Quantum chemistry in the age of machine learning pavlo o. dral - The ebook with all chapters is avai

Page 1


https://ebookmass.com/product/quantum-chemistry-in-the-age-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Application of Machine Learning in Agriculture Khan

https://ebookmass.com/product/application-of-machine-learning-inagriculture-khan/

ebookmass.com

Machine Learning in Microservices: Productionizing microservices architecture for machine learning solutions Abouahmed

https://ebookmass.com/product/machine-learning-in-microservicesproductionizing-microservices-architecture-for-machine-learningsolutions-abouahmed/

ebookmass.com

Ideas of Quantum Chemistry: Volume 1: From Quantum Physics to Chemistry 3rd Edition Lucjan Piela

https://ebookmass.com/product/ideas-of-quantum-chemistryvolume-1-from-quantum-physics-to-chemistry-3rd-edition-lucjan-piela/

ebookmass.com

Heroes of the Final Frontier (Book #1): The World of Waldyra LitRPG Cycle Dem Mikhailov

https://ebookmass.com/product/heroes-of-the-final-frontier-book-1-theworld-of-waldyra-litrpg-cycle-dem-mikhailov/

ebookmass.com

Prostate Cancer, Second Edition: Science and Clinical Practice Jack H. Mydlo Md Facs

https://ebookmass.com/product/prostate-cancer-second-edition-scienceand-clinical-practice-jack-h-mydlo-md-facs/

ebookmass.com

Birds in the Ancient World: Winged Words Jeremy Mynott

https://ebookmass.com/product/birds-in-the-ancient-world-winged-wordsjeremy-mynott/

ebookmass.com

Greenspan’s Basic and Clinical Endocrinology, Tenth Edition (Greenspan’s &

https://ebookmass.com/product/greenspans-basic-and-clinicalendocrinology-tenth-edition-greenspans/

ebookmass.com

The Palgrave Handbook Of German Romantic Philosophy 1st Edition Edition Elizabeth Millán Brusslan

https://ebookmass.com/product/the-palgrave-handbook-of-germanromantic-philosophy-1st-edition-edition-elizabeth-millan-brusslan/

ebookmass.com

A Cultural Safety Approach to Health Psychology 1st Edition Pauline B. Thompson

https://ebookmass.com/product/a-cultural-safety-approach-to-healthpsychology-1st-edition-pauline-b-thompson/

ebookmass.com

Agatha Christie and the Guilty Pleasure of Poison Sylvia A. Pamboukian

https://ebookmass.com/product/agatha-christie-and-the-guilty-pleasureof-poison-sylvia-a-pamboukian/

ebookmass.com

QUANTUMCHEMISTRYINTHEAGEOF MACHINELEARNING

QUANTUM CHEMISTRYINTHE AGEOFMACHINE LEARNING

Professor,StateKeyLaboratoryofPhysicalChemistryofSolidSurfaces,FujianProvincialKey LaboratoryofTheoreticalandComputationalChemistry,DepartmentofChemistry,CollegeofChemistryand ChemicalEngineering,XiamenUniversity,China

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfulof theirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-90049-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: CharlesBath

EditorialProjectManager: HowiDeRamois

ProductionProjectManager: PaulPrasadChandramohan

CoverDesigner: MatthewLimbert

TypesetbySTRAIVE,India

Companionwebsiteix

Contributorsxi

Prefacexv 1

Introduction

1.Verybriefintroductiontoquantum chemistry

XunWuandPeifengSu

Introduction—Thefoundationsofquantum chemistry3

Methodsofmolecularelectronicstructure computations8

Methodsofconceptionalinterpretationbasedon electronicstructurecalculations20

Casestudies21

Conclusionsandoutlook24

Acknowledgments24 References24

2.Density-functionaltheory

HongJiangandHuai-YangSun

Introduction27

TheoreticalfoundationsofDFT28

Density-functionalapproximations34

PracticalaspectsofDFTimplementations50

Casestudies53

Concludingremarks60

Acknowledgments61 References61

3.Semiempiricalquantummechanical methods

PavloO.DralandJan Řezac

Introduction67

Methods71

Casestudies87

Conclusionsandoutlook89

Acknowledgments90 References90

4.Fromsmallmoleculestosolid-state materials:Abriefdiscourseonanexample ofcarboncompounds

BiliChen,LeyuanCui,ShuaiWang,andGangFu

Introduction93 Methods95

Casestudies108

Conclusionsandoutlook114

Acknowledgments114 References114

5.Basicsofdynamics

XinxinZhongandYiZhao

Introduction117 Methods119

Casestudies125

Conclusionsandoutlook131

Acknowledgments131 References131

6.Machinelearning: Anoverview

EugenHruskaandFangLiu

Introduction135 Methods136

Basicconceptsofmachinelearning143

Casestudy147

Conclusionsandoutlook149

Acknowledgment149 References149

7.Unsupervisedlearning

Introduction153

Notationguide154 Methods155

Casestudies171

Conclusions178 References178

8.Neuralnetworks

PavloO.Dral,AlexeiA.Kananenka,FuchunGe, andBao-XinXue

Introduction183 Methods184

Casestudy200

Conclusionsandoutlook201

Acknowledgments202 References203

9.Kernelmethods

Introduction205 Methods207

Casestudies227

Conclusionsandoutlook229

Acknowledgments230

Authorcontributions230 References230

10.Bayesianinference

WeiLiangandHongshengDai

Introduction233

BasicconceptsofBayesianstatistics234

Bayesianregression239

Bayesianinferenceinmachinelearning:Bayesian neuralnetworks246

Casestudy246

Conclusionsandoutlook249

Acknowledgments249 References249

2 Machinelearningpotentials

11.Potentialsbasedonlinearmodels

GauthierTallec,GaetanLaurens,OwenFresse-Colson,and JulienLam

Introduction253 Methods255

Casestudies272 Conclusionandoutlook276

Acknowledgments276 References277

12.Neuralnetworkpotentials

JinzheZeng,LiqunCao,andTongZhu

Introduction279 Methods281

Casestudies287

Conclusionsandoutlook290 Acknowledgment290 References290

13.Kernelmethodpotentials

Yi-FanHouandPavloO.Dral

Introduction295 Methods296 Casestudy309

Conclusionsandoutlook310 Acknowledgments311 References311

14.Constructingmachinelearning potentialswithactivelearning

ChengShangandZhi-PanLiu

Introduction313 Methods317 Casestudy322

Conclusionandoutlook325 Acknowledgments325 References325

15.Excited-statedynamicswith machinelearning

LinaZhang,ArifUllah,MaxPinheiroJr,PavloO.Dral, andMarioBarbatti

Introduction329 Methods332 Casestudies344

Conclusionsandoutlook349 Acknowledgments350 References350

16.Machinelearningforvibrational spectroscopy

SergeiManzhos,ManabuIhara,andTuckerCarrington

Introduction355 Methods357 Casestudies372

Conclusionsandoutlook383 References384

17.Molecularstructureoptimizations withGaussianprocessregression

RolandLindhandIgnacioFdez.Galva ´ n

Introduction391 Methods392 Casestudies411 Conclusionsandoutlook423 Acknowledgments423 References424

3 Machinelearningofquantum chemicalproperties

18.Learningelectrondensities

BrunoCuevas-Zuvirı´a

Introduction431 Methods435 Casestudies445

Conclusionsandoutlook449 Acknowledgments450 References450

19.Learningdipolemomentsand polarizabilities

YaolongZhang,JunJiang,andBinJiang

Introduction453 Methods455 Casestudies461

Conclusionsandoutlook463 Acknowledgments463 References464

20.Learningexcited-stateproperties

JuliaWestermayr,PavloO.Dral,andPhilippMarquetand

Introduction467 Methods470

Casestudies477 Conclusionsandoutlook484 Acknowledgments486 References486

4 Machinelearning-improved quantumchemicalmethods

21.Learningfrommultiple quantumchemicalmethods: Δ-learning,transferlearning,co-kriging, andbeyond

PavloO.Dral,TetianaZubatiuk,andBao-XinXue

Introduction491 Methods493 Casestudies503 Conclusionsandoutlook505 Acknowledgments506 Authorcontributions506 References506

22.Data-drivenaccelerationof coupled-clusterandperturbationtheory methods

GrierM.Jones,P.D.VarunaS.Pathirage,and KonstantinosD.Vogiatzis

Introduction510 Methods511

Casestudies523

Conclusionsandoutlook527

Acknowledgment527

References528

23.Redesigningdensityfunctional theorywithmachinelearning

JiangWu,GuanhuaChen,JingchunWang,andXiaoZheng

Introduction531 Methods532

Casestudy552

Conclusionsandoutlook554

References554

24.Improvingsemiempiricalquantum mechanicalmethodswithmachinelearning

PavloO.DralandTetianaZubatiuk

Introduction559 Methods560

Casestudy572

Conclusionsandoutlook573

Acknowledgments574 References574

25.Machinelearningwavefunction

StefanoBattaglia

Introduction577 Methods581

Casestudies605

Conclusionsandoutlook612

Acknowledgments614

References614 5 Analysisofbigdata

26.Analysisofnonadiabaticmolecular dynamicstrajectories

YifeiZhu,JiaweiPeng,HongLiu,andZhenggangLan

Introduction619

Theoreticalmethods621

Examples630

Casestudies642

Conclusionsandoutlook648

References649

27.Designoforganicmaterialswith tailoredopticalproperties:Predicting quantum-chemicalpolarizabilitiesand derivedquantities

GauravVishwakarma,AdityaSonpal,AatishPradhan, MojtabaHaghighatlari,MohammadAtifFaizAfzal,and JohannesHachmann

Introduction654 Methods658

Casestudies:Implementingtherational designprotocol662

Conclusionsandoutlook669

References670

Index675

Pleasevisitthebelowcompanionsitetoviewrepositorieswithprograms,data,instructions, sampleinputandoutputfilesrequiredforcasestudiesaswellasanypost-publicationupdates.

https://www.elsevier.com/books-and-journals/book-companion/9780323900492

Contributors

MohammadAtifFaizAfzal Departmentof ChemicalandBiologicalEngineering, UniversityatBuffalo,TheStateUniversityof NewYork,Buffalo,NY,UnitedStates

MarioBarbatti AixMarseilleUniversity,CNRS, ICR,Marseille;InstitutUniversitairedeFrance, Paris,France

StefanoBattaglia DepartmentofChemistry— BMC,UppsalaUniversity,Uppsala,Sweden

LiqunCao ShanghaiEngineeringResearch CenterofMolecularTherapeutics&New DrugDevelopment,SchoolofChemistryand MolecularEngineering,EastChinaNormal University;NYU-ECNUCenterfor ComputationalChemistryatNYUShanghai, Shanghai,China

TuckerCarrington ChemistryDepartment, Queen’sUniversity,Kingston,ON,Canada

RoseK.Cersonsky LaboratoryofComputationalScienceandModeling,SwissFederal InstituteofTechnology(EPFL),Lausanne, Switzerland

BiliChen StateKeyLaboratoryforPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,andCollegeof ChemistryandChemicalEngineering, XiamenUniversity,Xiamen,China

GuanhuaChen HongKongQuantumAILab andDepartmentofChemistry,TheUniversity ofHongKong,Pokfulam,HongKong

BrunoCuevas-Zuvirı ´ a CentrodeBiotecnologı ´ a yGeno ´ micadePlantas(CBGP,UPM-INIA), UniversidadPolitecnicadeMadrid(UPM), InstitutoNacionaldeInvestigacio ´ ny Tecnologı´aAgrariayAlimentaria(INIA), Madrid,Spain;NASACenterforEarlyLife andEvolution;DepartmentofBacteriology,

UniversityofWisconsin-Madison,Madison, WI,UnitedStates

LeyuanCui StateKeyLaboratoryforPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,andCollegeof ChemistryandChemicalEngineering, XiamenUniversity,Xiamen,China

HongshengDai DepartmentofMathematical Sciences,UniversityofEssex,Colchester, UnitedKingdom

SandipDe BASFSE,LudwigshafenamRhein, Germany

PavloO.Dral StateKeyLaboratoryofPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,Departmentof Chemistry,andCollegeofChemistryand ChemicalEngineering,XiamenUniversity, Xiamen,Fujian,China

IgnacioFdez.Galva ´ n Departmentof Chemistry—BMC,UppsalaUniversity, Uppsala,Sweden

OwenFresse-Colson CEMES,CNRSand UniversitedeToulouse,ToulouseCedex,France

GangFu StateKeyLaboratoryforPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,andCollegeof ChemistryandChemicalEngineering, XiamenUniversity,Xiamen,China

FuchunGe StateKeyLaboratoryofPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,Departmentof Chemistry,andCollegeofChemistryand ChemicalEngineering,XiamenUniversity, Xiamen,Fujian,China

JohannesHachmann DepartmentofChemical andBiologicalEngineering,Universityat Buffalo;ComputationalandData-Enabled ScienceandEngineeringGraduateProgram, UniversityatBuffalo,TheStateUniversityof NewYork;NewYorkStateCenterof ExcellenceinMaterialsInformatics,Buffalo, NY,UnitedStates

MojtabaHaghighatlari Departmentof ChemicalandBiologicalEngineering, UniversityatBuffalo,TheStateUniversity ofNewYork,Buffalo,NY,UnitedStates

Yi-FanHou StateKeyLaboratoryofPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,Departmentof Chemistry,andCollegeofChemistryand ChemicalEngineering,XiamenUniversity, Xiamen,Fujian,China

EugenHruska DepartmentofChemistry, EmoryUniversity,Atlanta,GA,UnitedStates

ManabuIhara DepartmentofChemicalScience andEngineering,TokyoInstituteof Technology,Tokyo,Japan

BinJiang HefeiNationalResearchCenterfor PhysicalSciencesattheMicroscale, DepartmentofChemicalPhysics,University ofScienceandTechnologyofChina,Hefei, Anhui,China

HongJiang BeijingNationalLaboratoryfor MolecularSciences,InstituteofTheoretical andComputationalChemistry,Collegeof ChemistryandMolecularEngineering,Peking University,Beijing,China

JunJiang HefeiNationalResearchCenterfor PhysicalSciencesattheMicroscale, DepartmentofChemicalPhysics,University ofScienceandTechnologyofChina,Hefei, Anhui,China

GrierM.Jones DepartmentofChemistry, UniversityofTennessee,Knoxville,TN, UnitedStates

AlexeiA.Kananenka DepartmentofPhysics andAstronomy,UniversityofDelaware, Newark,DE,UnitedStates

JulienLam CEMES,CNRSandUniversitede Toulouse,ToulouseCedex,France

ZhenggangLan SouthChinaNormal University,Guangzhou,China

GaetanLaurens InstitutLumie ` reMatie ` re, UMR5306UniversiteLyon1-CNRS,Universite deLyon,VilleurbanneCedex,France

WeiLiang SchoolofMathematicalSciences, XiamenUniversity,Xiamen,China

RolandLindh DepartmentofChemistry— BMC,UppsalaUniversity,Uppsala,Sweden

FangLiu DepartmentofChemistry,Emory University,Atlanta,GA,UnitedStates

HongLiu SouthChinaNormalUniversity, Guangzhou,China

Zhi-PanLiu CollaborativeInnovationCenterof ChemistryforEnergyMaterial,ShanghaiKey LaboratoryofMolecularCatalysisand InnovativeMaterials,KeyLaboratoryof ComputationalPhysicalScience(Ministryof Education),DepartmentofChemistry,Fudan University;ShanghaiQiZhiInstitute, Shanghai,China

SergeiManzhos DepartmentofChemical ScienceandEngineering,TokyoInstituteof Technology,Tokyo,Japan

PhilippMarquetand InstituteofTheoretical Chemistry,FacultyofChemistry,University ofVienna,Vienna,Austria

JiaweiPeng SouthChinaNormalUniversity, Guangzhou,China

MaxPinheiroJr AixMarseilleUniversity, CNRS,ICR,Marseille,France

AatishPradhan DepartmentofChemicaland BiologicalEngineering,UniversityatBuffalo, TheStateUniversityofNewYork,Buffalo, NY,UnitedStates

Jan Ř eza ´ c InstituteofOrganicChemistryand BiochemistryoftheCzechAcademyof Sciences,Prague,CzechRepublic

P.D.VarunaS.Pathirage Departmentof Chemistry,UniversityofTennessee, Knoxville,TN,UnitedStates

ChengShang CollaborativeInnovationCenter ofChemistryforEnergyMaterial,Shanghai KeyLaboratoryofMolecularCatalysisand InnovativeMaterials,KeyLaboratoryof ComputationalPhysicalScience(Ministryof

Education),DepartmentofChemistry,Fudan University;ShanghaiQiZhiInstitute, Shanghai,China

AdityaSonpal DepartmentofChemicaland BiologicalEngineering,UniversityatBuffalo, TheStateUniversityofNewYork,Buffalo, NY,UnitedStates

PeifengSu TheStateKeyLaboratoryof PhysicalChemistryofSolidSurfaces,Fujian ProvincialKeyLaboratoryofTheoreticaland ComputationalChemistry,andCollegeof ChemistryandChemicalEngineering, XiamenUniversity,Xiamen,Fujian,China

Huai-YangSun BeijingNationalLaboratoryfor MolecularSciences,InstituteofTheoreticaland ComputationalChemistry,Collegeof ChemistryandMolecularEngineering,Peking University,Beijing,China

GauthierTallec Institutdessyste ` mes intelligentsetderobotique(ISIR),Sorbonne Universite,Paris,France

ArifUllah StateKeyLaboratoryofPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,Departmentof Chemistry,andCollegeofChemistryand ChemicalEngineering,XiamenUniversity, Xiamen,Fujian,China

GauravVishwakarma DepartmentofChemical andBiologicalEngineering,Universityat Buffalo,TheStateUniversityofNewYork, Buffalo,NY,UnitedStates

KonstantinosD.Vogiatzis Departmentof Chemistry,UniversityofTennessee, Knoxville,TN,UnitedStates

JingchunWang DepartmentofChemical Physics,UniversityofScienceandTechnology ofChina,Hefei,China

ShuaiWang StateKeyLaboratoryforPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,andCollegeof ChemistryandChemicalEngineering, XiamenUniversity,Xiamen,China

JuliaWestermayr TheoreticalSurface ChemistryGroup,DepartmentofChemistry,

UniversityofWarwick,Coventry,United Kingdom

JiangWu HongKongQuantumAILaband DepartmentofChemistry,TheUniversityof HongKong,Pokfulam,HongKong

XunWu TheStateKeyLaboratoryofPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,andCollegeof ChemistryandChemicalEngineering, XiamenUniversity,Xiamen,Fujian,China

Bao-XinXue StateKeyLaboratoryofPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,Departmentof Chemistry,andCollegeofChemistryand ChemicalEngineering,XiamenUniversity, Xiamen,Fujian,China

JinzheZeng ShanghaiEngineering ResearchCenterofMolecularTherapeutics& NewDrugDevelopment,Schoolof ChemistryandMolecularEngineering, EastChinaNormalUniversity;NYU-ECNU CenterforComputationalChemistryatNYU Shanghai,Shanghai,China

LinaZhang StateKeyLaboratoryofPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,Departmentof Chemistry,andCollegeofChemistryand ChemicalEngineering,XiamenUniversity, Xiamen,Fujian,China

YaolongZhang HefeiNationalResearchCenter forPhysicalSciencesattheMicroscale, DepartmentofChemicalPhysics,University ofScienceandTechnologyofChina,Hefei, Anhui,China

YiZhao StateKeyLaboratoryofPhysical ChemistryofSolidSurfaces,FujianProvincial KeyLaboratoryofTheoreticaland ComputationalChemistry,Collegeof ChemistryandChemicalEngineering, XiamenUniversity,Xiamen,China

XiaoZheng DepartmentofChemicalPhysics, UniversityofScienceandTechnologyof China,Hefei,China

XinxinZhong CollaborativeInnovationCenter forAdvancedOrganicChemicalMaterials Co-constructedbytheProvinceandMinistry, MinistryofEducationKeyLaboratoryforthe SynthesisandApplicationofOrganic FunctionalMolecules,HubeiUniversity, Wuhan,China

TongZhu ShanghaiEngineeringResearch CenterofMolecularTherapeutics&New DrugDevelopment,SchoolofChemistryand

MolecularEngineering,EastChinaNormal University;NYU-ECNUCenterfor ComputationalChemistryatNYUShanghai, Shanghai,China

YifeiZhu SouthChinaNormalUniversity, Guangzhou,China

TetianaZubatiuk DepartmentofChemistry, CarnegieMellonUniversity,Pittsburgh,PA, UnitedStates

Preface

Quantumchemistryisaverymaturefield ofscience—itsmethoddevelopmentstarted asearlyas1926,whentheSchrodinger equationwasproposedand,ayearlater,appliedtosolvingthefirstmolecularsystem H2.Nevertheless,thequickandastonishing progressinanotherdiscipline—artificialintelligenceandmachinelearning—hashada bigimpactonhowweperformquantum chemicalsimulations.Machinelearningin quantumchemistryhasemergedasavibrantandever-changingfieldrichinmany methodologicaladvantagesandhasrapidly becomeacommonlyusedtechniqueincomputationalchemistry.Thiscallsforabook thatcanbeusedasatextbookinadvanced coursesontheoreticalandcomputational chemistryaswellasareferencematerial forspecialistsandnonspecialistsalike.

Teachingmachinelearningmethodsin quantumchemistryhasbecomeamustin theuniversity-levelcoursesontheoretical andcomputationalchemistryasIhavearguedinmyPerspectivearticlewiththesame titleasthisbookinearly2020 [1].Ihave startedtoteachtheverybasicsofmachine learningtopicsmyselfinthespringsemester of2021forundergraduatechemistrystudentsatXiamenUniversity.Mylecturenotes turnedouttobeveryusefulwhencontributingtosomeofthechapters.TheaforementionedPerspectivehasalsoprettymuch formedtheblueprintforthisbook,largely definingthescopeofthetopicscovered, andthereadermayrefertothisPerspective foraveryconcise,bird’s-eyeviewofmachinelearninginquantumchemistry.

Part1ofthisbookisdedicatedtointroducingtheminimumoffundamentaltopicsin bothquantumchemistryandmachinelearning,whichareindispensabletolaythefoundationfortheotherparts;thus,Part1with10 chaptersisthelargestinthebook.Quantum chemistrytopicsstartwithabriefintroductiontoquantumchemistryin Chapter1, followedbydensityfunctionaltheoryin Chapter2,semiempiricalquantummechanicalmethodsin Chapter3,andabriefdiscoursedealingwithquantumchemical calculationsofsystemsfrommoleculesto solid-statematerialsin Chapter4. Chapter5 coversanimportantintroductiontodynamicssimulations.Machinelearningisintroducedin Chapter6 followedbychapters coveringspecifickeytopicssuchas unsupervisedlearningin Chapter7,neural networksin Chapter8,kernelmethodsin Chapter9,andBayesianinferencein Chapter10

Part2isdedicatedtooneofthemost abundantapplicationsofmachinelearning whenitisusedasasurrogateforquantum chemicalpotentials;bypotentialwemean theatomisticsystemtotalenergyasafunctionofnuclearcoordinates. Chapter11 coverspotentialsbasedonlinearmodels followedby Chapters12and13 introducing neuralnetworkpotentialsandkernel methodpotentials,respectively. Chapter14 coverstheimportanttopicofcreatingtrainingdataforsuchpotentialsviaactivelearning. Chapter15 focusesonthechallengesin creatingmachinelearningmodelsfor performingexcited-statedynamics.Machine

learningalsohelpsinvibrationalspectroscopyasdiscussedin Chapter16 andinacceleratingmolecularstructureoptimizations withquantumchemicalmethodsasshown inChapter17.

Part3providesatasteofhowmachine learningcanbeusedtolearnotherimportant quantumchemicalpropertiessuchaselectrondensities(Chapter18),dipolemoments, andpolarizabilities(Chapter19),and excited-stateproperties(Chapter20).

Part4describeshowmachinelearningbecomesanintegralpartofquantumchemical simulationsbyimprovingquantumchemical methods,e.g.,viageneralapproachessuch as Δ-learning(Chapter21,whichalsocovers relatedtopicsoflearningfrommultiplequantumchemicalmethodssuchastransferlearning,co-kriging,hierarchicalmachinelearning, andtheircombinations)ordedicatedapproachesforacceleratingcoupled-cluster andperturbationtheoryquantumchemical methods(Chapter22),redesigningdensity functionaltheorymethods(Chapter23),and improvingsemiempiricalquantumchemical methods(Chapter24).Part4concludes byoverviewinghowmachinelearningcan learntheessenceofquantumchemistry— wavefunction—inChapter25.

Part5concludesthebookwithexamples ofanalysisofbigdatainaquantumchemical context,showingspecificexamplesforanalyzingnonadiabaticmoleculardynamics trajectories(Chapter26)andsearchingfor organicmaterialswithtailoredopticalpropertiesinthewideseaofpossiblecompounds (Chapter27).

Oneofthemainmotivationsofthisbook hasbeentoofferpurelytheoreticalknowledgealongsidepracticalknowledgebyprovidingmathematicalexpositionsinthe Methods sectionandincorporatingcomputationaland,sometimes,pen-and-paperexercisesattheendofeachchapterinthe Case

studies section.Thecasestudiesinmany chaptersrevolvearoundoneofthesimplest chemicalsystems,theH2 molecule,whichis intentionallychosentodemonstratethebasic ideasofvariousmethodstoensurethatthey arewellunderstoodbeforemovingonto morecomplexexamples.Manychapters alsocontainexamplesfrommodernstudies sothatthereadercanbetterunderstand moreadvancedconcepts.Thereaderisalwaysencouragedtogobeyondtheinstructionsinthecasestudiesandexperimenton theirown.

Thisbroadnessofthetopicscouldnot becoveredbyasinglepersonwithina reasonablyshortamountoftimeadequate forsuchafast-pacedfield,especiallyas manycollegeshaveal readyintroduced machinelearning-relatedtopicsforchemistsandwehaveneededatextbookpreferablyyesterday.Thus,thisbookisa productofamassiveeffortby65authors fromverydifferentbackgroundsranging frommathematicstophysics,materials science,andchemistry.Manyoftheauthorsareamongthebestspecialistsin thetopicstheycovered,whichisevident fromthefactthatmanyofthemwere speakersatthefirstInternationalSymposiumonMachineLearninginQuantum ChemistrythatwasheldonlinefromNovember12to14,2021.

Thisisonlythetipoftheiceberg,asmany morepeoplewerepeerreviewingandallof mygroupmembers(LinaZhang,ArifUllah, Bao-XinXue,Yi-FanHou,FuchunGe, PeikunZheng,ShuangZhang,WudiYang, RanWang,LinqiangWei)wereheavilyinvolvedincreatingthisbookbybecoming co-authors,additionalpeerreviewers,and testersforthecasestudies.Thepublisher’s team(AnnekaHess,DevlinPerson,JaiMarie Jose,HowellAngeloM.DeRamos,Paul PrasadChandramohan,IndhumathiMani,

andmanymorebehindthescenes),wereinstrumentaltoaccomplishthisprojectfrom initiationtofinalizingandsupportingitall thewaythrough.Justtogiveashortperspectiveontheamountofeffortputintothis book:fromthesuggestiontowritethebook onMay13,2020(byAnnekaHessfrom Elsevier)untilwritingthisPreface,myemail folderforthisprojectcontainsaround2000 emails;thisisnotincludingallthediscussionsviamessagingappsandmeetingstocoordinateourefforts.Icordiallythankallthe authors,peerreviewers,mygroupmembers,

andpublisher’steamfortheireffortsthat madethisbookpossible.

Happyreadingandlearning!

PavloO.Dral Xiamen,China

Reference

[1] P.O.Dral,Quantumchemistryintheageofmachine learning,J.Phys.Chem.Lett.11(2020)2336–2347.

PART1

Introduction

Verybriefintroductiontoquantum chemistry

XunWuandPeifengSu

TheStateKeyLaboratoryofPhysicalChemistryofSolidSurfaces,FujianProvincialKey LaboratoryofTheoreticalandComputationalChemistry,andCollegeofChemistryandChemical Engineering,XiamenUniversity,Xiamen,Fujian,China

Abstract

Thischapterprovidesabriefintroductiontoquantumchemistryincludingthebasicconceptsandapproximationsofquantummechanics,andaseriesofquantumchemicalmethods.

Keywords: Quantummechanics,Quantumchemistry,Hartree–Fockmethod,Configurationinteraction, Møller–Plessetperturbationtheory,Coupled-clustermethod,Multi-configurationalself-consistent-field, Time-dependentHartree–Fock

Introduction—Thefoundationsofquantumchemistry

Quantumchemistry(QC)referstotheapplicationofquantummechanicstostudythe chemicalandphysicalpropertiesofatoms,molecules,andmaterials.Itisgenerallyaccepted thatthefirstQCcalculationwasperformedbytheGermanphysicistsWalterHeitlerandFritz Londononthehydrogen(H2)moleculein1927.Now,QChasbecomeanirreplaceabletoolfor chemiststoexplorefundamentalscientificquestionsinchemistryandrelatedfields, [1–4] withnumerousapplicationstoatomisticsystemssuchasatoms,moleculesorionicsolids. ThischapterintroducesbasicknowledgeofquantummechanicsandQCmethodsforsolving theSchr € odingerequation.

Briefintroductionofquantummechanics

Basicconcepts

Thewavefunctionofasystemisamathematicalexpressionthatcontainsinformation aboutanythingthatmaybemeasuredforthissystem.Inquantummechanics,thewave

function Ψ(r1, r2 rn)isafunctionofthepositionsofalltheparticlesinthesystem,describing atime-independentquantummechanicalsystem,inwhich r1, r2 rn arethepositionsof N particles.Thesquareofthewavefunction, j Ψ(r1, r2 rn)j2,representstheprobabilityoffinding N particlesinagivenplace.

Everyobservablephysicalquantity,suchasposition,energy,ormomentum,isdescribed byan operator.AHermitianoperator ^ A satisfies Ð f ∗ ^ Agdτ ¼ Ð g ^ Af ∗ dτ ,where f and g are well-behavedfunctions.Measurementshowsapredictionasaresultofanoperatoracting onawavefunction.Themostimportantoperatoristhetotalenergyoperator ^ H or Hamiltonian. Themeasurementofthe Hamiltonian operatorisdescribedbyaneigen-equationcalledthe time-independentSchrodingerequation.Solutionsforthetime-independentSchrodinger equationonlyexistforcertainvaluesofenergy(energyisquantizedinboundstates).The resultingeigenvalueequationis:

InEq. (1), E istheeigenvalue,whichistheenergyofthesystemdescribedby Ψ(r1, r2 rn). Moreover,thewavefunctionmustgenerallydependontimetoreproduceinformationabout thesystem’sevolutionovertime.The time-dependent wavefunction,expressedas Ψ(r1, r2 rn, t), satisfyingthe time-dependent Schr€ odingerequation:

Born–Oppenheimerapproximation

ThesolutionoftheSchrodingerequationformoleculessystemsistheprimarytaskofQC. However,anexactsolutioncannotbeobtainedformulti-electronsystems.Foramultielectronsystem(atomormolecule),the time-independent Hamiltonianinatomicunitsis:

TheHamiltonianinEq. (3) containstheelectronkineticoperators(thefirstterm),nuclear kineticoperators(thesecondterm),nucleus-electronattractivepotentialoperators(thethird term),electron–electronrepulsion(thefourthterm),andnucleus-nucleusrepulsion(thefinal term).TheBorn–Oppenheimer(BO)approximationisintroducedtosimplifytheHamiltonian.IntheBOapproximation,thecouplingbetweenthenuclear r2 andtheelectronicwave functionisneglected.Inmostcases,thecouplingbetweentwoelectronicstatesisnotstrong, i.e.,theenergydifferencebetweentwoelectronicstatesisbigenoughsothatasmalldisplacementofnucleiwillnotchangetheelectronicstate,makingtheBOapproximationvalid,which allowstheseparationofelectrons(lightparticles)fromnuclei(heavyparticles)ontimescales, resultinginaconsiderablesimplification.

Accordingtothisapproximation,thetotalHamiltonianoperatorcanbeexpressedasthe sumofelectronicHamiltonianandnuclearHamiltonian.TheelectronicHamiltonianiswrittenas:

Unlessotherwisespecified,theHamiltonianusedinthischapterreferstotheelectronic HamiltonianofEq. (4).

AccordingtothePauliprinciple,thewavefunctionofamulti-electronatomormolecule shouldbeantisymmetricwithrespecttotheexchangeoftwoelectrons.Antisymmetrization leadstoFermiholes,preventingthecloseapproachoftheelectronswiththesamespinand reducingtherepulsionenergybetweenthem.Thus,themany-electronfunctioncanbeapproximatelywrittenastheantisymmetrizedproductof N one-electronfunctionsintheform ofaSlaterdeterminant(SD):

InEq. (5), ϕ1…ϕN refertospinorbitals.

ThesolutionoftheSchr € odingerequationinvolvescalculationsofallpairwiseinteractions betweenelectrons(seethelasttermofelectronicHamiltonian,Eq. (4))andelectronsandnuclei,whichbecomesanalyticallyintractableformorethanatwo-bodyproblem(onenucleus andoneelectron).ThisleadstothefactthattheSchr € odingerequationcannotbesolvedexactly formulti-electronsystems.Twoapproximatingapproaches,variationalprinciple,andperturbationtheoryarewidelyusedtosolvetheSchr € odingerequationtoextractthenecessaryinformationaboutatomsormoleculesofinterest.

Variationalprinciple

GivenasystemwhoseHamiltonianistime-independentandwhoselowest-energyeigenvaluesis E1,if ϕ isanynormalized,well-behavedfunctionofcoordinatesofthesystem’sparticlesthatsatisfiestheboundaryconditions,then

Ifthetrialfunctionhasaminimumofenergywithrespecttovariationalcoefficient c,we canfinditby

Thelowerenergy,thebetterthetrialwavefunction.Andifthetrialfunctionisaccurate enough,thefunctionwegetwillbecloseenoughtothetrueground-statewavefunction. Toimprovethequalityoftrialwavefunction,thelinearvariationalprincipleisapplied, bywhichthetrialwavefunctionisconstructedbyalinearcombinationof n linearlyindependentfunctions(χ 1, χ 2, ⋯ χ n):

where c1 cn arethevariationalcoefficientstobeoptimized.

Basedonthisprinciple,theminimizationroutineregulatestheparameterstoobtainthe wavefunctioncorrespondingtotheminimumenergy,whichisthewavefunctionthatclosely approximatesthegroundstate.

Fromthevariationalprinciple,thevalueofthelowestrootistheupperboundforthesystem’sground-stateenergy.Withthelinearvariationalprinciple,insteadofobtainingthetrial wavefunction,thecombinationcoefficientsofthebasisfunctionsshouldbesolved.

Perturbationtheory

Perturbationtheoryprovidesaprocedureforfindingapproximatesolutionstothe Schr € odingerequationforasystemthatdiffersonlyslightlyfromasystemforwhichthe solutionsareknown.Thismethodisfrequentlyemployedtoestimatethefunctionsorvalues basedonpartialknowledgeaboutthesolutionsoftheinvestigatedproblem.

IftheSchrodingerequationfortheHamiltonianoperator ^ H

cannotbesolvedexactly,butweknowtheexactsolutionsoftheHamiltonianoperator

wherethesuperscript(0)denoteszero-order,whichmeansthatthewavefunctionandenergy arealreadyknown,thesubscript n denotesthe n th electronicstate.

Inperturbationtheory,weassumethat ^ H maybeexpandedas:

Theoperator ^ H 0 iscalledtheperturbation.Sincetheoperator ^ H differsonlyslightlyfrom ^ H 0 ðÞ ,theeigenfunctionsandeigenvaluesof ^ H willnotdiffersignificantlyfromthoseofthe unperturbedHamiltonianoperator ^ H 0 ðÞ .

Ifwesuggestthatthewavefunctionandenergycanbeexpressedasthelinearexpansion accordingto λ,whichcanbewrittenas

Herethesuperscript(k)denotestheorderofwavefunctionandenergyaccordingtotheexpansion.Inthelimit λ ! 0,theperturbedsystemreducestotheunperturbedsystem.

First,itisassumedthatthezero-orderwavefunctionisnotdegenerateforsimplicity.By equatingthecoefficientsofthesamepowerof λ,wecanobtainaseriesofequations,from whichwecanobtainthefirst-,second-,andhigher-ordercorrections.Thefirst-orderenergy correctionisanaverageoftheperturbationoperatorovertheunperturbedwavefunction

whilethesecond-orderenergycorrectionscanbeexpressedas:

Thefirst-orderwavefunctioncorrection ψ n (1) isorthogonaltotheunperturbedwave function.

Itcanbefoundthat ψ n (1) canbeexpressedasthelinearcombinationof m th (m ¼ n)electronic states.Thesmallertheenergydifferencebetween m th stateand n th stateis,orthelargerthe couplingterm ψ 0 ðÞ m ^ H 0 ψ 0 ðÞ n DE is,thelargerthecombinationcoefficientofthe m th electronic statewavefunctioncouldbe.

Second,ifthezero-orderwavefunctionisdegenerate,anyarbitrarycombinationofthedegeneratewavefunctionsistheeigenfunctionof ^ H 0 ðÞ.However,introducingtheperturbation operator ^ H 0 willcompletelyorpartiallyremovethedegeneracy.Thus,themostimportant issueistoderivethecombinationcoefficientsofthedegeneratewavefunction.Itiscalled adegenerateperturbativetheory,whichcanbeseenfromthetextbook.

Comparisonofthevariationprincipleandperturbationtheory

Theperturbationmethodappliestoalltheboundstatesofasystem.Thevariationtheorem appliestotheloweststateofagivensymmetry.Also,wecanusethelinearvariationmethod totreattheexcitedboundstates.Intheperturbationmethod,onecancalculatetheenergy muchmoreaccurately(toanorderof2 k +1)thanthewavefunction(toanorderof k).The accuracyofperturbationcalculationsdependsonzero-orderHamiltonianandwavefunction, whilethevariationmethodcangetarelativelygoodresultwitharatherinaccuratewave function.

Fundamentalsofquantumchemistry

Basedonthefundamentalpostulates,conceptsandapproximationsinquantummechanics,QCisdevotedtoexploringtheelectronicstructureofmulti-electronsystemsbyusingmolecularelectronicstructuremethodsthatsolvethemolecularSchr € odingerequationassociated withdifferentkindsofmolecularHamiltonian.Methodsthatdonotincludeanyempiricalor semiempiricalparametersarecalledabinitiomethods.Thisdoesnotindicatethattheirsolutionsareexact;theyareallapproximate.Itmeansthataparticularapproximationisrigorouslydefinedonfirstprinciples(quantumtheory)andthensolvedwithinanerrormargin thatisqualitativelyknownbeforehand.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.