Quantum fields: from the hubble to the planck scale 1st edition michael kachelriess - Own the ebook

Page 1


QuantumFields:FromtheHubbletothePlanck Scale1stEditionMichaelKachelriess

https://ebookmass.com/product/quantum-fields-from-thehubble-to-the-planck-scale-1st-edition-michael-kachelriess/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Quantum Computing: From Alice to Bob Alice Flarend

https://ebookmass.com/product/quantum-computing-from-alice-to-bobalice-flarend/

ebookmass.com

Ideas of Quantum Chemistry: Volume 1: From Quantum Physics to Chemistry 3rd Edition Lucjan Piela

https://ebookmass.com/product/ideas-of-quantum-chemistryvolume-1-from-quantum-physics-to-chemistry-3rd-edition-lucjan-piela/

ebookmass.com

Where Did the Universe Come From And Other Cosmic Questions Our Universe, from the Quantum to the Cosmos Chris Ferrie

https://ebookmass.com/product/where-did-the-universe-come-from-andother-cosmic-questions-our-universe-from-the-quantum-to-the-cosmoschris-ferrie/ ebookmass.com

The Open World, Hackbacks and Global Justice A. Jean Thomas

https://ebookmass.com/product/the-open-world-hackbacks-and-globaljustice-a-jean-thomas/

ebookmass.com

Edition Joe Hill

https://ebookmass.com/product/tiempo-extrano-2018th-edition-joe-hill/

ebookmass.com

Materials for Biomedical Engineering - Inorganic Microand Nanostructures Valentina Grumezescu

https://ebookmass.com/product/materials-for-biomedical-engineeringinorganic-micro-and-nanostructures-valentina-grumezescu-2/

ebookmass.com

Coming Home To The Grove: Books 1-6 Ford

https://ebookmass.com/product/coming-home-to-the-grove-books-1-6-ford/

ebookmass.com

Puntos (Student Edition) Anne Becher

https://ebookmass.com/product/puntos-student-edition-anne-becher/

ebookmass.com

The Semantics and Pragmatics of Honorification: Register and Social Meaning Elin Mccready

https://ebookmass.com/product/the-semantics-and-pragmatics-ofhonorification-register-and-social-meaning-elin-mccready/

ebookmass.com

Behavior Management: From Theoretical Implications to Practical Applications 3rd Edition John

https://ebookmass.com/product/behavior-management-from-theoreticalimplications-to-practical-applications-3rd-edition-john-w-maag/

ebookmass.com

QUANTUMFIELDS

QuantumFields

FromtheHubbletothePlanckScale

MICHAELKACHELRIESS

DepartmentofPhysics

TheNorwegianUniversityofScienceandTechnology,Trondheim

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©MichaelKachelriess2018

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2018

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2017943891

ISBN978–0–19–880287–7

DOI10.1093/oso/9780198802877.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Preface

Whythisbook? Thenumberofexcellentintroductorybooksonquantumfieldtheory andoncosmologyhasgrownmuchinthelastyears.Teachingaone-semestercourseon GravitationandCosmologyandaone-yearcourseonQuantumFieldTheory(QFT) since2009,Iprofitedenormouslyfromthesetextbooks.Working outmyownlectures, Itriedhowevertoteachthetwocoursesinamoreunifiedmannerthanisusually done.Onemotivationfordoingsowasthebeliefthatstudyingasubjectindepthis onlyhalfthepremise;theremaining—andnotleast—struggleistoput thepiecesinto acomprehensiblepicture.Thisisparticularlytrueforstudentswho aimtoworkat theinterfacebetweentheoreticalparticlephysics,cosmologyandastroparticlephysics. ThusItriedtostressthebasicprinciplesandmethodswithwhichratherdispersed phenomenainthesefieldscanbeanalysed.Moreover,thisapproachsavesalsotime andmakesitthuspossibletodiscussadditionalapplicationswithinthe restrictedtime forlectures.

ThisbookreflectsthisapproachandaimstointroduceQFTtogetherwithitsmost importantapplicationstoprocessesinouruniverseinacoherentframework.Asin manymoderntextbooks,themoreuniversalpath-integralapproachisusedrightfrom thebeginning.Masslessspinoneandtwofieldsareintroducedonanequalfooting, andgravityispresentedasagaugetheoryincloseanalogywiththeYang–Millscase. Conceptsrelevanttomodernresearchashelicitymethods,effectivetheories,decoupling,orthestabilityoftheelectroweakvacuumareintroduced.Variousapplications astopologicaldefects,darkmatter,baryogenesis,processes inexternalgravitational fields,inflationandblackholeshelpstudentstobridgethegapbetweenundergraduate coursesandtheresearchliterature.

Howtousethisbook. Itriedtopresentallderivationsinsuchdetailthatthe bookcanbeusedforself-studies.Itshouldbeaccessibleforstudentswithasolid knowledgeofcalculus,classicalmechanics,electrodynamicsincludingspecialrelativity andquantummechanics.Asalways,itisindispensabletoworkthroughthetextand theexercisestogetagriponthematerial.Althoughthebookiswrittenwiththe intentiontobereadfromcovertocover,timeconstraintsandspecialinterestswill typicallypushstudentstoomitseveraltopicsinafirstround.Achartshowingthe interdependenceofthechaptersisshownbelow.

Additionallytobeingsuitableforself-study,thebookmayserveasbasisfora courseinquantumfieldtheoryoranadvancedcourseinastroparticlephysicsand cosmology.Forastandardtwo-semestercourseonQFT,onecan usechapters2–12 plus,dependingonpreferencesandthetimebudget,materialfromchapters13–18. Foranadvancedcourseinastroparticlephysicsandcosmology,onemayselectsuitable chaptersfromthesecondhalfofthebook.Theorderofsomeofthetopicsinthebook maybereshuffled:

• Section4.3introducessomebasictoolsneededtoperformloopcalculationsand appliesthemtothreeexamples.Ifoneprefersamoresystematicapproach,this sectioncouldbeshiftedtotheendofsection11.4.

• Section5.3discussessymmetriesonthequantumlevel.Itcouldbepostponedand usedasintroductorysectiontochapter17.

• Chapter8and10onfermionsandongaugetheoriescouldbeomitted inafirst round,restrictingthediscussionofrenormalisationtothescalarcase.

• Chapter9onscatteringisratherindependentofthemaintext.Whilethepredictionofscatteringcross-sectionsisthemainoccupationofmosttheoristsworking inparticlephysics,itwillbeneededonlyrarelyinthelatterpartsofthetext. Section9.1introducestheopticaltheoremwhichwillbeappliedinchapter14 and21.Section9.4isusefulaspreparationforchapter18,andexplainswhywe consideronlyfieldswithspin s ≤ 2.

AminimalpaththroughtheQFTorientedchaptersisshowngraphicallyinthe firsttworows,withroundboxesdenotingmaterialthatcouldbeomittedinafirst roundandshiftedtolatterplaces.Thetwolinesatthebottomshow asimilarpath collectingthechaptersdiscussinggravitationandcosmology.

6

7

Baryogenesis 22

Inflation24 BH25 Lambda 26

Somewillmissimportanttopicsinthischart.Forinstance,grandunifiedtheories orsupersymmetryaretwoaspectsof“beyondthestandardmodelphysics”(BSM) whicharenotonlyveryattractivefromatheoreticalpointofviewbuthavealsooften beeninvokedtoexplaindarkmatterorbaryogenesis.Havingdigestedthematerial presentedinthisbook,studentsmayconsulte.g.Dine(2016)asan entr´eeintothe worldofBSM.Moreover,Iadaptedfromthefieldofastroparticlephysicsandcosmologyonlyfewtopicsdirectlyrelevanttothemainthemeofthisbook.Thusallmore phenomenologicalaspectslike,forexample,neutrinooscillationsor cosmicrayphysics areomitted.

Preface vii

Asthisbookisintendedasanintroduction,Isuggestmainlyreviewarticlesand textbooksinthe“Furtherreading”sectionsattheendofeachchapter.References totheoriginalresearchliteraturearealmostabsent—Ihavetoapologisetoallthose whosepapershavebeenonlyindirectlyreferencedviathesereviews.Moreover,evena minimalaccountofthehistoricaldevelopmentofthisfieldismissinginthisbook.To compensatethisdeficit,Irecommendthereadertoconsultsomereferencesspecialised onthehistoryofphysics:Schweber(1994)givesaveryreadableaccounthowQEDwas created,whileO’Raifeartaigh(1997)reviewsthedevelopmentofthegaugeprinciple. Thestoryhowthehotbigbangmodelbecametheleadingcosmologicaltheoryistold byKragh(2013)andPeebles etal. (2009).

Website. Alistofcorrections,updates,solutionstomorethan100exercisesaswell assomesoftwareisavailableonthewebsiteofthebook, www.oup.co.uk/companion/ quantumfields2018.Commentsandcorrectionsarewelcomeandcanbesubmitted viathiswebsite.

Acknowledgements. Firstofall,Iwouldliketothankthestudentsofmycourses whichhadtodigestvarioustestversionsoftheselectures.IamgratefultoPeder Galteland,JonasGlesaaenandWilliamNaylorforworkingoutafirstLATEXversionof thelecturenotesforFY3466,andtoallthestudentsofthefollowingsemesterswho spottederrorsandpointedoutobscurepassagesinthedraftversionsofthisbook.Jens Andersen,EugenyBabichev,SergeyOstapchenkoandPasqualeSerpicoreadpartsof thebookandmadevaluablecommentswhichhelpedtoimprovethetext.Lastbut notleastIwouldliketothankallmycollaboratorsforsharingtheirinsightswithme.

Acknowledgementsforthefigures.

• Figure12.3iscourtesyofD.Kazakov(hep-ph/0012288)whoadapteditfrom Fig.1inU.Amaldi,W.deBoer,W.andH.F¨urstenau,“Comparisonof grandunifiedtheorieswithelectroweakandstrongcouplingconstantsmeasuredatLEP”, Phys.Lett. B260,447(1991).IthasbeenreproducedwithpermissionofElsevier.

• Figure14.1hasbeenadaptedfromFig.5inG.Degrassi etal.,JHEP 08,098 (2012),publishedundertheCreativeCommonsNoncommercialLicense.

• Figure24.2hasbeenadaptedfromFig.5.3inV.Mukhanov,“Physical FoundationsofCosmology”(2005)withpermissionofCambridgeUniversityPress.

• Figure24.5hasbeenreproducedfromFig.2inA.Challinor,“CosmicMicrowave BackgroundPolarizationAnalysis”,in“DataAnalysisinCosmology”,Lecture NotesinPhysics665(2008)withpermissionofSpringer.

Notationandconventions

Weusenaturalunitswith = c =1,butmostlykeepNewton’sgravitationalconstant GN =1.Thenallunitscanbeexpressedaspowersofabasicunitwhichwe chooseas massorenergy.Insteadof GN,weusealso κ =8πGN,thePlanckmass MPl =1/√GN orthereducedPlanckmass MPl =1/√8πGN.Maxwell’sequationsarewrittenin theLorentz–Heavisideversionofthecgssystem.Thusthereisafactor4π inthe Coulomblaw,butnotinMaxwell’sequations.Sommerfeld’sfine-structureconstantis α = e2/(4π) ≃ 1/137.

Wechooseassignatureofthemetric 2,thencethemetrictensorinMinkowskispace is ηµν = ηµν =diag(1, 1, 1, 1).Ifnototherwisespecified,Einstein’ssummation conventionisimplied.

Thed’Alembertorwaveoperatoris ✷ ≡ ∂

= ∂2 ∂t2 ∆,whilethefour-dimensional nablaoperatorhasthecomponents

Aboldfaceitalicletterdenotesthecomponentsofathree-vector V = {Vx,Vy,Vz } = {Vi,i =1, 2, 3} orthethree-dimensionalpartofacontravariantvectorwithcomponents V µ = {V 0,V 1,V 2,V 3} = {V 0 , V };acovariantvectorhasinMinkowskispace thecomponents Vµ =(V0, V ).Scalarproductsoffour-vectorsarealsodenotedby pµqµ = p · q,ofthree-vectorsby p · q = piqi.Ifthereisnodangerofconfusion,thedot isomitted.Vectorsandtensorsinindexfreenotationaredenoted byboldfaceRoman letters, V = V µ∂µ or g = gµν dxµ ⊗ dxν . Greekindices α,β,... encompasstherange α = {0, 1, 2,...d 1},Latinindices i,j,k,... therange i = {1, 2,...d 1},where d denotesthedimensionofthespacetime.Inchapter19,Latinindices a,b,c,... denotetensorcomponentswithrespectto thevielbeinfield ea µ.

OurconventionfortheFouriertransformationisasymmetric,puttingthefactor 1/(2π)n into f (x)= d4k (2π)4 f (k)e ikx and f (x)= d3k (2π)3 f (k)eikx .

Ifnobordersarespecifiedindefiniteintegrals,integrationfrom −∞ to ∞ isassumed. Ournomenclaturefordisconnected,connectedandone-particle irreducible(1PI) npointGreenfunctionsandtheircorrespondinggeneratingfunctionalsisasfollows:

Greenfunction generatingfunctional (dis-)connected G(x1,...,xn) Z[J,...] connected G(x1,...,xn) W [J,...] 1PI Γ(x1,...,xn) Γ[φ,...]

Notationandconventions

Diracspinorsarenormalisedas¯ u(p,s)u(p,s)=2m.

Weuseascovariantderivative Dµ = ∂µ +igAa µT a withcoupling g> 0,fieldstrength

F a µν = ∂µAa ν ∂ν Aa µ gf abcAb µAc ν andgenerators T a satisfying[T a,T b]=if abcT c for allgaugegroups.SpecialcasesusedintheSMarethegroupsUem(1),UY(1),SUL(2) andSU(3)with g = {q,g′,g,gs} and T a = {1, 1,τ a/2,λa/2} inthefundamental representation.Inparticular,theelectricchargeofthepositronis q = e> 0.

Employingdimensionalregularisation(DR),wechangethedimensionofloopintegrals from d =4to d =2ω =4 2ε

Theresultsofproblemsmarkedby ♣ areusedlaterinthetext,thosemarkedby ♥ requiremoreeffortsandtimethanaverageones.Solutionstoselectedproblemscan befoundonthewebpageofthisbook.Commonlyusedsymbolsare

a scalefactorinFLRWmetric

δ(x)Dirac’sdeltafunction, dxf (x)δ(x)= f (0)

ε infinitesimalquantity,slow-rollparameter

εµ,εµν polarisationvectorandtensorforspin s =1, 2

η boostparameter,conformaltime,slow-rollparameter

g =det(gµν )determinantofthemetrictensor gµν

g∗,g∗,S relativisticdegreesoffreedomentering ρ, S

H(q,p), H (φ,π)Hamiltonian,Hamiltoniandensity

H † Hermitianconjugate(h.c.)with M † = M ∗T or M † ij = M ∗ ji

H =˙a/a, H = a′/a Hubbleparameter

L(q, ˙ q), L (φ,∂µφ)Lagrangian,Lagrangiandensity

Ωi = ρi/ρcr fractionofcriticalenergydensityincomponent i pµ; P ; Pij fourmomentum pµ =(E, p),pressure

ψ adjointspinorwith ψ = ψ†γ0

Rα βρσ =[∂ρΓα βσ Riemannorcurvaturetensor

Rαβ = Rρ αρβ Riccitensor

R = gµν Rµν curvaturescalar R

S[φ], S[φ,∂µφ]actionfunctional

Tµν (energy–momentum)stresstensor

ϑ(x)Heavisidestepfunction, ϑ(x)=1for x> 0,0for x< 0. trtraceofamatrixtr(A)= i Aii,ofatensortr(T )= T µ µ

Trsum/integrationoveracompletesetofquantumnumbers u,v solutionsofDiracequation,light-conecoordinates t ± x w = P/ρ equationofstate(EoS)parameter

Y = nX /s abundanceofparticletype X relativetoentropydensity

X = nX /nB abundanceofparticletype X relativetobaryondensity

7Spin-1andspin-2fields

8FermionsandtheDiracequation

8.1SpinorrepresentationoftheLorentzgroup114

8.2Diracequation

8.3QuantisingDiracfermions

10Gaugetheories

12RenormalisationII:Improvingperturbationtheory

13Symmetriesandsymmetrybreaking

13.1SymmetrybreakingandGoldstone’stheorem234 13.2RenormalisationoftheorieswithSSB240

23Quantumfieldsincurvedspacetime

23.1Conformalinvarianceandscalarfields402 23.2Quantisationincurvedspacetimes

B.4RemarksonthePoincar´eandconformalgroup513

References 516

Index 521

Classicalmechanics

Tobegin,inthischapterwereviewthoseconceptsofclassicalmechanicswhichare essentialforprogressingtowardsquantumtheory.FirstwerecallbrieflytheLagrangian andHamiltonianformulationofclassicalmechanicsandtheirderivationfromanaction principle.WealsoillustratetheGreenfunctionmethodusingasexamplethedriven harmonicoscillatorandrecalltheactionofarelativisticpointparticle

1.1Actionprinciple

Variationalprinciples. FundamentallawsofnatureasNewton’saxiomsor Maxwell’sequationswerediscoveredintheformofdifferentialequations.Starting fromLeibnizandEuler,itwasrealisedthatonecanre-expressdifferentialequations intheformofvariationalprinciples.Inthisapproach,theevolution ofaphysical systemisdescribedbytheextremumofanappropriatelychosenfunctional.Various versionsofsuchvariationalprinciplesexist,buttheyhaveincommonthatthefunctionalsusedhavethedimensionof“energy × time”;thatis,thefunctionalshavethe samedimensionasPlanck’sconstant .Aquantitywiththisdimensioniscalledaction S.Anadvantageofusingtheactionasmaintooltodescribedynamicalsystems isthatthisallowsustoimplementeasilybothspacetimeandinternalsymmetries. Forinstance,choosingasingredientsoftheactionlocalfunctions thattransformas scalarsunderLorentztransformationsleadsautomaticallytorelativisticallyinvariantfieldequations.Moreover,theaction S economicallysummarisestheinformation containedtypicallyinasetofvariouscoupleddifferentialequations.

Ifthevariationalprincipleisformulatedasanintegralprinciple,thenthefunctional S willdependonthewholepath q(t)describedbythesystembetweentheconsidered initialandfinaltime.Intheformulationofquantumtheorywewillpursue,wewill lookforadirectconnectionfromtheclassicalaction S[q]ofthepath[q(t): q′(t′)]to thetransitionamplitude q′,t′|q,t .Thustheuseoftheactionprinciplewillnotonly simplifythediscussionofsymmetriesofaphysicalsystembutitalsoliesattheheart oftheapproachtoquantumtheorywewillfollow.

1.1.1Hamilton’sprincipleandLagrange’sequations

Afunctional F [f (x)]isamapfromacertainspaceoffunctions f (x)intotherealor complexnumbers.Wewillconsidermainlyfunctionalsfromthespaceof(atleast)twice differentiablefunctionsbetweenfixedpoints a and b.Morespecifically,Hamilton’s principleusesasfunctionaltheaction S definedby

where L isafunctionofthe2n independentfunctions qi and˙ qi =dqi/dt aswellasof theparameter t.Inclassicalmechanics,wecall L theLagrangefunctionofthesystem, qi areits n generalisedcoordinates,˙ qi thecorrespondingvelocitiesand t isthetime. Theextremaofthisactiongivethosepaths q(t)from a to b whicharesolutionsofthe equationsofmotionforthesystemdescribedby L. Howdowefindthosepathsthatextremizetheaction S?Firstofall,wehaveto prescribewhichvariablesarekeptconstant,whicharevariedandwhichconstraintsthe variationshavetoobey.Dependingonthevariationprinciplewechoose,theseconditionsandthefunctionalformoftheactionwilldiffer.Hamilton’sprinciplecorresponds toasmoothvariationofthepath, q i(t,ε)= q i(t, 0)+ εη i(t), thatkeepstheendpointsfixed, ηi(a)= ηi(b)=0butisotherwisearbitrary.Thescale factor ε determinesthemagnitudeofthevariationfortheone-parameter familyof paths εηi(t).Thenotation S[qi]stressesthatweconsidertheactionasafunctional onlyofthecoordinates qi.Thevelocities˙ qi arenotvariedindependentlybecause ε istime-independent.Sincethetime t isnotvariedinHamilton’sprinciple,varying thepath qi(t,ε)requiresonlytocalculatetheresultingchangeoftheLagrangian L Followingthisprescription,theactionhasanextremumif

[qi(t,ε)]

Hereweapplied—asalwaysinthefollowing—Einstein’sconventiontosum overa repeatedindexpair.Thus,forexample,thefirstterminthebracketequals

forasystemdescribedby n generalisedcoordinates.Wecaneliminate˙ ηi infavourof ηi,integratingthesecondtermbyparts,arrivingat

Theboundaryterm[...]b a vanishesbecausewerequiredthatthefunctions ηi arezero attheendpoints a and b.Sincethesefunctionsareotherwisearbitrary,eachindividual terminthefirstbrackethastovanishforanextremalcurve.The n equationsresulting fromthecondition ∂S[qi(t,ε)]/∂ε =0arecalledthe(Euler–)Lagrangeequationsof theaction S

Actionprinciple 3

andgivetheequationsofmotionforthesystemspecifiedby L.Inthefuture,wewill useamoreconcisenotation,calling

thevariationof qi,andsimilarlyforfunctionsandfunctionalsof qi.Thuswecan rewrite,forexample,Eq.(1.2)inamoreevidentformas

Weclosethisparagraphwiththreeremarks.First,wenotethatHamilton’sprinciple isoftencalledtheprincipleofleastaction.Thisnameissomewhatmisleading,since theextremumoftheactioncanbealsoamaximumorasaddle-point.Second,observe thattheLagrangian L isnotuniquelyfixed.Addingatotaltimederivative, L → L′ = L +df (q,t)/dt,doesnotchangetheresultingLagrangeequations,

sincethelasttwotermsvanishvaryingtheactionwiththerestrictionoffixedendpoints a and b.Finally,notethatweusedaLagrangianthatdependsonlyonthecoordinatesandtheir first derivatives.SuchaLagrangianleadstosecond-orderequations ofmotionandthustoamechanicalsystemspecifiedbythe2n piecesofinformation {qi, qi}.Ostrogradskyshowed1850thatastableground-stateisimpossible,ifthe Lagrangiancontainshigherderivatives¨q,q(3) ,...,cf.problem1.3.Thereforesuchtheoriescontradictourexperiencethatthevacuumisstable.ConstructingLagrangians forthefundamentaltheoriesdescribingNature,weshouldrestrictourselvesthusto Lagrangiansthatleadtosecond-orderequationsofmotion.

Lagrangefunction. Weillustratenowhowonecanusesymmetriestoconstrain thepossibleformofaLagrangian L.Asexample,weconsiderthecaseofafreenonrelativisticparticlewithmass m subjecttotheGalileanprincipleofrelativity.More precisely,weusethatthehomogeneityofspaceandtimeforbidsthat L dependson x and t,whiletheisotropyofspaceimpliesthat L dependsonlyonthenormofthe velocityvector v,butnotonitsdirection.ThustheLagrangefunctionofafreeparticle canbeonlyafunctionof v2 , L = L(v2).

Letusconsidertwoinertialframesmovingwiththeinfinitesimalvelocity ε relative toeachother.(Recallthataninertialframeisdefinedasacoordinatesystemwhere aforce-freeparticlemovesalongastraightline.)ThenaGalileantransformationconnectsthevelocitiesmeasuredinthetwoframesas v′ = v +ε.TheGalileanprincipleof relativityrequiresthatthelawsofmotionhavethesameforminboth frames,andthus theLagrangianscandifferonlybyatotaltimederivative.Expanding thedifference δL in ε giveswith δv

)

Since vi =dxi/dt,theterm ∂L/∂v2 hastobeindependentof v suchthatthedifference δL isatotaltimederivative.Hence,theLagrangianofafreeparticlehastheform

L = av2 + b.Theconstant b dropsoutoftheequationsofmotion,andwecanset itthereforetozero.Tobeconsistentwithusualnotation,wecall theproportionality constant m/2,andthetotalexpressionkineticenergy T ,

Forasystemofnon-interactingparticles,theLagrangefunction L isadditive, L = a 1 2 mav2 a.Ifthereareinteractions(assumedforsimplicitytodependonlyon the coordinates),thenwesubtractafunction V (x1, x2,...)calledpotentialenergy.One confirmsreadilythatthischoicefor L reproducesNewton’slawofmotion. Energy. TheLagrangianofaclosedsystemdoesnotdependontimebecause ofthe homogeneityoftime.Itstotaltimederivativeis

Usingtheequationsofmotionandreplacing ∂L/∂qi by(d/dt)∂L/∂ ˙ qi,itfollows

Hencethequantity

remainsconstantduringtheevolutionofaclosedsystem.Thisholds alsomoregenerally,forexampleinthepresenceofstaticexternalfields,aslongas theLagrangianis nottime-dependent.

Wehavestilltoshowthat E coincidesindeedwiththeusualdefinitionofenergy. UsingasLagrangefunction L = T (q, ˙ q) V (q),wherethekineticenergy T isquadratic inthevelocities,wehave

andthus E =2T L = T + V . Conservationlaws. Inageneralway,wecanderivetheconnectionbetweena symmetryoftheLagrangianandacorrespondingconservationlaw asfollows.Letus assumethatunderachangeofcoordinates qi → qi + δqi,theLagrangianchangesat mostbyatotaltimederivative,

Inthiscase,theequationsofmotionareunchangedandthecoordinatechange qi → qi + δqi isasymmetryoftheLagrangian.ThechangedδF/dt hastoequal δL induced bythevariation δqi ,

Actionprinciple 5

Replacingagain ∂L/∂qi by(d/dt)∂L/∂qi andapplyingtheproductrulegivesasconservedquantity

ThusanycontinuoussymmetryofaLagrangiansystemresultsinaconservedquantity. Inparticular,energyconservationfollowsforasysteminvariantundertimetranslationswith δqi =˙ qiδt.Otherconservationlawsarediscussedinproblem1.7.

1.1.2Palatini’sprincipleandHamilton’sequations

LegendretransformationandtheHamiltonfunction. IntheLagrangeformalism,wedescribeasystemspecifyingitsgeneralisedcoordinatesand velocitiesusing theLagrangian, L = L(qi , ˙ qi,t).Analternativeistousegeneralisedcoordinatesand theircanonicallyconjugatedmomenta pi definedas

Thepassagefrom {qi , qi} to {qi,pi} isaspecialcaseofaLegendretransformation:1 StartingfromtheLagrangian L wedefineanewfunction H(qi,pi,t)calledHamiltonian orHamiltonfunctionvia

Hereweassumethatwecaninvertthedefinition(1.17)andarethus abletosubstitute velocities˙ qi bymomenta pi intheLagrangian L

ThephysicalmeaningoftheHamiltonian H followsimmediatelycomparingits definingequationwiththeonefortheenergy E.Thusthenumericalvalueofthe Hamiltonianequalstheenergyofadynamicalsystem;weinsist,however,that H is expressedasfunctionofcoordinatesandtheirconjugatedmomenta.Acoordinate qi thatdoesnotappearexplicitlyin L iscalledcyclic.TheLagrangeequationsimply then ∂L/∂ ˙ qi =const.,sothatthecorrespondingcanonicallyconjugatedmomentum pi = ∂L/∂qi isconserved.

Palatini’sformalismandHamilton’sequations. Previously,weconsideredthe action S asafunctionalonlyof qi.Thenthevariationofthevelocities˙ qi isnot independentandwearriveat n second–orderdifferentialequationsforthecoordinates qi.Analternativeapproachistoallowindependentvariationsofthecoordinates qi andofthevelocities˙ qi.Wetradethelatteragainstthemomenta pi = ∂L/∂qi and rewritetheactionas

Theindependentvariationofcoordinates qi andmomenta pi gives

1TheconceptofaLegendretransformationmaybefamiliarfromthermodynamics,whereitisused tochangebetweenextensivevariables(e.g.theentropy S)andtheirconjugateintensivevariables(e.g. thetemperature T ).

Thefirsttermcanbeintegratedbyparts,andtheresultingboundarytermsvanishes byassumption.Collectingthenthe δqi and δpi termsandrequiringthatthevariation iszero,weobtain

Asthevariations δqi and δpi areindependent,theircoefficientsintheroundbracketshavetovanishseparately.ThusweobtaininthisformalismdirectlyHamilton’s equations,

Considernowanobservable O = O(qi,pi,t).Itstimedependenceisgivenby

whereweusedHamilton’sequations.IfwedefinethePoissonbrackets {A,B} between twoobservables A and B as

thenwecanrewriteEq.(1.23)as

Thisequationsgivesusaformalcorrespondencebetweenclassicalandquantum mechanics.Thetimeevolutionofanoperator O intheHeisenbergpictureisgiven bythesameequationasinclassicalmechanics,ifthePoissonbracketischangedtoa commutator.SincethePoissonbracketisantisymmetric,wefind

HencetheHamiltonian H isaconservedquantity,ifandonlyif H istime-independent.

1.2Greenfunctionsandtheresponsemethod

Wecantesttheinternalpropertiesofaphysicalsystem,ifweimposeanexternal force J(t)onitandcompareitsmeasuredtoitscalculatedresponse.Ifthesystemis describedbylineardifferentialequations,thenthesuperpositionprincipleisvalid.We canreconstructthesolution x(t)foranarbitraryappliedexternalforce J(t),ifweknow theresponsetoanormaliseddeltafunction-likekick J(t)= δ(t t′).Mathematically, thiscorrespondstotheknowledgeoftheGreenfunction G(t t′)forthedifferential

Greenfunctionsandtheresponsemethod 7

equation D(t)x(t)= J(t)describingthesystem.Evenifthesystemisdescribedbya non-lineardifferentialequation,wecanoftenusealinearapproximationincaseofa sufficientlysmallexternalforce J(t).ThereforetheGreenfunctionmethodisextremely usefulandwewillapplyitextensivelyindiscussingquantumfieldtheories.

Weillustratethismethodwiththeexampleoftheharmonicoscillatorwhichis theprototypeforaquadratic,andthusexactlysolvable,action. Inclassicalphysics, causalityimpliesthattheknowledgeoftheexternalforce J(t′)attimes t′ <t is sufficienttodeterminethesolution x(t)attime t.WedefinethereforetwoGreen functions G and GR by

wheretheretardedGreenfunction GR satisfies GR(t t′)= G(t t′)ϑ(t t′).The definition(1.27)ismotivatedbythetrivialrelation J(t)= dt′ δ(t t′)J(t′):an arbitraryforce J(t)canbeseenasasuperpositionofdeltafunctions δ(t t′)with weight J(t′).IftheGreenfunction GR(t t′)determinestheresponseofthesystemtoa deltafunction-likeforce,thenweshouldobtainthesolution x(t)integrating GR(t t′) withtheweight J(t′).

Weconverttheequationofmotion mx + mω2 x = J ofaforcedharmonicoscillator intotheform D(t)x(t)= J(t)bywriting

Inserting(1.27)into(1.28)gives

Foranarbitraryexternalforce J(t),thisrelationcanbeonlyvalidif

ThusaGreenfunction G(t t′)istheinverseofitsdefiningdifferentialoperator D(t). Aswewillsee,Eq.(1.30)doesnotspecifyuniquelytheGreenfunction,andthuswe willomittheindex“R”forthemoment.PerformingaFouriertransformation,

weobtain

Theactionof D(t)ontheplanewavese iΩ(t t′) canbeevaluatedeasily,sincethe differentiationhasbecomeequivalentwithmultiplication,d/dt →−iΩ.Comparing

Fig.1.1 PolesandcontourinthecomplexΩplaneusedfortheintegrationoftheretarded Greenfunction.

thenthecoefficientsoftheplanewavesonbothsidesofthisequation,wehaveto invertonlyanalgebraicequation,arrivingat

Fortheback-transformationwith τ = t t′ ,

wehavetospecifyhowthepolesatΩ2 = ω2 areavoided.Itisthischoicebywhich weselecttheappropriateGreenfunction.Inclassicalphysics,we implementcausality (“causealwaysprecedesitseffect”)selectingtheretardedGreenfunction. WewilluseCauchy’sresiduetheorem, dzf (z)=2πi resz0 f (z),tocalculatethe integral.Itsapplicationrequirestoclosetheintegrationcontouraddingapathwhich givesavanishingcontributiontotheintegral.Thisisachieved,whentheintegrand G(Ω)e iΩτ vanishesfastenoughalongtheaddedpath.Thuswehavetochoosefor positive τ thecontour C inthelowerplane,e iΩτ =e−|ℑ(Ω)|τ → 0for ℑ(Ω) →−∞, whilewehavetoclosethecontourintheupperplanefornegative τ .Ifwewantto obtaintheretardedGreenfunction GR(τ )whichvanishesfor τ< 0,wethereforehave toshiftthepolesΩ1/2 = ±ω intothelowerplaneasshowninFig.1.1byaddinga smallnegativeimaginarypart,Ω1/2 → Ω1/2 = ±ω iε,or GR(τ )= 1 2πm dΩ e iΩτ (Ω ω +iε)(Ω+ ω +iε) . (1.35)

Theresidueresz0 f (z)ofafunction f withasinglepoleat z0 isgivenby resz0 f (z)=lim z→z0 (z z0)f (z). (1.36)

ThuswepickupatΩ1 = ω iε thecontribution2πie+iωτ /( 2ω),whileweobtain 2πie iωτ /(2ω)fromΩ2 = ω iε.Combiningbothcontributionsandaddingaminus signbecausethecontourisclockwise,wearriveat

Relativisticparticle 9

asresultfortheretardedGreenfunctionoftheforcedharmonic oscillator. Wecannowobtainaparticularsolutionsolving(1.27).Forinstance,choosing J(t′)= δ(t t′),resultsin

Thustheoscillatorwasatrestfor t< 0,gotakickat t =0,andoscillatesaccording x(t)afterwards.Notethefollowingtwopoints:first,thefactthatthekickproceedsthe movementistheresultofourchoiceoftheretarded(orcausal)Greenfunction.Second, theparticularsolution(1.38)foranoscillatorinitiallyatrestcanbegeneralisedby addingthesolutiontothehomogeneousequation¨ x + ω2 x =0.

1.3Relativisticparticle

Inspecialrelativity,wereplacetheGalileantransformationsassymmetrygroupof spaceandtimebyLorentztransformations.Thelatterareallthosecoordinatetransformations x

thatkeepthesquareddistance

betweentwospacetimeevents xµ 1 and xµ 2 invariant.Thedistanceoftwoinfinitesimally closespacetimeeventsiscalledthelineelementds ofthespacetime.InMinkowski space,itisgivenby

usingaCartesianinertialframe.Wecaninterpretthelineelementds2 asascalar product,ifweintroducethemetrictensor ηµν withelements

andascalarproductoftwovectorsas

InMinkowskispace,wecallafour-vectoranyfour-tuple V µ thattransformsas ˜ V µ = Λµ ν V ν .Byconvention,weassociatethree-vectorswiththespatialpartoffour-vectors withupperindices,forexampleweset xµ = {t,x,y,z} or Aµ = {φ, A}.Lowering thentheindexbycontractionwiththemetrictensorresultinaminus signofthe spatialcomponentsofafour-vector, xµ = ηµν xµ = {t, x, y, z} or Aµ = {φ, A}. Summingoveranindexpair,typicallyoneindexoccursinanupperandoneinalower position.Notethatinthedenominator,anupperindexcountsasalowerindexandvice versa;cf.forexamplewithEqs.(1.18)and(1.17).Additionallytofour-vectors,wewill meettensors T µ1···µn ofrank n whichtransformas T

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.