Quantum computing: a new era of computing kuldeep singh kaswan - Download the ebook now for full and

Page 1


https://ebookmass.com/product/quantum-computing-a-new-era-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Productizing Quantum Computing: Bring Quantum Computing Into Your Organization 1st Edition Dhairyya Agarwal

https://ebookmass.com/product/productizing-quantum-computing-bringquantum-computing-into-your-organization-1st-edition-dhairyya-agarwal/

ebookmass.com

Swarm Intelligence: An Approach from Natural to Artificial 1st Edition Kuldeep Singh Kaswan

https://ebookmass.com/product/swarm-intelligence-an-approach-fromnatural-to-artificial-1st-edition-kuldeep-singh-kaswan/

ebookmass.com

Productizing Quantum Computing 1 / converted Edition Dhairyya Agarwal

https://ebookmass.com/product/productizing-quantumcomputing-1-converted-edition-dhairyya-agarwal/

ebookmass.com

Empathy Pathways: A View from Music Therapy Andeline Dos Santos

https://ebookmass.com/product/empathy-pathways-a-view-from-musictherapy-andeline-dos-santos/

ebookmass.com

Microwave and Millimeter-Wave Chips Based on Thin-Film Integrated Passive Device Technology. Design and Simulation Yongle Wu

https://ebookmass.com/product/microwave-and-millimeter-wave-chipsbased-on-thin-film-integrated-passive-device-technology-design-andsimulation-yongle-wu/

ebookmass.com

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktsson

AnjanBose

JamesDuncan

AminMoeness

DesineniSubbaramNaidu

BehzadRazavi

JimLyke

HaiLi

BrianJohnson

JeffreyReed

DiomidisSpinellis

AdamDrobot

TomRobertazzi

AhmetMuratTekalp

QuantumComputing

ANewEraofComputing

KuldeepSinghKaswan GalgotiasUniversity UttarPradesh,India

JagjitSinghDhatterwal KLDeemedtobeUniversity AndhraPradesh,India

AnupamBaliyan ChandigarhUniversity Punjab,India

ShalliRani

ChitkaraUniversityInstituteofEngineering India

Contents

Preface xiii

AuthorBiography xv

1IntroductionofQuantumComputing 1

1.1Introduction 1

1.2WhatIstheExactMeaningofQuantumComputing? 2

1.2.1WhatIsQuantumComputinginSimpleTerms? 2

1.3OriginofQuantumComputing 3

1.4HistoryofQuantumComputing 5

1.5QuantumCommunication 19

1.6BuildQuantumComputerStructure 19

1.7PrincipleWorkingofQuantumComputers 21

1.7.1KindsofQuantumComputing 21

1.8QuantumComputingUseinIndustry 23

1.9InvestorsInvestMoneyinQuantumTechnology 24

1.10ApplicationsofQuantumComputing 26

1.11QuantumComputingasaSolutionTechnology 29

1.11.1QuantumArtificialIntelligence 29

1.11.2HowCloseAreWetoQuantumSupremacy? 30

1.12Conclusion 30 References 31

2ProsandConsofQuantumComputing 33

2.1Introduction 33

2.2QuantumasaNumericalProcess 33

2.3QuantumComplexity 34

2.4TheProsandConsoftheQuantumComputationalFramework 36

2.5FurtherBenefitsofQuantumComputing 37

2.6FurtherDrawbackstoQuantumComputing 38

2.7IntegratingQuantumandClassicalTechniques 38

2.8FrameworkofQRAM 39

2.9ComputingAlgorithmsintheQuantumWorld 40

2.9.1ProgrammingQuantumProcesses 42

2.10ModificationofQuantumBuildingBlocks 42 References 43

3MethodsandInstrumentationforQuantumComputing 45

3.1BasicInformationofQuantumComputing 45

3.2SignalInformationinQuantumComputing 47

3.3QuantumDataEntropy 47

3.4BasicsofProbabilityinQuantumComputing 50

3.5QuantumTheoremofNo-Cloning 52

3.6MeasuringDistance 53

3.7FidelityinQuantumTheory 58

3.8QuantumEntanglement 62

3.9InformationContentandEntropy 66 References 71

4FoundationsofQuantumComputing 73

4.1Single-Qubit 73

4.1.1PhotonPolarizationinQuantumComputing 73

4.2Multi-qubit 76

4.2.1BlocksofQuantumStates 76

4.2.2SubmissionofVectorSpaceinQuantumComputing 77

4.2.3VectorSpacinginQuantumBlocks 77

4.2.4Statesof n-QubitTechnology 79

4.2.5StatesofEntangled 81

4.2.6ClassicalMeasuringofMulti-Qubit 84

4.3MeasuringofMulti-Qubit 87

4.3.1MathematicalFunctionsinQuantumOperations 87 Example 88

4.3.2OperatorMeasuringQubitsProjection 89

4.3.3TheMeasurementPostulate 94

4.3.4EPRParadoxandBell’sTheorem 99

4.3.5LayoutofBell’sTheorem 101

4.3.6StatisticalPredicatesofQuantumMechanics 101

4.3.7PredictionsofBell’sTheorem 102

4.3.8Bell’sInequality 103

4.4StatesofQuantumMetamorphosis 105

4.4.1SolitaryStepsMetamorphosis 106

4.4.2IrrationalMetamorphosis:TheNo-CloningPrinciple 107

4.4.3ThePauliTransformations 109

4.4.4TheHadamardMetamorphosis 109

4.4.5Multi-QubitMetamorphosisfromSingle-Qubit 109

4.4.6TheControlled-NOTandOtherSinglyControlledGates 110

4.4.7OpaqueCoding 113

4.4.8BasicBitsinOpaqueCoding 114

4.4.9QuantumMessageTeleportation 114

4.4.10DesigningandConstructingQuantumCircuits 116

4.4.11SingleQubitManipulatingQuantumState 116

4.4.12ControllingSingle-QubitMetamorphosis 117

4.4.13ControllingMultiSingle-QubitMetamorphosis 117

4.4.14SimpleMetamorphosis 119

4.4.15UniqueSetupGates 121

4.4.16TheStandardCircuitModel 122 References 123

5ComputationalAlgorithmDesigninQuantumSystems 125

5.1Introduction 125

5.2QuantumAlgorithm 125

5.3Rule1Superposition 126

5.4Rule2QuantumEntanglement 130

5.5Rule3QuantumMetrology 132

5.6Rule4QuantumGates 133

5.7Rule5Fault-TolerantQuantumGates 134

5.8QuantumConcurrency 138

5.9Rule7QuantumInterference 139

5.10Rule8QuantumParallelism 141

5.11Summary 143 References 144

6OptimizationofanAmplificationAlgorithm 145

6.1Introduction 145

6.2TheEffectofAvailabilityBias 146

6.2.1OptimizationofanAmplificationAlgorithm 147

6.2.2SpecificationsoftheMathematicalAmplificationAlgorithm 149

6.3QuantumAmplitudeEstimationandQuantumCounting 149

6.4AnAlgorithmforQuantitativelyDeterminingAmplitude 150

6.4.1MathematicalDescriptionofAmplitudeEstimationAlgorithm 151

6.5CountingQuantumParticles:AnAlgorithm 151

6.5.1MathematicalDescriptionofQuantumCountingAlgorithm 152

8.3.3Steane’sCodeFault-TolerantGates 204

8.3.4MeasurementwithFaultTolerance 206

8.3.5ReadyingtheStateforFaultTolerance 207

8.4TheStrengthofQuantumComputation 208

8.4.1CombinatorialCoding 208

8.4.2AThresholdTheorem 210 References 211

9CryptographyinQuantumComputing 213

9.1IntroductionofRSAEncryption 213

9.2ConceptofRSAEncryption 214

9.3QuantumCipherFundamentals 216

9.4TheControlled-NotInvasionasanIllustration 219

9.5CryptographyB92Protocol 220

9.6TheE91Protocol(Ekert) 221 References 221

10ConstructingClustersforQuantumComputing 223

10.1Introduction 223

10.1.1StateofClusters 223

10.2ThePreparationofClusterStates 224

10.3NearestNeighborMatrix 227

10.4StabilizerStates 228

10.4.1Aside:EntanglementWitness 230

10.5ProcessinginClusters 231 References 233

11AdvanceQuantumComputing 235

11.1Introduction 235

11.2ComputingwithSuperpositions 236

11.2.1TheWalsh–HadamardTransformation 236

11.2.2QuantumParallelism 237

11.3NotionsofComplexity 239

11.3.1QueryComplexity 240

11.3.2CommunicationComplexity 241

11.4ASimpleQuantumAlgorithm 242

11.4.1Deutsch’sProblem 242

11.5QuantumSubroutines 243

11.5.1TheImportanceofUnentanglingTemporaryQubitsinQuantum Subroutines 243

11.5.2PhaseChangeforaSubsetofBasisVectors 244

x Contents

11.5.3State-DependentPhaseShifts 246

11.5.4State-DependentSingle-QubitAmplitudeShifts 247

11.6AFewSimpleQuantumAlgorithms 248

11.6.1Deutsch–JozsaProblem 248

11.6.2Bernstein–VaziraniProblem 249

11.6.3Simon’sProblem 252

11.6.4DistributedComputation 253

11.7CommentsonQuantumParallelism 254

11.8MachineModelsandComplexityClasses 255

11.8.1ComplexityClasses 257

11.8.2Complexity:KnownResults 258

11.9QuantumFourierTransformations 260

11.9.1TheClassicalFourierTransform 261

11.9.2TheQuantumFourierTransform 263

11.9.3AQuantumCircuitforFastFourierTransform 263

11.10Shor’sAlgorithm 265

11.10.1CoreQuantumPhenomena 266

11.10.2PeriodicValueMeasurementandClassicalExtraction 267

11.10.3Shor’sAlgorithmandItsEffectiveness 268

11.10.4TheEfficiencyofShor’sAlgorithm 269

11.11OmittingtheInternalMeasurement 270 11.12Generalizations 271

11.12.1TheProblemofDiscreteLogarithms 272

11.12.2HiddenSubgroupIssues 272

11.13TheApplicationofGrover’sAlgorithmIt’sTimetoSolveSome Difficulties 274

11.13.1ExplanationoftheSuperpositionTechnique 275

11.13.2TheBlackBox’sInitialConfiguration 275

11.13.3TheIterationStep 276

11.13.4VariousofIterations 277

11.14EffectiveStateOperations 279

11.14.12DGeometry 281

11.15Grover’sAlgorithmandItsOptimality 283

11.15.1ReductiontoThreeInequalities 284

11.16AmplitudeAmplificationusingDiscreteEventRandomizationof Grover’sAlgorithm 286

11.16.1AlteringEachProcedure 286

11.16.2LastStageVariation 287

11.16.3Solutions:PossiblyInfinite 288

11.16.4VaryingtheNumberofIterations 289

11.16.5QuantumCounting 290

11.17ImplementingGrover’sAlgorithmwithGainBoosting 291

References 292

12ApplicationsofQuantumComputing 295

12.1Introduction 295

12.2Teleportation 295

12.3ThePeresPartialTranspositionCondition 298

12.4ExpansionofTransportation 303

12.5EntanglementSwapping 304

12.6SuperdenseCoding 305

References 307

Index 309

Preface

Finally,thebookwillbeusefulforgraduatestudentsinphysicsandcomputer sciencetakingaquantumcomputationcoursewhoarelookingforacalculational orientedsupplementtotheirmaintextbookandlecturenotes.

Thegoalofthisbookistoopenupandintroducequantumcomputationtothese nonstandardaudiences.Asaresult,thelevelofthebookisabitlowerthanthat foundinthestandardquantumcomputationbookscurrentlyavailable.Thepresentationisinformal,withthegoalofintroducingtheconceptsusedinthefield andthenshowingthroughexplicitexampleshowtoworkwiththem.Sometopicsareleftoutentirelyandmanyarenotcoveredatthedeeplevelthatwouldbe expectedinagraduatelevelquantumcomputationtextbook.Anin-depthtreatmentofadiabaticquantumcomputationorclusterstatecomputationisbeyond thisscopeofthisbook.However,itwillgivereaderswhoarenewtothefieldasubstantialfoundationthatcanbebuiltupontomasterquantumcomputation.While anattemptwasmadetoprovideabroadoverviewofthefield,thepresentationis weightedmoreinthephysicsdirection.

AuthorBiography

Dr.KuldeepSinghKaswan ispresentlyworkinginSchool ofComputingScience&Engineering,GalgotiasUniversity, UttarPradesh,India.HiscontributionsfocusonBCI, CyborgandDataSciences.HisAcademicdegreesandthirteenyearsofexperienceworkingwithglobalUniversities like,AmityUniversity,Noida,GautamBuddhaUniversity, GreaterNoidaandPDMUniversity,Bahadurgarh,hasmade himmorereceptiveandprominentinhisdomain.He receivedDoctorateinComputerSciencefromBanasthaliVidyapith,Rajasthan. HeReceivedDoctorofEngineering(D.Eng.)fromDanaBrainHealthInstitute,Iran.HehasobtainedMasterDegreeinComputerScienceandEngineeringfromChoudharyDeviLalUniversity,Sirsa(Haryana).Hehassupervised manyUGandPGprojectsofengineeringstudents.Hehassupervised2PhD graduatesandpresentlyissupervising4PhD.HeisalsoMemberofComputer ScienceTeacherAssociation(CSTA),NewYork,USA,InternationalAssociationof Engineers(IAENG),HongKong,IACSIT(InternationalAssociationofComputer ScienceandInformationTechnology,USA,professionalmemberAssociationof ComputingMachinery,USA,andIEEE.HehasnumberofpublicationsinInternational/NationalJournalandConferences.Heisaneditor/author,andreview editorofJournalsandBookswithIEEE,Wiley,Springer,IGI,Riveretc.

Dr.JagjitSinghDhatterwal ispresentlyworkingasan AssociateProfessor,DepartmentofArtificialIntelligence &DataScienceKoneruLakshmaiahEducationFoundation,Vaddeswaram,AP,India.HecompletedDoctorate inComputerSciencefromMewarUniversity,Rajasthan, India.HereceivedMasterofComputerApplicationfrom MaharshiDayanandUniversity,Rohtak(Haryana).Hehas alsoworkedwithMaharishiDayanandUniversity,Rohtak,

Haryana.HeisalsoMemberofComputerScienceTeacherAssociation(CSTA), NewYork,USA,InternationalAssociationofEngineers(IAENG),HongKong, IACSIT,USA,professionalmemberAssociationofComputingMachinery,USA, IEEE.HisareaofinterestsincludesArtificialIntelligence,BCIandMulti-Agents Technology.HehasnumbersofpublicationsinInternational/NationalJournals andConferences.

Dr.AnupamBaliyan isworkingasanAdditionalDirector(ComputerScience&Engineering)inDepartmentof ComputerScienceandEngineering,ChandigarhUniversity,Ghraun,Mohali,Punjab(India).Hehasmorethan 22YearsofExperienceinAcademic.HeisMCAfrom GurukulkangariUniversity,MTech(CSE)andPhd(CSE) fromBanasthaliUniversity.Hepublishedmorethan30 ResearchpapersinvariousInternationalJournalindexedat ScopusandESI.HeisLifetimememberofCSIandISTE.He hasbeenchairedmanysessionsinInternationalConferencesacrosstheIndia.He alsopublishedsomeeditedbooksandchapters.HeisalsotheAsst.Editorofsome JournalsthoseareScopusindexed.HisResearchAreaisAlgorithms,Machine learning,WirelessnetworksandAI.

Dr.ShalliRani ispursuingpostdoctoralfromManchester MetropolitanUniversityfromJuly,2021.SheisAssociateProfessorinCSEwithChitkaraUniversity(Rajpura (Punjab)),India.Shehas18+ yearsteachingexperience. SheispursuingpostdoctoralfellowshipfromManchester MetropolitanUniversity,UK.ShereceivedMCAdegree fromMaharishiDyanandUniversity,Rohtakin2004and theMTechdegreeinComputerSciencefromJanardan RaiNagarVidyapeethUniversity,Udaipurin2007andPhDdegreeinComputer ApplicationsfromPunjabTechnicalUniversity,Jalandharin2017.Hermain areaofinterestandresearchareWirelessSensorNetworks,UnderwaterSensor networksandInternetofThings.Shehaspublished/accepted/presentedmore than70+ papersininternationaljournals/conferences(SCI+Scopus)and edited/authoredfivebookswithinternationalpublishers.Sheisservingasthe associateeditorofIEEEFutureDirectionsLetters.Sheisservingasaguesteditor inIEEETransactiononIndustrialInformaticsandElsevierIoTJournals.Shehas alsoservedasreviewerinmanyrepudiatedjournalsofIEEE,Springer,Elsevier,

IET,HindawiandWiley.ShehasworkedonBigData,UnderwaterAcoustic SensorsandIoTtoshowtheimportanceofWSNinIoTapplications.Shereceived ayoungscientistawardinFebruary2014fromPunjabScienceCongress,Lifetime AchievementAwardandSupervisoroftheyearawardfromGlobalInnovation andExcellence,2021.

IntroductionofQuantumComputing

1.1Introduction

Asignificantadvancementincomputersciencemaytaketheformofanew algorithmthatsignificantlyoutperformsthestateoftheart,oritmayprovide theoreticalevidencethatthestateoftheartcannotbesignificantlyimproved. Thelatterconditionimposesafundamentallimitonthecomplexityofproblems thatanygivencomputercansolveinagivenamountoftime.Increasingthe computer’sprocessingspeedistheonlywaytoincreasethenumberofproblems thatcanbesolved.AccordingtoMoore’sLaw,thesizeofsemiconductors(and,by extension,computingcapability)hasapproximatelydoubledeverytwoyears sincethe1960s.Itisclearthat,despitethefactthatthisdevelopmenthasbeen goingonfordecades,itcannotgoonforeverbecauseofanumberofbasicphysical constraints.Asaresult,quantumweirdnesswilldominatethebehaviorofthe circuitryby2020,andby2050,thecircuitswillhaveachievedthelowestsizeat whichknowledgecanbepermanentlycontained[1].

Theresultsofthisstudyhavepiquedthepublic’sinterestinhowquantumtheorymayaffectthefutureofcomputingoverthenextseveraldecades.Isitpossible, forinstance,tomakecircuitsimmunetotheinfluenceofquantumeffects?Asan alternative,mayquantumphenomenabeexploitedtodoarithmetic?Inorderto docalculations,quantumcomputerstakeadvantageofquantumphenomena. However,aquantumcomputerisnotonlyadevicewithenhancedperformance becauseofthefasterspeedofquantum-scalecircuits.Itisofmoreinterestto thesoftwareprogrammerthantothetheoreticalphysicist.Afterall,thecomputationalcomplexityofalgorithmsexecutedonacertainCPUremainsthesame regardlessoftheCPU’sclockspeed.Differentalgorithmsmayprovidebetter complexityintermsofthenewvariablePifthecomputer’sarchitectureisaltered QuantumComputing:ANewEraofComputing,FirstEdition. KuldeepSinghKaswan,JagjitSinghDhatterwal,AnupamBaliyan,andShalliRani. ©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc.

Figure1.1 DavidDeutschfatherofquantumcomputing.Source:LulieTanett(https:// images.app.goo.gl/CQBoMf7JqWzXfr6r9).

1.3OriginofQuantumComputing

Sometypesofcomputationsnowbaffletoday’scomputersandwillcontinuetodo soevenifMoore’sLawisextendedindefinitely,althoughquantumcomputersmay giveastrongercorrelationboost.Justimagineyouhaveaphonebookandneedto findacertainnumber.Aconventionalcomputerwouldhavetogothrougheach listinginthephonebooktofindandprovidetheappropriatecontactinformation. Intheory,acomputersystemmightscananentirephonebookinafraction ofasecond,evaluatingeachlinesimultaneouslyandreturningtheresultfar fasterthanamoderncomputer[4].Theterm“complexmathematicaloptimizing” isoftenusedtodescribetheprocessoffindingthebestpossiblecombinationofelementsandanswerstoaproblem.Considerthecostsofbuildingthetallestbuilding intheworld,includingmachinery,food,labor,andpermits.Thechallengeisinfiguringouthowtooptimallyallocateresourceslikemoney,time,andmanpower.As aresult,wemaybeabletoplanformajorprojectswithmoreefficiencywiththeaid ofquantumcomputingifthesefactorsaretakenintoaccount.Softwaredevelopment,supplychainmanagement,finance,internet-basedresearch,genomics,and otherfieldsallfaceoptimizationchallenges.Themostchallengingoptimization problemsinthesefieldsareinherentlywell-suitedforsolutiononaquantummachine[4]butstumpconventionalcomputers.Incontrasttoclassical

Figure1.2 StructureofbitsandQbits.Source:Adaptedfromhttps://images.app.goo.gl/ DeYCU9A7TeJvV5c16Lastaccessed25Oct2022.

computers,whichrelyalmostentirelyontechnologicaladvancesintransistors andmicrochips,quantumcomputersmayevolveinwaysthatclassicalcomputers cannot.Inquantumcomputers,transistorsarenotutilized(orclassicalbits). Substitutingqubitsforbits.Inaquantumalgorithm,qubitsserveasthebasic buildingblocksforpatternrecognition.TheexampleisshowninFigure1.2.

Qubitsmaytakeonthecharacteristicsofeithera0ora1,ortheycanhaveboth atthesametime.Morechoicesexisttogetaccurateresultsquicklywhiledoing computations.Inaddition,quantumentanglementandsuperpositionaretwo importantstatesofmatteronwhichquantumcomputersdepend.Whenapplied tocomputing,thesephysicalpropertieshavethepotentialtogreatlyincreaseour abilitytodoverylargecomputations[5].

AlthoughRigettiComputing’s19-qubitdevicesarethemostpowerfulinthefield ofquantumcomputing,butafter2019,thebusinessismovingon128-qubitcircuit. ButascanbeseeninTable1.1,theracetobuildthemostadvancedquantum computerwiththemostqubitshasbeengoingonsinceatleastthelate1990s.

Table1.1 Quantumcomputinggettingmorepowerful.

YearLabsQ-bits

1998IBM,Oxford,Berkeley,Stanford,MIT2 2000TechnicalUniversityofMunich7

2006InstituteforQuantumComputing12 2008D-WaveSystem28 2016IBM50

2018Google72

2020Rigetti128

1.4HistoryofQuantumComputing

Conjugatecodingwasfirstdevelopedinthe1960sbyStephenWiesner.Inthe 1970s,JamesParkestablishedtheno-cloningtheoremusinghisformulation. AlexanderHolevoprovedwhatisnowknownasHolevo’stheorem,orHolevo’s bound,inapaperthatwaspublishedin1973.Thistheoremstatesthateven though n qubitsmaystoremorerelevantdatathan n classicalbits,only n conventionalbitsareobtainable.Thisisdespitethefactthat n qubitsmaystore moreinformationthan n classicalbits.

ResearchconductedbyCharlesH.Bennettdemonstratesthatitisfeasibleto carryoutcomputinginabackward-compatiblemanner.

● In1975,R.P.Poplavskiipublished(inRussian)thermodynamicalmodelsof informationprocessing.Thisworkhighlightsthecomputationaldifficultiesof reproducingquantumsystemsonclassicalcomputersowingtothefactthatthe superpositionprincipleisatplay.

● In1976,thePolishmathematicianandphysicistRomanStanislawIngarden publishedQuantumInformationTheoryinthejournal ReportsonMathematicalPhysics.Ingarden’spaper“1976QuantumInformationTheory.”Thisstudy, whichwasoneoftheearlyeffortstobuildquantumsynchronizationtheory, demonstratesthatthetraditionalShannoncommunicationtheorycannot simplybetranslatedintothequantumsituation.Thiswasoneoftheearliest attemptstoestablishquantumentanglementtheory.However,aquantum entanglementtheory,whichisawideexpansionofShannon’stheory,ispossibletoconstructwithintherepresentationofanexpandedsubatomicparticles ofopensystemsandageneralizedideaofexplanatoryvariablesthatisboth broadandimprecise(theso-calledsemi-observables).

PaulBenioffiscreditedwithdevelopingtheveryfirstcomputermodelbased onquantumphysicsinthe1980s.Inthispaper,Benioffpavedthewayforfurther researchinquantumcomputingbylayingthegroundworkforfutureworkinthe fieldbyproposingaSchrodingerequationdescriptionofTuringmachines.This demonstrationshowedthatacomputercouldoperateinaccordancewiththerules ofquantumphysics.TheworkwasfirstshowntothepublicinJune1979,andfour monthslater,inApril1980,itwaspublished.YuriManinpresentsasynopsisof thefieldofquantumcomputinginthisarticle.

ThereversibleToffoligate,withtheNOTandXORgates,formsthefoundation ofauniversalsetthatisusedforbidirectionalclassicalcomputing.

InMay1980,theMassachusettsInstituteofTechnology(MIT)playedhostto theFirstConferenceonthePhysicsofComputation.Atthisconference,prominentfiguresinthefieldofcomputing,suchasPaulBenioffandRichardFeynman, exploredquantumcomputing.Benioff’scurrentinvestigationisanexpansionof

1IntroductionofQuantumComputing

hisearlierworkfrom1980,whichdemonstratedthepossibilitythatacomputer mayfunctioninlinewiththeprinciplesofquantumphysics.Quantummechanical Hamiltonianmodelsofdiscreteprocessesthatdeletetheirownhistories:applicationtoTuringmachines,”thetalk’stitlesaid.Duringhispresentation,Feynman saidthatitseemedtobedifficulttoproperlymimictheevolutionofaquantum particleonaregularcomputer.Inadditiontothat,helaidthefoundationforthe contemporaryquantumalgorithm.

PaulBenioffcontinuedtodevelophisconceptofaTuringmachinethatwas basedonquantummodelingin1982.WilliamWootters,WojciechZurek,and DennisDieksallindependentlyrediscoveredtheno-cloningtheoremataround thesametime.

In1984,CharlesBennettandGillesBrassardresorttoWiesner’sconjugatecodinginordertodistributecryptographickeysinanuncompromisedmanner.

In1985,whileworkingatOxfordUniversity,DavidDeutschwasthefirstperson toconceptualizeauniversalquantumcomputer.Auniversalquantumcomputer, muchlikeamulticlasssupportvectormachine,hasthepotentialtosuccessfully imitateanyotherquantumcomputerwithjustapolynomialamountoflatency (Church–Turingthesis).

YoshihisaYamamotoandK.Igeta,twophysicists,developedthefirstpractical implementationofaquantumalgorithmin1988.Theiralgorithmutilized Feynman’sCNOTgateasoneofitscomponents.Theirsystemutilizesbothatoms andphotons,whichpositionsitasaforerunnerofpresentquantumcomputing andnetworkingprotocols.Theseprotocolsemployphotonstotransportqubits, whileatomsareutilizedtocarryouttwo-qubitoperations.GerardJ.Milburn demonstratesaquantum-opticalvariantoftheFredkingateinhispresentation.

● In1989,researchersattheSahaInstituteofNuclearPhysicsinKolkata,ledby BikasK.Chakrabarti,proposedthatparticlephysicsactivitycouldbeusedto learntonavigateroughenergyenvironmentsbytunneling(ratherthantrying toclimboverusingthermalvibrationalmodes)toescapefromlocalminimaof crystallineformsystemswithtallbutthinbarriers.Thiswasdoneinaneffortto breakfreefromthelocaloptimalsolutionofcrystallizedsystemswithlargebut smallbarriers.

● In1991,ArturEkertoftheUniversityofOxfordexpandedupontheideaof entanglement-basedencryptedcommunicationproposedbyDavidDeutsch.

● DavidDeutschandRichardJozsaproposedanumberofproblemsin1992that couldbequicklysolvedonaquantumsystemwiththeassistanceofthepredeterminedDeutsch–Jozsaautomatedsystem,butforwhichtherearenofeasible categoricalimperativesusingclassicalmethodology.Thisproblemwasreferred toasthe“Deutsch–Jozsaalgorithmproblem.”Itwasthepossiblefirstdiscovery ofitskindintherealmofquantumcomputing,anditdemonstratedthatqubits

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.