Process safety calculations benintendi - The ebook in PDF and DOCX formats is ready for download now

Page 1


Soft Power Made in China: The Dilemmas of Online and Offline Media and Transnational Audiences 1st ed. Edition Claire Seungeun Lee

https://ebookmass.com/product/soft-power-made-in-china-the-dilemmasof-online-and-offline-media-and-transnational-audiences-1st-ededition-claire-seungeun-lee/ ebookmass.com

A System of Logic, Ratiocinative and Inductive John Stuart Mill

https://ebookmass.com/product/a-system-of-logic-ratiocinative-andinductive-john-stuart-mill/

ebookmass.com

Hunter’s Revenge Gerri Hill

https://ebookmass.com/product/hunters-revenge-gerri-hill/

ebookmass.com

Fundamentals of Cognitive Psychology 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/fundamentals-of-cognitivepsychology-3rd-edition-ebook-pdf/

ebookmass.com

The Prince & the Apocalypse 1st Edition Kara Mcdowell

https://ebookmass.com/product/the-prince-the-apocalypse-1st-editionkara-mcdowell/

ebookmass.com

ProcessSafetyCalculations

RenatoBenintendi MScCEngFIChemE

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

# 2018ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissionin writingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissions policiesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthan asmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-08-101228-4

ForinformationonallElsevierpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

PublisherDirector: JoeHayton

AcquisitionEditor: AnitaA.Koch

EditorialProjectManager: AnaClaudiaA.Garcia

ProductionProjectManager: SruthiSatheesh

CoverDesigner: VictoriaPearson

TypesetbySPiGlobal,India

Preface

Theaimofthisbookistoprovidethereaderwithsomeguidanceoncalculationsinprocess safety.Accordingly,theintentionoftheauthorwasnottoduplicateortoemulatethe manyexcellentliteratureworksproducedsincethemanyyearsofstudyonprocesssafety techniquesandmodels,butrathertobuild-upalogicalandfluidthreadtoovercomedoubts, uncertainties,anddifficultiesoftenmetincalculationexercises.Theavailableliterature sourcesoffereitherabroadrangeofdifferentmodelsandapproachesor,evenwhentheyare calculationsoriented,sometimesunavoidablyandfaultlesslyleavesomegapsinthecalculation criteria;thisisafeetobepaidtotherichnessandvarietyofdataandinformation.This bookhasadifferenttarget:toprovideaclearindicationonwheretogoinpracticalapplications whenacrossroadsismet,andwhenavailabledataaredifficulttobeconvertedintofiguresand findings.Nevertheless,thetheoreticalandconceptualbackgroundisdeemedtobeeffective inenablingtheusertoproperlyframethetopicsand,tosomeextent,someaspectsnotincluded intheexistingliteraturesourceshavealsobeendealtwith,fromprinciplestoapplications.

Thebookisthefinalstepofalongtriptheauthorstartedin1988,when,morethan10yearsafter theincidentsofFlixboroughandSeveso,andsomeyearsaftertheunresolvedtragedyof Bhopal,theSevesoIdirectivewasactuatedinItaly.ItisdoubtlessthatthisEuropeanlegislative acthasgivenatremendousimpulsetothedevelopmentofsystematicmethodsandtechniques inprocesssafetyengineering.Intheninetiestheauthorwasinvolvedasateacherinthefinal partoftheChemicalPlantscourseheldattheChemicalEngineeringfacultyattheUniversityof Salerno(Italy),providingsomeguidanceaboutprocessriskassessmentmethodologies.Inthe sameyears,alongexperienceacquiredasaninstructorwithinthecourseforRiskAnalysis, managedbytheItalianInspectoratesengagedintheSevesoDirectivesafetyreportsassessment, clearlyshowedhowdifficultandchallengingitwastorelatetheorytorealcases.Specifically, evenifchemicalengineers,andengineersingeneral,shouldhaveathoroughknowledgeof backgroundconceptsunderpinningprocesssafetystudies,theexperiencehasshownthat culturaltransitionfromprocesstoprocesssafetyengineeringisneitherautomaticnoreasy.The authorhasanalysedthisaspectinarecentarticle(Benintendi,2016),wherehehaspointedout thattheeffectivenessof adding-on basicprocesssafetyconceptstotheuniversitybackgroundis notalwayshigh.Thecombinationoftheexperienceacquiredfromprocesssafetyteaching, tutoring,andlecturingatseveraluniversitiesintheUK,Italy,Asia,andUSA,withthe

professionalexpertisedevelopedinalmost30years’work,hassuggestedthattheprovisionof basicconceptsalreadycalibratedonprocesssafetyismuchmoreeffective.

Inthisrespect,thisbookincludesafirstpartwherebasicconceptsofchemistry, thermodynamics,reactorengineering,hydraulics,andfluid-dynamicsarereviewedwitha specificfocusonprocesssafetyscenarios.Dozensoffullyresolvedexamplesfocusingon processsafetyapplicationshavebeenincluded.This Fundamentals sectionendswithone chapterdealingwithstructuralanalysisforprocesssafetyandanotheroneincludingastatistics andreliabilityoverview,aimingtoprovidethebasicconceptstoproperlymanagethe probabilisticaspectofriskassessmentstudies.Allthesefirstchaptersincludemanyliterature data,withtheintentiontoprovidetheuserswithacompletetoolfortheircalculations.

The ConsequenceAssessment sectionisorganisedaccordingtothetypicalsequentialoutcomes followingareleaseafterlossofcontainment.Someeffortshavebeenmadetoensurethatall potentialgapsanduncertaintiesinthecalculationswerecoveredandovercome,basedonthe professionalinvolvementoftheauthorinmanyprojectsdealingwithoilandgas, petrochemical,pharmaceutical,finechemistry,food,andenvironmentalsubjects.Inthis respect,theuserswillbedrivenacrossarelativelysimpleanddirectroute,unlikewhathappens whentheygototheliterature,whereobviouslyamuchwiderspreadofmethodsisprovided. Chapter7 focusesonreleasesfromcontainmentsandfrompools:onthebasisofthetheoretical backgroundprovidedinthe Fundamentals section,asystematicanalysisofpossiblescenarios hasbeencarriedout,withthesupportofmanyfullyresolvedexamples.Releaseofcarbon dioxidehasbeendealtwithindetail,duetotherelativelynewhazardousscenariospresented aftertheintroductionofCarbonCaptureandStorage(CCS)process,andtothespecificnature ofthissubstance,whichshowsasolid-liquidequilibriumbelowthetriplepointanddoesnot fullybehaveaccordingtoequilibriumthermodynamics. Chapter8 presentsdispersionmodels; intheauthor’sintention,theefforthasbeenmadetoresolvethevariousuncertaintiesmetby processsafetyengineersonwhichmodeltoadopt,whichregimetoselect,whichphaseofthe dispersionroutetoidentify,andwheretolocaliseit.Keyparametershavebeenidentifiedto drivethisapproachwiththesupportofmanyexamples.Eisenberg’smodelforflashfireand Kalghatgisolid’sflamemodelforjetfirehavebeenselectedfortheirsimplicity,completeness, androbustnessin Chapter9,whichcoversfire.Aspecificfocushasbeenmadeonignition sources,accordingtothesystematicBSEN1127-1standard,withtheaimtoreducethe incompletenessoftheapproachoftenfollowed. Chapter10 dealswithgasandvapour explosions,consistingofallofscenariospotentiallyresultinginsignificantoverpressures, includingBLEVE,RapidPhaseTransition,andthermalrunaway.TheMultiEnergyMethod (MEM)hasbeenfittedwiththefindingsoftheGAMEprojects,andthishasbeenveryeffective inremovingthetraditionallargelevelofsubjectivityanduncertaintyinblastcurveselection.A MEMdetailed,andfullyresolved,examplehasshownaverygoodconsistencywiththe findingsoftheBaker,Strehlow,andTang(BST)method. Chapter11 hasbeenincludedto coverdustexplosions.Inadditiontothemodelsdescribingtheprimaryandthesecondary

explosions,someHAZIDcasesrelatingtodustprocessingequipmenthavebeenincluded, accordingtothegreatemphasisthemachineryandtheATEXdirectiveshaveputonthis specificaspect.AcasestudydealingwiththeImperialSugarCompanyhasbeenanalysedand verifiedagainstsomecalculationfindings.

Chapter12 dealswithQRAtechniques,includingtheexceedancefrequencycurvebuild-up,the ALARPmodeldemonstration,theFNcurves,andthepartscount.Someapplicationshavealso beengiveninthischapter.

Inthisbook,unlessotherwisespecified,allunitsareexpressedaccordingtotheInternational System(SI)ormkssystem.Thisbookaimstosupportscientistsandengineersworkingin processsafetyengineering.Itisworthrepeatingthatitisabookofcalculationsofferingalarge numberofdatausefulforthispurpose.Theauthorguessesthatitisnotfreefrommistakesand defects,andtheauthorapologiesinadvanceforthat.Hewillbegratefulforanycontributions readerswillwishtogivehim,toensurethattheobjectivesthewriterhadinhismindcanbefully achieved.

Reading(Berkshire),30April2017

Reference

Benintendi,R.,April2016.Thebridgelinkbetweenuniversityandindustry:akeyfactorforachievinghigh performanceinprocesssafety.Educ.Chem.Eng.15,23–32. IChemE,Elsevier.

Massbalanceonagenericspacedomain.

where:

- Win isthemassenteringthespacedomain.

- Wout isthemassleavingthespacedomain.

- Wgen isthemassgeneratedorconverted.

- Wacc isthemassinventoryvariation.

AccordingtoLavoiser’sprinciple, Wgen existsonlyforcomponentswhicharetransformedinto others.

Processsafetyengineeringentailsabroadrangeofcomplexandvariablescenarioswherefull understandingofstoichiometryandmassbalancesisnecessarytoproperlyanalyseandassess therelatedprocessandplantconfigurations.Somecasesarediscussedhere,andspecific scenarioshavebeenanalysedinthenextparagraphs.

1.1.2ChemicalReactions

Alowpressurevesselcontainsastoichiometricmixtureofcarbonmonoxideandpureoxygenat ambienttemperature To (Fig.1.2).

Thesystemundergoesachemicalreactionthatconvertsallcarbonmonoxideintocarbon dioxideandisassumedtobeatthermalequilibriumsothatinitialambienttemperatureis attained.Applicationofidealgaseslaw,with V and To constant,gives:

where N1 and No arethefinalandinitialnumberofkmolesofproductandreactantsrespectively, whichinthisspecificcasecoincideswiththereactionstoichiometriccoefficient srp:

Fig.1.1

Itcanbeconcludedthereaction,assuminganoverallisothermalandisochoriccondition, causesa33%pressuredrop,whichcouldresultinacatastrophicoutcomeforthevessel.

1.1.3JetFlowsFromPressurisedSystems

Jetflowsfrompressurisedcontainmentsarefrequentinprocesssafety.Theconsequencesof toxicorflammablecompounddispersionstrictlydependonthejetdynamics.Thescenario shownin Fig.1.3 illustratesthereleaseofhydrogensulphidefromapipeline.

Thetoxicgasisreleasedwithamassflowrateof WH2 S .Airisentrainedintothejetaslongas thisisdeveloped,resultinginaprogressivedilutionofH2S.Dependingontheeffectofthe entrainment,toxicconcentrationsareproportionallyreduced,whileflammabilitywillbe promotedbyairmixingwithinaspecificregionofthejet.Assumingasteadystatevalueof

Fig.1.3
Fig.1.2
Oxidationofcarbonmonoxideleadingtovesseldepressurisation.

WH2 S ,andindicatingwith WAIR(z)theairentrainmentmassflowrateperlengthunitalong z,the massbalanceat z ¼ h canbewrittenas:

Ithasbeenshownhowimportantthecorrectmanagementofthisbalanceisinjetflow consequenceassessmentstudies.

1.1.4FlashFlow

Aflashflowisthereleaseofaliquidfromacontainmentwheretheoperatingtemperatureis significantlygreaterthanitsdownstreamboilingtemperature,typicallythenormalboiling temperature.Theliquidisforcedtovaporiseafractionofittoreachthedownstream equilibriumcondition.ThisisthecasewithLPGstoredatambienttemperature(Fig.1.4).

Theliquidmass W splitsintotheflashedvapourfraction XV andtheliquidfraction XL.Itis:

1.1.5AbsorptionandAdsorption

Removaloftoxicordangerouscompoundscanbeaccomplishedviamasstransferunits,suchas absorberoradsorptiontowers.Atypicalexampleistheaminetreatmentofsourgas(Fig.1.5), orabsorptionofcarbondioxidewithsodiumhydroxide.Forsourgastreatment,neglecting changesofflowrates Q and q,themassbalanceofH2Scanbesimplifiedconsideringthe concentrationofsulphur S

Emptyingofnitrogenblanketedtank.

Solution

Thetankheadspaceisassumedtobeoccupiedbynitrogenonly.Applicationofidealgaslaws:

ImposingthatpressureismaintainedconstantbythePCV.Itis:

Simplifyingandrearranging:

Consideringthat dV dt ¼ Q andthat V ¼ Vo + Q t ,Eq. (1.20) maybewrittenas:

Separating:

Solving:

where nN2o isthemolarnitrogenamountof Vo at t ¼ 0.Thisresultisintuitivebuthasbeen rigorouslyobtainedhereviatheapplicationofmassbalances.

1.2StatesofSubstancesinProcessSafety

Substancesinprocesssafetycanbepresentinthefollowingforms:

1.2.1GasesandVapours

Gasisafundamentalstateofsubstancesatatemperaturehigherthantheircritical temperature.Hydrogenandmethanehavetoberegardedasgasesatambient temperature,whereaspropaneandsulphurdioxidearevapoursandcanbecondensed bycompression.

1.2.2Liquid

Liquidsarethecondensedphaseofvapours.Theycanbeinequilibriumwiththeirvapoursat anytemperature,andvapourpressureistheequilibriumpressureexertedbyvapourabove theliquids.Liquidscanbemiscibleorimmiscible,polarornon-polar,andthisbehaviour stronglyaffectsthereleaseanddispersionscenarios.

1.2.3Dusts

Inadditiontobeingcombustible,dustswhicharefinelydividedsolidparticlescanbe explosive.Accordingto BS-EN60079-10-2:2015,combustibledusts,500 μmorlessin nominalsize,mayformanexplosivemixturewithairatatmosphericpressureand normaltemperatures.Particulartypesofsolidparticles,includingfibres,arecombustible flyings,greaterthan500 μminnominalsize,whichmayformanexplosivemixturewith airatatmosphericpressureandnormaltemperatures(BS-EN60079-10-2:2015).

Asforgasesandvapour,themechanismofdustexplosionconsistsoftherapidreleaseofheat duetothechemicalreaction:

Fuel+oxygen ! oxides+heat

Metaldustscanalsoexothermicallyreactwithnitrogenandcarbondioxideaccordingto Eckhoff(2003),whichclassifiesexplosivedustsasfollows:

-Naturalorganicmatters

-Syntheticorganicmaterials

-Coalandpeat -Metalssuchasaluminium,magnesium,zinc,andiron.

Bothstates,normalandstandard,areassumedinthisbooktobeat273.15Kand1atm,according to Hougenetal.(1954).Undertheseconditionsthenormalmolarvolumesareasfollows:

Volumeof1mol ¼ 22:414L

Volumeof1kmol ¼ 22:414m3

1.3.4PartsperMillion(GasandLiquidPhase)

ppmw(weight)—typicalinliquids

Ifliquidiswater,assumingwaterdensityas1000kg/m3 or1000g/L:

1.3.5PartsperMillion(GasPhase)

whereallsymbolsareknown.

1.3.6MolarConcentration(AqueousSolutions)

Itisdenotedas[X]andindicatesmoles/litre.

1.3.7ConcentrationUnitsConversionSummary

See Table1.1.

Example1.4

TheIDLH(immediatelydangeroustolifeandhealth)ofsulphursulphideis100ppmv.Calculate itasmg/Nm3 andasmolarfraction.(MW 34)

Solution

Example1.6

100kgofsolidsulphurareburntinacombustoratatmosphericpressure.Knowingthat10% ofairexcessisused,findthepartialpressureofnitrogenintheoffgas.(Sulphurmolecular weight:32,nitrogen:28,oxygen:32).

Solution

Thecombustionreactionis:

100kgofsulphurareequivalentto3.125kmol.Fromthereactionstoichiometryandconsidering 10%ofairexcess:

Thisresultisintuitive,duetheequimolarS/O2 ratio.

1.4.2KineticsandEquilibriuminGasReactiveMixtures

ThegasphasereactionrateofthegeneralchemicalreactionpresentedinEq. (1.2) maybe writtenas:

where rf istheforwardreactionrate, kf isthekineticconstant,and pRi arethereactant’s partialpressures.Somereactionsmaybereversible,thereforeasimilarequationmaybewritten forthebackwardreaction:

Atequilibriumthetworeactionratesarethesame:

where KP istheequilibriumconstant.

Manyimportantreactivemixturesinprocesssafetyreachtheequilibrium.

1.4.3LiquidSolutions

Liquidsolutionsareobtainedbydissolvinggaseous,liquid,orsolidsubstancesinliquids. Dependingonthenatureandthebehaviourofthedissolvedsubstances(solute),andofthe liquid(solvent),awiderangeofphysical–chemicalscenariosmaybeobtained,whichhaveto bewellunderstoodinorderforthemtobeproperlyanalysedprocesssafetywise.

Liquid–liquidsolutions

Miscibleliquidsformhomogeneoussolutions,whereasimmiscibleliquidsformtwophase dispersedemulsions.Ageneralcriterionusedtoestablishwhetherornottwoormoreliquids aremiscibleiscomparingtheirpolarfeatures.Theoldsaying likedissolveslike isaveryuseful ruleofthumb.Therefore,polarspecies,suchaswater,havetheabilitytoengageinhydrogen bonding.Alcoholsarelesspolar,butcanformhydrogenbondingaswell.Duetoitsstrong polarity,waterisanexcellentsolventformanyionicspecies.Non-polarspeciesdonothavea permanentdipole,andthereforecannotformhydrogenbonding.Organiccovalentliquids,such asmanyhydrocarbons,fallwithinthiscategory.

Thefollowinggeneralcriteriacanbeadoptedtopredictsolubilityofchemicals:

-Symmetricstructuremoleculeshaveaverylowdipolemomentandarenotdissolved bywater

-MoleculescontainingO HandN Hcanformhydrogenbonds

-Moleculescontainingfluorineandoxygenareexpectedtohaveahighdipolemoment -Purehydrocarbons,oilandgasoline,arenon-polarorweakmolecules

Dipolemomentgivesjustaverygeneralindicationofsolubilityofmolecules. Table1.2 includesthedipolemomentforsomeorganicandinorganicsubstances.

Acommonpracticeistoassumethefollowingscaleofpolaritywithrespecttothedipole moment:

-Dipolemoment < 0.4:Nonpolarmolecule.Behaviourequivalenttohomopolar covalentbond.

-0.4 < Dipolemoment < 1.7:Polarmolecule.Behaviourequivalenttoheteropolar covalentbond.

-Dipolemoment > 1.7.Verypolar(ionic)molecule.

Table1.3ParametersofHoffman’sequation

and b and TB (normalboilingtemperature)areincludedin Table1.3.

ForC7+ fractionsthefollowingequationscanbeused:

Pressureisgiveninbar.

1.4.4AzeotropicMixtures

ApplicationofRaoult’lawshowsthatmixturesofvapourcompositionaregenerallydifferent fromliquidcomposition,duetothedifferentvolatility(vapourpressures)ofthecomponents. Thisisnotalwaystrue,becausesomemixturesbehaveasasinglepurecompoundin correspondencetoaspecificcompositionandtemperatureatgivenpressures.Azeotropic compositionisfoundatconcentrationswherevolatilityisreversed,asshownin Fig.1.8.that representsthemixturesoftwopuresubstances, A and B.Intheleft-handzone,component A is morevolatilethancomponent B,whereasintheright-handzoneitistheopposite.Therefore

Fig.1.8

Liquidboilingpointsandvapourcondensationtemperaturesforminimum-boilingazeotrope mixturesofcomponents A and B

point Q intheliquid–vapourequilibriumzonecorrespondstoaliquidthatismorerichin B and toavapourthatismorerichin A thantheoriginalcomposition.Forpoint P itistheopposite.In correspondencetotheazeotropiccomposition,andtotheazeotropictemperature,vapourwill havethesamecompositionasliquid.

Table1.4 includessomeazeotropicmixtureswiththeindicationoftheazeotropiccomposition (firstcomponent)oftheazeotropictemperatureat1atm.

Table1.4Azeotropicmixturesat1atm(Dean,1999)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Process safety calculations benintendi - The ebook in PDF and DOCX formats is ready for download now by Education Libraries - Issuu