffbetweennetworkperformanceand cost.

3. Afterbeingdeployed,sensornodesareself-organizedintoanetworkandcollaboratetoaccomplishacommontask.Thereisnostrictcentralnode.Malfunction orfailureofasinglenodecanhardlyaffectnetworkperformance.Sensornodes cooperatewithahierarchyprotocolandadistributedalgorithm.

4. Thetopologyofanetworkmaychangewithtime.Sensornodesmaybecome invalidastheirpowerisusedupordefunctduetorandomevents.Othernodes mayjointhenetworktomeettherequirementonperformance.Toextendthe networklifetime,workingschemeswhichleteachnodeswitchbetweenworking andsleepingstatesalsoresultinadynamictopology.

1.2 ResearchtopicsinWSNs

Thestudyonhardwareofsensornodesinvolvesanembeddedprocessingunit,acommunicationdeviceandsensingelements,whiletheresearchonsoftwareofsensor nodesfocusesonoperatingsystemsandprogramminglanguages.Besidesmeeting therequirementsondataprocessing,storage,communicationandsensing,bothhardwareandsoftwareshouldbedesignedtooptimizeenergyconsumption.Somemain topicsonsensornodesareasfollows.

Sensingtechnology

Variousapplicationsmaydemandsensornodestocollectdifferentphysicalsignals.Thedesignofsensornodeswhicharehigh-integrated,multi-functionalizedand miniaturizedhasbeenthefocusofthestudy.

Low-power-consumptionsensornodes

Duetothelimitsoncostandvolume,sensornodesareusuallypoweredwithbatteries andcannotberecharged.Itishighlynecessarytoresearchanddeveloplow-powerconsumptionsensornodeswhichcanworkmuchlonger.

Low-costsensornodes

AWSNiscomposedofalargenumberofsensornodes.TomakeWSNsaffordable, moreeffortsneedtobemadetolowerthecostofsensornodewhileensuringits performance.

Wirelesscommunicationtechnology

Sensornodesneedsimple,low-costandrobustcommunicationtechnology.Technologiesofcarrier,antennae,anddatamodulation-demodulationaremainsubjectsin thefieldofsensornodes.

Theresearchinsensornodeshasbeenwellestablishedfromprototypesystems tocommercialapplications.AnearlierproductseriesdevelopedbytheUniversityofCalifornia,Berkeley,andCrossbowTechnology,Inc.includeMica,Mica2, Mica2Dot,andMicaZwithoperatingsystemTinyOSandprogramminglanguage Nesc.TheyhavebeenwidelyappliedinresearchanddevelopmentofWSNs.

Communicationprotocols

ForWSNs,communicationprotocolsusuallyconsistofprotocolsforthetransport layer,thenetworklayerandthedata-linklayer.

• Transportlayer

Duetotheapplication-orientedandcollaborativenatureofWSNs,themaindata flowoccursintheforwardpathasthesourcenodestransmittheirdatatothesink.

Thedataoriginatingfromthesink,suchasprogramming/retaskingbinaries,queries, andcommands,issenttothesourcenodesinthereversepath.Differentfromtraditionalcommunicationnetworks,atthetransportlayer,theWSNparadigmdemands anevent-to-sinkreliabilitynotion.Itisnecessarytoimplementtransportlayercongestioncontrolintheforwardpathtoensurereliableeventdetectionatthesink[36].

Event-to-sinkreliabletransportinWSNsdiffersfromtheconventionalend-to-end reliabletransportinwirelessnetworks.Thelattertransportisbasedonacknowledgmentsandend-to-endretransmissions.Thesemechanismsforstrictend-to-end reliabilityareunnecessaryandspendtoomuchenergy.ForWSNs,transportlayer protocolsshouldachievereliableeventdetectionwithminimizingenergyconsumption[26].

Theflowinthereversepathmainlycontainsdatatransmittedbythesinkforanoperationalorapplication-specificpurpose.Disseminationofthisdatamostlyrequires 100%reliabledelivery.Thisstrictreliabilityrequirementforthesink-to-sensors transportdemandsretransmissionandacknowledgmentmechanisms.However,to saveenergy,localretransmissionandnegativeacknowledgmentapproacheswould bemoresuitablethanend-to-endretransmissionandacknowledgments[35].

• Networklayer

Energyefficiencyismostimportantfornetworklayerprotocols.InWSNs,to integratetightlywiththeinformationordata,aroutingprotocolmaybedesigned accordingtodata-centrictechniques[21,30].Adata-centricroutingprotocolshould applyadataaggregationtechniquetosolvetheimplosionandoverlapproblemsin routing[11].Dataaggregationcombinesdatafrommanysensornodesintoasetof meaningfulinformationitems[12].

• Data-linklayer

Ingeneral,thedata-linklayerisprimarilyresponsibleformultiplexingdata streams,dataframedetection,mediumaccess,anderrorcontrol;itguaranteesreliablepoint-to-pointandpoint-to-multipointconnectionsinacommunicationnetwork. Themediumaccesscontrol(MAC)layerprotocolsinamultihopWSNneedtoestablishdatacommunicationlinksformultihopwirelesscommunicationinadensely scatteredsensorfieldandregulateaccesstosharedmediatoletsensornodesfairly andefficientlysharecommunicationresources.TheMACprotocolmusthavebuilt-in powerconservation,mobilitymanagementandfailurerecoverystrategies[35].

TherearethreekindsofMACschemesapplicabletoWSNs.MACprotocols basedontime-divisionmultipleaccessschemescanreducethedutycycleofthe radio.Hencetheycanpreventcollisionsandsavemoreenergythancontention-based schemes.Apuretime-divisionmultipleaccess-basedaccessschemededicatesthe entirechanneltoasinglesensornode,whileapurefrequency-divisionmultipleaccessschemeallocatesaminimumsignalbandwidthpernode.Thetradeoffbetween theaccesscapacityandtheenergyconsumptionplaysakeyroleinMACschemes. ForahybridTDMA/FDMA-basedaccessscheme,theoptimumnumberofchannels dependsontheratioofthepowerconsumptionofthetransmittertothatofthere-

ceiver.Afrequency-divisionmultipleaccessschemeisbetterwhenthetransmitter consumesmorepower.Whenthereceiverconsumesagreatamountofpower,the schemeshouldleantowardfrequency-divisionmultipleaccess[33].MACprotocols forWSNsneedtosupportvariablebuthighlycorrelatedanddominantlyperiodictraffic.Thelisteningmechanismandthebackoffschemearetwoimportantcomponents foranycarriersensingmediumaccess-basedscheme.Theconstantlistenperiodsare energyefficientandtheintroductionofrandomdelayprovidesrobustnessagainst repeatedcollisions[40].

InWSNs,anotherimportantfunctionofthedata-linklayeriserrorcontrolof thetransmitteddata.Themainapproachesoftheerrorcontrolmechanismsincommunicationnetworksareforwarderrorcontrolandautomaticrepeatrequest.Since automaticrepeatrequest-basederrorcontrolmechanismincurssignificantadditional retransmissioncostandoverhead,itisnotveryusefulinWSNapplications.Onthe otherhand,forwarderrorcontrolschemeshaveinherentdecodingcomplexity,which requiresgreatprocessingresourcesinsensornodes.Therefore,simpleerrorcontrol codeswithlow-complexityencodinganddecodingmaybethebestsolutionsforerror controlinWSNs.

Nodelocalization

Assensornodesmayberandomlydeployedintheareaofinterest,theymustbeaware oftheirlocationsinordertoprovidemeaningfuldatatotheusers.Locationinformationmayalsoberequiredbythenetworkanddata-linklayerprotocols.Alocalization protocolmustberobusttonodefailure,havelittlesensitivitytomeasurementnoise, beflexibleinanyterrainandhavelowerrorinlocationestimation.Therearetwo typesoflocalizationtechniques:beaconbasedandrelativelocationbased.

Beacon-basedmethodsrequirefewnodestohaveawell-definedlocationthrough GPSorthroughmanualconfiguration.Byrangingandestimation,nodescandiscover theirlocation.Duringtherangingphase,eachnodeestimatestherangeofitsneighbors.Andintheestimationphase,nodeswhoselocationsareunknownusetherange andthebeacons’locationstoestimatetheirlocations[27].Inaddition,mobilebeacon mechanismsprovideeconomicalandeffectivelocalizationsignalcoverageforsensor nodes[31].

Beacon-basedlocalizationprotocolsaresufficientforcertainWSNapplications. However,someWSNsmaybedeployedinareasunreachablebybeaconsorGPS.To obtainpreciserelativelocationinformation,sensornodesneedtodetectthelocation ofneighborsandcooperatewitheachotherforlocationestimation.

Timesynchronization

Likelocationinformation,timeinformationisacrucialelementforafullydescribed event.Sensornodesintheareaofinterestmustmaintainasimilartimewithina certaintolerancethroughoutthenetworklifetime.Forshort-distancemultihopbroadcasting,thedataprocessingtimeandthevariationofthedataprocessingtimesmay

resultintimefluctuationsanddifferencesinpathdelays.Inaddition,duetothewanderingeffectoflocalclocks,thetimedifferencebetweentwosensornodesmay becomesignificantovertime.Therearethreetypesoftimingtechniques.Thefirst onereliesonfixedtimeservers,whichareexpectedtoberobustandhighlypreciseto synchronizethenetwork.Sensornodesaresynchronizedtothesetimeservers.The secondonetranslatestimehop-by-hopfromthesourcetothesinkthroughoutthe network.Andthethirdonesynchronizesthenetworkbyautomaticallyorganizing anddeterminingthemasternodesasthetemporarytimeservers.Differenttiming techniquesandcommunicationprotocolsmaybeappliedtodifferentapplicationsto meettheirrequirementsonthequalityofserviceofthenetwork[35].

Networksecurity

InWSNs,thelow-costsensordevicesmaynotbebuiltwithhighreliability.Moreover,sensornodesareoftendeployedinanunattendedenvironmentorevenhostile circumstance.Theycommunicatewitheachotherusingwirelesssignalswhichare easytoeavesdrop.TherearevariouskindsofattacksagainstWSNs.Itisimportant toguaranteethatdataaresafelyreceivedbythesink.Sofar,therearetwokindsof securitysolutions:preventionbasedanddetectionbased.Typicalprevention-based techniquesareencryptionandauthentication.Detection-basedtechniquesaredesignedtoidentifyandisolateattackersafterprevention-basedtechniquesfail.

Researchonsecuritymainlyfocusesonkeymanagement,secureroutingprotocol,denialofserviceattacksandintrusiondetectionalgorithm.Keymanagement helpstoestablishsecurecommunicationsinnetworks.Self-healinggroup-wisekey schemeswithtime-limitednoderevocationguaranteesecrecy,andascertaincollusionfreedomandgroupconfidentialityinhighpacketlossenvironments[32].For denselydeployedWSNs,secureenergy-efficientroutingprotocolcanensuredata transmissionsecurityandmakegooduseoftheavailableamountofenergyinthe network[23].TwogeneralapproachesforbroadcastauthenticationinWSNsaredigitalsignatureand μTESLA-basedtechniques.Bothofthemarevulnerabletodenial ofserviceattacks.Bysimplyforgingalargenumberofbroadcastmessageswith digitalsignatures,anattackermayforcesensornodestoverifythesesignatures,and eventuallydepletetheirbatterypower.Byusinganefficientlyverifiableweakauthenticatoralongwithbroadcastauthentication,asensornodeneedstoperformthe expensivesignatureverificationorpacketforwardingonlywhentheweakauthenticatorisverified[22].DuetothetreestructuretopologyofaWSN,path-baseddenial ofserviceattacksmayexhaustthebatteriesofseveralnodesandhavethepotential todisableamuchwiderregionthanasinglepath.Amethodisproposedtodetect path-baseddenialofserviceattacksandthensetupacost-effectiverecoveryprocessbyusingmobileagentsinthenetwork[17].Anefficientdistributedgroup-based intrusiondetectionalgorithmisdevelopedtoidentifymaliciousattackers[18].An overhearing-baseddetectionmechanismispresentedtodealwithmaliciouspacketmodifyingattacksfromsomemaliciousnodeswhichmodifycontentsofdatapackets whilerelaying[34].

Applicationlayerprotocols

AttheapplicationlayerofWSNs,therearemainlythreeprotocols:thesensormanagementprotocol;thetaskassignmentanddataadvertisementprotocol;andthe sensorqueryanddatadisseminationprotocol.Systemadministratorscaninteract withWSNswithsensormanagementprotocol.SensornodesdonothaveglobalIDs andusuallyhavenoinfrastructuresupporting.Henceasensormanagementprotocolneedstoaccessthenodesbyusingattribute-basednamingandlocation-based addressing.Theadministrativetasksforasensormanagementprotocolincludesensornodes’workscheduling,dataprocessing,timesynchronization,securityindata communication,andnetworkconfigurationandreconfiguration.Usersmaybeinterestedinacertainattributeofaphenomenonoraspecificevent.Thetaskassignment anddataadvertisementprotocolprovidesasoftwareinterfacebetweenaWSNand itsusers.Usersmayhaveaninterestinasensornode,asubsetofsensornodes orthewholenetwork,whilesensornodescanadvertisetheavailabledatatothe users.Thesensorqueryanddatadisseminationprotocolprovidesinterfacestoissue queries,respondtoqueries,andcollectincomingreplies.Thesequeriesaregenerallyattribute-basedorlocation-basednaminginsteadofsendingtoparticularnodes [35].

Asthepowercannotbereplenishedforthebattery-drivensensornodes,toextendthenetworklifetime,energyefficiencyisalwaysacriticalissueofresearchin WSNs.

1.3 ApplicationsofWSNs

WSNshavebeenwidelyappliedinmilitary,agriculture,industry,environmentmonitoring,andvariousdailylifefields.Weintroducetheirapplicationswithafewspecific examples.

Militaryapplications

WSNsareusedbythemilitaryforanumberofpurposessuchasmonitoringmilitant activityinremoteareasandforceprotection.Beingequippedwithappropriatesensor nodes,thesenetworksenabledetectionofenemymovement,identificationofenemy forceandanalysisoftheirmovementandprogress[39].

Acousticsensorarrayssuspendedbelowtetheredaerostatsareusedtodetectand localizetransientsignalsfrommortars,artilleryandsmallarmsfire.Theairborne acousticsensorarraycalculatesanazimuthandelevationtotheoriginatingtransient, andimmediatelycuesacollocatedimager.Byprovidingadditionalsolutionvectors fromseveralground-basedacousticarrays,unattendedgroundsensorsystemscan augmentaerostatarraystoperforma3Dtriangulationonasourcelocation[29].

Theanti-submarinewarfareconceptusessmallsensorswithpassiveandactive sonartodetectmoderndieselsubmarinesoperatingonbatteries.Hundredsorthousandsofsensornodesaredeployedtoprovideahighdensitysensorfield.Low-cost

sensornodeshaveashortdetectionrange.Hencetheyarefarlesssusceptibletomultipathreverberationsandotheracousticartifacts[37].

ThecapabilityofaWSNmilitaryapplicationisdependentonthetypeandcapabilitiesofsensornodes,wirelesscommunicationsarchitecture,coverage,andappropriateinformationprocessing,fusionandknowledgegeneration.Formoremilitary applications,thereadermayreferto[7].

Precisionagriculture

WSNsareincreasinglyappliedinagriculturalindustry.Gravityfeedwatersystems canbemonitoredbyusingawirelessnetwork.Pressuretransmitterscanbeused tomonitorwatertanklevelsandpumps.Waterusecanbemeasuredandwirelessly transmittedbacktoacentralcontrolcenterforbilling.Irrigationautomationenables moreefficientwateruseandreducedwaste[6].

Lowproductioninagricultureismainlyduetotheabsenceofwaterinthesoil.For agriculturalmonitoring,themeasurementofmoisturelevelofplantsmaybequantifiedwiththedifferencebetweentheleaftemperatureandtheairtemperature.Anovel leaftemperaturesensorisdevelopedandthenetworkconsistingofsuchsensorsmeasuresthewaterstressonplants[5].

AWSNcomposedof64sensorsissetuptomonitoracommercialvineyard.The systemprovidessoftwaremodulesrangingfromfilteringrawdatatoacentralized andadistributeddatastorageapplications.Thenetworkprovidesbettergeographical coverageandanincreasedspatialresolutioncomparedtotraditionalsolutionsbased onindividualweatherstations[14].

Formoreagricultureapplications,thereadermayreferto[25].

Industrialapplications

IndustrialWSNs,whichincorporateWSNswithintelligentindustrialsystems,providemanyadvantagesoverexistingindustrialapplications,suchaslowcost,rapid deployment,wirelesscommunication,intelligentcontrolling,self-organization,and processingcapability.IndustrialWSNstechnologiesplayanimportantroleindevelopingmoreefficient,stable,reliable,flexible,andapplication-centricindustrial systems.In2014,theInternationalJournalofDistributedSensorNetworkspublished aspecialissueonindustrialWSNs,whichintroducesacollectionof17paperscoveringarangeoftopicsforspecificindustrialrequirements[19].

Microwirelesssensorscanbeembeddedintothekeypositionsofmanufacturing equipmentsorproductstomonitorthemmassivelyinrealtimemode.Thesesensor nodesdiagnoseandpredictfaultspromptlysothatthereliabilityoftheequipmentis enhancedandtheaccidentrateisreduced.Forexample,aWSNisdeployedtodetect theaxletemperatureforafreighttrain[44].

WSNscanalsomonitortheconditionsofindustrybuildingfacilitiesandpredict anypossibleproblemswithdatafusion.Itismuchmoreconvenientandaccuratethan traditionalapproaches.

Environmentalmonitoring

SpaceWSNsforPlanetaryExploration,asanEuropeanCommissioncollaborative project,presentanewapproachtousingWSNsforplanetarysurfacecharacterization. Spatiallydistributedsensorsintheproposednetworkscooperatetomonitorphysical andenvironmentalconditionsandsendtheirdatathroughanetworktoacentralprocessinglocation.Hundredsofsmallwirelesssensors(alsocalledsmartdust)maybe droppedfromanorbitingsatelliteontotheMoonsurfacetoensureauniformandsufficientcoverage.Thesesensornodescreatetheirownadhocnetworkwhilesomeof them,whichareequippedwithsatellitecommunicationcapabilities,establishalink betweentheWSNandanorbiterordirectlywiththeEarth.Datagatheredfromthe sensorsisprocessedandsenttotheorbiterandlatertotheEarth.Thesensorforthis projectisamicro-meteorologicalstation,whichcanmeasuretemperature,radiation, dustdepositionandirradianceatdifferentwavelengths.Eachstationisautonomously poweredandhasnetworkinganddataprocessingcapabilities[43].

WSNscangreatlyassistthegeophysicscommunity.Studyingactivevolcanoes demandshighdatarates,highdatafidelity,andsparsearrayswithhighspatialseparationbetweennodes.AWSNisdesignedanddeployedonVolcanReventador, whichislocatedinnorthernEcuador,forvolcanicdatacollectionandreliabledata retrieval[38].WSNsarealsousedtomonitorsnowcompositioninmountainslopes foravalancheforecasting[2].

TheGreatDuckIslandprojectisagoodexampleofhabitatandmicroclimate monitoring.AWSNisusedforthestudyofLeach’sstormpetrelonGreatDuck Island,Maine,USA.Thepetrel-watchingapparatusconsistsofadistributedsystem ofdevicescalled‘motes’.Themotecontainsapplication-specificsensorsandsignalprocessinghardwarefordatacollectionandhasalow-powerradiotransceiverfor communication.Whenthemotesarenetworkedtogether,eachsimultaneouslycollectsdatafromitsimmediatesurroundingsandpassesitsownandothermotes’data throughthenetwork[16].

Forestfiresareathreattosustainabilityoftheforest.Assurveillancesystems forforestfires,WSNsgatherdatavalues,liketemperatureandhumidity,fromall pointsofanareaincessantly,dayandnight,andrelayfreshandprecisedatatothe fire-fightingcenterquickly[42].

Healthmonitoring

WSNsinhealthcarecanimprovethewayofpatientsbeingmonitoredinaninfirmary orahospital.ThehealthcareWSNscollectandsendpatients’healthparameters,such asbloodpressure,pulse,bodytemperature,wirelesslytoremotemonitoringsystems. Theabilitytoletpatientsmovingaroundwhenhospitalizedisimportanttopromote theirqualityoflife[4].Withmultihopnetworkcommunication,comparedtoclassicalwiredorlargeinspectionequipment,micro-sensorscanbeusedinlong-term monitoringwithoutcausinganyinconveniencetopatients.WSNscanprovidemore convenientandswiftsolutionsinremotetelemedicine,hospitalmedicinemanagementandintelligenthomenursingfortheaged.

Smartcity

Urbanissuesarebecomingmorecomplicatedandcomplexasthecitygrows.Implementingtheconceptofasmartcityisonesolutiontobettermanagement,whichis helpfultocreateacomfortable,safe,andsustainablecityatmosphere[20].Inmany countriesaroundtheworld,smartcitiesarebecomingareality.Thesecitiesmake effortstoimprovethecitizens’qualityoflifebyprovidingservicesthatarenormally basedondataextractedfromWSNsandotherelementsoftheInternetofThings.In addition,publicadministrationusesthesesmartcitydatatoincreaseitsefficiency, toreducecostsandtoprovideadditionalservices[10].Wirelessnetworkswillbe oneofthekeytechnologiesforroadtrafficmanagementinsmartcities.Vehicles anddedicatedroadsideunitsshouldbeinterconnectedthroughwirelesstechnologies. Trafficlightsandroadsignsformalarge-scalenetworkofsmalldevicesthatreport measurements,takeordersfromacontrolcenter,andareabletomakedecisionsautonomouslybasedontheirlocalperception[8].

Thereismoreworkonsmartcities.Thereadermayreferto[3,24,41].

Civilengineering

WSNshavedemonstratedtheirpotentialforprovidingcontinuousstructuralresponse datatoquantitativelyassessstructuralhealthandhavebecomeapracticaltoolfor structuralhealthmonitoringoflarge,complexcivilstructures.Monitoringandanalyzingthehealthoflargestructureslikebuildings,bridges,dams,andheavymachineryisimportantforsafety,cost,operation,makingpriorprotectivemeasures, andrepairandmaintenance.WithWSNcomposedofaMEMSaccelerometer,health monitoringcanbeperformedbystudyingthedynamicresponsethroughmeasuring ofambientvibrationsandstrongmotionofsuchstructures[15].

Blockagesinsewersaremajorcausesofsewerfloodingandpollution.Thedetectionofthesewerconditionisnecessarytopreventflooding.AWSNcomposed ofalargenumberofdiversesensornodesdistributedwithinasewerinfrastructure networkcandetectblockagesproactively,andthenfeedtheseeventdatabacktoa centralcontrolroom[28].

Otherapplications

RadioFrequencyIDentification(RFID)isanimportantwirelesstechnologywhich hasawidevarietyofapplicationsandprovidesunlimitedpotential.RFIDisused todetectthepresenceandlocationofobjects,whileaWSNisusedtosenseand monitortheenvironment.IntegratingRFIDwithWSNnotonlyprovidesidentityand locationofanobjectbutalsoprovidesinformationregardingtheconditionofthe objectwhichcarriesthesensorsenablingRFIDtag.Itcanbewidelyusedinmilitary,environmentalmonitoringandforecasting,warehousemanagement,healthcare, intelligenttransportvehicles,intelligenthome,andprecisionagriculture[13].

TheInternetofThings(IoT)representsthenetworkofphysicalsensorswhichare abletosensechangesintheenvironment,communicatewitheachother,andsend

datatotheexternalenvironment.WSNsplayacriticalroleinIoT.Itisessentiallythe interfacebetweentheIoTandthephysicalworld[9].

1.4 Outlineofthebook

ThisbookaimstointroduceourresearchonrandomlydeployedWSNs.Itconsists ofsevenchapters.ThischapterintroducesWSNsandpresentssomeresearchtopics andapplicationsofWSNs.Therestofthebookisorganizedasfollows.

ForarandomlydeployedWSN,coverageperformanceisessentiallydependenton eachsensornode’spositionsothatcompletecoverageistoodemandingtobeeasily achievable.Chapter 2 considerspointcoverageasanalternativemeasureofcoverageperformancetocompletecoverage.Pointcoverageprobabilitiesarederived.The relationshipbetweenthenumberofsensorsandcoverageprobabilityisanalyzed. Comparisonsbetweencompletecoverageandpointcoveragearemadebyanalysis andsimulation.PerformanceoptimizationandcostcontrolarediscussedforheterogeneousWSNs.

Chapter 3 presentsalocation-basedpercentagecoverageconfigurationprotocol andalocalizedlocation-freenodeschedulingalgorithm.Bothofthemcansecurea desiredpercentageoftheareaofinterestbeingcovered.Inmanyapplications,asmall lossofcoverageisacceptableandcansavemuchenergy.

Chapter 4 studiesthedesignandconfigurationofaWSNfortargetdetection. Theproblemistoletthenetworksecureacertaindetectionprobabilityandwork forareasonablelongtime.Onenovelmodelofrandomlydistributednetworkispresented.Astateswitchingschemeisdevelopedandatwo-leveloptimizationproblem isformulatedtosolvetheproblem.

Chapter 5 presentsanovelprobabilisticforwardingapproachfordirecteddata transmissionwithoutroutediscovery.Inthismodel,eachmessageisrequiredtoreach thebasestationsuccessfullywithapredefinedprobability,hencesensornodeswhich arelocatednearertothebasestationneedtorelaymessageswithacertainrelay probability.Therelationshipbetweenthenumberofrelayingnodesandrelayprobabilityisanalyzedandtheconditionforrelayprobabilitytoguaranteethesuccess probabilityisobtained.

Chapter 6 introducesastochasticschedulingmechanismtomeettherequirement oncoverageperformanceandprolongthenetworklifetime.Analgorithmisdevelopedtodeterminetheworkingprobabilitybasedonthenumberofeffectivenodes ineachperiod.Theimpactoffailurenodesoncoverageperformanceisalsostudied. Moreover,arevisionondynamicworkingprobabilityispresentedtocompensatethe lossofworkingnodes.Analgorithmisproposedtooptimizetheperiodlengthto maximizethenetworklifetime.

Chapter 7 considersanenergy-basedacousticmultisourcelocalizationproblem. Whenthesourcenumberisgiven,amultisourcelocalizationproblemcanbeformulatedasamaximumlikelihoodestimationproblem.Asimpleandefficientlocalizationmethodwhichcombineslocationinitializationwithmultiresolutionsearchis

proposed.Moreover,twomethodsbasedonnodeclusteringandtheminimumdescriptionlengthcriterionareseparatelydevelopedtoestimatetheunknownsource number.

References

[1]I.F.Akyildiz,W.Su,Y.Sankarasubramaniam,E.Cayirci,Asurveyonsensornetworks,IEEECommunicationsMagazine(August2002)102–114.

[2]C.Alippi,G.Anastasi,C.Galperti,F.Mancini,M.Roveri,Adaptivesamplingforenergyconservation inwirelesssensornetworksforsnowmonitoringapplications,in:IEEEInternationalWorkshopon MobileAdHocandSensorSystemsforGlobalandHomelandSecurity,MASS-GHS,Pisa,Italy, October8,2007.

[3]K.Antonopoulos,C.Petropoulos,C.P.Antonopoulos,N.Voros,Securitydatamanagementprocess anditsimpactonsmartcities’wirelesssensornetworks,in:SouthEasternEuropeanDesignAutomation,ComputerEngineering,ComputerNetworksandSocialMediaConference,SEEDA-CECNSM, 2017.

[4]J.M.L.P.Caldeira,J.Rodrigues,P.Lorenz,Intra-mobilitysupportsolutionsforhealthcarewireless sensornetworks-handoverissues,IEEESensorsJournal13(11)(2013)4339–4348.

[5]S.N.Daskalakis,A.AnaCollado,A.ApostolosGeorgiadis,M.M.Tentzeris,BackscatterMorseleaf sensorforagriculturalwirelesssensornetworks,in:Conference:IEEESENSORS,Glasgow,Scotland,UK,October2017.

[6]S.Dhamdhere,S.V.Gumaste,Monitoringapplicationsinwirelesssensornetworks,International JournalofAdvanceFoundationandResearchinComputer(IJAFRC)2(6)(June2015)27–30.

[7]M.P.Durisic,Z.Tafa,G.GoranDimic,V.Milutinovic,Asurveyofmilitaryapplicationsofwireless sensornetworks,in:2012MediterraneanConferenceonEmbeddedComputing,MECO,IEEE,2012.

[8]S.Faye,C.Chaudet,Characterizingthetopologyofanurbanwirelesssensornetworkforroadtraffic management,IEEETransactionsonVehicularTechnology65(7)(2016)5720–5725.

[9]D.Fong,Wirelesssensornetworks,in:HwaiyuGeng(Ed.),InternetofThingsandDataAnalytics Handbook,Wiley,2017,Chapter12.

[10]V.Garcia-Font,C.Garrigues,H.R.Pous,Acomparativestudyofanomalydetectiontechniquesfor smartcitywirelesssensornetworks,Sensors16(6)(2016)868.

[11]W.R.Heinzelman,J.Kulik,H.Balakrishnan,Adaptiveprotocolsforinformationdisseminationin wirelesssensornetworks,in:ACMMobicom’99,Seattle,WA,August1999,pp.174–185.

[12]W.R.Heinzelman,A.Chandrakasan,H.Balakrishnan,Energy-efficientcommunicationprotocolfor wirelessmicrosensornetworks,in:IEEEProc.HawaiiInt.Conf.Syst.Sci.,Maui,HI,January2000, pp.1–10.

[13]P.C.Jain,K.P.Vijaygopalan,RFIDandwirelesssensornetwork, http://www.scribd.com/doc/ 32593709/RFID-and-Wireless-Sensor-Network,lastretrieved,December1,2010.

[14]C.Jardak,K.Rerkrai,A.Kovacevic,J.Riihijarvi,P.Mahonen,Designoflarge-scaleagricultural wirelesssensornetworks:emailfromthevineyard,InternationalJournalofSensorNetworks8(2) (2010)77–88.

[15]T.Kijewski-Correa,M.Haenggi,P.Antsaklis,Wirelesssensornetworksforstructuralhealthmonitoring:amulti-scaleapproach,in:2006ASCEStructuresCongress,17thAnalysisandComputation SpecialtyConference,St.Louis,MO,May18–21,2006.

[16]J.Kumagai,Lifeofbirds[wirelesssensornetworkforbirdstudy],IEEESpectrum41(4)(2004) 42–49.

[17]B.Li,L.Batten,Usingmobileagentstorecoverfromnodeanddatabasecompromiseinpath-based DoSattacksinwirelesssensornetworks,JournalofNetworkandComputerApplications32(2) (2009)377–387.

[18]G.R.Li,J.S.He,Y.F.Fu,Group-basedintrusiondetectionsysteminwirelesssensornetworks,ComputerCommunications31(18)(2008)4324–4332.

[19]S.Li,etal.,Industrialwirelesssensornetworks,InternationalJournalofDistributedSensorNetworks (August2014)1–2.

[20]E.A.Lisangan,S.C.Sumarta,Proposedprototypeandsimulationofwirelesssmartcity:wirelesssensornetworkforcongestionandflooddetectioninMakassar,in:The2ndEastIndonesiaConference onComputerandInformationTechnology,Makassar,Indonesia,November6–7,2018.

[21]J.Mirkovic,etal.,Aself-organizingapproachtodataforwardinginlarge-scalesensornetworks,in: IEEEInt.Conf.Commun.ICC’01,Helsinki,Finland,June2001.

[22]P.Ning,A.Liu,W.Du,MitigatingDoSattacksagainstbroadcastauthenticationinwirelesssensor networks,ACMTransactionsonSensorNetworks4(1)(2008)1–35.

[23]A.S.Pathan,C.S.Hong,SERP:secureenergy-efficientroutingprotocolfordenselydeployedwireless sensornetworks,AnnalsofTelecommunications63(9)(2009)529–541.

[24]J.G.Rojas,L.Camargo,R.Montero,Mobilewirelesssensornetworksinasmartcity,International JournalonSmartSensingandIntelligentSystems11(1)(2018)1–8.

[25]Romanov,I.Galelyuka,Y.Sarakhan,Wirelesssensornetworksinagriculture,in:IEEESeventhInternationalConferenceonIntelligentComputingandInformationSystems,2015.

[26]Y.Sankarasubramaniam,O.B.Akan,I.F.Akyildiz,ESRT:event-to-sinkreliabletransportforwireless sensornetworks,in:Proc.ACMMOBIHOC,Annapolis,MD,June2003,pp.177–188.

[27]A.Savvides,C.Han,M.Srivastava,Dynamicfine-grainedlocalizationinadhocnetworksofsensors, in:Proc.ACMMobicom’01,Rome,July2001,pp.166–179.

[28]C.H.See,etal.,AZigbeebasedwirelesssensornetworkforseweragemonitoring,in:AsiaPacific MicrowaveConference,2009,pp.731–734.

[29]M.V.Scanlon,C.G.Reiff,L.Solomon,Aerostatacousticpayloadfortransientandhelicopterdetection,in:SPIEDefense&SecuritySymposium,Orlando,Florida,USA,2007.

[30]C.Shen,C.Srisathapornphat,C.Jaikaeo,Sensorinformationnetworkingarchitectureandapplications,IEEEPersonalCommunications(August2001)52–59.

[31]Q.Shi,H.Huo,T.Fang,D.Li,A3Dnodelocalizationschemeforwirelesssensornetworks,IEICE ElectronicsExpress6(3)(2009)167–172.

[32]M.Shi,X.Shen,Y.Jiang,C.Lin,Self-healinggroup-wisekeydistributionschemeswithtime-limed noderevocationforwirelesssensornetworks,WirelessCommunications14(5)(2007)38–46.

[33]E.Shih,etal.,Physicallayerdrivenprotocolandalgorithmdesignforenergy-efficientwirelesssensor networks,in:ACMMobicom’01,Rome,July2001,pp.271–286.

[34]K.F.Ssu,P.H.Chou,L.W.Cheng,Usingoverhearingtechniquetodetectmaliciouspacket-modifying attacksinwirelesssensornetworks,ComputerCommunications30(11)(2007)2342–2352.

[35]W.Su,E.Cayirci,B.Ö.Akan,Overviewofcommunicationprotocolsforsensornetworks,in:I. Maoub,M.Ilyas(Eds.),4thPartofSensorNetworkProtocols,CRCPress,Taylor&FrancisGroup, 2006.

[36]S.Tilak,N.B.Abu-Ghazaleh,D.Estrin,Directeddiffusion:ascalableandrobustcommunication paradigmforsensornetworks,in:ACMMobicom’00,Boston,MA,August2000,pp.56–67.

[37]J.P.Towle,R.Johnson,H.T.VincentII,Low-costacousticsensorsforlittoralanti-submarinewarfare (ASW),in:SPIE,Orlando,USA,2007,pp.653–814.

[38]G.Werner-Allen,K.Lorincz,M.Ruiz,O.Marcillo,J.Johnson,J.Lees,M.Welsh,Deployingawirelesssensornetworkonanactivevolcano,in:IEEEInternetComputing.SpecialIssueonData-Driven ApplicationsinSensorNetworks,March/April,2006.

[39]M.Winkler,K.D.Tuchs,K.Hughes,G.Barclay,Theoreticalandpracticalaspectsofmilitarywireless sensornetworks,JournalofTelecommunications&InformationTechnology(2008)37–45.

[40]A.Woo,D.Culler,Atransmissioncontrolschemeformediaaccessinsensornetworks,in:ACM Mobicom’01,Rome,July2001,pp.221–235.

[41]M.Xie,Y.Bai,Z.Hu,C.Shen,Weight-awaresensordeploymentinwirelesssensornetworksfor smartcities,WirelessCommunicationsandMobileComputing(14)(2018)1–15.

[42]S.Yassine,N.ElKamoun,ForestFireDetectionandLocalizationWithWirelessSensorNetworks, Springer,Berlin,Heidelberg,2013.

[43]X.Zhai,H.Jing,T.Vladimirova,Multi-sensordatafusioninwirelesssensornetworksforplanetary exploration,in:2014NASA/ESAConferenceonAdaptiveHardwareandSystems,July2014.

[44]S.Zhang,etal.,Designofaxle-temperaturedetectsystembasedonwirelesssensornetwork(in Chinese),ModernElectronicsTechnique(3)(2008)86–88.

Pointcoverageanalysis

Awirelesssensornetwork(WSN)isusuallydeployedinaregiontomonitorthe environmentortargets.Sucharegionmaybecalledtheareaofinterest.Coverageis oneimportantcriteriontoevaluatethenetworkperformance.Thecoverageproblem ishowtomakethenetworkmeettherequirementsoncoverageperformanceand prolongitslifetimeaswell.

2.1 CoverageinWSNs:elements

2.1.1

Sensorsensingmodels

Thesensingrangeofanindividualsensornodereferstotheregionitcanmonitor. ThesensingregionofaWSNistheunionsetofallnodes’sensingranges. Therearevarioussensorsensingmodels.Forexample,intheformulationsof exposure-basedcoverage[5,13,15,17]andinformationcoverage[1,19,20],asensor nodecandetectthesignalatanydistancebutitssensingabilitydiminishesasdistanceincreases.Booleansensingmodelsandprobabilisticsensingmodelsarewidely adoptedinthestudyofWSNs. RandomlyDeployedWirelessSensorNetworks. https://doi.org/10.1016/B978-0-12-819624-3.00007-0 Copyright©2020TsinghuaUniversityPress.PublishedbyElsevierInc.Allrightsreserved.

TheBooleansensingmodelisalsoknownasthe0-1sensingmodelorbinary sensingmodel.Ina2Dplane,anode’ssensingrangeisadiscwithsensingradius r andcenteredatthenodeitself;thevalueof r isdeterminedbythenode’sphysical properties.Onesensornodecanobserveenvironmentsandeventswhichoccurinits sensingrange.Itcannotdetectanythingoutsidetherange.Similarly,ina3Dplane, thesensingrangeinabooleansensingmodelisaspherewithsensingradius.

Comparedtothebooleansensingmodel,theprobabilisticsensingmodelismore realistic.Insteadofbeingunchangedasassumedinbooleanmodel,anode’ssensing abilityislikelyaffectedbyexternalenvironmentalfactorsanddiminishesasdistance increases.Iftheprobabilitythatnode o sensespoint a isdenotedas ν(o,a),then ν(o,a) mayexponentiallydecreasewiththedistancebetween o and a ,whichisdenotedas d(o,a).Hencetheprobabilisticsensingmodelmaybeformulatedas

ν(o,a) =

where ε> 0isasmallnumber,parameters λ> 0and β> 0.

Someothersensingmodelshavebeenproposed,forexample,directionalsensing modelforvideosensors[12]andapolygonmodelfordirectionalsensors[21].

TheBooleansensingmodelisanidealapproximationmodel.Itisapplicable totheanalysisofthenetworkfeatures,andthereforemostcoverageconfiguration schemesarebasedonthismodel.

2.1.2 Coverageformulations

InWSNs,thereareseveralcoverageformulationssuchascompletecoverage,point coverage,barriercoverage,etc.

Completecoveragemeansthatasensornetworkcansensethewholeareaofinterestwithoutanyvacancy(orhole).Completecoverageisidealandreliableinmany situationsinwhichthesecurity(ofpersonneland/orarticles)isofthehighestpriority.Moststudiesoncompletecoveragearebasedonsensorpositionsandnetwork topologies.

However,partialcoveragemaybegoodenoughinsomeapplications.Forexample,ifwewishtodeployasensornetworktomonitoramountainfire,itisneither necessarynorpossibletohavethemountainousregionbeingcompletelycovered. Pointcoveragemeansthatapartorasetofpointsintheareaofinterestiscovered byworkingsensornodes.Comparedtocompletecoverage,theperformanceofpoint coverageisweaker,butinarandomlydeployedWSN,pointcoverageneedsmuch lessworkingnodesandhenceprolongsthenetworklifetime.

Barriercoverage[3,9]isimplementedbylayingbarriersofsensornodesina belt-regiontodetectintruders.

2.1.3 Deploymentapproaches

Therearetwoapproachesforsensordeployment:deterministicdeploymentandrandomdeployment.Deterministicschemescanletsenornodesbeplacedatpredeterminedpositionstomeetallrequirements,suchascoverage,connectivity,expected lifetime.However,deterministicschemesareonlysuitabletocontrollableenvironments,e.g.officebuildings,hospitals,factories.Inharshorhostileenvironments, e.g.forests,deserts,battlefields,sensornodesmaybeair-droppedfromanaircraftor bedistributedinotherways,whichcanresultinarandomplacement[6].Random schemesusuallydeploymorenodesandneedmorecomplicatedsensorscheduling mechanisms.

Somekindsofsensornodeshavemobility.Hencedeploymentsarealsoclassified asstaticdeploymentandmobiledeployment.Intheliterature,moststudiesandapplicationsarebasedonstaticdeployment.Mobilesensornodesmakethedeployment easierandtheyaremorecapableofmonitoringandtrackingmovingtargets[2,8,11].

2.1.4 Schedulingmechanisms

Ingeneral,sensornodescanbeinworking(orON)orsleeping(orOFF)state.Sleepingspendslessenergy.Ofcourse,keepingthenodeinworkingstateisthesimplest schedulingforsensornodesiftheyhaveenoughenergyorhavepowersupplyatany time.

Duetothepowerlimit,sensornodesusuallyneedtoworkinroundsandtaketheir turnworkingtomeettherequirementoncoverageperformanceforacertainperiodof time.Eachroundconsistsofconfigurationandworkingphases,asshowninFig. 2.1. Intheconfigurationphase,allsensornodesfollowpredefinedrulestodecidetheir statesintheworkingphase.Attheendoftheconfigurationphase,nodeswhichare notelectedtoworkwillswitchOFFandstaysleepingtilltheendoftheround.This mechanismhelpstobalancetheenergyconsumptionamongnodestoprolongthe networklifetime.Butitrequirestimesynchronizationforallsensornodes.

FIGURE2.1

Sensornode’sworkinginroundsmode.

Anotherschedulingmechanismisdefinedasfollows:ineachround,everynode willworkwithacertainprobabilityindependently.Sensornodesneedneithernegotiationnortimesynchronization.Thismechanismismuchsimpler,moreenergyefficient,andmoresuitabletorandomdeployedWSNs.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.