PRODUCTION PROCESSESOF RENEWABLEAVIATION FUEL
PresentTechnologiesand FutureTrends
CLAUDIAGUTIE ´ RREZ-ANTONIO
ChemistryFaculty,UniversidadAuto ´ nomadeQueretaro,Quere ´ taro,Mexico
ARACELIGUADALUPEROMERO-IZQUIERDO
ChemicalEngineeringDepartment,UniversidaddeGuanajuato,Guanajuato,Mexico
FERNANDOISRAELGO ´ MEZ-CASTRO
ChemicalEngineeringDepartment,UniversidaddeGuanajuato,Guanajuato,Mexico
SALVADORHERNA ´ NDEZ
ChemicalEngineeringDepartment,UniversidaddeGuanajuato,Guanajuato,Mexico
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2021ElsevierB.V.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www. elsevier.com/permissions
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
ISBN:978-0-12-819719-6
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: JoeHayton
AcquisitionsEditor: KostasKIMarinakis
EditorialProjectManager: RachelPomery
ProductionProjectManager: KumarAnbazhagan
CoverDesigner: VictoriaPearson
TypesetbyMPSLimited,Chennai,India
3.5.2Modelingofthehydrotreatingofthemixtureofoils.............65
4Productionprocessesfortheconversionofsugarand
5.7.1Problemstatement..................................................................144
5.7.2Modelingoflignocellulosicwaste.........................................145
5.7.3Productionprocess:conceptualdesign.................................146 5.7.4Simulationoftheoverallprocess..........................................153
6.6.1Conceptualdesignoftheenergyintegration........................186
6.6.2Simulationofthehydrotreatingprocesswithenergy
7.5.1Thegeneralizeddisjunctiveprogramming
7.5.2Relaxationofageneralizeddisjunctive
7.6Casestudy:optimizationofthebiojetfuelsupplychain
1
Growthoftheaviationsectorintermsoffuelconsumptionandnumberoftravelers.
Four-pillarstrategyoftheaviationsector.
Association,2009).Thusafour-pillarstrategy(Fig.1.2)wasestablishedtoreachtheseobjectives,whichincluded:
1. Technologicalimprovementsinenginesandaircraftstructures
2. Operationalimprovementsthroughoptimizationofflight paths
3. Market-basedmeasures
4. Developmentofalternativefuels
Thefirstpillarcontemplatesanincreaseintheefficiencyof enginesof1.5%eachyearuntil2020.Thiswillhelptoreducethe fuelusage,andasaconsequencetheoperatingcostsandthe
Figure1.1
Figure1.2
carbondioxideemissions;inaddition,theapplicationofnano coatingstoairplanestoreduceitsweightisalsoconsidered.The secondpillarincludestheminimizationoffuelrequirementsby usingonlineoptimizationstrategies,whichconsidertheactual weatherconditions.Ontheotherhand,thethirdpillartakesinto accountthetradingofcarbondioxideemissions.Finally,the fourthpillarlooksuponthedevelopmentofalternativefuelsfor theaviationsector,whichmustberenewableandsustainable.In addition,thedevelopmentofthesealternativefuelswillhelpto haveindependenceoffossilfuels,atleastpartially.Thisis expectedtooccursincetherawmaterialsusedtoproducesuch renewablefuelscanbeobtainedinalocalscale,makinguseof theavailablematerialsineachregion.
Inparticular,theInternationalAirTransportAssociation pointsoutthatthedevelopmentofalternativefuelsistheoption thatcontributesthemosttothereductionofcarbondioxide emissionsintheaviationsector.Unlikeotheralternativefuels, aviationfuelmustbedrop-in,whichmeansthatthechemical compositionandphysicochemicalpropertiesmustbe,atleast, thesameofthejetfuel.Thisisbecauseredesigningtheairplane enginesisnotafeasiblealternativeforthemanufacturers,dueto thehighcomplexityofthesesystems;additionally,anychangein theairplaneswillrequirearecertification,whichisatimeconsumingandexpensiveprocess.Thusalternativeaviationfuels representaviableoptiontobegintheenergytransitionofthe aviationsector,simultaneouslyguaranteeingitssustainable developmentwithoutneedingarecertificationprocessoftheaircraftinfrastructure;otheralternativeenergies,suchassolaror windenergies,arenotdirectlycontemplatedforaviationsector, sincetheyarenotcompatiblewiththeexistinginfrastructure.
Becauseofallthepreviouslyexposedreasons,thedevelopmentofalternativefuelsforaviationhasreceivedalotofinterest inthelast11years,andseveralbookshavebeenpublishedin topicssuchaslogistics,markets,policies,andsustainability.This bookfocusesonthedetailedanalysisoftheproductionprocess forrenewableaviationfuelfromavarietyofsources,including theapplicationofintensificationandenergyintegrationstrategiesaswellasthestudyofthesupplychain.Inthenextsection, basicconceptsofthealternativeaviationfuelsarepresented.
1.2Basicconcepts
Theaviationfuelisknownasjetfuel,anditconsistsof hydrocarbonsintherangeofC8toC16.Jetfuelisobtained
fromthehydroprocessingofonecutofcrudeoil,calledkerosene,anditiscomposedofapproximately20%paraffins,40% isoparaffins,20%naphthenes,and20%aromatics(Bernabei etal.,2003).Thereareseveraltypesofjetfuels.Forcommercial airplanesthereareJetAandJetA-1;themaindifference betweenthemisthatJetA-1isultralowinsulfurcontent.For militaryusethereareJP-5andJP-8fuels.Themaindifference betweencommercialandmilitaryaviationfuelisthatthelast onescontaincorrosionandfreezinginhibitorsaswellaslubricantsandantistaticagents.
Inthesearchofafueltoreplaceeitherpartiallyorcompletely thefossiljetfuel,severalalternativeshavebeenproposed,such ashydrogen,bioacohols,andbiodiesel.Nevertheless,noneof thesepreviousalternativefuelshavetheadequateproperties (freezingpoint,thermalstability,volatility,amongothers)tobe usedattheregularoperatingconditionsoftheturbinesystemof theplanes.Asmentionedbefore,renewableaviationfuelmust bedrop-in.Thereforecompoundsknownassyntheticparaffinic kerosene(SPK)havebeendeveloped,whichcontainshydrocarbonsbothlinealandbranched,justlikefossiljetfuel.Dueto this,thephysicochemicalpropertiesofSPKareequal,andin somecasessuperior,tothoseoffossiljetfuel.TheSPKhasbeen establishedasthemostviablealternativetoreplacefossiljetfuel. BiojetfuelhasothernamesasSPK,renewableaviationfuel,aviationbiofuel,biokerosene,orsustainableaviationfuel. Table1.1 showsthemainpropertiesoffossilandrenewableaviationfuel (Agosta,2002;Chevron,2007).
Table1.1Somephysicochemicalpropertiesoffossilandrenewablejetfuel (Agosta,2002;Chevron,2007).
Oneimportantadvantageofrenewableaviationfuelisthatit containssmallamountsofsulfur,duetoitsrenewablenature, incomparisonwithfossiljetfuel;thismeanslesscontaminant emissions.Moreover,thecarbondioxideemissionsperMega Jouleassociatedwiththeproductionanduseoftherenewable jetfuelisbetween12%and56%lowerthantheonesreported forfossiljetfuel(Holmgren,2009).Atthispoint,itisimportant toremarkthatallthecarbondioxideemissionsgeneratedduringtheuseoftherenewablejetfuelarethesamethatare absorbedbythecropsduringitsgrowth;thereforethelifecycle greenhousegasemissionsoftherenewableaviationfuelcan be80%lowerthanthoseoffossiljetfuel,asshownin Fig.1.3 (InternationalAirTransportAssociation,2018c,d).
Thereforeimportantreductionsincarbondioxideemissions areobserved,wherespecificvaluedependsonthetypeofraw materialandtheproductionpathway;thesetwofactorsplaya keyroleinthesustainabilityoftheaviationfuels.
Biojetfuelcanbeproducedfromalltypesofbiomasses throughseveralproductionpathways(Fig.1.4).Also,SPKcan beproducedfromcarbonandnaturalgas;however,these sourcesarenotrenewable.
Dependingontheproductionpathway,biojetfuelcancontain ornotaromaticcompounds.The absenceofaromaticcompounds doesnotaffectthemainpropertiessuchasfreezingtemperature,
Figure1.3 Lifecyclegreenhousegasemissionsoftherenewableaviationfuel.
Figure1.4 Generalproduction processtoconvertbiomassto biojetfuel.
viscosity,orenergycontent;however,itcouldcauseleaksinthe fueldistributioncircuit,sincearomaticcompoundsexpandthe elastomers(Gutie ´ rrez-Antonioetal.,2016).Duetothis,incommercialairplanesbiojetfuelcanbeusedinmixtureswithfossiljet fuelupto50%involume,accordingtoASTM-D7566standard (ASTM,2019a).Inadditiontothecontentofaromaticcompounds, biojetfuelmustcomplainwiththesamepropertiesandtestsof fossiljetfuel,whicharepresentedinthenextsection.
1.3ASTMstandards
TobeacceptabletoCivilAviationAuthorities,aviationturbinefuelmustmeetstrictchemicalandphysicalcriteria (InternationalAirTransportAssociation,2012).Thereforethe certificationofaviationfuelsisregulatedthroughstandards, beingthemainreferencethoseemittedbytheAmerican SocietyforTestingandMaterials(ASTM).Therearefivestandardsrelatedtoaviationfuels:ASTMD1655,ASTMD7566, ASTMD7223,andASTMD4054.
TheASTMD1655standard,SpecificationforAviationTurbine Fuels,describestherequiredpropertiesforthecertificationof aviationfuelsatthetimeandplaceofdelivery(ASTM,2019b). Thisstandardappliestoderivedfuelsfromconventionalsources, mainlyJetAandJetA-1.Thepropertiesthatneedtobedeterminedforthecertificationofaviationfuelsincludecomposition, volatility,fluidity,combustion,corrosion,thermalstability,contaminants,andadditives(ASTM,2019b);therespectivetestmethodsforeachoneofthesepropertiesarepresentedin Table1.2.
Ontheotherhand,ASTMD7566standard,Specification forAviationTurbineFuelContainingSynthesizedHydrocarbons, includestherequiredpropertiesforthecertificationof
Table1.2Testmethodstodeterminethepropertiesofaviationfuelsaccording toASTMD1655standard(ASTM,2019b).
Test method DescriptionReferences
ASTM
D56
ASTM
D86
ASTM
D93
ASTM
D130
ASTM
D156
ASTM D240
ASTM
D323
ASTM
D381
ASTM D445
ASTM D613
ASTM D1266
ASTM D1298
ASTM D1319
ASTM D1322
ASTM D1405
ASTM D1840
ASTM D2276
ASTM D2386
TestMethodforFlashPointbyTagClosedCupTester
TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure
TestMethodsforFlashPointbyPensky MartensClosedCupTester
TestMethodforCorrosivenesstoCopperfromPetroleumProductsbyCopperStrip Test
TestMethodforSayboltColorofPetroleumProducts(SayboltChromometerMethod)
TestMethodforHeatofCombustionofLiquidHydrocarbonFuelsbyBomb Calorimeter
TestMethodforVaporPressureofPetroleumProducts(ReidMethod)
TestMethodforGumContentinFuelsbyJetEvaporation
TestMethodforKinematicViscosityofTransparentandOpaqueLiquids(and CalculationofDynamicViscosity)
TestMethodforCetaneNumberofDieselFuelOil
TestMethodforSulfurinPetroleumProducts(LampMethod)
TestMethodforDensity,RelativeDensity,orAPIGravityofCrudePetroleumand LiquidPetroleumProductsbyHydrometerMethod
TestMethodforHydrocarbonTypesinLiquidPetroleumProductsbyFluorescent IndicatorAdsorption
TestMethodforSmokePointofKeroseneandAviationTurbineFuel
TestMethodforEstimationofNetHeatofCombustionofAviationFuels
TestMethodforNaphthaleneHydrocarbonsinAviationTurbineFuelsbyUltraviolet Spectrophotometry
TestMethodforParticulateContaminantinAviationFuelbyLineSampling
TestMethodforFreezingPointofAviationFuels
(2016a)
(2018a)
(2018b)
(2018c)
(2015a)
(2017a)
(2015b)
(2017b)
(2018d)
(2018e)
(2017c)
(2018g)
(2018h)
(2013a)
(2017d)
(2014a)
(Continued )
Table1.2(Continued)
Test method DescriptionReferences
ASTM
D2622
ASTM
D2624
ASTM
D2887
ASTM
D2892
ASTM
D3120
ASTM
D3227
ASTM
D3240
ASTM
D3241
ASTM
D3242
ASTM
D3338
ASTM
D3343
ASTM
D3701
ASTM
D3828
ASTM
D3948
ASTM
D4052
ASTM
D4176
ASTM
D4294
ASTM
D4529
ASTM
D4625
TestMethodforSulfurinPetroleumProductsbyWavelengthDispersiveX-ray FluorescenceSpectrometry
ASTM (2016b)
TestMethodsforElectricalConductivityofAviationandDistillateFuels ASTM (2015c)
TestMethodforBoilingRangeDistributionofPetroleumFractionsbyGas Chromatography ASTM(2018j)
TestMethodforDistillationofCrudePetroleum(15-TheoreticalPlateColumn) ASTM (2018k)
TestMethodforTraceQuantitiesofSulfurinLightLiquidPetroleumHydrocarbonsby OxidativeMicrocoulometry
TestMethodfor(ThiolMercaptan)SulfurinGasoline,Kerosine,AviationTurbine,and DistillateFuels(PotentiometricMethod)
ASTM (2014b)
ASTM (2016c)
TestMethodforUndissolvedWaterinAviationTurbineFuels ASTM (2015d)
TestMethodforThermalOxidationStabilityofAviationTurbineFuels ASTM (2019c)
TestMethodforAcidityinAviationTurbineFuel ASTM (2017e)
TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2014c)
TestMethodforEstimationofHydrogenContentofAviationFuels ASTM (2016d)
TestMethodforHydrogenContentofAviationTurbineFuelsbyLow-Resolution NuclearMagneticResonanceSpectrometry
ASTM(2017f)
TestMethodsforFlashPointbySmallScaleClosedCupTester ASTM (2016e)
TestMethodforDeterminingWaterSeparationCharacteristicsofAviationTurbine FuelsbyPortableSeparometer ASTM(2018l)
TestMethodforDensity,RelativeDensity,andAPIGravityofLiquidsbyDigital DensityMeter ASTM (2018m)
TestMethodforFreeWaterandParticulateContaminationinDistillateFuels(Visual InspectionProcedures) ASTM (2014d)
TestMethodforSulfurinPetroleumandPetroleumProductsbyEnergyDispersive X-rayFluorescenceSpectrometry ASTM(2016f)
TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2017g)
TestMethodforMiddleDistillateFuelStorageStabilityat43 C(110 F) ASTM (2016g)
(Continued )
Table1.2(Continued)
Test method DescriptionReferences
ASTM D4737
ASTM
D4809
ASTM D4952
ASTM D4953
ASTM D5001
ASTM
D5006
ASTM
D5191
ASTM D5452
ASTM
D5453
ASTM
D5972
ASTM
D6045
ASTM D6379
ASTM
D6751
ASTM D6866
ASTM
D6890
ASTM
D7042
ASTM
D7153
ASTM
D7154
TestMethodforCalculatedCetaneIndexbyFourVariableEquation
TestMethodforHeatofCombustionofLiquidHydrocarbonFuelsbyBomb Calorimeter(PrecisionMethod)
TestMethodforQualitativeAnalysisforActiveSulfurSpeciesinFuelsandSolvents (DoctorTest)
TestMethodforVaporPressureofGasolineandGasoline-OxygenateBlends(Dry Method)
TestMethodforMeasurementofLubricityofAviationTurbineFuelsbytheBall-onCylinderLubricityEvaluator(BOCLE)
TestMethodforMeasurementofFuelSystemIcingInhibitors(EtherType)inAviation Fuels
TestMethodforVaporPressureofPetroleumProductsandLiquidFuels(MiniMethod)
TestMethodforParticulateContaminationinAviationFuelsbyLaboratoryFiltration
TestMethodforDeterminationofTotalSulfurinLightHydrocarbons, SparkIgnitionEngineFuel,DieselEngineFuel,andEngineOilbyUltraviolet Fluorescence
TestMethodforFreezingPointofAviationFuels(AutomaticPhaseTransitionMethod)
TestMethodforColorofPetroleumProductsbytheAutomaticTristimulusMethod
TestMethodforDeterminationofAromaticHydrocarbonTypesinAviationFuelsand PetroleumDistillates HighPerformanceLiquidChromatographyMethodwith RefractiveIndexDetection
SpecificationforBiodieselFuelBlendStock(B100)forMiddleDistillateFuels
(2016h)
(2018n)
(2017h)
(2015e)
(2014e)
(2019d)
(2012a)
(2016k)
(2011a)
(2018o)
TestMethodsforDeterminingtheBiobasedContentofSolid,Liquid,andGaseous SamplesUsingRadiocarbonAnalysis ASTM (2018p)
TestMethodforDeterminationofIgnitionDelayandDerivedCetaneNumber(DCN) ofDieselFuelOilsbyCombustioninaConstantVolumeChamber ASTM(2016l)
TestMethodforDynamicViscosityandDensityofLiquidsbyStabingerViscometer (andtheCalculationofKinematicViscosity)
(2016m)
TestMethodforFreezingPointofAviationFuels(AutomaticLaserMethod) ASTM(2015f)
TestMethodforFreezingPointofAviationFuels(AutomaticFiberOpticalMethod) ASTM (2015g)
(Continued )
Table1.2(Continued)
Test method DescriptionReferences
ASTM
D7170
ASTM
D7224
ASTM D7344
ASTM
D7345
ASTM D7524
ASTM D7619
ASTM D7668
ASTM D7797
ASTM D7872
ASTM D7945
ASTM D7959
ASTM D8073
TestMethodforDeterminationofDerivedCetaneNumber(DCN)ofDieselFuelOils FixedRangeInjectionPeriod,ConstantVolumeCombustionChamberMethod
TestMethodforDeterminingWaterSeparationCharacteristicsofKerosine-Type AviationTurbineFuelsContainingAdditivesbyPortableSeparometer
ASTM (2016n)
ASTM (2018q)
TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure(MiniMethod) ASTM(2017j)
TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure(MicroDistillationMethod)
TestMethodforDeterminationofStaticDissipaterAdditives(SDA)inAviation TurbineFuelandMiddleDistillateFuelsHighPerformanceLiquidChromatograph (HPLC)Method
TestMethodforSizingandCountingParticlesinLightandMiddleDistillateFuels,by AutomaticParticleCounter
TestMethodforDeterminationofDerivedCetaneNumber(DCN)ofDieselFuelOils IgnitionDelayandCombustionDelayUsingaConstantVolumeCombustionChamber Method
TestMethodforDeterminationoftheFattyAcidMethylEstersContentofAviation TurbineFuelUsingFlowAnalysisbyFourierTransformInfraredSpectroscopyRapid ScreeningMethod
TestMethodforDeterminingtheConcentrationofPipelineDragReducerAdditivein AviationTurbineFuels
TestMethodforDeterminationofDynamicViscosityandDerivedKinematicViscosity ofLiquidsbyConstantPressureViscometer
TestMethodforChlorideContentDeterminationofAviationTurbineFuelsusing ChlorideTestStrip
TestMethodforDeterminationofWaterSeparationCharacteristicsofAviation TurbineFuelbySmallScaleWaterSeparationInstrument
ASTM (2017k)
(2015h)
ASTM(2017l
ASTM (2017m)
ASTM(2018r)
ASTM (2018s)
ASTM (2016o)
ASTM (2016p)
ASTM (2016q)
commercialaviationfuelsthatcontainsyntheticcomponents (SPK)atthemanufacturepoint.Thisstandardappliestomixtures ofJetAandJetA-1withSPKproducedfromalternativessources, suchcarbon,naturalgas,andbiomass,alongwithhydrogenated fatsandoilsthroughFischer Tropschsynthesis(FT-SPK),hydroprocessing(HEFA-SPK),syntheticiso-paraffinickerosene(SIP), syntheticparaffinickeroseneplusaromatics(SPK/A),andalcohol tojet(ATJ)(ASTM,2019a);thepreviousprocessingpathwaysare theonesincludedintheannexofthestandardtothedate.Inthis
standard,themaximumblendingratioinvolumeisspecifiedfor eachconversionpathway.ForFT-SPK,HEFA-SPK,andSPK/Aprocessesitispossibletomixbiojet fuelwithfossiljetfueluntil50% involume;however,thispercentageis30%involumeforATJand 10%forSIP.ASTMD7566standardincludesallthetestmethods indicatedinASTMD1655standard,plussomeadditionalones thatarepresentedin Table1.3.Basically,afuelthatsatisfiesthe ASTMD7566standardalsofulfillstheASTMD1655standard.
Moreover,ASTMD7223standardfocusesontheSpecification forAviationCertificationTurbineFuel;thisstandarddescribes therequiredpropertiesforthecertificationofaviationfuels, derivedfromconventionalsources(ASTM,2017o),excluding thoseincludedinASTMD1655(ASTM,2019b).Thetestmethods listedinASTMD7223standardarepresentedin Table1.4.
Finally,ASTMD4054standard,PracticeforEvaluationofNew AviationTurbineFuelsandFuelAdditives,containsaguideforthe
Table1.3Testmethodstodeterminethepropertiesofaviationfuelsaccording toASTMD7566standard(ASTM,2019a)additionaltothoseestablishedinASTMD1655 standard(ASTM,2019b).
ASTM D129
ASTM
D2425
ASTM D2710
ASTM
D5291
ASTM
D6304
ASTM
D7111
ASTM D7539
ASTM D7974
TestMethodforSulfurinPetroleumProducts(GeneralHighPressureDecomposition DeviceMethod)
TestMethodforHydrocarbonTypesinMiddleDistillatesbyMassSpectrometry
TestMethodforBromineIndexofPetroleumHydrocarbonsbyElectrometricTitration
(2019e)
(2018u)
TestMethodsforInstrumentalDeterminationofCarbon,Hydrogen,andNitrogenin PetroleumProductsandLubricants ASTM(2016r)
TestMethodforDeterminationofWaterinPetroleumProducts,LubricatingOils,and AdditivesbyCoulometricKarlFischerTitration
TestMethodforDeterminationofTraceElementsinMiddleDistillateFuelsby InductivelyCoupledPlasmaAtomicEmissionSpectrometry(ICP-AES)
TestMethodforTotalFluorine,ChlorineandSulfurinAromaticHydrocarbonsand TheirMixturesbyOxidativePyrohydrolyticCombustionfollowedbyIon ChromatographyDetection(CombustionIonChromatography-CIC)
TestMethodforDeterminationofFarnesane,SaturatedHydrocarbons,and HexahydrofarnesolContentofSynthesizedIso-Paraffins(SIP)FuelforBlendingwith JetFuelbyGasChromatography
(2016s)
(2018v)
ASTM(2015i)
Table1.4Testmethodstodeterminethepropertiesofaviationfuelsaccording toASTMD7223standard(ASTM,2017o).
Test method DescriptionReferences
ASTM
D56
ASTM
D86
ASTM
D130
ASTM
D381
ASTM
D445
ASTM
D1266
ASTM
D1298
ASTM
D1319
ASTM
D1322
ASTM
D1840
ASTM
D2386
ASTM
D2622
ASTM
D2624
ASTM
D2887
ASTM
D3227
ASTM
D3241
ASTM
D3242
ASTM
D3338
TestMethodforFlashPointbyTagClosedCupTester
TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure
TestMethodforCorrosivenesstoCopperfromPetroleumProductsbyCopperStrip Test
TestMethodforGumContentinFuelsbyJetEvaporation
TestMethodforKinematicViscosityofTransparentandOpaqueLiquids(and CalculationofDynamicViscosity)
TestMethodforSulfurinPetroleumProducts(LampMethod)
TestMethodforDensity,RelativeDensity,orAPIGravityofCrudePetroleumand LiquidPetroleumProductsbyHydrometerMethod
TestMethodforHydrocarbonTypesinLiquidPetroleumProductsbyFluorescent IndicatorAdsorption
TestMethodforSmokePointofKeroseneandAviationTurbineFuel
TestMethodforNaphthaleneHydrocarbonsinAviationTurbineFuelsbyUltraviolet Spectrophotometry
TestMethodforFreezingPointofAviationFuels
TestMethodforSulfurinPetroleumProductsbyWavelengthDispersiveX-ray FluorescenceSpectrometry
TestMethodsforElectricalConductivityofAviationandDistillateFuels
TestMethodforBoilingRangeDistributionofPetroleumFractionsbyGas Chromatography
TestMethodfor(ThiolMercaptan)SulfurinGasoline,Kerosine,AviationTurbine,and DistillateFuels(PotentiometricMethod)
TestMethodforThermalOxidationStabilityofAviationTurbineFuels
TestMethodforAcidityinAviationTurbineFuel
TestMethodforEstimationofNetHeatofCombustionofAviationFuels
ASTM (2016a)
ASTM (2018a)
ASTM (2018c)
ASTM (2017b)
ASTM (2018d)
ASTM(2018f)
ASTM (2017c)
ASTM (2018g)
ASTM (2018h)
ASTM (2017d)
ASTM(2018i)
ASTM (2016b)
ASTM (2015c)
ASTM(2018j)
ASTM (2016c)
ASTM (2019c)
ASTM (2017e)
ASTM (2014c)
(Continued )
Table1.4(Continued)
Test method DescriptionReferences
ASTM
D3828
ASTM
D3948
ASTM D4052
ASTM D4294
ASTM
D4529
ASTM
D4809
ASTM
D4952
ASTM
D5001
ASTM
D5006
ASTM
D5453
ASTM
D5972
ASTM
D6378
ASTM
D7042
TestMethodsforFlashPointbySmallScaleClosedCupTester
TestMethodforDeterminingWaterSeparationCharacteristicsofAviationTurbine FuelsbyPortableSeparometer
TestMethodforDensity,RelativeDensity,andAPIGravityofLiquidsbyDigital DensityMeter
TestMethodforSulfurinPetroleumandPetroleumProductsbyEnergyDispersive X-rayFluorescenceSpectrometry
TestMethodforEstimationofNetHeatofCombustionofAviationFuels
TestMethodforHeatofCombustionofLiquidHydrocarbonFuelsbyBomb Calorimeter(PrecisionMethod)
TestMethodforQualitativeAnalysisforActiveSulfurSpeciesinFuelsandSolvents (DoctorTest)
TestMethodforMeasurementofLubricityofAviationTurbineFuelsbytheBall-onCylinderLubricityEvaluator(BOCLE)
TestMethodforMeasurementofFuelSystemIcingInhibitors(EtherType)inAviation Fuels
TestMethodforDeterminationofTotalSulfurinLightHydrocarbons,SparkIgnition EngineFuel,DieselEngineFuel,andEngineOilbyUltravioletFluorescence
TestMethodforFreezingPointofAviationFuels(AutomaticPhaseTransitionMethod)
TestMethodforDeterminationofVaporPressure(VPX)ofPetroleumProducts, Hydrocarbons,andHydrocarbon-OxygenateMixtures(TripleExpansionMethod)
TestMethodforDynamicViscosityandDensityofLiquidsbyStabingerViscometer (andtheCalculationofKinematicViscosity)
approvalprocessofnewfuelsoradditivesforcommercialormilitary use(ASTM,2017p).Thetestingcoversbasicspecificationproperties, expandedpropertiescalledfit-for-purposeproperties,enginerigand componenttesting,andifnecessary,full-scaleenginetesting (InternationalCivilAviationOrganization,2017).Thetestmethods includedinthisstandardarepresentedin Table1.5.
Nowadays,therearesixpathwaysthatareapprovedfortheproductionofbiojetfuelanditsuseincommercialaviation.The ASTMD7566standardwasapprovedin2009toconsiderSPK derivedfromgasificationofbiomassthroughFischer Tropsch synthesis;later,in2011thisspecificationwasexpandedtoinclude
(2016e)
(2018m)
(2017g)
(2018n)
(2017h)
(2014e)
(2016k)
(2018w)
(2016m)
Test method
Table1.5TestmethodsincludedinASTMD5054standard(ASTM,2017p).
DescriptionReference
ASTMA240/ A240M SpecificationforChromiumandChromium-NickelStainlessSteelPlate,Sheet,and StripforPressureVesselsandforGeneralApplications ASTM (2018x)
ASTMB36/ B36M SpecificationforBrassPlate,Sheet,Strip,AndRolledBar ASTM (2018y)
ASTMB93/ B93M SpecificationforMagnesiumAlloysinIngotFormforSandCastings,Permanent MoldCastings,andDieCastings
ASTM (2015j)
ASTMD56TestMethodforFlashPointbyTagClosedCupTester ASTM (2016a)
ASTMD86TestMethodforDistillationofPetroleumProductsandLiquidFuelsatAtmospheric Pressure ASTM (2018a)
ASTMD93TestMethodsforFlashPointbyPensky MartensClosedCupTester ASTM (2018b)
ASTMD257TestMethodsforDCResistanceorConductanceofInsulatingMaterials ASTM (2014f)
ASTMD395TestMethodsforRubberPropertyCompressionSet ASTM (2018z)
ASTMD412TestMethodsforVulcanizedRubberandThermoplasticElastomers—Tension ASTM (2016u)
ASTMD445TestMethodforKinematicViscosityofTransparentandOpaqueLiquids(and CalculationofDynamicViscosity) ASTM (2018d)
ASTMD471TestMethodforRubberPropertyEffectofLiquids ASTM (2016v)
ASTMD790TestMethodsforFlexuralPropertiesofUnreinforcedandReinforcedPlasticsand ElectricalInsulatingMaterials ASTM (2017q)
ASTMD924TestMethodforDissipationFactor(orPowerFactor)andRelativePermittivity (DielectricConstant)ofElectricalInsulatingLiquids ASTM (2015k)
ASTMD1002TestMethodforApparentShearStrengthofSingle-Lap-JointAdhesivelyBonded MetalSpecimensbyTensionLoading(Metal-to-Metal) ASTM (2019f)
ASTMD1319TestMethodforHydrocarbonTypesinLiquidPetroleumProductsbyFluorescent IndicatorAdsorption ASTM (2018g)
ASTMD1322TestMethodforSmokePointofKeroseneandAviationTurbineFuel ASTM (2018h)
ASTMD1331TestMethodsforSurfaceandInterfacialTensionofSolutionsofPaints,Solvents, SolutionsofSurface-ActiveAgents,andRelatedMaterials ASTM (2014g)
ASTMD1405TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2013b)
ASTMD1414TestMethodsforRubberO-Rings ASTM (2015l) (Continued )
Table1.5(Continued)
Test
method DescriptionReference
ASTMD1655SpecificationforAviationTurbineFuels
ASTMD2240TestMethodforRubberPropertyDurometerHardness
ASTMD2386TestMethodforFreezingPointofAviationFuels
(2019b)
(2015m)
(2018i)
ASTMD2425TestMethodforHydrocarbonTypesinMiddleDistillatesbyMassSpectrometry ASTM (2019g)
ASTMD2624TestMethodsforElectricalConductivityofAviationandDistillateFuels
ASTMD2887TestMethodforBoilingRangeDistributionofPetroleumFractionsbyGas Chromatography
ASTMD3241TestMethodforThermalOxidationStabilityofAviationTurbineFuels
(2015c)
(2018j)
(2019c)
ASTMD3242TestMethodforAcidityinAviationTurbineFuel ASTM (2017e)
ASTMD3338TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2014c)
ASTMD3359TestMethodsforRatingAdhesionbyTapeTest
ASTMD3363TestMethodforFilmHardnessbyPencilTest
(2017r)
(2011b)
ASTMD3701TestMethodforHydrogenContentofAviationTurbineFuelsbyLow-Resolution NuclearMagneticResonanceSpectrometry ASTM (2017f)
ASTMD3703TestMethodforHydroperoxideNumberofAviationTurbineFuels,Gasolineand DieselFuels ASTM (2018aa)
ASTMD3828TestMethodsforFlashPointbySmallScaleClosedCupTester ASTM (2016e)
ASTMD3948TestMethodforDeterminingWaterSeparationCharacteristicsofAviationTurbine FuelsbyPortableSeparometer ASTM (2018l)
ASTMD4052TestMethodforDensity,RelativeDensity,andAPIGravityofLiquidsbyDigital DensityMeter ASTM (2018m)
ASTMD4066ClassificationSystemforNylonInjectionandExtrusionMaterials(PA) ASTM (2013c)
ASTMD4529TestMethodforEstimationofNetHeatofCombustionofAviationFuels ASTM (2017g)
ASTMD4629TestMethodforTraceNitrogeninLiquidHydrocarbonsbySyringe/InletOxidative CombustionandChemiluminescenceDetection ASTM (2017s)
ASTMD4809TestMethodforHeatofCombustionofLiquidHydrocarbonFuelsbyBomb Calorimeter(PrecisionMethod) ASTM (2018n) (Continued )
Table1.5(Continued)
Test method DescriptionReference
ASTMD5001TestMethodforMeasurementofLubricityofAviationTurbineFuelsbytheBall-onCylinderLubricityEvaluator(BOCLE)
ASTM (2014e)
ASTMD5291TestMethodsforInstrumentalDeterminationofCarbon,Hydrogen,andNitrogenin PetroleumProductsandLubricants ASTM (2016w)
ASTMD5304TestMethodforAssessingMiddleDistillateFuelStorageStabilitybyOxygen Overpressure ASTM (2015n)
ASTMD5363SpecificationforAnaerobicSingle-ComponentAdhesives(AN) ASTM (2016x)
ASTMD5972TestMethodforFreezingPointofAviationFuels(AutomaticPhaseTransition Method) ASTM (2016k)
ASTMD6304TestMethodforDeterminationofWaterinPetroleumProducts,LubricatingOils, andAdditivesbyCoulometricKarlFischerTitration
ASTMD6378TestMethodforDeterminationofVaporPressure(VPX)ofPetroleumProducts, Hydrocarbons,andHydrocarbon-OxygenateMixtures(TripleExpansionMethod)
ASTMD6732TestMethodforDeterminationofCopperinJetFuelsbyGraphiteFurnaceAtomic AbsorptionSpectrometry
ASTM (2016y)
ASTM (2018ab)
ASTM (2015o)
ASTMD6793TestMethodforDeterminationofIsothermalSecantandTangentBulkModulus ASTM (2012b)
ASTMD7042TestMethodforDynamicViscosityandDensityofLiquidsbyStabingerViscometer (andtheCalculationofKinematicViscosity)
ASTMD7111TestMethodforDeterminationofTraceElementsinMiddleDistillateFuelsby InductivelyCoupledPlasmaAtomicEmissionSpectrometry(ICP-AES)
ASTMD7171TestMethodforHydrogenContentofMiddleDistillatePetroleumProductsbyLowResolutionPulsedNuclearMagneticResonanceSpectroscopy
ASTM (2016m)
ASTM (2016t)
ASTM (2016z)
ASTMD7566SpecificationforAviationTurbineFuelContainingSynthesizedHydrocarbons ASTM (2019a)
ASTME411TestMethodforTraceQuantitiesofCarbonylCompoundswith2,4Dinitrophenylhydrazine
ASTM (2017t)
ASTME681TestMethodforConcentrationLimitsofFlammabilityofChemicals(Vaporsand Gases) ASTM (2015p)
ASTME1269TestMethodforDeterminingSpecificHeatCapacitybyDifferentialScanning Calorimetry
ASTM (2018ac)
aviationfuelderivedfromthehydroprocessingofplantoilsand fats(InternationalRenewableEnergyAgencyIRENA,2017).The thirdprocessingpathwayapprovedwasthesyntheticiso-paraffinic kerosene,alsoknownasDirectSugartoHydrocarbons,in2014.In 2015theSPKplusaromaticsroutewasapprovedandannexedto
thestandard(InternationalCivilAviationOrganization,2017), whilein2016thealcohol-to-jet routewasincorporatedtoASTM D7566standard(InternationalRenewableEnergyAgencyIRENA, 2017).Recently,thecoprocessingofrenewablelipidswithcrude oil-derivedmiddledistillatesinpetroleumrefinerieswasapproved bytheCommittee(CAAFI,2019);thispathwaywillbeaddedtothe annexinthefollowingeditionofthestandard.
Besidesthesepathways,thereareothersintheprocessof approvalbyASTM(InternationalAirTransportAssociation, 2018c,d).Oneofthemisthecatalytichydrothermolysisjet/high freezepointHEFA,whosepossiblefeedstocksarebio-oils,animal fats,andrecycledoils(InternationalCivilAviationOrganization, 2017).Anotherconversionrouteisthecoprocessingofbio-oils (coprocessing)withconventionalmiddledistillatesofpetrorefineries.Moreover,therouteATJ-SPKisalsoinapproval process;thisprocessconsidersalcoholproduction,usuallyisobutanol,frombiomass.AnotherpathwayisATJ-SKA,wherethefuel includesbio-aromaticslookingforitsuseinhigherpercentages. Finally,theprocessHEFAPlus(GreenDiesel)isunderevaluation, andthefirsttestflightwith15%ofthisnewfuelalreadytook place(InternationalCivilAviationOrganization,2017).
Itisworthmentioningthatthecertificationofanewfuel usuallytakesbetween3and5years,sinceitisamultistageand multifactorprocessandrequiresupto890,000litersofblended jetfueltobecompleted(PavlenkoandKharina,2018).Thusitis necessarytosimplifyandstandardizetheapprovalprocess,in ordertoallowfurtherdiversificationofconversionprocesses andfeedstockstobeusedforaviationalternativefuelsproduction(InternationalCivilAviationOrganization,2017).
1.4Combustionandflighttests
Asmentionedbefore,therenewableaviationfuelneedstobe testedinordertoevaluatethefulfillmentofthepropertiesestablishedinthestandardsASTMD1655(ASTM,2019b)andASTM D7566(ASTM,2019a).Oncethatthealternativefuelhasapproved thisevaluation,combustiontestsinjetenginesmustberealized. Thecombustionperformanceoftherenewableaviationfuel willdependmainlyonitscompositionandpropertiessuchas heatofcombustion,smokepoint,anddensity.Atthesametime, thesepropertieswilldependontherawmaterialandproduction process.Thereforeeachofthealternativejetfuelcanexhibitits ownuniquebehaviorduringcombustionduetoitsproperties
(Zhangetal.,2016).Duetothis,itisnecessarytoperformcombustiontestsofthesealternativefuelsinjetengines.
Thecombustiontestsareorientedtoevaluatetheperformanceofthealternativefuelinsidetheengine(leanblowout, atomization,ignition,andaltituderelight),andthecombustion products(emissions,smokeandcarbondeposit)(Zhangetal., 2016).Inaddition,long-termstudiesarerequiredinorderto analyzetheeffectoftheuseofalternativefuelsinthemechanicalintegrityofthejetengine.Thesestudiesmustbeperformed firstinjetenginesintheground,andlateronflighttests.
Thegroundenginetestsallowtoevaluatethereliabilityand safetyofalternativejetfuels;also,thecombustionproductsare measured(Zhangetal.,2016).Thefirsttimewherebiojetfuelwas usedinagroundtestbytheArgentina’sAirForcewasin2006;the testwasrealizedatBuenosAiresusing20%ofbiojetfuelproduced fromsoyandrapeseedoils.Fromthattesttothedatemanyother studieshavebeenrealized,andthefindingsindicatethatthe engineperformanceisnotaffectedbytheuseofalternativesfuels; indeed,inthecombustionofalternativejetfuelslessmolecular classesareinvolved,incomparisonwithfossiljetfuels(Zhang etal.,2016).Moreover,whenalternativeaviationfuelisusedthe thermalefficiencyissuperior,theCO,NOx,andSOx emissionsare reducedandsmallersootparticlesaregenerated(Friedl,2015; Zhangetal.,2016).Aninterestingresultwaspresentedby Corporanetal.(2012),reportingthatitispossibletopredictthe particleemissionsofthecombustionofalternativefuelsbasedon engine,enginesetting,limitedparticlematterdata,andfuelcomposition;thisisanimportantfunctionalitythatcanbeusedto improvethedesignoftheconversionprocessesofthebiomassin ordertominimizeparticleemissions.However,thearomaticcontenthasanimportantroleinthedensityandneatheatcombustionofbiojetfuels;lowaromaticcontentresultsinlowdensityof thefuelbuthighnetheatofcombustion( Yangetal.,2019).
Oncethattherenewableaviationfuelistestedinjetenginesat groundlevel,thenflighttestmustbeperformed.Theflighttestis thefinaltestingsteptodemonstratetheuseofacandidatejet fuelonaflyingaircraft(Zhangetal.,2016).Todate,renewable aviationfuelhasbeenusedintestandcommercialflightsallover theworld.In2007thefirstairtestwasperformedatNevadaby GreenFlightInternationalusingcanolaoilwithanaircraft AerovodochodyL29Delfin,whichwasamilitarytrainingaircraft. Nevertheless,thefirsttestflightinacommercialaircraft(Boeing 747-400)wasrealizedin2008byVirginAtlantic;inthistestflight, 20%ofbiojetfuelwasused,whichwasproducedfromcoconut andbabassuoils.Thefirstcommercialflightwasrealizedin2011
byKLM,using50%ofbiojetfuelproducedfromusedcookingoil; theflightwasfromAmsterdamtoPariswithanaircraftBoeing 737-800(Gutie ´ rrez-Antonioetal.,2017).Thegapbetweenthefirst testandcommercialflightswasduetothetimerequiredforthe certificationofthefuels,alongwiththeavailabilityofthequantitiesofbiofuelrequiredforthetests.
Between2006and2013,31testflightswereperformed (Gutie ´ rrez-Antonioetal.,2017);fromtheseflights,almosthalf employedrenewableaviationfuelproducedwiththehydrotreatingprocessofUOPHoneywell,while35%usedjetfuelgenerated withhydrotreatedestersandfattyacidspathwayfromSkyNRG. Therewereotherbiojetfuelsuppliersfortherealizationofthese testflights;however,UOPHoneywellandSkyNRGwerethemain actors,eventhoughFischer TropschtechnologywasalsocertifiedbytheASTMforbiojetfuelproduction.Accordingto InternationalAirTransportAssociation,between2011and2015, 22airlinesperformedover2500commercialpassengerflights withblendsofupto50%biojetfuelfromfeedstockincluding usedcookingoil,jatropha,camelina,algaeoils,andsugarcane (InternationalAirTransportAssociation,2018c,d).Moreover,in January2016aregularsupplyofrenewableaviationfuelthrough thecommonhydrantsystemstartedatOsloAirport,beingNeste, SkyNRG,andAirBPthesuppliers;recentlyastudyreportedthat thisactionhelpstoreducethegreenhousegasesoftheairlines by10% 15%(Baxteretal.,2020).LaterinMarchofthesame year,UnitedAirlinesbecamethefirstcompanytointroducebiojetfuelinitsnormaloperationinitsdailyflightsfromLos AngelesAirport;thebiofuelwasprovidedbyAltAir(International AirTransportAssociation,2018c,d).Fromthispoint,theincorporationofbiojetfuelinseveralairportsbegantoincrease;in Decemberof2018,morethan150,000commercialflightshave beenperformedusingrenewableaviationfuel.Inaddition,severalairlineshaveconcludedlong-termofftakeagreementswith biofuelsuppliers,mostofwhicharereportedascommercially competitive(InternationalAirTransportAssociation,2018c,d).
Accordingtothe InternationalAirTransportAssociation (2015),someofthesuccessfulairlines/biofuel’sproducersymbiosisarethefollowingones.TheaircraftofUnitedAirlines usesrenewableaviationfuelproducedfromAltAir;bothcompaniessignedin2013anagreementforthecommercializationof biojetfuelproducedfromnonediblenaturaloilsandagriculturalwastes.Ontheotherhand,SolenaFuelsconstructeda facilitytoproducebiojetfuelforBritishAirways;therenewable aviationfuelwillbeproducedfromlandfillwaste.Ontheother hand,theairplanesofAirFrancewilluserenewableaviation