Process safety calculations benintendi - Download the full set of chapters carefully compiled

Page 1


https://ebookmass.com/product/process-safety-calculations-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Process

Safety

Calculations 2nd Edition Renato Benintendi

https://ebookmass.com/product/process-safety-calculations-2nd-editionrenato-benintendi/

ebookmass.com

Process Safety for Engineers : An Introduction 2nd Edition Ccps (Center For Chemical Process Safety)

https://ebookmass.com/product/process-safety-for-engineers-anintroduction-2nd-edition-ccps-center-for-chemical-process-safety/

ebookmass.com

Human Factors Handbook for Process Plant Operations: Improving Process Safety and System Performance 1st Edition Ccps (Center For Chemical Process Safety)

https://ebookmass.com/product/human-factors-handbook-for-processplant-operations-improving-process-safety-and-system-performance-1stedition-ccps-center-for-chemical-process-safety/ ebookmass.com

Power

Electronics

1st Edition Daniel W. Hart

https://ebookmass.com/product/power-electronics-1st-edition-daniel-whart/

ebookmass.com

Soft Power Made in China: The Dilemmas of Online and Offline Media and Transnational Audiences 1st ed. Edition Claire Seungeun Lee

https://ebookmass.com/product/soft-power-made-in-china-the-dilemmasof-online-and-offline-media-and-transnational-audiences-1st-ededition-claire-seungeun-lee/ ebookmass.com

A System of Logic, Ratiocinative and Inductive John Stuart Mill

https://ebookmass.com/product/a-system-of-logic-ratiocinative-andinductive-john-stuart-mill/

ebookmass.com

Hunter’s Revenge Gerri Hill

https://ebookmass.com/product/hunters-revenge-gerri-hill/

ebookmass.com

Fundamentals of Cognitive Psychology 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/fundamentals-of-cognitivepsychology-3rd-edition-ebook-pdf/

ebookmass.com

The Prince & the Apocalypse 1st Edition Kara Mcdowell

https://ebookmass.com/product/the-prince-the-apocalypse-1st-editionkara-mcdowell/

ebookmass.com

The Courage for Civil Repair: Narrating the Righteous in International Migration 1st ed. Edition Carlo Tognato

https://ebookmass.com/product/the-courage-for-civil-repair-narratingthe-righteous-in-international-migration-1st-ed-edition-carlo-tognato/

ebookmass.com

ProcessSafetyCalculations

RenatoBenintendi MScCEngFIChemE

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

# 2018ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissionin writingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissions policiesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthan asmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-08-101228-4

ForinformationonallElsevierpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

PublisherDirector: JoeHayton

AcquisitionEditor: AnitaA.Koch

EditorialProjectManager: AnaClaudiaA.Garcia

ProductionProjectManager: SruthiSatheesh

CoverDesigner: VictoriaPearson

TypesetbySPiGlobal,India

Preface

Theaimofthisbookistoprovidethereaderwithsomeguidanceoncalculationsinprocess safety.Accordingly,theintentionoftheauthorwasnottoduplicateortoemulatethe manyexcellentliteratureworksproducedsincethemanyyearsofstudyonprocesssafety techniquesandmodels,butrathertobuild-upalogicalandfluidthreadtoovercomedoubts, uncertainties,anddifficultiesoftenmetincalculationexercises.Theavailableliterature sourcesoffereitherabroadrangeofdifferentmodelsandapproachesor,evenwhentheyare calculationsoriented,sometimesunavoidablyandfaultlesslyleavesomegapsinthecalculation criteria;thisisafeetobepaidtotherichnessandvarietyofdataandinformation.This bookhasadifferenttarget:toprovideaclearindicationonwheretogoinpracticalapplications whenacrossroadsismet,andwhenavailabledataaredifficulttobeconvertedintofiguresand findings.Nevertheless,thetheoreticalandconceptualbackgroundisdeemedtobeeffective inenablingtheusertoproperlyframethetopicsand,tosomeextent,someaspectsnotincluded intheexistingliteraturesourceshavealsobeendealtwith,fromprinciplestoapplications.

Thebookisthefinalstepofalongtriptheauthorstartedin1988,when,morethan10yearsafter theincidentsofFlixboroughandSeveso,andsomeyearsaftertheunresolvedtragedyof Bhopal,theSevesoIdirectivewasactuatedinItaly.ItisdoubtlessthatthisEuropeanlegislative acthasgivenatremendousimpulsetothedevelopmentofsystematicmethodsandtechniques inprocesssafetyengineering.Intheninetiestheauthorwasinvolvedasateacherinthefinal partoftheChemicalPlantscourseheldattheChemicalEngineeringfacultyattheUniversityof Salerno(Italy),providingsomeguidanceaboutprocessriskassessmentmethodologies.Inthe sameyears,alongexperienceacquiredasaninstructorwithinthecourseforRiskAnalysis, managedbytheItalianInspectoratesengagedintheSevesoDirectivesafetyreportsassessment, clearlyshowedhowdifficultandchallengingitwastorelatetheorytorealcases.Specifically, evenifchemicalengineers,andengineersingeneral,shouldhaveathoroughknowledgeof backgroundconceptsunderpinningprocesssafetystudies,theexperiencehasshownthat culturaltransitionfromprocesstoprocesssafetyengineeringisneitherautomaticnoreasy.The authorhasanalysedthisaspectinarecentarticle(Benintendi,2016),wherehehaspointedout thattheeffectivenessof adding-on basicprocesssafetyconceptstotheuniversitybackgroundis notalwayshigh.Thecombinationoftheexperienceacquiredfromprocesssafetyteaching, tutoring,andlecturingatseveraluniversitiesintheUK,Italy,Asia,andUSA,withthe

professionalexpertisedevelopedinalmost30years’work,hassuggestedthattheprovisionof basicconceptsalreadycalibratedonprocesssafetyismuchmoreeffective.

Inthisrespect,thisbookincludesafirstpartwherebasicconceptsofchemistry, thermodynamics,reactorengineering,hydraulics,andfluid-dynamicsarereviewedwitha specificfocusonprocesssafetyscenarios.Dozensoffullyresolvedexamplesfocusingon processsafetyapplicationshavebeenincluded.This Fundamentals sectionendswithone chapterdealingwithstructuralanalysisforprocesssafetyandanotheroneincludingastatistics andreliabilityoverview,aimingtoprovidethebasicconceptstoproperlymanagethe probabilisticaspectofriskassessmentstudies.Allthesefirstchaptersincludemanyliterature data,withtheintentiontoprovidetheuserswithacompletetoolfortheircalculations.

The ConsequenceAssessment sectionisorganisedaccordingtothetypicalsequentialoutcomes followingareleaseafterlossofcontainment.Someeffortshavebeenmadetoensurethatall potentialgapsanduncertaintiesinthecalculationswerecoveredandovercome,basedonthe professionalinvolvementoftheauthorinmanyprojectsdealingwithoilandgas, petrochemical,pharmaceutical,finechemistry,food,andenvironmentalsubjects.Inthis respect,theuserswillbedrivenacrossarelativelysimpleanddirectroute,unlikewhathappens whentheygototheliterature,whereobviouslyamuchwiderspreadofmethodsisprovided. Chapter7 focusesonreleasesfromcontainmentsandfrompools:onthebasisofthetheoretical backgroundprovidedinthe Fundamentals section,asystematicanalysisofpossiblescenarios hasbeencarriedout,withthesupportofmanyfullyresolvedexamples.Releaseofcarbon dioxidehasbeendealtwithindetail,duetotherelativelynewhazardousscenariospresented aftertheintroductionofCarbonCaptureandStorage(CCS)process,andtothespecificnature ofthissubstance,whichshowsasolid-liquidequilibriumbelowthetriplepointanddoesnot fullybehaveaccordingtoequilibriumthermodynamics. Chapter8 presentsdispersionmodels; intheauthor’sintention,theefforthasbeenmadetoresolvethevariousuncertaintiesmetby processsafetyengineersonwhichmodeltoadopt,whichregimetoselect,whichphaseofthe dispersionroutetoidentify,andwheretolocaliseit.Keyparametershavebeenidentifiedto drivethisapproachwiththesupportofmanyexamples.Eisenberg’smodelforflashfireand Kalghatgisolid’sflamemodelforjetfirehavebeenselectedfortheirsimplicity,completeness, androbustnessin Chapter9,whichcoversfire.Aspecificfocushasbeenmadeonignition sources,accordingtothesystematicBSEN1127-1standard,withtheaimtoreducethe incompletenessoftheapproachoftenfollowed. Chapter10 dealswithgasandvapour explosions,consistingofallofscenariospotentiallyresultinginsignificantoverpressures, includingBLEVE,RapidPhaseTransition,andthermalrunaway.TheMultiEnergyMethod (MEM)hasbeenfittedwiththefindingsoftheGAMEprojects,andthishasbeenveryeffective inremovingthetraditionallargelevelofsubjectivityanduncertaintyinblastcurveselection.A MEMdetailed,andfullyresolved,examplehasshownaverygoodconsistencywiththe findingsoftheBaker,Strehlow,andTang(BST)method. Chapter11 hasbeenincludedto coverdustexplosions.Inadditiontothemodelsdescribingtheprimaryandthesecondary

explosions,someHAZIDcasesrelatingtodustprocessingequipmenthavebeenincluded, accordingtothegreatemphasisthemachineryandtheATEXdirectiveshaveputonthis specificaspect.AcasestudydealingwiththeImperialSugarCompanyhasbeenanalysedand verifiedagainstsomecalculationfindings.

Chapter12 dealswithQRAtechniques,includingtheexceedancefrequencycurvebuild-up,the ALARPmodeldemonstration,theFNcurves,andthepartscount.Someapplicationshavealso beengiveninthischapter.

Inthisbook,unlessotherwisespecified,allunitsareexpressedaccordingtotheInternational System(SI)ormkssystem.Thisbookaimstosupportscientistsandengineersworkingin processsafetyengineering.Itisworthrepeatingthatitisabookofcalculationsofferingalarge numberofdatausefulforthispurpose.Theauthorguessesthatitisnotfreefrommistakesand defects,andtheauthorapologiesinadvanceforthat.Hewillbegratefulforanycontributions readerswillwishtogivehim,toensurethattheobjectivesthewriterhadinhismindcanbefully achieved.

Reading(Berkshire),30April2017

Reference

Benintendi,R.,April2016.Thebridgelinkbetweenuniversityandindustry:akeyfactorforachievinghigh performanceinprocesssafety.Educ.Chem.Eng.15,23–32. IChemE,Elsevier.

Acknowledgements

Iwishtothankvariousprofessors,colleagues,andfriendsfortheircontributiontothisbook: ProfGianniAstaritaofUniversityofNaples(Italy)andDelaware,whoprovidedmewiththe mysteriouscodesofchemicalengineering.Thisbookisdedicatedtohismemoryasan appreciationfortheprestigiousChemicalEngineeringSchoolhecreatedinNaples,thatIhad thehonourandthepleasuretoattend.SimonaRega,forherprecioussupportandforthe contributiontothedevelopmentoftheRapidPhaseTransitionPhaseincludedinthisbook.My colleagues,FosterWheelerandAmecFosterWheeler,Readingoffice,whoinspiredthiswork throughtheirjointactivityandthecommitmentoftheProcessSafetyCalculationscourseheld inReadingin2014.Mystudentsofthemasterinprocesssafetyengineeringattendedat Sheffield,Leeds,andParis,whomItutored,givingmetheopportunitytomakeamuchbetter focusonthesubjectfromthisstandpoint.TheteamoftheProjectEvaluationLaboratoryofthe UniversityofSalerno(Italy),withwhomIamsharingandextendingtheriskassessment techniquesinamuchwiderperspective,whichhasresultedinasharperfocusonmethodsand philosophy.

Finally,Iwouldliketoexpressmythanks,gratitude,andappreciationtotheElsevierteamfor theirsupportandpatience:FionaGeraghty,AnitaKoch,RenataRodrigues,andMariaConvey, withoutwhoseadvicethesepageswouldhavebeenneitherwrittennorpublished.

Reading(Berkshire),30April2017

ChemistryofProcessSafety

Nothingislost,nothingiscreated.Everythingistransformed. (A.Lavoisier)

1.1StoichiometryandMassBalances

Stoichiometry(fromancientGreek στ οιχε ~ ιον element and μέτρον measure)isafundamentalpart ofbasicchemistrythatcanbedefinedas therelationshipbetweentherelativequantities ofsubstancestakingpartinareactionorformingacompound,typicallyaratioofwholeinteger. Thestoichiometryofachemicalreactioncanbeexpressedthroughtheexpression:

or

where a, b, c, d arethereactantsandproductsreactioncoefficients,and A, B, C, D arethe atomsorthemoleculesinvolvedinthereaction.Eq. (1.2) isageneralisedformofthesame formula.Itisworthnotingthat:

isthestoichiometricratioof Ri to Qj andindicatestheconstantrelationshipbetweenthe concentrationsofthesechemicalcompoundsthroughoutthereactionpath.

Puremixinganddispersionprocessesdon’tcauseanymodificationsofthechemicalidentityof thesubstancesbecauseofthephysicalnatureofthesephenomena.

1.1.1MassBalances

Massbalancesarebroadlyusedinprocessengineeringwhereprocessstreamsandconfigurations arewelldefined.Instead,processsafetyscenariosarevariableandoftenverycomplex. Consideringaportionofspace(Fig.1.1),thefollowinggeneralequationofmassbalanceapplies:

¼ Win Wout + Wgen

ProcessSafetyCalculations. https://doi.org/10.1016/B978-0-08-101228-4.00001-0 # 2018ElsevierLtd.Allrightsreserved.

Massbalanceonagenericspacedomain.

where:

- Win isthemassenteringthespacedomain.

- Wout isthemassleavingthespacedomain.

- Wgen isthemassgeneratedorconverted.

- Wacc isthemassinventoryvariation.

AccordingtoLavoiser’sprinciple, Wgen existsonlyforcomponentswhicharetransformedinto others.

Processsafetyengineeringentailsabroadrangeofcomplexandvariablescenarioswherefull understandingofstoichiometryandmassbalancesisnecessarytoproperlyanalyseandassess therelatedprocessandplantconfigurations.Somecasesarediscussedhere,andspecific scenarioshavebeenanalysedinthenextparagraphs.

1.1.2ChemicalReactions

Alowpressurevesselcontainsastoichiometricmixtureofcarbonmonoxideandpureoxygenat ambienttemperature To (Fig.1.2).

Thesystemundergoesachemicalreactionthatconvertsallcarbonmonoxideintocarbon dioxideandisassumedtobeatthermalequilibriumsothatinitialambienttemperatureis attained.Applicationofidealgaseslaw,with V and To constant,gives:

where N1 and No arethefinalandinitialnumberofkmolesofproductandreactantsrespectively, whichinthisspecificcasecoincideswiththereactionstoichiometriccoefficient srp:

Fig.1.1

Itcanbeconcludedthereaction,assuminganoverallisothermalandisochoriccondition, causesa33%pressuredrop,whichcouldresultinacatastrophicoutcomeforthevessel.

1.1.3JetFlowsFromPressurisedSystems

Jetflowsfrompressurisedcontainmentsarefrequentinprocesssafety.Theconsequencesof toxicorflammablecompounddispersionstrictlydependonthejetdynamics.Thescenario shownin Fig.1.3 illustratesthereleaseofhydrogensulphidefromapipeline.

Thetoxicgasisreleasedwithamassflowrateof WH2 S .Airisentrainedintothejetaslongas thisisdeveloped,resultinginaprogressivedilutionofH2S.Dependingontheeffectofthe entrainment,toxicconcentrationsareproportionallyreduced,whileflammabilitywillbe promotedbyairmixingwithinaspecificregionofthejet.Assumingasteadystatevalueof

Fig.1.3
Fig.1.2
Oxidationofcarbonmonoxideleadingtovesseldepressurisation.

WH2 S ,andindicatingwith WAIR(z)theairentrainmentmassflowrateperlengthunitalong z,the massbalanceat z ¼ h canbewrittenas:

Ithasbeenshownhowimportantthecorrectmanagementofthisbalanceisinjetflow consequenceassessmentstudies.

1.1.4FlashFlow

Aflashflowisthereleaseofaliquidfromacontainmentwheretheoperatingtemperatureis significantlygreaterthanitsdownstreamboilingtemperature,typicallythenormalboiling temperature.Theliquidisforcedtovaporiseafractionofittoreachthedownstream equilibriumcondition.ThisisthecasewithLPGstoredatambienttemperature(Fig.1.4).

Theliquidmass W splitsintotheflashedvapourfraction XV andtheliquidfraction XL.Itis:

1.1.5AbsorptionandAdsorption

Removaloftoxicordangerouscompoundscanbeaccomplishedviamasstransferunits,suchas absorberoradsorptiontowers.Atypicalexampleistheaminetreatmentofsourgas(Fig.1.5), orabsorptionofcarbondioxidewithsodiumhydroxide.Forsourgastreatment,neglecting changesofflowrates Q and q,themassbalanceofH2Scanbesimplifiedconsideringthe concentrationofsulphur S

gas Q, Sin

gas Q, Sout

Example1.1

Howmanykilogramsofoxygenarerequiredtoenrich500kgofairto50%ofO2 (molarbasis)? (Airmolecularweight ¼ 29,oxygenmolecularweight ¼ 32)

Solution 500kgofaircorrespondtothefollowingkmoles:

Thefinalamountofoxygenwillbe,asrequested,thesameasthatofnitrogen,i.e.13.62kmol. Therefore,theoxygentobeaddedcanbecalculatedbydifference:

Example1.2

Agasstream,otherthanair,containingacertainamountofhydrogensulphideissenttoaburner thatisfedwiththenecessaryairtooxidisethesulphidetosulphurdioxide.Knowingthattheoff gascontains464.8kg/hofmolecularnitrogenand20.8kg/hofmolecularoxygenandthatthe sulphideistheonlyoneoxidisablegas,determine:

(a)Themassflowrateofhydrogensulphidesenttotheburner

(b)Thesulphideoxidationefficiency

Fig.1.5 Aminetreatmentofsourgas.

(Hydrogensulphidemolecularweight ¼ 34,nitrogenmolecularweight ¼ 28)

Solution

Withreferenceto Fig.1.6,thecombustionprocessisrepresentedbythefollowingreaction:

Nitrogendoesnotparticipateinthereaction,sobeingthestoichiometriccoefficient:

andthenitrogenmolarflowrate 468 4 28 ¼ 16.6kmol/h,thehydrogensulphidemassflowrateis:

Unreactedoxygenis0.65kmol/h.Oxygenfedtotheburnerisequalto 16:6 0 21 0:79 ¼ 4:4kmoles=h.Theconversionefficiencyiscalculatedconsideringtheratioof unreactedtosuppliedoxygen:

Example1.3

Astoragetankcontainsaheavyhydrocarbonwithanegligiblevapourpressureattheoperating temperature.Thetankisnitrogenblanketedsothatapositiveoverpressureof Po ismaintained. Thetankemptyingisstartedwithaheadfreevolumeof Vo andaliquidflowrateequalto Q.Find thenitrogenmasstobeprovidedwithtimebythecontrollerPICinordertoensurethatpositive overpressure Po ismaintainedduringallemptyingphases(Fig.1.7).

Fig.1.6

Emptyingofnitrogenblanketedtank.

Solution

Thetankheadspaceisassumedtobeoccupiedbynitrogenonly.Applicationofidealgaslaws:

ImposingthatpressureismaintainedconstantbythePCV.Itis:

Simplifyingandrearranging:

Consideringthat dV dt ¼ Q andthat V ¼ Vo + Q t ,Eq. (1.20) maybewrittenas:

Separating:

Solving:

where nN2o isthemolarnitrogenamountof Vo at t ¼ 0.Thisresultisintuitivebuthasbeen rigorouslyobtainedhereviatheapplicationofmassbalances.

1.2StatesofSubstancesinProcessSafety

Substancesinprocesssafetycanbepresentinthefollowingforms:

1.2.1GasesandVapours

Gasisafundamentalstateofsubstancesatatemperaturehigherthantheircritical temperature.Hydrogenandmethanehavetoberegardedasgasesatambient temperature,whereaspropaneandsulphurdioxidearevapoursandcanbecondensed bycompression.

1.2.2Liquid

Liquidsarethecondensedphaseofvapours.Theycanbeinequilibriumwiththeirvapoursat anytemperature,andvapourpressureistheequilibriumpressureexertedbyvapourabove theliquids.Liquidscanbemiscibleorimmiscible,polarornon-polar,andthisbehaviour stronglyaffectsthereleaseanddispersionscenarios.

1.2.3Dusts

Inadditiontobeingcombustible,dustswhicharefinelydividedsolidparticlescanbe explosive.Accordingto BS-EN60079-10-2:2015,combustibledusts,500 μmorlessin nominalsize,mayformanexplosivemixturewithairatatmosphericpressureand normaltemperatures.Particulartypesofsolidparticles,includingfibres,arecombustible flyings,greaterthan500 μminnominalsize,whichmayformanexplosivemixturewith airatatmosphericpressureandnormaltemperatures(BS-EN60079-10-2:2015).

Asforgasesandvapour,themechanismofdustexplosionconsistsoftherapidreleaseofheat duetothechemicalreaction:

Fuel+oxygen ! oxides+heat

Metaldustscanalsoexothermicallyreactwithnitrogenandcarbondioxideaccordingto Eckhoff(2003),whichclassifiesexplosivedustsasfollows:

-Naturalorganicmatters

-Syntheticorganicmaterials

-Coalandpeat -Metalssuchasaluminium,magnesium,zinc,andiron.

1.2.4HybridMixtures

Ahybridmixtureisacombinedmixtureofaflammablegasorvapourwithacombustibledust orcombustibleflying,whichcanbehavedifferentlyfromthegas/vapourordustindividually (BS-EN60079-10-2:2015).

1.2.5ExplosiveMists

Disperseddropletsofliquidswhich,insomesituations,mayformaflammablemistwhich maythengiverisetoanexplosionhazard.Ithasbeenprovedthataerosolsizeddroplets (sub-micronto50microns)willlikelybethemosteasilyignitableportionofthemistcloud (BS-EN60079-10-2:2015).

1.2.6SupercriticalFluids

Thedefinedstateofacompound,mixture,orelementaboveitscriticalpressureand criticaltemperature(IUPAC,2014).CarbondioxideinCarbonCaptureandStorage(CCS) processingisfrequentlyhandledinitssupercriticalstate.

1.3MassandConcentrationUnitsinProcessSafety

Mole

Amountofgramscorrespondingtotheatomicormolecularweightofasubstance

Kmole

Amountofkilogramscorrespondingtotheatomicormolecularweightofasubstance

Molarfraction(Gasandliquidphase)

xi ¼ molarfractionofcomponent i

Ni ¼ numberofmolesorkmolesofcomponent i

Partialpressures(Gasphase)

AccordingtoDalton’slaw,withinthelimitofvalidityofidealgaslaw:

yi ¼ molarfractionofcomponent i inthegasphase

pi ¼ pressureofcomponent i

P ¼ totalpressure

1.3.1PartialVolumes(GasPhase)

AccordingtoAmagat’slaw,withinthelimitofvalidityofidealgaslaw:

yi ¼ molarfractionofcomponent i inthegasphase

Vi ¼ volumeofcomponent i

V ¼ totalvolume

1.3.2MassFraction(GasandLiquidPhase)

and:

xmi ¼ massfractionofcomponent i

mi ¼ partialpressureofcomponent i

wi ¼ massflowrateofcomponent i

1.3.3MasstoVolumeConcentration(GasandLiquidPhase)

where:

ci isthemasstovolumeconcentrationofcomponent i. V(T )isthesystemvolumeattemperature T.

Particularmasstovolumeconcentrationsare(gasphase):

where:

cNi isthemassconcentrationatnormalconditions.

cSi isthemassconcentrationatstandardconditions.

Bothstates,normalandstandard,areassumedinthisbooktobeat273.15Kand1atm,according to Hougenetal.(1954).Undertheseconditionsthenormalmolarvolumesareasfollows:

Volumeof1mol ¼ 22:414L

Volumeof1kmol ¼ 22:414m3

1.3.4PartsperMillion(GasandLiquidPhase)

ppmw(weight)—typicalinliquids

Ifliquidiswater,assumingwaterdensityas1000kg/m3 or1000g/L:

1.3.5PartsperMillion(GasPhase)

whereallsymbolsareknown.

1.3.6MolarConcentration(AqueousSolutions)

Itisdenotedas[X]andindicatesmoles/litre.

1.3.7ConcentrationUnitsConversionSummary

See Table1.1.

Example1.4

TheIDLH(immediatelydangeroustolifeandhealth)ofsulphursulphideis100ppmv.Calculate itasmg/Nm3 andasmolarfraction.(MW 34)

Solution

Table1.1Concentrationunitsconversionsummary

1,000,000 22 414 mg/Nm3 Molarfractiongas

:414 MW 1,000,000

mg/m3 Molarfractiongas 22:414 T 273 15 1,000,000 MW Molarfractiongas

414 T 1,000,000 MW

:414

273 15 MW 22:414 T

22:414 T

MW 273 15

MW,molecularweight; T,temperatureinK.

Example1.5

Apressurevesselcontains:

10kgofmolecularnitrogen (MW 28)

20kgofmolecularoxygen (MW 32)

50kgofcarbondioxide (MW 44)

Calculatemolarandmassfractionsat: T ¼ 20°Cand1atm T ¼ 60°Cand3atm

Solution

Molarandmassfractionsdon’tdependonpressureandtemperature.

1.4SolutionsandChemicalEquilibrium

Asolutionisdefinedasahomogeneousone-phasemixtureoftwoormoresubstances.In processsafetyitisveryfrequenttodealwithmixturesandsolutionswhichmayexistsinanyof thethreestatesofmatter,gaseous,liquid,andsolid.Knowledgeofsolutionsandmixtures chemistryisimportanttoidentifyandcalculatehazardouspropertiesoftheinvolved substances.

1.4.1GaseousSolutions

Examplesofgaseoussolutionsaremixturesofgaseoushydrocarbons,airthatismainlya mixtureofoxygenandnitrogen,off-gasesfromflaring,whichtypicallycontainscarbon dioxide,sulphurdioxide,water,andnitrogen.Nonreactivegasmixturespresentahighdegree ofhomogeneity,sotheycanalwaysbeconsideredsolutions.Thisisnotalwaystrueforliquid andsolidmixtures.GaseousmixturesaregovernedbyDalton’slawofpartialpressures,that statesthat thetotalpressurePofamixtureofncomponentsiisequaltothesumofthepartial pressuresPi ofallthedifferentgases:

Example1.6

100kgofsolidsulphurareburntinacombustoratatmosphericpressure.Knowingthat10% ofairexcessisused,findthepartialpressureofnitrogenintheoffgas.(Sulphurmolecular weight:32,nitrogen:28,oxygen:32).

Solution

Thecombustionreactionis:

100kgofsulphurareequivalentto3.125kmol.Fromthereactionstoichiometryandconsidering 10%ofairexcess:

Thisresultisintuitive,duetheequimolarS/O2 ratio.

1.4.2KineticsandEquilibriuminGasReactiveMixtures

ThegasphasereactionrateofthegeneralchemicalreactionpresentedinEq. (1.2) maybe writtenas:

where rf istheforwardreactionrate, kf isthekineticconstant,and pRi arethereactant’s partialpressures.Somereactionsmaybereversible,thereforeasimilarequationmaybewritten forthebackwardreaction:

Atequilibriumthetworeactionratesarethesame:

where KP istheequilibriumconstant.

Manyimportantreactivemixturesinprocesssafetyreachtheequilibrium.

1.4.3LiquidSolutions

Liquidsolutionsareobtainedbydissolvinggaseous,liquid,orsolidsubstancesinliquids. Dependingonthenatureandthebehaviourofthedissolvedsubstances(solute),andofthe liquid(solvent),awiderangeofphysical–chemicalscenariosmaybeobtained,whichhaveto bewellunderstoodinorderforthemtobeproperlyanalysedprocesssafetywise.

Liquid–liquidsolutions

Miscibleliquidsformhomogeneoussolutions,whereasimmiscibleliquidsformtwophase dispersedemulsions.Ageneralcriterionusedtoestablishwhetherornottwoormoreliquids aremiscibleiscomparingtheirpolarfeatures.Theoldsaying likedissolveslike isaveryuseful ruleofthumb.Therefore,polarspecies,suchaswater,havetheabilitytoengageinhydrogen bonding.Alcoholsarelesspolar,butcanformhydrogenbondingaswell.Duetoitsstrong polarity,waterisanexcellentsolventformanyionicspecies.Non-polarspeciesdonothavea permanentdipole,andthereforecannotformhydrogenbonding.Organiccovalentliquids,such asmanyhydrocarbons,fallwithinthiscategory.

Thefollowinggeneralcriteriacanbeadoptedtopredictsolubilityofchemicals:

-Symmetricstructuremoleculeshaveaverylowdipolemomentandarenotdissolved bywater

-MoleculescontainingO HandN Hcanformhydrogenbonds

-Moleculescontainingfluorineandoxygenareexpectedtohaveahighdipolemoment -Purehydrocarbons,oilandgasoline,arenon-polarorweakmolecules

Dipolemomentgivesjustaverygeneralindicationofsolubilityofmolecules. Table1.2 includesthedipolemomentforsomeorganicandinorganicsubstances.

Acommonpracticeistoassumethefollowingscaleofpolaritywithrespecttothedipole moment:

-Dipolemoment < 0.4:Nonpolarmolecule.Behaviourequivalenttohomopolar covalentbond.

-0.4 < Dipolemoment < 1.7:Polarmolecule.Behaviourequivalenttoheteropolar covalentbond.

-Dipolemoment > 1.7.Verypolar(ionic)molecule.

Table1.2Dipolemomentforsomeorganicandinorganicsubstances Substance

Resins2–3c Ionic

Crudeoils <0.7c Non-polar/polar

Asphaltenes 4–8c Ionic

aDean(1999)

bPolingetal.(2001)

cRiazi(2005)

Vapour–liquidequilibriuminliquidsolutions

Aliquidmixturemaypresenttoxicorflammablecharacteristicsdependingonconcentrations ofitscomponents,bothintheliquidandinthevapourphase.Therefore,itisimportantto understandthebehaviourofsolutionsinbothphases.Themostgeneralequilibriumrelationship betweenvapourconcentrationandliquidconcentrationofasubstanceinamixtureisgivenby theequation:

where yA and xA arethemolarfractioninthevapour/gasphaseandintheliquidphase respectively,and KA isthedistributioncoefficient. KA isanexperimentaldatum,whichdepends onsystemtemperatureandpressure.Asimplebutapproximaterelationtodescribetheliquid–vapourequilibriumofamixtureisRaoult’s,whichstates:

Thepartialpressureofsolvent pA overasolutionequalstheproductofthevapourpressure ofthepuresolvent, PA o bythemolefractionofsolvent, xA,inthesolution.

and,accordingtoEq. (1.47),if yA isthevapourmolarfractionand P thetotalpressure:

Themoredilutethesolution(ahighfractionofsolventtypicalofsocalledidealsolutions)the moreaccurateRaoult’sassumption.

Example1.7

Amixtureof n-butaneand n-pentaneisinequilibriumat2atme30°C.Determinetheliquidand vapourcomposition(Vapourpressures: n-butane ¼ 3.2atm, n-pentane ¼ 0.78atm)

Solution

Fourequationsareavailablewithfourunknownvariables.

Solving:

Anempiricalcorrelationtocalculate KA forhydrocarbonsandsomeinorganicgasesis Hoffman’sequation(Hoffmanetal.,1953):

Table1.3ParametersofHoffman’sequation

and b and TB (normalboilingtemperature)areincludedin Table1.3.

ForC7+ fractionsthefollowingequationscanbeused:

Pressureisgiveninbar.

1.4.4AzeotropicMixtures

ApplicationofRaoult’lawshowsthatmixturesofvapourcompositionaregenerallydifferent fromliquidcomposition,duetothedifferentvolatility(vapourpressures)ofthecomponents. Thisisnotalwaystrue,becausesomemixturesbehaveasasinglepurecompoundin correspondencetoaspecificcompositionandtemperatureatgivenpressures.Azeotropic compositionisfoundatconcentrationswherevolatilityisreversed,asshownin Fig.1.8.that representsthemixturesoftwopuresubstances, A and B.Intheleft-handzone,component A is morevolatilethancomponent B,whereasintheright-handzoneitistheopposite.Therefore

Fig.1.8

Liquidboilingpointsandvapourcondensationtemperaturesforminimum-boilingazeotrope mixturesofcomponents A and B

point Q intheliquid–vapourequilibriumzonecorrespondstoaliquidthatismorerichin B and toavapourthatismorerichin A thantheoriginalcomposition.Forpoint P itistheopposite.In correspondencetotheazeotropiccomposition,andtotheazeotropictemperature,vapourwill havethesamecompositionasliquid.

Table1.4 includessomeazeotropicmixtureswiththeindicationoftheazeotropiccomposition (firstcomponent)oftheazeotropictemperatureat1atm.

Table1.4Azeotropicmixturesat1atm(Dean,1999)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.