
https://ebookmass.com/product/process-intensification-andintegration-for-sustainable-design-dominic-c-y-foo-editor/

Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Chemical Engineering Process Simulation 2nd Edition
Dominic
C.Y. Foo
https://ebookmass.com/product/chemical-engineering-processsimulation-2nd-edition-dominic-c-y-foo/
ebookmass.com
Advances in Legumes for Sustainable Intensification Ram
Swaroop Meena
https://ebookmass.com/product/advances-in-legumes-for-sustainableintensification-ram-swaroop-meena/
ebookmass.com
Synthesis and Operability Strategies for Computer-Aided Modular Process Intensification Efstratios N. Pistikopoulos
https://ebookmass.com/product/synthesis-and-operability-strategiesfor-computer-aided-modular-process-intensification-efstratios-npistikopoulos/ ebookmass.com
Digital Marketing 8th Edition Dave Chaffey
https://ebookmass.com/product/digital-marketing-8th-edition-davechaffey/
ebookmass.com




N is for Necromancy: The A, B, C's of Witchery (Moonbeam Chronicles Book 14) Carolina Mac
https://ebookmass.com/product/n-is-for-necromancy-the-a-b-cs-ofwitchery-moonbeam-chronicles-book-14-carolina-mac/
ebookmass.com
Grief Before and During the COVID-19 Pandemic: Multiple Group Comparisons Maarten C. Eisma Phd & Aerjen Tamminga Msc
https://ebookmass.com/product/grief-before-and-during-thecovid-19-pandemic-multiple-group-comparisons-maarten-c-eisma-phdaerjen-tamminga-msc/ ebookmass.com
GLOBAL 4: Global Business 4th Edition Mike W. Peng


https://ebookmass.com/product/global-4-global-business-4th-editionmike-w-peng/
ebookmass.com
Security Awareness: Applying Practical Security in Your World 5th Edition Mark Ciampa
https://ebookmass.com/product/security-awareness-applying-practicalsecurity-in-your-world-5th-edition-mark-ciampa/
ebookmass.com
SketchUp for Interior Design: 3D Visualizing, Designing, and Space Planning 2nd Edition Lydia Sloan Cline
https://ebookmass.com/product/sketchup-for-interiordesign-3d-visualizing-designing-and-space-planning-2nd-edition-lydiasloan-cline/
ebookmass.com



https://ebookmass.com/product/%e9%9d%9e%e5%b8%b8%e5%b9%b4%e4%bb%a31964-1978-%e4%b8%8a%e5%8d%b7-%e8%b6%99%e5%9c%92/
ebookmass.com

ProcessIntensificationandIntegrationforSustainableDesign
ProcessIntensificationandIntegrationfor SustainableDesign
Editedby
DominicC.Y.Foo
MahmoudM.El-Halwagi
Editors
DominicC.Y.Foo UniversityofNottinghamMalaysia DepartmentofChemicaland EnvironmentalEngineering BrogaRoad 43500Semenyih,Selangor Malaysia
MahmoudM.El-Halwagi TexasA&MUniversity DepartmentofChemicalEngineering 3122TAMURoom200 TX UnitedStates
Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.
LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-Publication Data
Acataloguerecordforthisbookis availablefromtheBritishLibrary.
Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>.
©2021WILEY-VCHGmbH,Boschstr. 12,69469Weinheim,Germany
Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw.
PrintISBN: 978-3-527-34547-2
ePDFISBN: 978-3-527-81870-9
ePubISBN: 978-3-527-81872-3
oBookISBN: 978-3-527-81873-0
CoverDesign Adam-Design,Weinheim, Germany
Typesetting SPiGlobal,Chennai,India PrintingandBinding
Printedonacid-freepaper 10987654321
DominicC.Y.FoowouldliketodedicatethisbooktohiswifeCeciliaandkids Irene,Jessica,andHelena.MahmoudM.El-Halwagiwouldliketodedicatethis booktohisparents,hiswifeAmal,andsonsOmarandAli.
Contents
Preface xv
1ShaleGasasanOptionfortheProductionofChemicalsand ChallengesforProcessIntensification 1 AndreaP.Ortiz-EspinozaandArturoJiménez-Gutiérrez
1.1Introduction 1
1.2WhereIsItFound? 1
1.3ShaleGasComposition 3
1.4ShaleGasEffectonNaturalGasPrices 3
1.5AlternativestoProduceChemicalsfromShaleGas 4
1.6SynthesisGas 4
1.7Methanol 5
1.8Ethylene 6
1.9Benzene 7
1.10Propylene 7
1.11ProcessIntensificationOpportunities 8
1.12PotentialBenefitsandTradeoffsAssociatedwithProcess Intensification 10
1.13Conclusions 11 References 11
2DesignandTechno-EconomicAnalysisofSeparationUnitsto HandleFeedstockVariabilityinShaleGasTreatment 15 EricBohac,DebalinaSengupta,andMahmoudM.El-Halwagi
2.1Introduction 15
2.2ProblemStatement 16
2.3Methodology 17
2.4CaseStudy 17
2.4.1Data 18
2.4.2ProcessSimulationsandEconomicEvaluation 19
2.4.2.1ChangesinFixedandVariableCosts 20
2.4.2.2Revenue 21
2.4.2.3EconomicCalculations 21
2.4.3SafetyIndexCalculations 22
2.5Discussion 23
2.5.1ProcessSimulations 23
2.5.1.1DehydrationProcess 23
2.5.1.2NGLRecoveryProcess 23
2.5.1.3FractionationTrain 26
2.5.1.4AcidGasRemoval 26
2.5.2ProfitabilityAssessment 26
2.5.3HighAcidGasCaseEconomics 30
2.5.4SafetyIndexResults 30
2.5.5SensitivityAnalysis 32
2.5.5.1HeatingValueCases 33
2.5.5.2NGLPriceCases 34
2.6Conclusions 35
Appendices 35
2.AAppendixA:KeyParametersfortheDehydrationProcess 36
2.BAppendixB:KeyParametersfortheTurboexpanderProcess 36
2.CAppendixC:KeyParametersfortheFractionationTrain 37
2.DAppendixD:KeyParametersfortheAcidGasRemoval System 37 References 39
3SustainableDesignandModel-BasedOptimizationofHybrid RO–PRODesalinationProcess 43
ZhibinLu,ChangHe,BingjianZhang,QinglinChen,andMingPan
3.1Introduction 43
3.2UnitModelDescriptionandHybridProcessDesign 47
3.2.1TheProcessDescription 47
3.2.2UnitModelandPerformanceMetrics 49
3.2.2.1ROUnitModel 49
3.2.2.2PROUnitModel 52
3.2.3TheRO–PROHybridProcesses 54
3.2.3.1Open-LoopConfiguration 54
3.2.3.2Closed-LoopConfiguration 55
3.3UnifiedModel-BasedAnalysisandOptimization 56
3.3.1DimensionlessMathematicalModeling 56
3.3.2MathematicalModelandObjectives 58
3.3.3OptimizationResultsandComparativeAnalysis 59
3.4Conclusion 62 Nomenclature 63 References 65
4Techno-economicandEnvironmentalAssessmentofUltrathin PolysulfoneMembranesforOxygen-EnrichedCombustion 69 SereneSowMunLock,KokKeongLau,AzmiMohdShariff,YinFongYeong,and NorwahyuJusoh
4.1Introduction 69
4.2NumericalMethodologyforMembraneGasSeparationDesign 70
4.3Methodology 73
4.3.1SimulationandElucidationofMixedGasTransportPropertiesof UltrathinPSFMembranes(MolecularScale) 73
4.3.2SimulationofMathematicalModelInterfacedinAspenHYSYSfor MassandHeatBalance(Mesoscale) 75
4.3.3DesignofOxygen-EnrichedCombustionUsingUltrathinPSF Membranes 75
4.4ResultsandDiscussion 77
4.4.1SimulationandElucidationofMixedGasTransportPropertiesof UltrathinPSFMembranes(Molecular) 77
4.4.2SimulationofMathematicalModelInterfacedinAspenHYSYSfor MassandHeatBalance(Mesoscale) 79
4.4.3DesignofOxygen-EnrichedCombustionUsingUltrathinPSF Membranes 82
4.4.3.1MembraneAreaRequirement 82
4.4.3.2CompressorPowerRequirement 83
4.4.3.3TurbinePowerRequirement 85
4.4.3.4EconomicParameter 88
4.5Conclusion 90 Acknowledgment 91 References 91
5ProcessIntensificationofMembrane-BasedSystemsforWater, Energy,andEnvironmentApplications 97 NikA.H.M.Nordin,ZulfanA.Putra,MuhammadR.Bilad,MohdD.H.Wirzal, LilaBalasubramaniam,AnisS.Ishak,andSawinKaurRanjitSingh
5.1Introduction 97
5.2MembraneElectrocoagulationFlocculationforDyeRemoval 99
5.3CarbonationBioreactorforMicroalgaeCultivation 102
5.4ForwardOsmosisandElectrolysisforEnergyStorageandTreatmentof EmergingPollutant 107
5.5ConclusionsandFuturePerspective 111 References 113
6DesignofInternallyHeat-IntegratedDistillationColumn (HIDiC) 117 VasuHarvindranandDominicC.Y.Foo
6.1Introduction 117
6.2ExampleandConceptualDesignofConventionalColumn 119
6.3BasicDesignofHIDiC 120
6.4CompleteDesignofHIDiC 122
6.4.1Top-IntegratedColumn 122
6.4.2Bottom-IntegratedColumn 123
6.4.3GeometricalAnalysisforHeatPanels 124
6.5EnergySavingsandEconomicEvaluation 126
6.6ConcludingThoughts 128 References 128
x Contents
7GraphicalAnalysisandIntegrationofHeatExchanger NetworkswithHeatPumps 131
MinboYangandXiaoFeng
7.1Introduction 131
7.2InfluencesofHeatPumpsonHENs 132
7.2.1Case1 133
7.2.2Case2 134
7.2.3Case3 134
7.2.4Case4 135
7.2.5Case5 136
7.2.6Case6 136
7.2.7Case7 136
7.3IntegrationofHeatPumpAssistedDistillationintheOverall Process 138
7.3.1IncreaseofPinchTemperature 138
7.3.2DecreaseofPinchTemperature 140
7.3.3NoChangeinPinchTemperature 141
7.3.4HeatPumpPlacement 142
7.4CaseStudy 145
7.5Conclusion 148 References 148
8InsightfulAnalysisandIntegrationofReactorandHeat ExchangerNetwork 151
DiZhang,GuilianLiu,andXiaoFeng
8.1Introduction 151
8.2InfluenceofTemperatureVariationonHEN 152
8.2.1LocationofColdandHotStreams 152
8.2.2EffectofTemperatureVariation 153
8.3RelationAmongReactorParameters 156
8.3.1RelationAmongTemperatures,Selectivity,andConversionof Reactor 157
8.3.1.1CSTR 159
8.3.1.2PFR 159
8.3.2ReactorCharacteristicDiagram 160
8.4CouplingOptimizationofHENandReactor 161
8.5CaseStudy 163
8.6Conclusions 165 References 166
9FoulingMitigationinHeatExchangerNetworkThrough ProcessOptimization 167
YufeiWangandXiaoFeng
9.1Introduction 167
9.2OperationParameterOptimizationforFoulingMitigationin HENs 169
9.2.1DescriptiononVelocityOptimization 169
9.2.2FoulingThresholdModel 171
9.2.3HeatTransferRelatedModels 172
9.2.4PressureDropRelatedModels 174
9.3OptimizationofCleaningSchedule 175
9.4ApplicationofBackupHeatExchangers 175
9.5OptimizationConstraintsandObjectiveFunction 176
9.5.1OptimizationConstraints 176
9.5.2ObjectiveFunction 177
9.5.3OptimizationAlgorithm 178
9.6CaseStudies 178
9.6.1CaseStudy1:ConsiderationofVelocityOptimizationAlone 178
9.6.1.1OptimizationResults 180
9.6.2CaseStudy2:SimultaneousConsiderationofVelocityandCleaning ScheduleOptimization 186
9.6.2.1ConstraintsforCaseStudy 188
9.6.2.2ResultsandDiscussion 189
9.6.2.3ConsideringBackupHeatExchanger 194
9.7Conclusion 194 Acknowledgments 196 References 198
10DecompositionandImplementationofLarge-ScaleInterplant HeatIntegration 201
RunrunSong,XiaoFeng,MahmoudM.El-Halwagi,andYufeiWang
10.1Introduction 201
10.1.1ReviewsandDiscussionsforStreamSelection 202
10.1.2ReviewsandDiscussionsforPlantSelection 204
10.1.3ReviewsandDiscussionsforPlantIntegration 204 10.2Methodology 205
10.2.1Strategy1–Overview 205
10.2.2IdentificationofHeatSources/SinksforIPHIfromIndividual Plants 206
10.2.3DecompositionofaLarge-ScaleIPHIProblemintoSmall-Scale Subsections 207
10.2.4Strategy2forIndirectIPHI 209
10.3CaseStudy 212
10.3.1Example1 212
10.3.2Example2 215
10.4Conclusion 217 References 218
11Multi-objectiveOptimisationofIntegratedHeat,Massand RegenerationNetworkswithRenewablesConsidering EconomicsandEnvironmentalImpact 221
So-MangKim,AdeniyiJ.Isafiade,andMichaelShort 11.1Introduction 221
11.2LiteratureReview 222
11.2.1RegenerationinProcessSynthesis 222
11.2.2TheAnalogyofMENandREN 222
11.2.3CombinedHeatandMassExchangeNetworks(CHAMENs) 224
11.3EnvironmentalImpactinProcessSynthesis 225
11.3.1LifeCycleAssessment 225
11.4TheSynthesisMethodandModelFormulation 226
11.4.1SynthesisApproach 227
11.4.2Assumptions 229
11.4.3MINLPModelFormulation 230
11.4.3.1HENSModelEquations 230
11.4.3.2MENandRENModelEquations 233
11.4.3.3TheCombinedEconomicObjectiveFunction 236
11.4.3.4InitializationsandConvergence 239
11.5CaseStudy 240
11.5.1H2 SRemoval 240
11.5.1.1SynthesisofMEN(TheFirstStep) 242
11.5.1.2SimultaneousSynthesisofMENandREN(TheSecondStep) 243
11.5.1.3SimultaneousSynthesisofMEN,REN,andHEN(TheThird Step) 244
11.5.1.4AbsorptionandRegenerationTemperatureOptimization 247
11.5.1.5TheSynthesisofCombinedModelUsingMOO 252
11.6ConclusionsandFutureWorks 254 References 256
12OptimizationofIntegratedWaterandMulti-regenerator MembraneSystemsInvolvingMulti-contaminants:A Water-EnergyNexusAspect 261 MusahAbassandThokozaniMajozi
12.1Introduction 261
12.2ProblemStatement 263
12.3ModelFormulation 263
12.3.1MaterialBalancesforSources 264
12.3.2MassandContaminantsBalancesforRegenerationUnits 265
12.3.3MassandContaminantBalancesforPermeateandReject Streams 265
12.3.4MassandContaminantBalancesforSinks 266
12.3.5ModelingoftheRegenerationUnits 266
12.3.5.1PerformanceofRegenerationUnits 266
12.3.6LogicalConstraints 267
12.3.7TheObjectiveFunction 267
12.4IllustrativeExample 268
12.5Conclusion 272 Acknowledgments 272
12.AAppendix:DetailedModelsfortheEDandROModules 273 Nomenclature 280 References 282
13OptimizationStrategiesforIntegratingandIntensifying
HousingComplexes 285
JesúsM.Núñez-López,andJoséM.Ponce-Ortega
13.1Introduction 285
13.2Methods 288
13.2.1TotalAnnualCostfortheIntegratedSystem 289
13.2.2FreshWaterConsumption 289
13.2.3GHGEEmissions 290
13.2.4EnvironmentalImpact 290
13.2.5SustainabilityReturnofInvestment 293
13.2.6ProcessRouteHealthinessIndex 293
13.2.7MultistakeholderApproach 295
13.3CaseStudy 295
13.4Results 296
13.5Conclusions 296 References 299
14SustainableBiomassConversionProcessAssessment 301 EricC.D.Tan
14.1Introduction 301
14.2MethodologyandAssumptions 302
14.3ResultsandDiscussion 305
14.3.1EnvironmentalIndicators 305
14.3.2EnergyIndicators 310
14.3.3EfficiencyIndicators 312
14.3.4EconomicIndicators 313
14.4Conclusions 314 Acknowledgments 316 References 317
Index 319
Preface
Thechemicalprocessindustryinvolvesabroadspectrumofmanufacturing sectorsandfacilitiesaroundtheworld.Withincreasedglobalcompetition, escalatingenvironmentalconcerns,dwindlingenergy,andmaterialresources, itisimperativeforindustrytoseekcontinuousprocessimprovement.Process intensificationandintegrationareamongthemosteffectivestrategiesleading toimprovedprocessdesignsandoperationswithenhancementincosteffectiveness,resourceconservation,efficiency,safety,andsustainability.Process integrationisaholisticframeworkfordesigningandoperatingindustrialfacilitieswithanoverarchingfocusontheinterconnectednatureofthevariouspieces ofequipment,mass,energy,andfunctionalities.Ontheotherhand,process intensificationinvolvesefficiencyimprovementthrougheffectivestrategiessuch asincreasingthroughputforthesamephysicalsizeordecreasingthephysical sizeforthesamethroughput,couplingunitsandphenomena,enhancing massandenergyutilization,andmitigatingenvironmentalimpact.Thereisa naturalsynergismbetweenprocessintegrationandintensification.Forinstance, massandenergyintegration(twokeypillarsofprocessintegration)areideal approachesforenhancingmassandenergyintensities.
Thisbookisintendedtoprovideacompilationofthevariousrecentdevelopmentsinthefieldsof processintensification and processintegration withfocus onenhancingsustainabilityofthechemicalprocessesandproducts.Itincludes state-of-the-artcontributionsbyworld-renownedleadersinprocessintensificationandintegration.Itstrikesabalancebetweenfundamentaltechniquesand industrialapplications.Bothacademicresearchersandindustrialpractitioners willbeabletousethisbookasaguidetooptimizetheirrespectiveplantsand processes.
The14chaptersinthebookareclassifiedintotwobroadareas:processintensificationandprocessintegration.Asexpected,severalintensificationchapters includeintegrationandviceversa.Thesechaptersmaybereadindependentlyof eachother,orwithnoparticularsequence.Synopsesofallchaptersaregivenas follows.
Section1–ProcessIntensification
Thefirstsectionofthebookconsistsofsixchaptersfocusingonprocess intensification.Chapters1and2focusonprocessintensificationfortheshale gasindustry.Chapter1entitled“ShaleGasasanOptionfortheProductionof ChemicalsandChallengesforProcessIntensification”(by Ortiz-Espinozaand Jiménez-Gutiérrez)discussesalternativestoproducechemicalsfromshalegas, andopportunitiesforprocessintensification.InChapter2entitled“Designand Techno-EconomicAnalysisofSeparationUnitstoHandleFeedstockVariability inShaleGasTreatment”(by Bohacandcoworkers),asystematicapproachis proposedforthedesignofaprocessingplanttotreatrawshalegaswithvariable composition.Chapters3–5focusesonvariousprocessintensificationaspect ofmembraneseparationprocesses.InChapter3entitled“SustainableDesign andModel-BasedOptimizationofHybridRO–PRODesalinationProcess” (by Luandcoworkers),adimensionlessmodel-basedoptimizationapproach wasdevelopedtoevaluatetheperformanceofahybridsystemsconsistingof reverseosmosis and pressureretardedosmosis processes.InChapter4,entitled “Techno-EconomicandEnvironmentalAssessmentofUltrathinPolysulfone MembranesforOxygen-EnrichedCombustion”(by Lockandcoworkers),multiscalesimulationwasusedfortechno-economicfeasibilitystudyofultrathin polysulfonemembraneforoxygen-enrichedcombustion;themultiscalesimulationcoversmolecularscale,mesoscale,andeventuallyprocessoptimizationand design.Chapter5,entitled“ProcessIntensificationofMembrane-BasedSystems forWater,Energy,andEnvironmentApplications”(by MdNordinandcoworkers),outlinedthreeimportantapplicationsofmembranetechnologyinprocess intensification,i.e.membraneelectrocoagulationflocculationfordyeremoval, membranediffuserinphotobioreactor,andforwardosmosis/electrolysis. Chapter6,entitled“DesignofInternallyHeat-IntegratedDistillationColumn (HIDiC)”(by HarvindranandFoo),discussedtheuseofprocesssimulation softwareforthedesignofaninternalHIDiC.
Section2–ProcessIntegration
Thesecondsectionofthebookfeatureseightchaptersonprocessintegration. Chapters7–9presentsomelatestadvancementsin heatexchangernetwork (HEN)synthesis.WhileChapters7and8arebasedon pinchanalysis techniques,Chapter9isbasedonmathematicalprogrammingtechnique.Chapter 7entitled“GraphicalAnalysisandIntegrationofHeatExchangerNetworks withHeatPumps”(by YangandFeng ),presentspinchanalysis-basedstrategies fortheintegrationwithheatpumpsaswellasheatpump-assisteddistillation withHEN.InChapter8thatisentitled“InsightfulAnalysisandIntegrationof ReactorandHeatExchangerNetwork”(by Zhangandcoworkers),a combined multi-parameteroptimizationdiagram (CMOD)isproposedtoallowbetter integrationofreactorswiththeHEN,takingintoconsiderationofenergy consumption,temperature,selectivity,andreactorconversion.Next,anew methodologynamedas velocityoptimization isproposedinChapter9,entitled
Preface xvii
“FoulingMitigationinHeatExchangerNetworkThroughProcessOptimization”(by WangandFeng ).Thisnewmethodologyallowsthecorrelationof fouling,pressuredrop,andheattransfercoefficientofheatexchangerswith velocity;thisallowsvelocitydistributiontobedeterminedamongalltheheat exchangersintheHEN.Chapter10entitled“DecompositionandImplementationofLarge-ScaleInterplantHeatIntegration”(by Songandcoworkers) proposedathree-stepstrategyforthedecompositionoflarge-scaleinter-plant heatintegrationproblem.Thechapteralsoproposesanewpinchanalysis techniquetoidentifythemaximuminterplantheatrecoverypotential,while minimizingthecorrespondingflowratesofheattransferfluids.Chapter11 entitled“Multi-objectiveoptimisationofintegratedheat,massandregeneration networkswithrenewablesconsideringeconomicsandenvironmentalimpact” (by Isafiadeandcoworkers)presentsamathematicalprogrammingmethod formulti-period combinedheatandmassexchangenetworks (CHAMENs)in whicharegenerationnetworkisincluded;thelatterconsistsofmultiplerecyclablemassseparatingagentsandregeneratingstreams.InChapter12entitled “OptimizationofIntegratedWaterandMulti-regeneratorMembraneSystems InvolvingMulti-contaminants:AWater-EnergyNexusAspect”(by Abassand Majozi),anothermathematicalapproachwaspresentedforthesynthesisof integratedwaterandmembranenetwork;thelatterconsistsofdetailedmodels ofelectrodialysisandreverseosmosisunitsthatareembeddedwithinawater regenerationnetwork.Chapter13entitled“OptimizationStrategiesforIntegratingandIntensifyingHousingComplexes”(by Núñez-LópezandPonce-Ortega) providesanoverviewofprocessintegrationandintensificationforhousing complexes,thelatteristypicallyamuchlargerscaleascomparedtoindustrial processes.Inthelastchapterentitled“SustainableBiomassConversionProcess AssessmentContributingto‘ProcessIntensificationandIntegrationforSustainableDesign’”(by Tan),amulti-objectiveprocesssustainabilityevaluation methodologyknownasGREENSCOPE(GaugingReactionEffectivenessfor ENvironmentalSustainabilityofChemistrieswithamulti-ObjectiveProcess Evaluator )isdemonstratedtotrackprocesssustainabilityperformancefora biomassconversionprocess.
These14chapterscoversomeofthemostrecentandimportantdevelopments inprocessintensificationandprocessintegration.Wehopethebookwillserve asausefulguideforresearchersandindustrialpractitionerswhoseektodevelop toolsandapplicationsforprocessimprovementandsustainabledevelopment.
Kajang,Malaysia CollegeStation,UnitedStates
January2020
DominicC.Y.Foo MahmoudM.El-Halwagi
ShaleGasasanOptionfortheProductionofChemicalsand ChallengesforProcessIntensification
AndreaP.Ortiz-EspinozaandArturoJiménez-Gutiérrez
TecnológicoNacionaldeMéxico,InstitutoTecnológicodeCelaya,ChemicalEngineeringDepartment, AveTecnologicoyGarciaCubas,Celaya38010,Mexico
1.1Introduction
Shalegasisunconventionalnaturalgastrappedoradsorbedinshalerock formations.Asopposedtoconventionalnaturalgas,shalegasisdifficultto extractbecauseofthelowporosityoftherockformationsinwhichitisconfined. Thisparticularcharacteristicimpliedahighcostfortheextractionofthisgas,so thatitsproductionremainedunfeasibleuntilthedevelopmentofmoresuitable extractiontechnologies,suchashydraulicfracturingandhorizontaldrilling[1]. Hydraulicfracturingisastimulationtechniqueusedtoincreasetheflowrate ofgasandoilinlowpermeabilityreservoirs.Thismethodconsistsininjecting high-pressurizedfluidsintothewelltocreatefracturesandmaintainthem openedtoallowthefluxofgasandoil[1,2].Hydraulicfracturingisgenerally combinedwithhorizontaldrillingtoincreasetheareacoveredwithalower numberofwells.Thesetwotechnologieshaveledtoanincreaseinthenet productionofnaturalgasintheUnitedStates(US)formorethanadecade, whichhasbeenreferredtoastheshalegasrevolution[1,3].
Theaimofthischapteristogiveanoverviewofshalegasanditspotential toproducevalue-addedchemicals.Thischapteraddressesthefollowingaspects: shalegascompositionandplaceswheredepositsarelocated,effectofshalegas discoveriesonnaturalgasprices,alternativestoproducechemicalsfromshale gas,andopportunitiesforprocessintensification.
1.2WhereIsItFound?
Althoughshalegashasbeenknownforawhile,thefirstshalegaswellwas drilledin1821inChautauqua,NY,itsexploitationwaspossibleonlyuntilthe developmentofhydraulicfracturingandhorizontaldrillingtechnologies.After theoilcrisesofthe1970s,theUSgovernmentandsomeoilandgascompanies, separately,initiatedtheinvestmentinresearchprojectstoevaluateandmake shalegasextractionpossible.Fromthebeginningofthe2000s,technical
ProcessIntensificationandIntegrationforSustainableDesign, FirstEdition. EditedbyDominicC.Y.FooandMahmoudM.El-Halwagi. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.
1ShaleGasasanOptionfortheProductionofChemicals
Table1.1 MajorshalegasplaysintheUnitedStates.
ShaleplayState(s) Percentageofdryshalegas productionin2018
MarcellusPA,WV,OH,and NY 32.7
PermianTXandNM12.3 UticaOH,PA,andWV11.3
HaynesvilleLAandTX11.0
EagleFordTX7.1
WoodfordOK5.0 BarnettTX4.4
Source:AdaptedfromEIA2018[4].
andeconomicfactorspromotedtheideatoproducenaturalgasfromshale formations.TheBarnettshaleplaywasthefirstbasintobeexploitedinalarge scale,withthehydraulicfracturingtechnologybeingtestedthere.Followingthe successtoextractnaturalgasfromtheBarnettshaleplay,shalegasextraction beganinotherlocations.Table1.1givesbasicinformationaboutthemajorshale gasplaysintheUnitedStates.
ApartfromUSreserves,recoverableshalegasresourcesaroundtheworldhave beenfoundincountriessuchasChina,Argentina,Algeria,Canada,Mexico, Australia,SouthAfrica,andRussia[3,5].Despitethesediscoveries,severalfactorssuchasgeologicalaspectsandthelackofthenecessaryinfrastructurehave curbedthedevelopmentoftheshalegasindustryinthoseothercountries[6,7].
Table1.2 Recentshalegasreservesandproductioninforthesixcountrieswithmoreshale gasreserves.
Country
Unprovedrecoverable reservesby2013(Tcf) Productionin 2018(Bcf/yr)References China1115.20353.15[8] Argentina801.50365.00[9] Algeria706.90Noproduction[10] UnitedStates662.50(by2015)7079.62[4] Canada572.90182.80[11] Mexico545.20Noproduction[12]
Source:FromEIA2015[13].
Table1.2showstheproductionratesin2018forthesixcountrieswithmore unprovedtechnicallyrecoverableshalegasresources.
1.3ShaleGasComposition
Oneparticularcharacteristicofshalegasisitsvaryingcomposition.Shale gascompositiondependsheavilyonthelocationofthesources,anditmay variateevenwithinwellsinthesameplay.Theprimarycomponentofshalegas ismethane,butitalsocontainsconsiderablequantitiesofnaturalgasliquids (NGLs)suchasethaneandpropane.Apartfromthesecomponents,shalegas alsocontainsacidgasessuchasCO2 ,H2 S,andinorganiccomponentssuchas nitrogen[5,14].TheseparationofNGLsfrommethanehasinducedindustries tolookforalternativestotransformthemintomorevaluableproducts,butat thesametimethevaryingcompositionofshalegasrepresentsachallengeforthe treatmentplants,whichhavetoberobustlydesignedtohandlesuchvariations inthegascomposition.
1.4ShaleGasEffectonNaturalGasPrices
Thehighavailabilityofnaturalgas,generatedasaresultoftheincreasing productionofshalegas,hascausedanoticeabledropofitspriceintheUnited States.Moreover,theabilitytoextractnaturalgasfromdepositsthatarenot associatedtocrudeoilreservoirshasuncouplednaturalgasandcrudeoilprices [1].Thesefactshavecontributedtowhathasbeendefinedastheneweraofcheap naturalgas,inwhichithasbeenpricedconsistentlyunderUS$5permillionBtu foralmostadecadeintheUnitedStates[15].Inparticular,naturalgaspricesin 2019haveshownadecreasefrom3.18atthebeginningoftheyeartoUS$2.07 permillionBtuinSeptember[16].Evenmore,inanextremesituation,producers attheWahahubinthePermianbasininWestTexashadtopaythepipelineto taketheexcessofgas,showinganegativeUS$9inApril,whichcontributedtoan averagepriceofonly73centspermillionBtuforthefirsteightmonthsof2019, comparedwithanaveragemarketpriceofUS$2.10in2018(whichisalsolower thanthefiveyearaveragefrom2014to2018ofUS$2.80)[17].Thesetrendscreate anopportunityforthedevelopmentoftechnologiestotransformshale/natural gasintovalue-addedchemicals.OneadditionalpointtoconsideristheincreasingamountofliquefiednaturalgasthatisbeingexportedfromtheUnited States[18].Asthisquantitygrows,internationalnaturalgaspricesmayalso getaffected.
Themainconsumersofnaturalgasaretheelectricitygenerationindustry,theresidentialsector,theindustrialsector,andthechemicalindustry. Lownaturalgaspriceshaveincentivizedtheelectricpowerplantstoswitch fromcoaltonaturalgas,withanimpactnotonlyontheeconomyofthese systemsbutalsoontheenvironmentbyreducingthetotalgreenhousegas emissions[1].
1ShaleGasasanOptionfortheProductionofChemicals
Anothersectorthathasshowninterestinswitchingfromoil-basedfeedstocks, suchasnaphthaorcrudeoil,tonaturalgasisthechemicalindustry.The availabilityofinexpensivenaturalgasandNGLshasboostedthechemical industrytocreatenewplantsfortheproductionofvalue-addedchemicalsusing methaneandNGLsasfeedstock[5,19].
1.5AlternativestoProduceChemicalsfromShaleGas
Duetotheincreasingavailabilityoflow-costnaturalgas,thechemicalindustry hasstartedtoinvestintheresearchanddevelopmentofchemicalroutesthat cantransformmethaneintovalue-addedchemicals.Someofthechemicalcompoundsthathavereceivedspecialattentionaremethanol,ethylene,propylene, andliquidfuelsobtainedfromsyngas.Someoftheprocessestoproducethe aforementionedchemicalsarediscussednext.
1.6SynthesisGas
Synthesisgasisamixtureofcarbonmonoxideandhydrogentypicallyneeded fortheproductionofchemicalssuchasamethanol,ammonia,orgas-to-liquid (GTL)products.Theproductionprocessforsynthesisgasvariesdepending ontheoxidizingagentselectedforthereformingofthenaturalgas.Themain reformingprocessesaresteamreforming(SR),partialoxidation(POX),anddry reforming(DR)[20].ThecharacteristicsoftheseprocessesarelistedinTable1.3. Althoughtheseprocessesmaybeusedseparately,combinationsoftwoormore ofthemainreformingoptionshavebeenproposedtoenhancetheoverallperformanceofthereformingtask.Onesuchprocessistheautothermalreforming (ATR)inwhichtheexothermicnatureofthePOXreformingiscombinedwith theendothermicSR[21].
Inallofthesereformingalternatives,energyandwaterusageandgeneration arekeypointstoconsiderwhenselectingtheappropriatetechnology.Studies regardingheatandmassintegrationpotentialfortheSR,POX,andATRoptions canbeconsultedintheworkofMartínezetal.[21]andGabrieletal.[22].
Table1.3 Reformingoptionsandtheircharacteristics.
Reforming option Oxidizing
SteamreformingH2 OEndothermicCH4 + H2 O → CO + 3H2 Catalytic
PartialoxidationO2 ExothermicCH4 + 1 2 O2 → CO + 2H2 Catalytic/noncatalytic
DryreformingCO2 EndothermicCH4 + CO2 → 2CO + 2H2 Catalytic
Source:AdaptedfromNoureldinetal.2014[20].
1.7Methanol
Typically,methanolisusedasanintermediatetoproduceotherchemicalssuch asaceticacid,formaldehyde,andMTBE,amongothers[23].Theproductionprocessformethanolconsistsofthreestages,reforming,synthesis,andpurification. Inthefirststage,themaingoalistotransformmethaneintosyngas.Forthis purposeareformingprocessisselected.Oneimportantfactortoconsiderwhen selectingthereformingprocessisthattheratioofH2 toCOtofeedthemethanol synthesisreactorhastobeequalto2.
Forthesynthesisofmethanol,compressionofthesyngasobtainedfromthe reformingstageisneeded.Then,thecompressedsyngasisfedtoacatalyticreactorinwhichthefollowingreactionstakeplace:
Thesynthesisreactoroperatesat83barand260 ∘ C.Theoutletofthereactoris cooledandsenttoaflashunittoseparatetheunreactedsyngasandrecirculate it.Additionally,afractionoftherecycledsyngasispurged,withapotentialuse asfuel.Thecrudemethanolobtainedfromtheflashunitispurifiedusingoneor twodistillationcolumns[23].
Thisprocesshasbeenanalyzedtoassessitsenvironmentalimpactanditssafety characteristics[23,24].Themaindrawbacksoftheprocessarethehighpressurerequiredfortheoperationofthesynthesisreactorandthewastedfraction ofnon-recycledsyngas.Ortiz-Espinozaetal.[24]studiedtheeffectofdifferent operatingpressuresforthemethanolsynthesisreactoronthesafety,environmental,andeconomiccharacteristicsofthemethanolproductionprocessusingPOX reforming.Thehighoperatingpressureisrelatedtotheprofitabilityoftheprocess,butsafetypropertiesmaybehinderedbysuchoperatingconditions.Greenhouseemissionsareanadditionalitemofrelevanceforconsideration.Figure1.1 showstheresultsoftheanalysisconductedbyOrtiz-Espinozaetal.[24],inwhich valuesofthreemetricsusedforprofitability,inherentsafety,andsustainabilityare reportedfordifferentreactorpressuresandrecyclingfractionsfortheunreacted syngas.Suchmetricswerethereturnoninvestment(ROI)foreconomicperformance,processrouteindex(PRI)forinherentsafety,andtotalemissionsofCO2 equivalentsforprocesssustainability.Onecanobservethegradualtrendofthe threemetricsthatreflecttheirconflictingbehavior.Insummary,theeconomic potentialoftheprocessisbetterathighpressuresandhighrecyclingfractions, butifsafetyisofprimaryconcern,alowerpressurewouldfavortheprocess characteristics.
Itshouldalsobenoticedthatthemethanolsynthesisreactionisexothermic; therefore,heatintegrationoptionsmaybeconsideredtofurtherenhancethe environmentalandeconomicperformanceoftheprocess.
Figure1.1 Safety,sustainability,andeconomicindicatorfordifferentpressuresandrecycling fractionsinthemethanolproductionprocess.
1.8Ethylene
Ethyleneisamajorbuildingblockusedinthechemicalindustrytoproducea widevarietyofimportantchemicals.Theincreasingavailabilityofshalegashas boostedtheethyleneindustryasseveralethyleneproductionplantshavebeen plannedtobebuiltintheUnitedStates[5].Thealternativestoproduceethylene includeprocessesthatuseNGLsasfeedstock,suchasethanecrackingorpropane dehydrogenation[25],andprocessesthattransformmethanetoethylene[26,27]. Amongtheprocessesthatconvertmethanetoethylene,twoimportantoptions aretheoxidativecouplingofmethane(OCM)andthemethanoltoolefins(MTO) technology.OCMisadirectprocessinwhichmethaneandoxygenarefedtoa catalyticreactor,withtheproductsofthereactionbeingseparatedinapurificationstagethatconsistsoftheremovalofwaterandCO2 andacryogenicdistillationtrain[26].Althoughthisprocessisknownforthelowyieldachievedinthe reactor,whichrenderaprocessoptionwithlowprofitability,thedevelopment ofnewcatalyststructureshasmadepossibletheconstructionofdemonstration facilitiesforthistechnologythatofferbettereconomicperspectives[28].
TheotheralternativeforethyleneproductionisMTO,whichisamorecomplexprocessasitinvolvesseveralstages.First,thereformingofnaturalgasand theproductionofmethanoltakeplace.Afterthemethanolsynthesis,thecrude methanolissenttoacatalyticreactorwherelow-weightolefinsareproduced.In thereactoravarietyofcomponentsareproduced,suchasethyleneandpropylene,butylene,C5 s,hydrogen,low-weighthydrocarbons,water,andCO2 .The effluentofthereactoristhensenttoseparationandpurificationunits,which startwithCO2 removalanddehydrationunits.Then,theremainingstreamissent toadistillationtrainconsistingofdemethanizer,deethanizer,anddepropanizer columns,aswellasC2 andC3 splitters.AcolumntoseparateC4 sandC5 sisalso
1.10Propylene 7
needed.Theoverallprocessisveryenergyintensive,asitinvolvesareforming stageandalargedistillationtrain.
EvenwhentheMTOtechnologyhasbeenreportedtobemoreprofitablethan theOCMoption[26],thelattertechnologyislesscomplexandavoidstheneedto transformthenaturalgastointermediateproductssuchassyngas.Thatprovides anincentivetodevelopimprovementstothistechnologyinordertoenhanceits overallperformanceandprofitability.ProposedideastoachievesuchimprovementsincludetheuseofmembranesintheCO2 separationsystemandmodificationstotheethylenefractionationcolumntoreduceheatingandcondenser duties[29,30].
1.9Benzene
Benzeneisanimportantstartingmoleculeinthepetrochemicalindustry.The productionofbenzenefromshalegaswasconsideredinPérez-Urestietal.[31], andaprocessbasedonthedirectmethanearomatization(DMA)routewas designed.Inthisprocess,methaneisfedtoaDMAreactoroperatingat800 ∘ C andatmosphericpressure.Themainproductsofthereactionarebenzeneand hydrogen.TheeffluentfromtheDMAreactorissenttoamembraneunitto separatethehydrogen.Then,theremainingstreamiscooledandcompressedto beseparatedinaflashtank.Thegasstreamobtainedfromtheflashseparatoris methane-richandisrecycledtotheDMAreactor.Theliquidstreamisfedtoa distillationcolumnwherebenzeneisobtainedasatopproduct.Althoughthe DMAprocesscompeteswiththetraditionalproductionroutesbasedoncatalytic reformingorsteamcrackingofliquidpetroleumfeedstocks,itrepresentsan attractivealternativegiventhelowpricesofnaturalgas.
1.10Propylene
Propylenehastypicallybeenproducedasabyproducteitherfromthesteam crackingofnaphthatoproduceethyleneorfromthefluidcatalyticcracking toproducegasoline.WiththeshalegasboomandtheexcessofNGLssuchas ethane,theproductionofethylenehasswitchedthefeedstockfromnaphthato ethane.Thisactionhaseliminatedtheproductionofpropyleneasabyproduct, openinganopportunityforthedevelopmentofon-purposepropyleneproductionprocesses.Thealternativestoproducepropylenefromshalegasincludetwo optionsviamethanolandoneusingthepropaneobtainedfromthepurification ofshalegas[32,33].Theprocessestoproducepropyleneviamethanolarethe MTOrouteandthemethanoltopropylene(MTP)process[33].TheMTOprocessisdescribedearlierintheethylenesection.MTPfollowsasimilarpath.First, naturalgasistransformedintosyngasgasusingareformingalternative,andthen thesyngasistransformedintomethanol.AsopposedtotheMTOprocess,where crudemethanolissenttotheMTOreactor,methanolhastobepurifiedforitsuse asfeedstockfortheMTPprocess.Therefore,thecrudemethanolobtainedfrom
1ShaleGasasanOptionfortheProductionofChemicals
themethanolsynthesisreactorissenttoaflashunitandpurifiedusingadistillationcolumn.Thepurifiedmethanolisthenfedtoareactor,whereitisconverted todimethyletherandwater.Then,theoutletstreamofthereactorissenttoafixed bedcatalyticreactortoproducepropylene.Theeffluentfromthefixedbedreactorcontainspropylene,gasoline,andLPG,aswellaswater.Itissenttoaflashunit toremovewaterandtheremainingstreamispurifiedusingdistillationcolumns.
Anotheralternativefortheproductionofon-purposepropyleneisthepropane dehydrogenationprocess,inwhichadepropanizercolumnisusedtoseparateC4+ compoundsthatmaybepresentinthefreshmaterial.Thepurifiedpropaneenters acoldboxtorefrigeratetheeffluentfromthepropyleneproductionreactor.Then, thepropanestreamismixedwithhydrogenandsenttoafired-heaterbefore beingfedtoafluidizedcatalystbedreactor.Thereactionishighlyendothermic. Theoutletstreamofthereactorcontainspropylene,propane,lightgases,ethane andethylene,andsomeheavierhydrocarbons.Thereactoreffluentiscooled, compressed,andsenttoacoolboxwherehydrogenisseparatedfromthehydrocarbons.Theliquidstreamfromthecoldboxissenttoaselectivehydrogenation process(SHP)tofurtherimprovetheproductionofpropylene.Theeffluentfrom theSHPisfedtoadeethanizercolumntoremovelightgases.Finally,theremainingstreamisfedtoaC3 -splittercolumntoproducethepropylene.Thepropane obtainedatthebottomofthesplittercolumnisrecycledtothedepropanizer column[32].
Theseprocessesrepresentanexcellentopportunityfortheindependentproductionofpropyleneinsteadofobtainingitasabyproductofotherprocesses.
1.11ProcessIntensificationOpportunities
Theincentiveforshalegasmonetizationcanalsobeviewedasanopportunityto developintensifiedprocessesforshalegastransformationtechnologies.Recent effortstodesignintensifiedprocesseshavebeenobserved.Processintensification isunderstoodhereasasearchformorecompetitiveprocessalternativesviathe developmentofmorecompactflowsheets(i.e.withfewerpiecesofequipment orsmallersizesofthesamenumberofequipmentunits)and/orwithareductionontheconsumptionofbasicresources(rawmaterials,energy)throughmore efficientdesigns.
ThefirsteffortstodevelopformaldesignmethodologiesforintensifiedprocesseswereduetotheworkbyGaniandhisresearchgroup[34–36].Suchinitial methodologiesmakeuseoftheconceptsoftasksandphenomena,givingriseto theconceptsofphenomenabuildingblocks(PBBs),whichrepresentthetasks involvedinaprocessunitsuchasreaction,heating,cooling,masstransfer,and soforth;thecombinationofPBBsprovidessimultaneousphenomenabuilding blocks(SPBBs),whichareusedtomodeltheoperationsinvolvedinaprocess.For instance,inadistillationcolumn,thefollowingSPBBscanbeobserved.Eachtray showsamixturewithtwophases,withcontact,transfer,andseparationbetween thetwophases(vaporandliquid),whilethecondenseraddscoolingandthe reboileraddsheatingtothepreviousSPBBs,asshowninFigure1.2foracolumn withfivetrays.
M = C = 2phM = PC(VL) = PT(VL) = PS(VL)
Distillate
Feed
M = 2phM = PC(VL) = PT(VL) = PS(VL)
M = 2phM = PC(VL) = PT(VL) = PS(VL)
M = 2phM = PC(VL) = PT(VL) = PS(VL)
M = 2phM = PC(VL) = PT(VL) = PS(VL)
M = 2phM = PC(VL) = PT(VL) = PS(VL)
M = H = 2phM = PC(VL) = PT(VL) = PS(VL)
Bottom
Figure1.2 Simultaneousphenomenabuildingblocksinaconventionaldistillationcolumn.
Usingtheseconcepts,Lutzeetal.[36]developedamethodologyforprocess designofintensifiedprocesses,consistingofthreestages.Inthefirstone,abasic processflowsheetissynthesized.Inthesecondstage,SPBBsaredevelopedand asuperstructurethatcontainsallthepossibletasksofthesystemisformulated. Theproblemisthensolvedasamixed-integernonlinearprogramming(MINLP) modeltoobtaintheintensifiedstructurethatminimizesagivenobjective functionsuchasthetotalannualcostofthesystem.Babietal.[34]applied anextendedformulationofthatmodelthatincludedsustainabilitymetricsto acasestudydealingwiththeproductionofdimethylcarbonate.Inthework byCastillo-Landeroetal.[37],suchamethodologywastakenasabasis,but insteadofformulatinganMINLPmodeltosearchfortheoptimalintensified configuration,asequentialapproachwithgradualintensificationoftheprocess wasconducteduntilafinalstructurewithaminimumnumberofequipment unitswasobtained.Oneadvantageofthisprocedureisthatonecanassess individuallevelsofprocessintensificationsothatastructurethatfavorsagiven metricofinterestcanbeselected.
Interestingchallengesarisewhenshalegasprocessesareconsideredfor processintensification.Letustake,forinstance,thebasicflowsheetforthe productionofethylenefromshalegas,ornaturalgas,showninFigure1.3.As discussedearlier,thisprocessshowsafairlysimplestructurebutanadverse profitability,whichposesaparticularincentivetoexplorepotentialbenefitsthat aneffectiveprocessintensificationtaskcouldprovide.Nonetheless,noticeable challengesexistforitstransformationintoanintensifiedprocessthatcombines

Figure1.3 Basicflowsheetforethyleneproductionfromshale/naturalgas. theprocesstasks,namely,reactionandseveralseparationtasks.Firstofall, thereactorperformsacatalytic,gas-phasereactiontask,whichconsistsof acomplexreactionmechanism.Secondly,theseparationtasksconsistofa combinationofcompressionforwatercondensationandabsorptionforCO2 removal(typicallycarriedoutwithanaminesuchasMEA).Combinationof absorptionandmembranecouldpossiblybeconsidered.Thedistillationtrain, finally,ishighlyenergyintensive.Giventhetasksidentifiedforthisprocess, andtheaimtointensifyit,theuseofmembraneunitswouldbeofspecial consideration.Membraneunitscouldconceptuallybedesignedfirsttocarryout theindividualtasks.Then,combinationsofreactionandseparationtasksbased onsuchmembraneunitscouldbeconsidered.Theresultingstructurewould includeinnovativegas-phasemembrane-reactive-separationunits.Thedesign ofeffectivemembranesthat,amongotherthings,couldseparatethegasmixture thatrequirescryogenicdistillationsystemscouldprovideasignificantimpact ontheprocesseconomics.Itshouldbementionedthatsomeeffortstocombine reactivedistillationwithmembraneseparationhavebeenreported(e.g.[38]). However,thereactionforwhichtheintensificationwithmembraneunitshas beenconsideredhasbeentypicallyimplementedforliquid-phasereactions.In suchcases,membranesaidinimprovingtheeffectivenessoftheprocess,for instance,byreleasingoneoftheproductsofthereversiblereactiontoimprove itsyield.Theproblemposedbyshalegasprocessesisthegas-phasereactionthat requiresspecialmembranematerialsforitseffectiveapplication.Theaspects outlinedheretakingtheOCMtransformationtechnologyasanexampleprovide aclearincentivetowardthedesignofmorecompetitivealternativesbasedon morecompact,innovativeshalegas-intensifiedtechnologies.
1.12PotentialBenefitsandTradeoffsAssociated
Althoughintensificationopportunitiesforshalegastechnologiesremaintobe explored,itisworthyofmentionitspotentialbenefitsandpossibletradeoffs basedontheresultsfromresearchandapplicationsofintensificationmethodologies.First,itcouldbementionedthatadirecteconomicimpactthatwould
favorinvestmentandoperatingcostscouldbeobserved.Anotableexampleisthe intensifiedprocessdesigndevelopedbyEastmanChemicalsfortheproduction of400kT/yrofmethylacetatethattransformedaflowsheetwith10units(one reactorandnineseparationcolumns)intoasinglereactive-distillationpiece ofequipment.Theresultingintensifiedprocesshad1/5ofcapitalinvestment and1/5ofenergycostswithrespecttotheoriginalprocess[39].Onecould alsoexpectimprovementsinotherfactorssuchascarbonfootprintandglobal warmingmetrics[37].However,tradeoffswithotheraspectssuchasprocess inherentsafetyandprocesscontrollabilityremaintobeassessed.Inaninitial worktoaccountforprocessinherentsafetyforacasestudydealingwiththe intensificationofanisoamylacetateprocess,itwasfoundthatapartially intensifiedprocesscouldprovideabetteralternativeintermsofinherentsafety expectationswithrespecttoafullyintensifiedprocess[40].Ontheotherhand, theeffectoflosingdegreesoffreedomforprocesscontrolthatarisesfrom intensifyinganoriginalprocessandhowitaffectstheprocessoperabilityand controllabilityisanitemthatremainstobeaddressed.
1.13Conclusions
Ananalysisofshalegasavailabilityanditspotentialimplicationstosupporta shalegasindustrythatexpandsitsuseasanenergysourcetoincludetransformationprocessesintovalue-addedchemicalproductshasbeenpresented.Designs forshalegastransformationintovaluablechemicalssuchasmethanolandethyleneareexamplesofcurrenteffortstoproducehighervalue-addedmolecules particularlyvaluableasprecursorsofimportantendproducts.Thedevelopment ofextractiontechnologieshasprovidedthebasisforthedevelopmentofshale gasmonetizationstrategies.Ithasbeenshownhowtheprofitabilityofshalegas processesmaybeinconflictwithotherimportantconsiderationssuchasthe processsafety,whichsetstheincentiveforthedevelopmentofmulti-objective optimizationformulationstoobtaindesignsthatofferthebestcompromises betweensuchconflictingmetrics.Anotherinterestingchallenge,inadditionto thedevelopmentofefficientandprofitableshalegasflowsheets,liesinthedesign ofintensifiedprocessesforflowsheetsoriginallybasedonconventionalreaction andseparationunits.Currentintensificationmethodologiescouldbetakenasa basis,withthechallengeofitsapplicationforcasesbasedongas-phasereactions thatinvolvecomplexreactionmechanismsanddifferenttypesofseparationprocesses.Thedevelopmentofmembrane-basedprocessesseemslikeapromising alternativeinthesearchforinnovativeshalegasintensifiedprocesses.
References
1 Wang,Q.,Chen,X.,Jha,A.N.,andRogers,H.(2014).Naturalgasfromshale formation–theevolution,evidencesandchallengesofshalegasrevolutionin UnitedStates. RenewableandSustainableEnergyReviews 30:1–28.https:// doi.org/10.1016/j.rser.2013.08.065.
2 EPA(2018). TheProcessofUnconventionalNaturalGasProduction.U.S. EnvironmentalProtectionAgency.https://www.epa.gov/uog/processunconventional-natural-gas-production(accessed7March2019).
3 Gao,J.andYou,F.(2017).Designandoptimizationofshalegasenergysystems:overview,researchchallenges,andfuturedirections. Computersand ChemicalEngineering 106:699–718.https://doi.org/10.1016/j.compchemeng. 2017.01.032.
4 EIA(2018). WhereOurNaturalGasComesFrom.U.S.EnergyInformation Administration.https://www.eia.gov/energyexplained/index.php?page=natural_ gas_where(accessed4March2019).
5 Al-Douri,A.,Sengupta,D.,andEl-Halwagi,M.M.(2017).Shalegasmonetization–areviewofdownstreamprocessingtochemicalfuels. Journalof NaturalGasScienceandEngineering 45:436–455.https://doi.org/10.1016/j. jngse.2017.05.016.
6 Hu,D.andXu,S.(2013).Opportunity,challengesandpolicychoicesfor Chinaonthedevelopmentofshalegas. EnergyPolicy 60:21–26.https://doi. org/10.1016/j.enpol.2013.04.068.
7 LozanoMaya,J.R.(2013).TheUnitedStatesexperienceasareferenceofsuccessforshalegasdevelopment:thecaseofMexico. EnergyPolicy 62:70–78. https://doi.org/10.1016/j.enpol.2013.07.088.
8 OGJ-editors(2019). WoodMacLowersChinaGasProductionForecast .Oil andGasJournal.https://www.ogj.com/drilling-production/article/14038976/ woodmac-lowers-china-gas-production-forecast(accessed18September 2019).
9 EIA(2019a). GrowthinArgentina’sVacaMuertaShaleandTightGasProductionLeadstoLNGExports.U.S.EnergyInformationAdministration.https:// www.eia.gov/todayinenergy/detail.php?id=40093(accessed17September 2019).
10 EIA(2019b). BackgroundReference:Algeria.U.S.EnergyInformationAdministration.https://www.eia.gov/beta/international/analysis_includes/countries_ long/Algeria/background.htm(accessed18September2019).
11 NationalEnergyBoard(2018). Canada’sEnergyFuture2018Supplement: NaturalGasProduction.NationalEnergyBoard.https://www.cer-rec.gc.ca/ nrg/ntgrtd/ftr/2018ntrlgs/nrgftrs2018spplmntsntrlgs-eng.pdf(accessed18 September2019).
12 Duhalt,A.,Mikulska,A.,andMaher,M.D.(2019). AProposedShaleBanin Mexico.BakerInstituteIssueBriefNo.05.03.19.Houston,TX:RiceUniversity’sBakerInstituteforPublicPolicy.
13 EIA(2015). WorldShaleResourceAssessments.U.S.EnergyInformation Administration.https://www.eia.gov/analysis/studies/worldshalegas(accessed 17September2019).
14 Bullin,K.A.andKrouskop,P.E.(2009).Compositionalvarietycomplicates processingplansforUSshalegas. OilandGasJournal 107:50–55.
15 EIA(2019c). HenryHubNaturalGasSpotPrices.U.S.EnergyInformation Administration.https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm(accessed7 March2019).