Production processes of renewable aviation fuel: present technologies and future trends claudia guti

Page 1


https://ebookmass.com/product/production-processes-of-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Biofuels and Biorefining: Volume 2: Intensification Processes and Biorefineries Claudia Gutierrez-Antonio

https://ebookmass.com/product/biofuels-and-biorefiningvolume-2-intensification-processes-and-biorefineries-claudiagutierrez-antonio/ ebookmass.com

Handbook of Biofuels Production: Processes and Technologies Rafael Luque

https://ebookmass.com/product/handbook-of-biofuels-productionprocesses-and-technologies-rafael-luque/

ebookmass.com

Advanced Biofuel Technologies: Present Status, Challenges and Future Prospects D.K. Tuli

https://ebookmass.com/product/advanced-biofuel-technologies-presentstatus-challenges-and-future-prospects-d-k-tuli/

ebookmass.com

Marriages and Families in the 21st Century: A Bioecological Approach

https://ebookmass.com/product/marriages-and-families-in-the-21stcentury-a-bioecological-approach/

ebookmass.com

Reencuentro (Libro 2) Robyn Hill

https://ebookmass.com/product/reencuentro-libro-2-robyn-hill/

ebookmass.com

August's Consultations in Feline Internal Medicine, Volume 7, 1e 1st Edition Susan Little Dvm Dabvp (Feline)

https://ebookmass.com/product/augusts-consultations-in-felineinternal-medicine-volume-7-1e-1st-edition-susan-little-dvm-dabvpfeline/

ebookmass.com

Welcome to Management: How to Grow from Top Performer to Excellent Leader Ryan Hawk

https://ebookmass.com/product/welcome-to-management-how-to-grow-fromtop-performer-to-excellent-leader-ryan-hawk/

ebookmass.com

Fundamental Things 1st Edition Louis Derosset

https://ebookmass.com/product/fundamental-things-1st-edition-louisderosset/

ebookmass.com

Fuzzy Graph Theory: Applications to Global Problems John N. Mordeson

https://ebookmass.com/product/fuzzy-graph-theory-applications-toglobal-problems-john-n-mordeson/

ebookmass.com

Matematicas II: Calculo Integral Tenth Edition, Ap Edition. Edition Bruce Edwards

https://ebookmass.com/product/matematicas-ii-calculo-integral-tenthedition-ap-edition-edition-bruce-edwards/

ebookmass.com

PRODUCTION PROCESSESOF RENEWABLEAVIATION FUEL

PRODUCTION PROCESSESOF RENEWABLEAVIATION FUEL

PresentTechnologiesand FutureTrends

CLAUDIAGUTIE ´ RREZ-ANTONIO

ChemistryFaculty,UniversidadAuto ´ nomadeQueretaro,Quere ´ taro,Mexico

ARACELIGUADALUPEROMERO-IZQUIERDO

ChemicalEngineeringDepartment,UniversidaddeGuanajuato,Guanajuato,Mexico

FERNANDOISRAELGO ´ MEZ-CASTRO

ChemicalEngineeringDepartment,UniversidaddeGuanajuato,Guanajuato,Mexico

SALVADORHERNA ´ NDEZ

ChemicalEngineeringDepartment,UniversidaddeGuanajuato,Guanajuato,Mexico

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www. elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-819719-6

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

AcquisitionsEditor: KostasKIMarinakis

EditorialProjectManager: RachelPomery

ProductionProjectManager: KumarAnbazhagan

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

3.5.2Modelingofthehydrotreatingofthemixtureofoils.............65

4Productionprocessesfortheconversionofsugarand

5.7.1Problemstatement..................................................................144

5.7.2Modelingoflignocellulosicwaste.........................................145

5.7.3Productionprocess:conceptualdesign.................................146 5.7.4Simulationoftheoverallprocess..........................................153

6.6.1Conceptualdesignoftheenergyintegration........................186

6.6.2Simulationofthehydrotreatingprocesswithenergy

7.5.1Thegeneralizeddisjunctiveprogramming

7.5.2Relaxationofageneralizeddisjunctive

7.6Casestudy:optimizationofthebiojetfuelsupplychain

Biojetfuel:Drivingtheaviation sectortosustainability

1.1Motivation

Inthetransportsector,theaviationindustryhasthegreater growthrate.AccordingtotheInternationalAirTransport Association,in2017theworldtradegrowthoftheaviation industrywas5.4%,whichrepresented787billiondollars,dueto thetravelbyplaneof4.1billionofpassengersandthegrowth of9.7%fortheaircargobusiness(InternationalAirTransport Association,2018a,b).Moreover,forecastsindicatethatconsumerscouldspend1%ofworldgrossdomesticproductonair transportin2019(InternationalAirTransportAssociation, 2018a).Inordertoprovideallthesetransportservices,theaviationfuelrequirementswillalsoincrease.In2017theworldwide airlineindustryused341billionlitersoffuel,andthisamount isexpectedtoincreaseto368billionlitersoffuelin2019 (InternationalAirTransportAssociation,2018a).Ascanbe observedin Fig.1.1,thegrowthofaviationsectorhasbeensustainedovertheyears.

Itisworthmentioningthatfuelrepresents24.2%oftheaverageoperatingcostsoftheaviationindustry(InternationalAir TransportAssociation,2018a).Thereforetheavailabilityoffuels tofulfillthedemandatcompetitivepricesiskeyinthedevelopmentandgrowthofthesector.Inaddition,theemissionsof carbondioxide,derivedfromfuelusage,willalsoincreaseas aconsequenceofitshighgrowthrate.Asreference,in2017, thecivilaviationemittedaround859milliontonsofcarbondioxide,whichrepresent2%ofanthropogeniccarbonemissions (InternationalAirTransportAssociation,2018c).

Inthiscontext,theaviationsectorrecognizedthenecessityof havingasustainablegrowth,settingambitiousobjectivesto reduceitscarbonfootprint.Theproposedgoalsincludeda reductionof50%incarbondioxideemissionsby2050,with respectto2005emissionlevels,andaneutralgrowthincarbon dioxideemissionsfrom2020(InternationalAirTransport

1

Growthoftheaviationsectorintermsoffuelconsumptionandnumberoftravelers.

Four-pillarstrategyoftheaviationsector.

Association,2009).Thusafour-pillarstrategy(Fig.1.2)wasestablishedtoreachtheseobjectives,whichincluded:

1. Technologicalimprovementsinenginesandaircraftstructures

2. Operationalimprovementsthroughoptimizationofflight paths

3. Market-basedmeasures

4. Developmentofalternativefuels

Thefirstpillarcontemplatesanincreaseintheefficiencyof enginesof1.5%eachyearuntil2020.Thiswillhelptoreducethe fuelusage,andasaconsequencetheoperatingcostsandthe

Figure1.1
Figure1.2

carbondioxideemissions;inaddition,theapplicationofnano coatingstoairplanestoreduceitsweightisalsoconsidered.The secondpillarincludestheminimizationoffuelrequirementsby usingonlineoptimizationstrategies,whichconsidertheactual weatherconditions.Ontheotherhand,thethirdpillartakesinto accountthetradingofcarbondioxideemissions.Finally,the fourthpillarlooksuponthedevelopmentofalternativefuelsfor theaviationsector,whichmustberenewableandsustainable.In addition,thedevelopmentofthesealternativefuelswillhelpto haveindependenceoffossilfuels,atleastpartially.Thisis expectedtooccursincetherawmaterialsusedtoproducesuch renewablefuelscanbeobtainedinalocalscale,makinguseof theavailablematerialsineachregion.

Inparticular,theInternationalAirTransportAssociation pointsoutthatthedevelopmentofalternativefuelsistheoption thatcontributesthemosttothereductionofcarbondioxide emissionsintheaviationsector.Unlikeotheralternativefuels, aviationfuelmustbedrop-in,whichmeansthatthechemical compositionandphysicochemicalpropertiesmustbe,atleast, thesameofthejetfuel.Thisisbecauseredesigningtheairplane enginesisnotafeasiblealternativeforthemanufacturers,dueto thehighcomplexityofthesesystems;additionally,anychangein theairplaneswillrequirearecertification,whichisatimeconsumingandexpensiveprocess.Thusalternativeaviationfuels representaviableoptiontobegintheenergytransitionofthe aviationsector,simultaneouslyguaranteeingitssustainable developmentwithoutneedingarecertificationprocessoftheaircraftinfrastructure;otheralternativeenergies,suchassolaror windenergies,arenotdirectlycontemplatedforaviationsector, sincetheyarenotcompatiblewiththeexistinginfrastructure.

Becauseofallthepreviouslyexposedreasons,thedevelopmentofalternativefuelsforaviationhasreceivedalotofinterest inthelast11years,andseveralbookshavebeenpublishedin topicssuchaslogistics,markets,policies,andsustainability.This bookfocusesonthedetailedanalysisoftheproductionprocess forrenewableaviationfuelfromavarietyofsources,including theapplicationofintensificationandenergyintegrationstrategiesaswellasthestudyofthesupplychain.Inthenextsection, basicconceptsofthealternativeaviationfuelsarepresented.

1.2Basicconcepts

Theaviationfuelisknownasjetfuel,anditconsistsof hydrocarbonsintherangeofC8toC16.Jetfuelisobtained

fromthehydroprocessingofonecutofcrudeoil,calledkerosene,anditiscomposedofapproximately20%paraffins,40% isoparaffins,20%naphthenes,and20%aromatics(Bernabei etal.,2003).Thereareseveraltypesofjetfuels.Forcommercial airplanesthereareJetAandJetA-1;themaindifference betweenthemisthatJetA-1isultralowinsulfurcontent.For militaryusethereareJP-5andJP-8fuels.Themaindifference betweencommercialandmilitaryaviationfuelisthatthelast onescontaincorrosionandfreezinginhibitorsaswellaslubricantsandantistaticagents.

Inthesearchofafueltoreplaceeitherpartiallyorcompletely thefossiljetfuel,severalalternativeshavebeenproposed,such ashydrogen,bioacohols,andbiodiesel.Nevertheless,noneof thesepreviousalternativefuelshavetheadequateproperties (freezingpoint,thermalstability,volatility,amongothers)tobe usedattheregularoperatingconditionsoftheturbinesystemof theplanes.Asmentionedbefore,renewableaviationfuelmust bedrop-in.Thereforecompoundsknownassyntheticparaffinic kerosene(SPK)havebeendeveloped,whichcontainshydrocarbonsbothlinealandbranched,justlikefossiljetfuel.Dueto this,thephysicochemicalpropertiesofSPKareequal,andin somecasessuperior,tothoseoffossiljetfuel.TheSPKhasbeen establishedasthemostviablealternativetoreplacefossiljetfuel. BiojetfuelhasothernamesasSPK,renewableaviationfuel,aviationbiofuel,biokerosene,orsustainableaviationfuel. Table1.1 showsthemainpropertiesoffossilandrenewableaviationfuel (Agosta,2002;Chevron,2007).

Table1.1Somephysicochemicalpropertiesoffossilandrenewablejetfuel (Agosta,2002;Chevron,2007).

Oneimportantadvantageofrenewableaviationfuelisthatit containssmallamountsofsulfur,duetoitsrenewablenature, incomparisonwithfossiljetfuel;thismeanslesscontaminant emissions.Moreover,thecarbondioxideemissionsperMega Jouleassociatedwiththeproductionanduseoftherenewable jetfuelisbetween12%and56%lowerthantheonesreported forfossiljetfuel(Holmgren,2009).Atthispoint,itisimportant toremarkthatallthecarbondioxideemissionsgeneratedduringtheuseoftherenewablejetfuelarethesamethatare absorbedbythecropsduringitsgrowth;thereforethelifecycle greenhousegasemissionsoftherenewableaviationfuelcan be80%lowerthanthoseoffossiljetfuel,asshownin Fig.1.3 (InternationalAirTransportAssociation,2018c,d).

Thereforeimportantreductionsincarbondioxideemissions areobserved,wherespecificvaluedependsonthetypeofraw materialandtheproductionpathway;thesetwofactorsplaya keyroleinthesustainabilityoftheaviationfuels.

Biojetfuelcanbeproducedfromalltypesofbiomasses throughseveralproductionpathways(Fig.1.4).Also,SPKcan beproducedfromcarbonandnaturalgas;however,these sourcesarenotrenewable.

Dependingontheproductionpathway,biojetfuelcancontain ornotaromaticcompounds.The absenceofaromaticcompounds doesnotaffectthemainpropertiessuchasfreezingtemperature,

Figure1.3 Lifecyclegreenhousegasemissionsoftherenewableaviationfuel.

Figure1.4 Generalproduction processtoconvertbiomassto biojetfuel.

viscosity,orenergycontent;however,itcouldcauseleaksinthe fueldistributioncircuit,sincearomaticcompoundsexpandthe elastomers(Gutie ´ rrez-Antonioetal.,2016).Duetothis,incommercialairplanesbiojetfuelcanbeusedinmixtureswithfossiljet fuelupto50%involume,accordingtoASTM-D7566standard (ASTM,2019a).Inadditiontothecontentofaromaticcompounds, biojetfuelmustcomplainwiththesamepropertiesandtestsof fossiljetfuel,whicharepresentedinthenextsection.

1.3ASTMstandards

TobeacceptabletoCivilAviationAuthorities,aviationturbinefuelmustmeetstrictchemicalandphysicalcriteria (InternationalAirTransportAssociation,2012).Thereforethe certificationofaviationfuelsisregulatedthroughstandards, beingthemainreferencethoseemittedbytheAmerican SocietyforTestingandMaterials(ASTM).Therearefivestandardsrelatedtoaviationfuels:ASTMD1655,ASTMD7566, ASTMD7223,andASTMD4054.

TheASTMD1655standard,SpecificationforAviationTurbine Fuels,describestherequiredpropertiesforthecertificationof aviationfuelsatthetimeandplaceofdelivery(ASTM,2019b). Thisstandardappliestoderivedfuelsfromconventionalsources, mainlyJetAandJetA-1.Thepropertiesthatneedtobedeterminedforthecertificationofaviationfuelsincludecomposition, volatility,fluidity,combustion,corrosion,thermalstability,contaminants,andadditives(ASTM,2019b);therespectivetestmethodsforeachoneofthesepropertiesarepresentedin Table1.2.

Ontheotherhand,ASTMD7566standard,Specification forAviationTurbineFuelContainingSynthesizedHydrocarbons, includestherequiredpropertiesforthecertificationof

Table1.2Testmethodstodeterminethepropertiesofaviationfuelsaccording toASTMD1655standard(ASTM,2019b).

Test method DescriptionReferences

ASTM

D56

ASTM

D86

ASTM

D93

ASTM

D130

ASTM

D156

ASTM D240

ASTM

D323

ASTM

D381

ASTM D445

ASTM D613

ASTM D1266

ASTM D1298

ASTM D1319

ASTM D1322

ASTM D1405

ASTM D1840

ASTM D2276

ASTM D2386

TestMethodforFlashPointbyTagClosedCupTester

TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure

TestMethodsforFlashPointbyPensky MartensClosedCupTester

TestMethodforCorrosivenesstoCopperfromPetroleumProductsbyCopperStrip Test

TestMethodforSayboltColorofPetroleumProducts(SayboltChromometerMethod)

TestMethodforHeatofCombustionofLiquidHydrocarbonFuelsbyBomb Calorimeter

TestMethodforVaporPressureofPetroleumProducts(ReidMethod)

TestMethodforGumContentinFuelsbyJetEvaporation

TestMethodforKinematicViscosityofTransparentandOpaqueLiquids(and CalculationofDynamicViscosity)

TestMethodforCetaneNumberofDieselFuelOil

TestMethodforSulfurinPetroleumProducts(LampMethod)

TestMethodforDensity,RelativeDensity,orAPIGravityofCrudePetroleumand LiquidPetroleumProductsbyHydrometerMethod

TestMethodforHydrocarbonTypesinLiquidPetroleumProductsbyFluorescent IndicatorAdsorption

TestMethodforSmokePointofKeroseneandAviationTurbineFuel

TestMethodforEstimationofNetHeatofCombustionofAviationFuels

TestMethodforNaphthaleneHydrocarbonsinAviationTurbineFuelsbyUltraviolet Spectrophotometry

TestMethodforParticulateContaminantinAviationFuelbyLineSampling

TestMethodforFreezingPointofAviationFuels

(2016a)

(2018a)

(2018b)

(2018c)

(2015a)

(2017a)

(2015b)

(2017b)

(2018d)

(2018e)

(2017c)

(2018g)

(2018h)

(2013a)

(2017d)

(2014a)

(Continued )

Table1.2(Continued)

Test method DescriptionReferences

ASTM

D2622

ASTM

D2624

ASTM

D2887

ASTM

D2892

ASTM

D3120

ASTM

D3227

ASTM

D3240

ASTM

D3241

ASTM

D3242

ASTM

D3338

ASTM

D3343

ASTM

D3701

ASTM

D3828

ASTM

D3948

ASTM

D4052

ASTM

D4176

ASTM

D4294

ASTM

D4529

ASTM

D4625

TestMethodforSulfurinPetroleumProductsbyWavelengthDispersiveX-ray FluorescenceSpectrometry

ASTM (2016b)

TestMethodsforElectricalConductivityofAviationandDistillateFuels ASTM (2015c)

TestMethodforBoilingRangeDistributionofPetroleumFractionsbyGas Chromatography ASTM(2018j)

TestMethodforDistillationofCrudePetroleum(15-TheoreticalPlateColumn) ASTM (2018k)

TestMethodforTraceQuantitiesofSulfurinLightLiquidPetroleumHydrocarbonsby OxidativeMicrocoulometry

TestMethodfor(ThiolMercaptan)SulfurinGasoline,Kerosine,AviationTurbine,and DistillateFuels(PotentiometricMethod)

ASTM (2014b)

ASTM (2016c)

TestMethodforUndissolvedWaterinAviationTurbineFuels ASTM (2015d)

TestMethodforThermalOxidationStabilityofAviationTurbineFuels ASTM (2019c)

TestMethodforAcidityinAviationTurbineFuel ASTM (2017e)

TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2014c)

TestMethodforEstimationofHydrogenContentofAviationFuels ASTM (2016d)

TestMethodforHydrogenContentofAviationTurbineFuelsbyLow-Resolution NuclearMagneticResonanceSpectrometry

ASTM(2017f)

TestMethodsforFlashPointbySmallScaleClosedCupTester ASTM (2016e)

TestMethodforDeterminingWaterSeparationCharacteristicsofAviationTurbine FuelsbyPortableSeparometer ASTM(2018l)

TestMethodforDensity,RelativeDensity,andAPIGravityofLiquidsbyDigital DensityMeter ASTM (2018m)

TestMethodforFreeWaterandParticulateContaminationinDistillateFuels(Visual InspectionProcedures) ASTM (2014d)

TestMethodforSulfurinPetroleumandPetroleumProductsbyEnergyDispersive X-rayFluorescenceSpectrometry ASTM(2016f)

TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2017g)

TestMethodforMiddleDistillateFuelStorageStabilityat43 C(110 F) ASTM (2016g)

(Continued )

Table1.2(Continued)

Test method DescriptionReferences

ASTM D4737

ASTM

D4809

ASTM D4952

ASTM D4953

ASTM D5001

ASTM

D5006

ASTM

D5191

ASTM D5452

ASTM

D5453

ASTM

D5972

ASTM

D6045

ASTM D6379

ASTM

D6751

ASTM D6866

ASTM

D6890

ASTM

D7042

ASTM

D7153

ASTM

D7154

TestMethodforCalculatedCetaneIndexbyFourVariableEquation

TestMethodforHeatofCombustionofLiquidHydrocarbonFuelsbyBomb Calorimeter(PrecisionMethod)

TestMethodforQualitativeAnalysisforActiveSulfurSpeciesinFuelsandSolvents (DoctorTest)

TestMethodforVaporPressureofGasolineandGasoline-OxygenateBlends(Dry Method)

TestMethodforMeasurementofLubricityofAviationTurbineFuelsbytheBall-onCylinderLubricityEvaluator(BOCLE)

TestMethodforMeasurementofFuelSystemIcingInhibitors(EtherType)inAviation Fuels

TestMethodforVaporPressureofPetroleumProductsandLiquidFuels(MiniMethod)

TestMethodforParticulateContaminationinAviationFuelsbyLaboratoryFiltration

TestMethodforDeterminationofTotalSulfurinLightHydrocarbons, SparkIgnitionEngineFuel,DieselEngineFuel,andEngineOilbyUltraviolet Fluorescence

TestMethodforFreezingPointofAviationFuels(AutomaticPhaseTransitionMethod)

TestMethodforColorofPetroleumProductsbytheAutomaticTristimulusMethod

TestMethodforDeterminationofAromaticHydrocarbonTypesinAviationFuelsand PetroleumDistillates HighPerformanceLiquidChromatographyMethodwith RefractiveIndexDetection

SpecificationforBiodieselFuelBlendStock(B100)forMiddleDistillateFuels

(2016h)

(2018n)

(2017h)

(2015e)

(2014e)

(2019d)

(2012a)

(2016k)

(2011a)

(2018o)

TestMethodsforDeterminingtheBiobasedContentofSolid,Liquid,andGaseous SamplesUsingRadiocarbonAnalysis ASTM (2018p)

TestMethodforDeterminationofIgnitionDelayandDerivedCetaneNumber(DCN) ofDieselFuelOilsbyCombustioninaConstantVolumeChamber ASTM(2016l)

TestMethodforDynamicViscosityandDensityofLiquidsbyStabingerViscometer (andtheCalculationofKinematicViscosity)

(2016m)

TestMethodforFreezingPointofAviationFuels(AutomaticLaserMethod) ASTM(2015f)

TestMethodforFreezingPointofAviationFuels(AutomaticFiberOpticalMethod) ASTM (2015g)

(Continued )

Table1.2(Continued)

Test method DescriptionReferences

ASTM

D7170

ASTM

D7224

ASTM D7344

ASTM

D7345

ASTM D7524

ASTM D7619

ASTM D7668

ASTM D7797

ASTM D7872

ASTM D7945

ASTM D7959

ASTM D8073

TestMethodforDeterminationofDerivedCetaneNumber(DCN)ofDieselFuelOils FixedRangeInjectionPeriod,ConstantVolumeCombustionChamberMethod

TestMethodforDeterminingWaterSeparationCharacteristicsofKerosine-Type AviationTurbineFuelsContainingAdditivesbyPortableSeparometer

ASTM (2016n)

ASTM (2018q)

TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure(MiniMethod) ASTM(2017j)

TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure(MicroDistillationMethod)

TestMethodforDeterminationofStaticDissipaterAdditives(SDA)inAviation TurbineFuelandMiddleDistillateFuelsHighPerformanceLiquidChromatograph (HPLC)Method

TestMethodforSizingandCountingParticlesinLightandMiddleDistillateFuels,by AutomaticParticleCounter

TestMethodforDeterminationofDerivedCetaneNumber(DCN)ofDieselFuelOils IgnitionDelayandCombustionDelayUsingaConstantVolumeCombustionChamber Method

TestMethodforDeterminationoftheFattyAcidMethylEstersContentofAviation TurbineFuelUsingFlowAnalysisbyFourierTransformInfraredSpectroscopyRapid ScreeningMethod

TestMethodforDeterminingtheConcentrationofPipelineDragReducerAdditivein AviationTurbineFuels

TestMethodforDeterminationofDynamicViscosityandDerivedKinematicViscosity ofLiquidsbyConstantPressureViscometer

TestMethodforChlorideContentDeterminationofAviationTurbineFuelsusing ChlorideTestStrip

TestMethodforDeterminationofWaterSeparationCharacteristicsofAviation TurbineFuelbySmallScaleWaterSeparationInstrument

ASTM (2017k)

(2015h)

ASTM(2017l

ASTM (2017m)

ASTM(2018r)

ASTM (2018s)

ASTM (2016o)

ASTM (2016p)

ASTM (2016q)

commercialaviationfuelsthatcontainsyntheticcomponents (SPK)atthemanufacturepoint.Thisstandardappliestomixtures ofJetAandJetA-1withSPKproducedfromalternativessources, suchcarbon,naturalgas,andbiomass,alongwithhydrogenated fatsandoilsthroughFischer Tropschsynthesis(FT-SPK),hydroprocessing(HEFA-SPK),syntheticiso-paraffinickerosene(SIP), syntheticparaffinickeroseneplusaromatics(SPK/A),andalcohol tojet(ATJ)(ASTM,2019a);thepreviousprocessingpathwaysare theonesincludedintheannexofthestandardtothedate.Inthis

standard,themaximumblendingratioinvolumeisspecifiedfor eachconversionpathway.ForFT-SPK,HEFA-SPK,andSPK/Aprocessesitispossibletomixbiojet fuelwithfossiljetfueluntil50% involume;however,thispercentageis30%involumeforATJand 10%forSIP.ASTMD7566standardincludesallthetestmethods indicatedinASTMD1655standard,plussomeadditionalones thatarepresentedin Table1.3.Basically,afuelthatsatisfiesthe ASTMD7566standardalsofulfillstheASTMD1655standard.

Moreover,ASTMD7223standardfocusesontheSpecification forAviationCertificationTurbineFuel;thisstandarddescribes therequiredpropertiesforthecertificationofaviationfuels, derivedfromconventionalsources(ASTM,2017o),excluding thoseincludedinASTMD1655(ASTM,2019b).Thetestmethods listedinASTMD7223standardarepresentedin Table1.4.

Finally,ASTMD4054standard,PracticeforEvaluationofNew AviationTurbineFuelsandFuelAdditives,containsaguideforthe

Table1.3Testmethodstodeterminethepropertiesofaviationfuelsaccording toASTMD7566standard(ASTM,2019a)additionaltothoseestablishedinASTMD1655 standard(ASTM,2019b).

ASTM D129

ASTM

D2425

ASTM D2710

ASTM

D5291

ASTM

D6304

ASTM

D7111

ASTM D7539

ASTM D7974

TestMethodforSulfurinPetroleumProducts(GeneralHighPressureDecomposition DeviceMethod)

TestMethodforHydrocarbonTypesinMiddleDistillatesbyMassSpectrometry

TestMethodforBromineIndexofPetroleumHydrocarbonsbyElectrometricTitration

(2019e)

(2018u)

TestMethodsforInstrumentalDeterminationofCarbon,Hydrogen,andNitrogenin PetroleumProductsandLubricants ASTM(2016r)

TestMethodforDeterminationofWaterinPetroleumProducts,LubricatingOils,and AdditivesbyCoulometricKarlFischerTitration

TestMethodforDeterminationofTraceElementsinMiddleDistillateFuelsby InductivelyCoupledPlasmaAtomicEmissionSpectrometry(ICP-AES)

TestMethodforTotalFluorine,ChlorineandSulfurinAromaticHydrocarbonsand TheirMixturesbyOxidativePyrohydrolyticCombustionfollowedbyIon ChromatographyDetection(CombustionIonChromatography-CIC)

TestMethodforDeterminationofFarnesane,SaturatedHydrocarbons,and HexahydrofarnesolContentofSynthesizedIso-Paraffins(SIP)FuelforBlendingwith JetFuelbyGasChromatography

(2016s)

(2018v)

ASTM(2015i)

Table1.4Testmethodstodeterminethepropertiesofaviationfuelsaccording toASTMD7223standard(ASTM,2017o).

Test method DescriptionReferences

ASTM

D56

ASTM

D86

ASTM

D130

ASTM

D381

ASTM

D445

ASTM

D1266

ASTM

D1298

ASTM

D1319

ASTM

D1322

ASTM

D1840

ASTM

D2386

ASTM

D2622

ASTM

D2624

ASTM

D2887

ASTM

D3227

ASTM

D3241

ASTM

D3242

ASTM

D3338

TestMethodforFlashPointbyTagClosedCupTester

TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure

TestMethodforCorrosivenesstoCopperfromPetroleumProductsbyCopperStrip Test

TestMethodforGumContentinFuelsbyJetEvaporation

TestMethodforKinematicViscosityofTransparentandOpaqueLiquids(and CalculationofDynamicViscosity)

TestMethodforSulfurinPetroleumProducts(LampMethod)

TestMethodforDensity,RelativeDensity,orAPIGravityofCrudePetroleumand LiquidPetroleumProductsbyHydrometerMethod

TestMethodforHydrocarbonTypesinLiquidPetroleumProductsbyFluorescent IndicatorAdsorption

TestMethodforSmokePointofKeroseneandAviationTurbineFuel

TestMethodforNaphthaleneHydrocarbonsinAviationTurbineFuelsbyUltraviolet Spectrophotometry

TestMethodforFreezingPointofAviationFuels

TestMethodforSulfurinPetroleumProductsbyWavelengthDispersiveX-ray FluorescenceSpectrometry

TestMethodsforElectricalConductivityofAviationandDistillateFuels

TestMethodforBoilingRangeDistributionofPetroleumFractionsbyGas Chromatography

TestMethodfor(ThiolMercaptan)SulfurinGasoline,Kerosine,AviationTurbine,and DistillateFuels(PotentiometricMethod)

TestMethodforThermalOxidationStabilityofAviationTurbineFuels

TestMethodforAcidityinAviationTurbineFuel

TestMethodforEstimationofNetHeatofCombustionofAviationFuels

ASTM (2016a)

ASTM (2018a)

ASTM (2018c)

ASTM (2017b)

ASTM (2018d)

ASTM(2018f)

ASTM (2017c)

ASTM (2018g)

ASTM (2018h)

ASTM (2017d)

ASTM(2018i)

ASTM (2016b)

ASTM (2015c)

ASTM(2018j)

ASTM (2016c)

ASTM (2019c)

ASTM (2017e)

ASTM (2014c)

(Continued )

Table1.4(Continued)

Test method DescriptionReferences

ASTM

D3828

ASTM

D3948

ASTM D4052

ASTM D4294

ASTM

D4529

ASTM

D4809

ASTM

D4952

ASTM

D5001

ASTM

D5006

ASTM

D5453

ASTM

D5972

ASTM

D6378

ASTM

D7042

TestMethodsforFlashPointbySmallScaleClosedCupTester

TestMethodforDeterminingWaterSeparationCharacteristicsofAviationTurbine FuelsbyPortableSeparometer

TestMethodforDensity,RelativeDensity,andAPIGravityofLiquidsbyDigital DensityMeter

TestMethodforSulfurinPetroleumandPetroleumProductsbyEnergyDispersive X-rayFluorescenceSpectrometry

TestMethodforEstimationofNetHeatofCombustionofAviationFuels

TestMethodforHeatofCombustionofLiquidHydrocarbonFuelsbyBomb Calorimeter(PrecisionMethod)

TestMethodforQualitativeAnalysisforActiveSulfurSpeciesinFuelsandSolvents (DoctorTest)

TestMethodforMeasurementofLubricityofAviationTurbineFuelsbytheBall-onCylinderLubricityEvaluator(BOCLE)

TestMethodforMeasurementofFuelSystemIcingInhibitors(EtherType)inAviation Fuels

TestMethodforDeterminationofTotalSulfurinLightHydrocarbons,SparkIgnition EngineFuel,DieselEngineFuel,andEngineOilbyUltravioletFluorescence

TestMethodforFreezingPointofAviationFuels(AutomaticPhaseTransitionMethod)

TestMethodforDeterminationofVaporPressure(VPX)ofPetroleumProducts, Hydrocarbons,andHydrocarbon-OxygenateMixtures(TripleExpansionMethod)

TestMethodforDynamicViscosityandDensityofLiquidsbyStabingerViscometer (andtheCalculationofKinematicViscosity)

approvalprocessofnewfuelsoradditivesforcommercialormilitary use(ASTM,2017p).Thetestingcoversbasicspecificationproperties, expandedpropertiescalledfit-for-purposeproperties,enginerigand componenttesting,andifnecessary,full-scaleenginetesting (InternationalCivilAviationOrganization,2017).Thetestmethods includedinthisstandardarepresentedin Table1.5.

Nowadays,therearesixpathwaysthatareapprovedfortheproductionofbiojetfuelanditsuseincommercialaviation.The ASTMD7566standardwasapprovedin2009toconsiderSPK derivedfromgasificationofbiomassthroughFischer Tropsch synthesis;later,in2011thisspecificationwasexpandedtoinclude

(2016e)

(2018m)

(2017g)

(2018n)

(2017h)

(2014e)

(2016k)

(2018w)

(2016m)

Test method

Table1.5TestmethodsincludedinASTMD5054standard(ASTM,2017p).

DescriptionReference

ASTMA240/ A240M SpecificationforChromiumandChromium-NickelStainlessSteelPlate,Sheet,and StripforPressureVesselsandforGeneralApplications ASTM (2018x)

ASTMB36/ B36M SpecificationforBrassPlate,Sheet,Strip,AndRolledBar ASTM (2018y)

ASTMB93/ B93M SpecificationforMagnesiumAlloysinIngotFormforSandCastings,Permanent MoldCastings,andDieCastings

ASTM (2015j)

ASTMD56TestMethodforFlashPointbyTagClosedCupTester ASTM (2016a)

ASTMD86TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure ASTM (2018a)

ASTMD93TestMethodsforFlashPointbyPensky MartensClosedCupTester ASTM (2018b)

ASTMD257TestMethodsforDCResistanceorConductanceofInsulatingMaterials ASTM (2014f)

ASTMD395TestMethodsforRubberPropertyCompressionSet ASTM (2018z)

ASTMD412TestMethodsforVulcanizedRubberandThermoplasticElastomers—Tension ASTM (2016u)

ASTMD445TestMethodforKinematicViscosityofTransparentandOpaqueLiquids(and CalculationofDynamicViscosity) ASTM (2018d)

ASTMD471TestMethodforRubberPropertyEffectofLiquids ASTM (2016v)

ASTMD790TestMethodsforFlexuralPropertiesofUnreinforcedandReinforcedPlasticsand ElectricalInsulatingMaterials ASTM (2017q)

ASTMD924TestMethodforDissipationFactor(orPowerFactor)andRelativePermittivity (DielectricConstant)ofElectricalInsulatingLiquids ASTM (2015k)

ASTMD1002TestMethodforApparentShearStrengthofSingle-Lap-JointAdhesivelyBonded MetalSpecimensbyTensionLoading(Metal-to-Metal) ASTM (2019f)

ASTMD1319TestMethodforHydrocarbonTypesinLiquidPetroleumProductsbyFluorescent IndicatorAdsorption ASTM (2018g)

ASTMD1322TestMethodforSmokePointofKeroseneandAviationTurbineFuel ASTM (2018h)

ASTMD1331TestMethodsforSurfaceandInterfacialTensionofSolutionsofPaints,Solvents, SolutionsofSurface-ActiveAgents,andRelatedMaterials ASTM (2014g)

ASTMD1405TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2013b)

ASTMD1414TestMethodsforRubberO-Rings ASTM (2015l) (Continued )

Table1.5(Continued)

Test

method DescriptionReference

ASTMD1655SpecificationforAviationTurbineFuels

ASTMD2240TestMethodforRubberPropertyDurometerHardness

ASTMD2386TestMethodforFreezingPointofAviationFuels

(2019b)

(2015m)

(2018i)

ASTMD2425TestMethodforHydrocarbonTypesinMiddleDistillatesbyMassSpectrometry ASTM (2019g)

ASTMD2624TestMethodsforElectricalConductivityofAviationandDistillateFuels

ASTMD2887TestMethodforBoilingRangeDistributionofPetroleumFractionsbyGas Chromatography

ASTMD3241TestMethodforThermalOxidationStabilityofAviationTurbineFuels

(2015c)

(2018j)

(2019c)

ASTMD3242TestMethodforAcidityinAviationTurbineFuel ASTM (2017e)

ASTMD3338TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2014c)

ASTMD3359TestMethodsforRatingAdhesionbyTapeTest

ASTMD3363TestMethodforFilmHardnessbyPencilTest

(2017r)

(2011b)

ASTMD3701TestMethodforHydrogenContentofAviationTurbineFuelsbyLow-Resolution NuclearMagneticResonanceSpectrometry ASTM (2017f)

ASTMD3703TestMethodforHydroperoxideNumberofAviationTurbineFuels,Gasolineand DieselFuels ASTM (2018aa)

ASTMD3828TestMethodsforFlashPointbySmallScaleClosedCupTester ASTM (2016e)

ASTMD3948TestMethodforDeterminingWaterSeparationCharacteristicsofAviationTurbine FuelsbyPortableSeparometer ASTM (2018l)

ASTMD4052TestMethodforDensity,RelativeDensity,andAPIGravityofLiquidsbyDigital DensityMeter ASTM (2018m)

ASTMD4066ClassificationSystemforNylonInjectionandExtrusionMaterials(PA) ASTM (2013c)

ASTMD4529TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2017g)

ASTMD4629TestMethodforTraceNitrogeninLiquidHydrocarbonsbySyringe/InletOxidative CombustionandChemiluminescenceDetection ASTM (2017s)

ASTMD4809TestMethodforHeatofCombustionofLiquidHydrocarbonFuelsbyBomb Calorimeter(PrecisionMethod) ASTM (2018n) (Continued )

Table1.5(Continued)

Test method DescriptionReference

ASTMD5001TestMethodforMeasurementofLubricityofAviationTurbineFuelsbytheBall-onCylinderLubricityEvaluator(BOCLE)

ASTM (2014e)

ASTMD5291TestMethodsforInstrumentalDeterminationofCarbon,Hydrogen,andNitrogenin PetroleumProductsandLubricants ASTM (2016w)

ASTMD5304TestMethodforAssessingMiddleDistillateFuelStorageStabilitybyOxygen Overpressure ASTM (2015n)

ASTMD5363SpecificationforAnaerobicSingle-ComponentAdhesives(AN) ASTM (2016x)

ASTMD5972TestMethodforFreezingPointofAviationFuels(AutomaticPhaseTransition Method) ASTM (2016k)

ASTMD6304TestMethodforDeterminationofWaterinPetroleumProducts,LubricatingOils, andAdditivesbyCoulometricKarlFischerTitration

ASTMD6378TestMethodforDeterminationofVaporPressure(VPX)ofPetroleumProducts, Hydrocarbons,andHydrocarbon-OxygenateMixtures(TripleExpansionMethod)

ASTMD6732TestMethodforDeterminationofCopperinJetFuelsbyGraphiteFurnaceAtomic AbsorptionSpectrometry

ASTM (2016y)

ASTM (2018ab)

ASTM (2015o)

ASTMD6793TestMethodforDeterminationofIsothermalSecantandTangentBulkModulus ASTM (2012b)

ASTMD7042TestMethodforDynamicViscosityandDensityofLiquidsbyStabingerViscometer (andtheCalculationofKinematicViscosity)

ASTMD7111TestMethodforDeterminationofTraceElementsinMiddleDistillateFuelsby InductivelyCoupledPlasmaAtomicEmissionSpectrometry(ICP-AES)

ASTMD7171TestMethodforHydrogenContentofMiddleDistillatePetroleumProductsbyLowResolutionPulsedNuclearMagneticResonanceSpectroscopy

ASTM (2016m)

ASTM (2016t)

ASTM (2016z)

ASTMD7566SpecificationforAviationTurbineFuelContainingSynthesizedHydrocarbons ASTM (2019a)

ASTME411TestMethodforTraceQuantitiesofCarbonylCompoundswith2,4Dinitrophenylhydrazine

ASTM (2017t)

ASTME681TestMethodforConcentrationLimitsofFlammabilityofChemicals(Vaporsand Gases) ASTM (2015p)

ASTME1269TestMethodforDeterminingSpecificHeatCapacitybyDifferentialScanning Calorimetry

ASTM (2018ac)

aviationfuelderivedfromthehydroprocessingofplantoilsand fats(InternationalRenewableEnergyAgencyIRENA,2017).The thirdprocessingpathwayapprovedwasthesyntheticiso-paraffinic kerosene,alsoknownasDirectSugartoHydrocarbons,in2014.In 2015theSPKplusaromaticsroutewasapprovedandannexedto

thestandard(InternationalCivilAviationOrganization,2017), whilein2016thealcohol-to-jet routewasincorporatedtoASTM D7566standard(InternationalRenewableEnergyAgencyIRENA, 2017).Recently,thecoprocessingofrenewablelipidswithcrude oil-derivedmiddledistillatesinpetroleumrefinerieswasapproved bytheCommittee(CAAFI,2019);thispathwaywillbeaddedtothe annexinthefollowingeditionofthestandard.

Besidesthesepathways,thereareothersintheprocessof approvalbyASTM(InternationalAirTransportAssociation, 2018c,d).Oneofthemisthecatalytichydrothermolysisjet/high freezepointHEFA,whosepossiblefeedstocksarebio-oils,animal fats,andrecycledoils(InternationalCivilAviationOrganization, 2017).Anotherconversionrouteisthecoprocessingofbio-oils (coprocessing)withconventionalmiddledistillatesofpetrorefineries.Moreover,therouteATJ-SPKisalsoinapproval process;thisprocessconsidersalcoholproduction,usuallyisobutanol,frombiomass.AnotherpathwayisATJ-SKA,wherethefuel includesbio-aromaticslookingforitsuseinhigherpercentages. Finally,theprocessHEFAPlus(GreenDiesel)isunderevaluation, andthefirsttestflightwith15%ofthisnewfuelalreadytook place(InternationalCivilAviationOrganization,2017).

Itisworthmentioningthatthecertificationofanewfuel usuallytakesbetween3and5years,sinceitisamultistageand multifactorprocessandrequiresupto890,000litersofblended jetfueltobecompleted(PavlenkoandKharina,2018).Thusitis necessarytosimplifyandstandardizetheapprovalprocess,in ordertoallowfurtherdiversificationofconversionprocesses andfeedstockstobeusedforaviationalternativefuelsproduction(InternationalCivilAviationOrganization,2017).

1.4Combustionandflighttests

Asmentionedbefore,therenewableaviationfuelneedstobe testedinordertoevaluatethefulfillmentofthepropertiesestablishedinthestandardsASTMD1655(ASTM,2019b)andASTM D7566(ASTM,2019a).Oncethatthealternativefuelhasapproved thisevaluation,combustiontestsinjetenginesmustberealized. Thecombustionperformanceoftherenewableaviationfuel willdependmainlyonitscompositionandpropertiessuchas heatofcombustion,smokepoint,anddensity.Atthesametime, thesepropertieswilldependontherawmaterialandproduction process.Thereforeeachofthealternativejetfuelcanexhibitits ownuniquebehaviorduringcombustionduetoitsproperties

(Zhangetal.,2016).Duetothis,itisnecessarytoperformcombustiontestsofthesealternativefuelsinjetengines.

Thecombustiontestsareorientedtoevaluatetheperformanceofthealternativefuelinsidetheengine(leanblowout, atomization,ignition,andaltituderelight),andthecombustion products(emissions,smokeandcarbondeposit)(Zhangetal., 2016).Inaddition,long-termstudiesarerequiredinorderto analyzetheeffectoftheuseofalternativefuelsinthemechanicalintegrityofthejetengine.Thesestudiesmustbeperformed firstinjetenginesintheground,andlateronflighttests.

Thegroundenginetestsallowtoevaluatethereliabilityand safetyofalternativejetfuels;also,thecombustionproductsare measured(Zhangetal.,2016).Thefirsttimewherebiojetfuelwas usedinagroundtestbytheArgentina’sAirForcewasin2006;the testwasrealizedatBuenosAiresusing20%ofbiojetfuelproduced fromsoyandrapeseedoils.Fromthattesttothedatemanyother studieshavebeenrealized,andthefindingsindicatethatthe engineperformanceisnotaffectedbytheuseofalternativesfuels; indeed,inthecombustionofalternativejetfuelslessmolecular classesareinvolved,incomparisonwithfossiljetfuels(Zhang etal.,2016).Moreover,whenalternativeaviationfuelisusedthe thermalefficiencyissuperior,theCO,NOx,andSOx emissionsare reducedandsmallersootparticlesaregenerated(Friedl,2015; Zhangetal.,2016).Aninterestingresultwaspresentedby Corporanetal.(2012),reportingthatitispossibletopredictthe particleemissionsofthecombustionofalternativefuelsbasedon engine,enginesetting,limitedparticlematterdata,andfuelcomposition;thisisanimportantfunctionalitythatcanbeusedto improvethedesignoftheconversionprocessesofthebiomassin ordertominimizeparticleemissions.However,thearomaticcontenthasanimportantroleinthedensityandneatheatcombustionofbiojetfuels;lowaromaticcontentresultsinlowdensityof thefuelbuthighnetheatofcombustion( Yangetal.,2019).

Oncethattherenewableaviationfuelistestedinjetenginesat groundlevel,thenflighttestmustbeperformed.Theflighttestis thefinaltestingsteptodemonstratetheuseofacandidatejet fuelonaflyingaircraft(Zhangetal.,2016).Todate,renewable aviationfuelhasbeenusedintestandcommercialflightsallover theworld.In2007thefirstairtestwasperformedatNevadaby GreenFlightInternationalusingcanolaoilwithanaircraft AerovodochodyL29Delfin,whichwasamilitarytrainingaircraft. Nevertheless,thefirsttestflightinacommercialaircraft(Boeing 747-400)wasrealizedin2008byVirginAtlantic;inthistestflight, 20%ofbiojetfuelwasused,whichwasproducedfromcoconut andbabassuoils.Thefirstcommercialflightwasrealizedin2011

byKLM,using50%ofbiojetfuelproducedfromusedcookingoil; theflightwasfromAmsterdamtoPariswithanaircraftBoeing 737-800(Gutie ´ rrez-Antonioetal.,2017).Thegapbetweenthefirst testandcommercialflightswasduetothetimerequiredforthe certificationofthefuels,alongwiththeavailabilityofthequantitiesofbiofuelrequiredforthetests.

Between2006and2013,31testflightswereperformed (Gutie ´ rrez-Antonioetal.,2017);fromtheseflights,almosthalf employedrenewableaviationfuelproducedwiththehydrotreatingprocessofUOPHoneywell,while35%usedjetfuelgenerated withhydrotreatedestersandfattyacidspathwayfromSkyNRG. Therewereotherbiojetfuelsuppliersfortherealizationofthese testflights;however,UOPHoneywellandSkyNRGwerethemain actors,eventhoughFischer TropschtechnologywasalsocertifiedbytheASTMforbiojetfuelproduction.Accordingto InternationalAirTransportAssociation,between2011and2015, 22airlinesperformedover2500commercialpassengerflights withblendsofupto50%biojetfuelfromfeedstockincluding usedcookingoil,jatropha,camelina,algaeoils,andsugarcane (InternationalAirTransportAssociation,2018c,d).Moreover,in January2016aregularsupplyofrenewableaviationfuelthrough thecommonhydrantsystemstartedatOsloAirport,beingNeste, SkyNRG,andAirBPthesuppliers;recentlyastudyreportedthat thisactionhelpstoreducethegreenhousegasesoftheairlines by10% 15%(Baxteretal.,2020).LaterinMarchofthesame year,UnitedAirlinesbecamethefirstcompanytointroducebiojetfuelinitsnormaloperationinitsdailyflightsfromLos AngelesAirport;thebiofuelwasprovidedbyAltAir(International AirTransportAssociation,2018c,d).Fromthispoint,theincorporationofbiojetfuelinseveralairportsbegantoincrease;in Decemberof2018,morethan150,000commercialflightshave beenperformedusingrenewableaviationfuel.Inaddition,severalairlineshaveconcludedlong-termofftakeagreementswith biofuelsuppliers,mostofwhicharereportedascommercially competitive(InternationalAirTransportAssociation,2018c,d).

Accordingtothe InternationalAirTransportAssociation (2015),someofthesuccessfulairlines/biofuel’sproducersymbiosisarethefollowingones.TheaircraftofUnitedAirlines usesrenewableaviationfuelproducedfromAltAir;bothcompaniessignedin2013anagreementforthecommercializationof biojetfuelproducedfromnonediblenaturaloilsandagriculturalwastes.Ontheotherhand,SolenaFuelsconstructeda facilitytoproducebiojetfuelforBritishAirways;therenewable aviationfuelwillbeproducedfromlandfillwaste.Ontheother hand,theairplanesofAirFrancewilluserenewableaviation

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.