Process intensification and integration for sustainable design dominic c. y. foo (editor) - The late

Page 1


https://ebookmass.com/product/process-intensification-andintegration-for-sustainable-design-dominic-c-y-foo-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Chemical Engineering Process Simulation 2nd Edition

C.Y. Foo

https://ebookmass.com/product/chemical-engineering-processsimulation-2nd-edition-dominic-c-y-foo/

ebookmass.com

Advances in Legumes for Sustainable Intensification Ram

Swaroop Meena

https://ebookmass.com/product/advances-in-legumes-for-sustainableintensification-ram-swaroop-meena/

ebookmass.com

Synthesis and Operability Strategies for Computer-Aided Modular Process Intensification Efstratios N. Pistikopoulos

https://ebookmass.com/product/synthesis-and-operability-strategiesfor-computer-aided-modular-process-intensification-efstratios-npistikopoulos/ ebookmass.com

Digital Marketing 8th Edition Dave Chaffey

https://ebookmass.com/product/digital-marketing-8th-edition-davechaffey/

ebookmass.com

N is for Necromancy: The A, B, C's of Witchery (Moonbeam Chronicles Book 14) Carolina Mac

https://ebookmass.com/product/n-is-for-necromancy-the-a-b-cs-ofwitchery-moonbeam-chronicles-book-14-carolina-mac/

ebookmass.com

Grief Before and During the COVID-19 Pandemic: Multiple Group Comparisons Maarten C. Eisma Phd & Aerjen Tamminga Msc

https://ebookmass.com/product/grief-before-and-during-thecovid-19-pandemic-multiple-group-comparisons-maarten-c-eisma-phdaerjen-tamminga-msc/ ebookmass.com

GLOBAL 4: Global Business 4th Edition Mike W. Peng

https://ebookmass.com/product/global-4-global-business-4th-editionmike-w-peng/

ebookmass.com

Security Awareness: Applying Practical Security in Your World 5th Edition Mark Ciampa

https://ebookmass.com/product/security-awareness-applying-practicalsecurity-in-your-world-5th-edition-mark-ciampa/

ebookmass.com

SketchUp for Interior Design: 3D Visualizing, Designing, and Space Planning 2nd Edition Lydia Sloan Cline

https://ebookmass.com/product/sketchup-for-interiordesign-3d-visualizing-designing-and-space-planning-2nd-edition-lydiasloan-cline/

ebookmass.com

https://ebookmass.com/product/%e9%9d%9e%e5%b8%b8%e5%b9%b4%e4%bb%a31964-1978-%e4%b8%8a%e5%8d%b7-%e8%b6%99%e5%9c%92/

ebookmass.com

ProcessIntensificationandIntegrationforSustainableDesign

ProcessIntensificationandIntegrationfor SustainableDesign

Editors

DominicC.Y.Foo UniversityofNottinghamMalaysia DepartmentofChemicaland EnvironmentalEngineering BrogaRoad 43500Semenyih,Selangor Malaysia

MahmoudM.El-Halwagi TexasA&MUniversity DepartmentofChemicalEngineering 3122TAMURoom200 TX UnitedStates

Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>.

©2021WILEY-VCHGmbH,Boschstr. 12,69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34547-2

ePDFISBN: 978-3-527-81870-9

ePubISBN: 978-3-527-81872-3

oBookISBN: 978-3-527-81873-0

CoverDesign Adam-Design,Weinheim, Germany

Typesetting SPiGlobal,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

DominicC.Y.FoowouldliketodedicatethisbooktohiswifeCeciliaandkids Irene,Jessica,andHelena.MahmoudM.El-Halwagiwouldliketodedicatethis booktohisparents,hiswifeAmal,andsonsOmarandAli.

Contents

Preface xv

1ShaleGasasanOptionfortheProductionofChemicalsand ChallengesforProcessIntensification 1 AndreaP.Ortiz-EspinozaandArturoJiménez-Gutiérrez

1.1Introduction 1

1.2WhereIsItFound? 1

1.3ShaleGasComposition 3

1.4ShaleGasEffectonNaturalGasPrices 3

1.5AlternativestoProduceChemicalsfromShaleGas 4

1.6SynthesisGas 4

1.7Methanol 5

1.8Ethylene 6

1.9Benzene 7

1.10Propylene 7

1.11ProcessIntensificationOpportunities 8

1.12PotentialBenefitsandTradeoffsAssociatedwithProcess Intensification 10

1.13Conclusions 11 References 11

2DesignandTechno-EconomicAnalysisofSeparationUnitsto HandleFeedstockVariabilityinShaleGasTreatment 15 EricBohac,DebalinaSengupta,andMahmoudM.El-Halwagi

2.1Introduction 15

2.2ProblemStatement 16

2.3Methodology 17

2.4CaseStudy 17

2.4.1Data 18

2.4.2ProcessSimulationsandEconomicEvaluation 19

2.4.2.1ChangesinFixedandVariableCosts 20

2.4.2.2Revenue 21

2.4.2.3EconomicCalculations 21

2.4.3SafetyIndexCalculations 22

2.5Discussion 23

2.5.1ProcessSimulations 23

2.5.1.1DehydrationProcess 23

2.5.1.2NGLRecoveryProcess 23

2.5.1.3FractionationTrain 26

2.5.1.4AcidGasRemoval 26

2.5.2ProfitabilityAssessment 26

2.5.3HighAcidGasCaseEconomics 30

2.5.4SafetyIndexResults 30

2.5.5SensitivityAnalysis 32

2.5.5.1HeatingValueCases 33

2.5.5.2NGLPriceCases 34

2.6Conclusions 35

Appendices 35

2.AAppendixA:KeyParametersfortheDehydrationProcess 36

2.BAppendixB:KeyParametersfortheTurboexpanderProcess 36

2.CAppendixC:KeyParametersfortheFractionationTrain 37

2.DAppendixD:KeyParametersfortheAcidGasRemoval System 37 References 39

3SustainableDesignandModel-BasedOptimizationofHybrid RO–PRODesalinationProcess 43

ZhibinLu,ChangHe,BingjianZhang,QinglinChen,andMingPan

3.1Introduction 43

3.2UnitModelDescriptionandHybridProcessDesign 47

3.2.1TheProcessDescription 47

3.2.2UnitModelandPerformanceMetrics 49

3.2.2.1ROUnitModel 49

3.2.2.2PROUnitModel 52

3.2.3TheRO–PROHybridProcesses 54

3.2.3.1Open-LoopConfiguration 54

3.2.3.2Closed-LoopConfiguration 55

3.3UnifiedModel-BasedAnalysisandOptimization 56

3.3.1DimensionlessMathematicalModeling 56

3.3.2MathematicalModelandObjectives 58

3.3.3OptimizationResultsandComparativeAnalysis 59

3.4Conclusion 62 Nomenclature 63 References 65

4Techno-economicandEnvironmentalAssessmentofUltrathin PolysulfoneMembranesforOxygen-EnrichedCombustion 69 SereneSowMunLock,KokKeongLau,AzmiMohdShariff,YinFongYeong,and NorwahyuJusoh

4.1Introduction 69

4.2NumericalMethodologyforMembraneGasSeparationDesign 70

4.3Methodology 73

4.3.1SimulationandElucidationofMixedGasTransportPropertiesof UltrathinPSFMembranes(MolecularScale) 73

4.3.2SimulationofMathematicalModelInterfacedinAspenHYSYSfor MassandHeatBalance(Mesoscale) 75

4.3.3DesignofOxygen-EnrichedCombustionUsingUltrathinPSF Membranes 75

4.4ResultsandDiscussion 77

4.4.1SimulationandElucidationofMixedGasTransportPropertiesof UltrathinPSFMembranes(Molecular) 77

4.4.2SimulationofMathematicalModelInterfacedinAspenHYSYSfor MassandHeatBalance(Mesoscale) 79

4.4.3DesignofOxygen-EnrichedCombustionUsingUltrathinPSF Membranes 82

4.4.3.1MembraneAreaRequirement 82

4.4.3.2CompressorPowerRequirement 83

4.4.3.3TurbinePowerRequirement 85

4.4.3.4EconomicParameter 88

4.5Conclusion 90 Acknowledgment 91 References 91

5ProcessIntensificationofMembrane-BasedSystemsforWater, Energy,andEnvironmentApplications 97 NikA.H.M.Nordin,ZulfanA.Putra,MuhammadR.Bilad,MohdD.H.Wirzal, LilaBalasubramaniam,AnisS.Ishak,andSawinKaurRanjitSingh

5.1Introduction 97

5.2MembraneElectrocoagulationFlocculationforDyeRemoval 99

5.3CarbonationBioreactorforMicroalgaeCultivation 102

5.4ForwardOsmosisandElectrolysisforEnergyStorageandTreatmentof EmergingPollutant 107

5.5ConclusionsandFuturePerspective 111 References 113

6DesignofInternallyHeat-IntegratedDistillationColumn (HIDiC) 117 VasuHarvindranandDominicC.Y.Foo

6.1Introduction 117

6.2ExampleandConceptualDesignofConventionalColumn 119

6.3BasicDesignofHIDiC 120

6.4CompleteDesignofHIDiC 122

6.4.1Top-IntegratedColumn 122

6.4.2Bottom-IntegratedColumn 123

6.4.3GeometricalAnalysisforHeatPanels 124

6.5EnergySavingsandEconomicEvaluation 126

6.6ConcludingThoughts 128 References 128

x Contents

7GraphicalAnalysisandIntegrationofHeatExchanger NetworkswithHeatPumps 131

MinboYangandXiaoFeng

7.1Introduction 131

7.2InfluencesofHeatPumpsonHENs 132

7.2.1Case1 133

7.2.2Case2 134

7.2.3Case3 134

7.2.4Case4 135

7.2.5Case5 136

7.2.6Case6 136

7.2.7Case7 136

7.3IntegrationofHeatPumpAssistedDistillationintheOverall Process 138

7.3.1IncreaseofPinchTemperature 138

7.3.2DecreaseofPinchTemperature 140

7.3.3NoChangeinPinchTemperature 141

7.3.4HeatPumpPlacement 142

7.4CaseStudy 145

7.5Conclusion 148 References 148

8InsightfulAnalysisandIntegrationofReactorandHeat ExchangerNetwork 151

DiZhang,GuilianLiu,andXiaoFeng

8.1Introduction 151

8.2InfluenceofTemperatureVariationonHEN 152

8.2.1LocationofColdandHotStreams 152

8.2.2EffectofTemperatureVariation 153

8.3RelationAmongReactorParameters 156

8.3.1RelationAmongTemperatures,Selectivity,andConversionof Reactor 157

8.3.1.1CSTR 159

8.3.1.2PFR 159

8.3.2ReactorCharacteristicDiagram 160

8.4CouplingOptimizationofHENandReactor 161

8.5CaseStudy 163

8.6Conclusions 165 References 166

9FoulingMitigationinHeatExchangerNetworkThrough ProcessOptimization 167

YufeiWangandXiaoFeng

9.1Introduction 167

9.2OperationParameterOptimizationforFoulingMitigationin HENs 169

9.2.1DescriptiononVelocityOptimization 169

9.2.2FoulingThresholdModel 171

9.2.3HeatTransferRelatedModels 172

9.2.4PressureDropRelatedModels 174

9.3OptimizationofCleaningSchedule 175

9.4ApplicationofBackupHeatExchangers 175

9.5OptimizationConstraintsandObjectiveFunction 176

9.5.1OptimizationConstraints 176

9.5.2ObjectiveFunction 177

9.5.3OptimizationAlgorithm 178

9.6CaseStudies 178

9.6.1CaseStudy1:ConsiderationofVelocityOptimizationAlone 178

9.6.1.1OptimizationResults 180

9.6.2CaseStudy2:SimultaneousConsiderationofVelocityandCleaning ScheduleOptimization 186

9.6.2.1ConstraintsforCaseStudy 188

9.6.2.2ResultsandDiscussion 189

9.6.2.3ConsideringBackupHeatExchanger 194

9.7Conclusion 194 Acknowledgments 196 References 198

10DecompositionandImplementationofLarge-ScaleInterplant HeatIntegration 201

RunrunSong,XiaoFeng,MahmoudM.El-Halwagi,andYufeiWang

10.1Introduction 201

10.1.1ReviewsandDiscussionsforStreamSelection 202

10.1.2ReviewsandDiscussionsforPlantSelection 204

10.1.3ReviewsandDiscussionsforPlantIntegration 204 10.2Methodology 205

10.2.1Strategy1–Overview 205

10.2.2IdentificationofHeatSources/SinksforIPHIfromIndividual Plants 206

10.2.3DecompositionofaLarge-ScaleIPHIProblemintoSmall-Scale Subsections 207

10.2.4Strategy2forIndirectIPHI 209

10.3CaseStudy 212

10.3.1Example1 212

10.3.2Example2 215

10.4Conclusion 217 References 218

11Multi-objectiveOptimisationofIntegratedHeat,Massand RegenerationNetworkswithRenewablesConsidering EconomicsandEnvironmentalImpact 221

So-MangKim,AdeniyiJ.Isafiade,andMichaelShort 11.1Introduction 221

11.2LiteratureReview 222

11.2.1RegenerationinProcessSynthesis 222

11.2.2TheAnalogyofMENandREN 222

11.2.3CombinedHeatandMassExchangeNetworks(CHAMENs) 224

11.3EnvironmentalImpactinProcessSynthesis 225

11.3.1LifeCycleAssessment 225

11.4TheSynthesisMethodandModelFormulation 226

11.4.1SynthesisApproach 227

11.4.2Assumptions 229

11.4.3MINLPModelFormulation 230

11.4.3.1HENSModelEquations 230

11.4.3.2MENandRENModelEquations 233

11.4.3.3TheCombinedEconomicObjectiveFunction 236

11.4.3.4InitializationsandConvergence 239

11.5CaseStudy 240

11.5.1H2 SRemoval 240

11.5.1.1SynthesisofMEN(TheFirstStep) 242

11.5.1.2SimultaneousSynthesisofMENandREN(TheSecondStep) 243

11.5.1.3SimultaneousSynthesisofMEN,REN,andHEN(TheThird Step) 244

11.5.1.4AbsorptionandRegenerationTemperatureOptimization 247

11.5.1.5TheSynthesisofCombinedModelUsingMOO 252

11.6ConclusionsandFutureWorks 254 References 256

12OptimizationofIntegratedWaterandMulti-regenerator MembraneSystemsInvolvingMulti-contaminants:A Water-EnergyNexusAspect 261 MusahAbassandThokozaniMajozi

12.1Introduction 261

12.2ProblemStatement 263

12.3ModelFormulation 263

12.3.1MaterialBalancesforSources 264

12.3.2MassandContaminantsBalancesforRegenerationUnits 265

12.3.3MassandContaminantBalancesforPermeateandReject Streams 265

12.3.4MassandContaminantBalancesforSinks 266

12.3.5ModelingoftheRegenerationUnits 266

12.3.5.1PerformanceofRegenerationUnits 266

12.3.6LogicalConstraints 267

12.3.7TheObjectiveFunction 267

12.4IllustrativeExample 268

12.5Conclusion 272 Acknowledgments 272

12.AAppendix:DetailedModelsfortheEDandROModules 273 Nomenclature 280 References 282

13OptimizationStrategiesforIntegratingandIntensifying

HousingComplexes 285

JesúsM.Núñez-López,andJoséM.Ponce-Ortega

13.1Introduction 285

13.2Methods 288

13.2.1TotalAnnualCostfortheIntegratedSystem 289

13.2.2FreshWaterConsumption 289

13.2.3GHGEEmissions 290

13.2.4EnvironmentalImpact 290

13.2.5SustainabilityReturnofInvestment 293

13.2.6ProcessRouteHealthinessIndex 293

13.2.7MultistakeholderApproach 295

13.3CaseStudy 295

13.4Results 296

13.5Conclusions 296 References 299

14SustainableBiomassConversionProcessAssessment 301 EricC.D.Tan

14.1Introduction 301

14.2MethodologyandAssumptions 302

14.3ResultsandDiscussion 305

14.3.1EnvironmentalIndicators 305

14.3.2EnergyIndicators 310

14.3.3EfficiencyIndicators 312

14.3.4EconomicIndicators 313

14.4Conclusions 314 Acknowledgments 316 References 317

Index 319

Preface

Thechemicalprocessindustryinvolvesabroadspectrumofmanufacturing sectorsandfacilitiesaroundtheworld.Withincreasedglobalcompetition, escalatingenvironmentalconcerns,dwindlingenergy,andmaterialresources, itisimperativeforindustrytoseekcontinuousprocessimprovement.Process intensificationandintegrationareamongthemosteffectivestrategiesleading toimprovedprocessdesignsandoperationswithenhancementincosteffectiveness,resourceconservation,efficiency,safety,andsustainability.Process integrationisaholisticframeworkfordesigningandoperatingindustrialfacilitieswithanoverarchingfocusontheinterconnectednatureofthevariouspieces ofequipment,mass,energy,andfunctionalities.Ontheotherhand,process intensificationinvolvesefficiencyimprovementthrougheffectivestrategiessuch asincreasingthroughputforthesamephysicalsizeordecreasingthephysical sizeforthesamethroughput,couplingunitsandphenomena,enhancing massandenergyutilization,andmitigatingenvironmentalimpact.Thereisa naturalsynergismbetweenprocessintegrationandintensification.Forinstance, massandenergyintegration(twokeypillarsofprocessintegration)areideal approachesforenhancingmassandenergyintensities.

Thisbookisintendedtoprovideacompilationofthevariousrecentdevelopmentsinthefieldsof processintensification and processintegration withfocus onenhancingsustainabilityofthechemicalprocessesandproducts.Itincludes state-of-the-artcontributionsbyworld-renownedleadersinprocessintensificationandintegration.Itstrikesabalancebetweenfundamentaltechniquesand industrialapplications.Bothacademicresearchersandindustrialpractitioners willbeabletousethisbookasaguidetooptimizetheirrespectiveplantsand processes.

The14chaptersinthebookareclassifiedintotwobroadareas:processintensificationandprocessintegration.Asexpected,severalintensificationchapters includeintegrationandviceversa.Thesechaptersmaybereadindependentlyof eachother,orwithnoparticularsequence.Synopsesofallchaptersaregivenas follows.

Section1–ProcessIntensification

Thefirstsectionofthebookconsistsofsixchaptersfocusingonprocess intensification.Chapters1and2focusonprocessintensificationfortheshale gasindustry.Chapter1entitled“ShaleGasasanOptionfortheProductionof ChemicalsandChallengesforProcessIntensification”(by Ortiz-Espinozaand Jiménez-Gutiérrez)discussesalternativestoproducechemicalsfromshalegas, andopportunitiesforprocessintensification.InChapter2entitled“Designand Techno-EconomicAnalysisofSeparationUnitstoHandleFeedstockVariability inShaleGasTreatment”(by Bohacandcoworkers),asystematicapproachis proposedforthedesignofaprocessingplanttotreatrawshalegaswithvariable composition.Chapters3–5focusesonvariousprocessintensificationaspect ofmembraneseparationprocesses.InChapter3entitled“SustainableDesign andModel-BasedOptimizationofHybridRO–PRODesalinationProcess” (by Luandcoworkers),adimensionlessmodel-basedoptimizationapproach wasdevelopedtoevaluatetheperformanceofahybridsystemsconsistingof reverseosmosis and pressureretardedosmosis processes.InChapter4,entitled “Techno-EconomicandEnvironmentalAssessmentofUltrathinPolysulfone MembranesforOxygen-EnrichedCombustion”(by Lockandcoworkers),multiscalesimulationwasusedfortechno-economicfeasibilitystudyofultrathin polysulfonemembraneforoxygen-enrichedcombustion;themultiscalesimulationcoversmolecularscale,mesoscale,andeventuallyprocessoptimizationand design.Chapter5,entitled“ProcessIntensificationofMembrane-BasedSystems forWater,Energy,andEnvironmentApplications”(by MdNordinandcoworkers),outlinedthreeimportantapplicationsofmembranetechnologyinprocess intensification,i.e.membraneelectrocoagulationflocculationfordyeremoval, membranediffuserinphotobioreactor,andforwardosmosis/electrolysis. Chapter6,entitled“DesignofInternallyHeat-IntegratedDistillationColumn (HIDiC)”(by HarvindranandFoo),discussedtheuseofprocesssimulation softwareforthedesignofaninternalHIDiC.

Section2–ProcessIntegration

Thesecondsectionofthebookfeatureseightchaptersonprocessintegration. Chapters7–9presentsomelatestadvancementsin heatexchangernetwork (HEN)synthesis.WhileChapters7and8arebasedon pinchanalysis techniques,Chapter9isbasedonmathematicalprogrammingtechnique.Chapter 7entitled“GraphicalAnalysisandIntegrationofHeatExchangerNetworks withHeatPumps”(by YangandFeng ),presentspinchanalysis-basedstrategies fortheintegrationwithheatpumpsaswellasheatpump-assisteddistillation withHEN.InChapter8thatisentitled“InsightfulAnalysisandIntegrationof ReactorandHeatExchangerNetwork”(by Zhangandcoworkers),a combined multi-parameteroptimizationdiagram (CMOD)isproposedtoallowbetter integrationofreactorswiththeHEN,takingintoconsiderationofenergy consumption,temperature,selectivity,andreactorconversion.Next,anew methodologynamedas velocityoptimization isproposedinChapter9,entitled

Preface xvii

“FoulingMitigationinHeatExchangerNetworkThroughProcessOptimization”(by WangandFeng ).Thisnewmethodologyallowsthecorrelationof fouling,pressuredrop,andheattransfercoefficientofheatexchangerswith velocity;thisallowsvelocitydistributiontobedeterminedamongalltheheat exchangersintheHEN.Chapter10entitled“DecompositionandImplementationofLarge-ScaleInterplantHeatIntegration”(by Songandcoworkers) proposedathree-stepstrategyforthedecompositionoflarge-scaleinter-plant heatintegrationproblem.Thechapteralsoproposesanewpinchanalysis techniquetoidentifythemaximuminterplantheatrecoverypotential,while minimizingthecorrespondingflowratesofheattransferfluids.Chapter11 entitled“Multi-objectiveoptimisationofintegratedheat,massandregeneration networkswithrenewablesconsideringeconomicsandenvironmentalimpact” (by Isafiadeandcoworkers)presentsamathematicalprogrammingmethod formulti-period combinedheatandmassexchangenetworks (CHAMENs)in whicharegenerationnetworkisincluded;thelatterconsistsofmultiplerecyclablemassseparatingagentsandregeneratingstreams.InChapter12entitled “OptimizationofIntegratedWaterandMulti-regeneratorMembraneSystems InvolvingMulti-contaminants:AWater-EnergyNexusAspect”(by Abassand Majozi),anothermathematicalapproachwaspresentedforthesynthesisof integratedwaterandmembranenetwork;thelatterconsistsofdetailedmodels ofelectrodialysisandreverseosmosisunitsthatareembeddedwithinawater regenerationnetwork.Chapter13entitled“OptimizationStrategiesforIntegratingandIntensifyingHousingComplexes”(by Núñez-LópezandPonce-Ortega) providesanoverviewofprocessintegrationandintensificationforhousing complexes,thelatteristypicallyamuchlargerscaleascomparedtoindustrial processes.Inthelastchapterentitled“SustainableBiomassConversionProcess AssessmentContributingto‘ProcessIntensificationandIntegrationforSustainableDesign’”(by Tan),amulti-objectiveprocesssustainabilityevaluation methodologyknownasGREENSCOPE(GaugingReactionEffectivenessfor ENvironmentalSustainabilityofChemistrieswithamulti-ObjectiveProcess Evaluator )isdemonstratedtotrackprocesssustainabilityperformancefora biomassconversionprocess.

These14chapterscoversomeofthemostrecentandimportantdevelopments inprocessintensificationandprocessintegration.Wehopethebookwillserve asausefulguideforresearchersandindustrialpractitionerswhoseektodevelop toolsandapplicationsforprocessimprovementandsustainabledevelopment.

Kajang,Malaysia CollegeStation,UnitedStates

January2020

ShaleGasasanOptionfortheProductionofChemicalsand ChallengesforProcessIntensification

AndreaP.Ortiz-EspinozaandArturoJiménez-Gutiérrez

TecnológicoNacionaldeMéxico,InstitutoTecnológicodeCelaya,ChemicalEngineeringDepartment, AveTecnologicoyGarciaCubas,Celaya38010,Mexico

1.1Introduction

Shalegasisunconventionalnaturalgastrappedoradsorbedinshalerock formations.Asopposedtoconventionalnaturalgas,shalegasisdifficultto extractbecauseofthelowporosityoftherockformationsinwhichitisconfined. Thisparticularcharacteristicimpliedahighcostfortheextractionofthisgas,so thatitsproductionremainedunfeasibleuntilthedevelopmentofmoresuitable extractiontechnologies,suchashydraulicfracturingandhorizontaldrilling[1]. Hydraulicfracturingisastimulationtechniqueusedtoincreasetheflowrate ofgasandoilinlowpermeabilityreservoirs.Thismethodconsistsininjecting high-pressurizedfluidsintothewelltocreatefracturesandmaintainthem openedtoallowthefluxofgasandoil[1,2].Hydraulicfracturingisgenerally combinedwithhorizontaldrillingtoincreasetheareacoveredwithalower numberofwells.Thesetwotechnologieshaveledtoanincreaseinthenet productionofnaturalgasintheUnitedStates(US)formorethanadecade, whichhasbeenreferredtoastheshalegasrevolution[1,3].

Theaimofthischapteristogiveanoverviewofshalegasanditspotential toproducevalue-addedchemicals.Thischapteraddressesthefollowingaspects: shalegascompositionandplaceswheredepositsarelocated,effectofshalegas discoveriesonnaturalgasprices,alternativestoproducechemicalsfromshale gas,andopportunitiesforprocessintensification.

1.2WhereIsItFound?

Althoughshalegashasbeenknownforawhile,thefirstshalegaswellwas drilledin1821inChautauqua,NY,itsexploitationwaspossibleonlyuntilthe developmentofhydraulicfracturingandhorizontaldrillingtechnologies.After theoilcrisesofthe1970s,theUSgovernmentandsomeoilandgascompanies, separately,initiatedtheinvestmentinresearchprojectstoevaluateandmake shalegasextractionpossible.Fromthebeginningofthe2000s,technical

ProcessIntensificationandIntegrationforSustainableDesign, FirstEdition. EditedbyDominicC.Y.FooandMahmoudM.El-Halwagi. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

1ShaleGasasanOptionfortheProductionofChemicals

Table1.1 MajorshalegasplaysintheUnitedStates.

ShaleplayState(s) Percentageofdryshalegas productionin2018

MarcellusPA,WV,OH,and NY 32.7

PermianTXandNM12.3 UticaOH,PA,andWV11.3

HaynesvilleLAandTX11.0

EagleFordTX7.1

WoodfordOK5.0 BarnettTX4.4

Source:AdaptedfromEIA2018[4].

andeconomicfactorspromotedtheideatoproducenaturalgasfromshale formations.TheBarnettshaleplaywasthefirstbasintobeexploitedinalarge scale,withthehydraulicfracturingtechnologybeingtestedthere.Followingthe successtoextractnaturalgasfromtheBarnettshaleplay,shalegasextraction beganinotherlocations.Table1.1givesbasicinformationaboutthemajorshale gasplaysintheUnitedStates.

ApartfromUSreserves,recoverableshalegasresourcesaroundtheworldhave beenfoundincountriessuchasChina,Argentina,Algeria,Canada,Mexico, Australia,SouthAfrica,andRussia[3,5].Despitethesediscoveries,severalfactorssuchasgeologicalaspectsandthelackofthenecessaryinfrastructurehave curbedthedevelopmentoftheshalegasindustryinthoseothercountries[6,7].

Table1.2 Recentshalegasreservesandproductioninforthesixcountrieswithmoreshale gasreserves.

Country

Unprovedrecoverable reservesby2013(Tcf) Productionin 2018(Bcf/yr)References China1115.20353.15[8] Argentina801.50365.00[9] Algeria706.90Noproduction[10] UnitedStates662.50(by2015)7079.62[4] Canada572.90182.80[11] Mexico545.20Noproduction[12]

Source:FromEIA2015[13].

Table1.2showstheproductionratesin2018forthesixcountrieswithmore unprovedtechnicallyrecoverableshalegasresources.

1.3ShaleGasComposition

Oneparticularcharacteristicofshalegasisitsvaryingcomposition.Shale gascompositiondependsheavilyonthelocationofthesources,anditmay variateevenwithinwellsinthesameplay.Theprimarycomponentofshalegas ismethane,butitalsocontainsconsiderablequantitiesofnaturalgasliquids (NGLs)suchasethaneandpropane.Apartfromthesecomponents,shalegas alsocontainsacidgasessuchasCO2 ,H2 S,andinorganiccomponentssuchas nitrogen[5,14].TheseparationofNGLsfrommethanehasinducedindustries tolookforalternativestotransformthemintomorevaluableproducts,butat thesametimethevaryingcompositionofshalegasrepresentsachallengeforthe treatmentplants,whichhavetoberobustlydesignedtohandlesuchvariations inthegascomposition.

1.4ShaleGasEffectonNaturalGasPrices

Thehighavailabilityofnaturalgas,generatedasaresultoftheincreasing productionofshalegas,hascausedanoticeabledropofitspriceintheUnited States.Moreover,theabilitytoextractnaturalgasfromdepositsthatarenot associatedtocrudeoilreservoirshasuncouplednaturalgasandcrudeoilprices [1].Thesefactshavecontributedtowhathasbeendefinedastheneweraofcheap naturalgas,inwhichithasbeenpricedconsistentlyunderUS$5permillionBtu foralmostadecadeintheUnitedStates[15].Inparticular,naturalgaspricesin 2019haveshownadecreasefrom3.18atthebeginningoftheyeartoUS$2.07 permillionBtuinSeptember[16].Evenmore,inanextremesituation,producers attheWahahubinthePermianbasininWestTexashadtopaythepipelineto taketheexcessofgas,showinganegativeUS$9inApril,whichcontributedtoan averagepriceofonly73centspermillionBtuforthefirsteightmonthsof2019, comparedwithanaveragemarketpriceofUS$2.10in2018(whichisalsolower thanthefiveyearaveragefrom2014to2018ofUS$2.80)[17].Thesetrendscreate anopportunityforthedevelopmentoftechnologiestotransformshale/natural gasintovalue-addedchemicals.OneadditionalpointtoconsideristheincreasingamountofliquefiednaturalgasthatisbeingexportedfromtheUnited States[18].Asthisquantitygrows,internationalnaturalgaspricesmayalso getaffected.

Themainconsumersofnaturalgasaretheelectricitygenerationindustry,theresidentialsector,theindustrialsector,andthechemicalindustry. Lownaturalgaspriceshaveincentivizedtheelectricpowerplantstoswitch fromcoaltonaturalgas,withanimpactnotonlyontheeconomyofthese systemsbutalsoontheenvironmentbyreducingthetotalgreenhousegas emissions[1].

1ShaleGasasanOptionfortheProductionofChemicals

Anothersectorthathasshowninterestinswitchingfromoil-basedfeedstocks, suchasnaphthaorcrudeoil,tonaturalgasisthechemicalindustry.The availabilityofinexpensivenaturalgasandNGLshasboostedthechemical industrytocreatenewplantsfortheproductionofvalue-addedchemicalsusing methaneandNGLsasfeedstock[5,19].

1.5AlternativestoProduceChemicalsfromShaleGas

Duetotheincreasingavailabilityoflow-costnaturalgas,thechemicalindustry hasstartedtoinvestintheresearchanddevelopmentofchemicalroutesthat cantransformmethaneintovalue-addedchemicals.Someofthechemicalcompoundsthathavereceivedspecialattentionaremethanol,ethylene,propylene, andliquidfuelsobtainedfromsyngas.Someoftheprocessestoproducethe aforementionedchemicalsarediscussednext.

1.6SynthesisGas

Synthesisgasisamixtureofcarbonmonoxideandhydrogentypicallyneeded fortheproductionofchemicalssuchasamethanol,ammonia,orgas-to-liquid (GTL)products.Theproductionprocessforsynthesisgasvariesdepending ontheoxidizingagentselectedforthereformingofthenaturalgas.Themain reformingprocessesaresteamreforming(SR),partialoxidation(POX),anddry reforming(DR)[20].ThecharacteristicsoftheseprocessesarelistedinTable1.3. Althoughtheseprocessesmaybeusedseparately,combinationsoftwoormore ofthemainreformingoptionshavebeenproposedtoenhancetheoverallperformanceofthereformingtask.Onesuchprocessistheautothermalreforming (ATR)inwhichtheexothermicnatureofthePOXreformingiscombinedwith theendothermicSR[21].

Inallofthesereformingalternatives,energyandwaterusageandgeneration arekeypointstoconsiderwhenselectingtheappropriatetechnology.Studies regardingheatandmassintegrationpotentialfortheSR,POX,andATRoptions canbeconsultedintheworkofMartínezetal.[21]andGabrieletal.[22].

Table1.3 Reformingoptionsandtheircharacteristics.

Reforming option Oxidizing

SteamreformingH2 OEndothermicCH4 + H2 O → CO + 3H2 Catalytic

PartialoxidationO2 ExothermicCH4 + 1 2 O2 → CO + 2H2 Catalytic/noncatalytic

DryreformingCO2 EndothermicCH4 + CO2 → 2CO + 2H2 Catalytic

Source:AdaptedfromNoureldinetal.2014[20].

1.7Methanol

Typically,methanolisusedasanintermediatetoproduceotherchemicalssuch asaceticacid,formaldehyde,andMTBE,amongothers[23].Theproductionprocessformethanolconsistsofthreestages,reforming,synthesis,andpurification. Inthefirststage,themaingoalistotransformmethaneintosyngas.Forthis purposeareformingprocessisselected.Oneimportantfactortoconsiderwhen selectingthereformingprocessisthattheratioofH2 toCOtofeedthemethanol synthesisreactorhastobeequalto2.

Forthesynthesisofmethanol,compressionofthesyngasobtainedfromthe reformingstageisneeded.Then,thecompressedsyngasisfedtoacatalyticreactorinwhichthefollowingreactionstakeplace:

Thesynthesisreactoroperatesat83barand260 ∘ C.Theoutletofthereactoris cooledandsenttoaflashunittoseparatetheunreactedsyngasandrecirculate it.Additionally,afractionoftherecycledsyngasispurged,withapotentialuse asfuel.Thecrudemethanolobtainedfromtheflashunitispurifiedusingoneor twodistillationcolumns[23].

Thisprocesshasbeenanalyzedtoassessitsenvironmentalimpactanditssafety characteristics[23,24].Themaindrawbacksoftheprocessarethehighpressurerequiredfortheoperationofthesynthesisreactorandthewastedfraction ofnon-recycledsyngas.Ortiz-Espinozaetal.[24]studiedtheeffectofdifferent operatingpressuresforthemethanolsynthesisreactoronthesafety,environmental,andeconomiccharacteristicsofthemethanolproductionprocessusingPOX reforming.Thehighoperatingpressureisrelatedtotheprofitabilityoftheprocess,butsafetypropertiesmaybehinderedbysuchoperatingconditions.Greenhouseemissionsareanadditionalitemofrelevanceforconsideration.Figure1.1 showstheresultsoftheanalysisconductedbyOrtiz-Espinozaetal.[24],inwhich valuesofthreemetricsusedforprofitability,inherentsafety,andsustainabilityare reportedfordifferentreactorpressuresandrecyclingfractionsfortheunreacted syngas.Suchmetricswerethereturnoninvestment(ROI)foreconomicperformance,processrouteindex(PRI)forinherentsafety,andtotalemissionsofCO2 equivalentsforprocesssustainability.Onecanobservethegradualtrendofthe threemetricsthatreflecttheirconflictingbehavior.Insummary,theeconomic potentialoftheprocessisbetterathighpressuresandhighrecyclingfractions, butifsafetyisofprimaryconcern,alowerpressurewouldfavortheprocess characteristics.

Itshouldalsobenoticedthatthemethanolsynthesisreactionisexothermic; therefore,heatintegrationoptionsmaybeconsideredtofurtherenhancethe environmentalandeconomicperformanceoftheprocess.

CO2 + 3H2 → CH3 OH + H2 O
CO + 2H2 → CH3 OH

Figure1.1 Safety,sustainability,andeconomicindicatorfordifferentpressuresandrecycling fractionsinthemethanolproductionprocess.

1.8Ethylene

Ethyleneisamajorbuildingblockusedinthechemicalindustrytoproducea widevarietyofimportantchemicals.Theincreasingavailabilityofshalegashas boostedtheethyleneindustryasseveralethyleneproductionplantshavebeen plannedtobebuiltintheUnitedStates[5].Thealternativestoproduceethylene includeprocessesthatuseNGLsasfeedstock,suchasethanecrackingorpropane dehydrogenation[25],andprocessesthattransformmethanetoethylene[26,27]. Amongtheprocessesthatconvertmethanetoethylene,twoimportantoptions aretheoxidativecouplingofmethane(OCM)andthemethanoltoolefins(MTO) technology.OCMisadirectprocessinwhichmethaneandoxygenarefedtoa catalyticreactor,withtheproductsofthereactionbeingseparatedinapurificationstagethatconsistsoftheremovalofwaterandCO2 andacryogenicdistillationtrain[26].Althoughthisprocessisknownforthelowyieldachievedinthe reactor,whichrenderaprocessoptionwithlowprofitability,thedevelopment ofnewcatalyststructureshasmadepossibletheconstructionofdemonstration facilitiesforthistechnologythatofferbettereconomicperspectives[28].

TheotheralternativeforethyleneproductionisMTO,whichisamorecomplexprocessasitinvolvesseveralstages.First,thereformingofnaturalgasand theproductionofmethanoltakeplace.Afterthemethanolsynthesis,thecrude methanolissenttoacatalyticreactorwherelow-weightolefinsareproduced.In thereactoravarietyofcomponentsareproduced,suchasethyleneandpropylene,butylene,C5 s,hydrogen,low-weighthydrocarbons,water,andCO2 .The effluentofthereactoristhensenttoseparationandpurificationunits,which startwithCO2 removalanddehydrationunits.Then,theremainingstreamissent toadistillationtrainconsistingofdemethanizer,deethanizer,anddepropanizer columns,aswellasC2 andC3 splitters.AcolumntoseparateC4 sandC5 sisalso

1.10Propylene 7

needed.Theoverallprocessisveryenergyintensive,asitinvolvesareforming stageandalargedistillationtrain.

EvenwhentheMTOtechnologyhasbeenreportedtobemoreprofitablethan theOCMoption[26],thelattertechnologyislesscomplexandavoidstheneedto transformthenaturalgastointermediateproductssuchassyngas.Thatprovides anincentivetodevelopimprovementstothistechnologyinordertoenhanceits overallperformanceandprofitability.ProposedideastoachievesuchimprovementsincludetheuseofmembranesintheCO2 separationsystemandmodificationstotheethylenefractionationcolumntoreduceheatingandcondenser duties[29,30].

1.9Benzene

Benzeneisanimportantstartingmoleculeinthepetrochemicalindustry.The productionofbenzenefromshalegaswasconsideredinPérez-Urestietal.[31], andaprocessbasedonthedirectmethanearomatization(DMA)routewas designed.Inthisprocess,methaneisfedtoaDMAreactoroperatingat800 ∘ C andatmosphericpressure.Themainproductsofthereactionarebenzeneand hydrogen.TheeffluentfromtheDMAreactorissenttoamembraneunitto separatethehydrogen.Then,theremainingstreamiscooledandcompressedto beseparatedinaflashtank.Thegasstreamobtainedfromtheflashseparatoris methane-richandisrecycledtotheDMAreactor.Theliquidstreamisfedtoa distillationcolumnwherebenzeneisobtainedasatopproduct.Althoughthe DMAprocesscompeteswiththetraditionalproductionroutesbasedoncatalytic reformingorsteamcrackingofliquidpetroleumfeedstocks,itrepresentsan attractivealternativegiventhelowpricesofnaturalgas.

1.10Propylene

Propylenehastypicallybeenproducedasabyproducteitherfromthesteam crackingofnaphthatoproduceethyleneorfromthefluidcatalyticcracking toproducegasoline.WiththeshalegasboomandtheexcessofNGLssuchas ethane,theproductionofethylenehasswitchedthefeedstockfromnaphthato ethane.Thisactionhaseliminatedtheproductionofpropyleneasabyproduct, openinganopportunityforthedevelopmentofon-purposepropyleneproductionprocesses.Thealternativestoproducepropylenefromshalegasincludetwo optionsviamethanolandoneusingthepropaneobtainedfromthepurification ofshalegas[32,33].Theprocessestoproducepropyleneviamethanolarethe MTOrouteandthemethanoltopropylene(MTP)process[33].TheMTOprocessisdescribedearlierintheethylenesection.MTPfollowsasimilarpath.First, naturalgasistransformedintosyngasgasusingareformingalternative,andthen thesyngasistransformedintomethanol.AsopposedtotheMTOprocess,where crudemethanolissenttotheMTOreactor,methanolhastobepurifiedforitsuse asfeedstockfortheMTPprocess.Therefore,thecrudemethanolobtainedfrom

1ShaleGasasanOptionfortheProductionofChemicals

themethanolsynthesisreactorissenttoaflashunitandpurifiedusingadistillationcolumn.Thepurifiedmethanolisthenfedtoareactor,whereitisconverted todimethyletherandwater.Then,theoutletstreamofthereactorissenttoafixed bedcatalyticreactortoproducepropylene.Theeffluentfromthefixedbedreactorcontainspropylene,gasoline,andLPG,aswellaswater.Itissenttoaflashunit toremovewaterandtheremainingstreamispurifiedusingdistillationcolumns.

Anotheralternativefortheproductionofon-purposepropyleneisthepropane dehydrogenationprocess,inwhichadepropanizercolumnisusedtoseparateC4+ compoundsthatmaybepresentinthefreshmaterial.Thepurifiedpropaneenters acoldboxtorefrigeratetheeffluentfromthepropyleneproductionreactor.Then, thepropanestreamismixedwithhydrogenandsenttoafired-heaterbefore beingfedtoafluidizedcatalystbedreactor.Thereactionishighlyendothermic. Theoutletstreamofthereactorcontainspropylene,propane,lightgases,ethane andethylene,andsomeheavierhydrocarbons.Thereactoreffluentiscooled, compressed,andsenttoacoolboxwherehydrogenisseparatedfromthehydrocarbons.Theliquidstreamfromthecoldboxissenttoaselectivehydrogenation process(SHP)tofurtherimprovetheproductionofpropylene.Theeffluentfrom theSHPisfedtoadeethanizercolumntoremovelightgases.Finally,theremainingstreamisfedtoaC3 -splittercolumntoproducethepropylene.Thepropane obtainedatthebottomofthesplittercolumnisrecycledtothedepropanizer column[32].

Theseprocessesrepresentanexcellentopportunityfortheindependentproductionofpropyleneinsteadofobtainingitasabyproductofotherprocesses.

1.11ProcessIntensificationOpportunities

Theincentiveforshalegasmonetizationcanalsobeviewedasanopportunityto developintensifiedprocessesforshalegastransformationtechnologies.Recent effortstodesignintensifiedprocesseshavebeenobserved.Processintensification isunderstoodhereasasearchformorecompetitiveprocessalternativesviathe developmentofmorecompactflowsheets(i.e.withfewerpiecesofequipment orsmallersizesofthesamenumberofequipmentunits)and/orwithareductionontheconsumptionofbasicresources(rawmaterials,energy)throughmore efficientdesigns.

ThefirsteffortstodevelopformaldesignmethodologiesforintensifiedprocesseswereduetotheworkbyGaniandhisresearchgroup[34–36].Suchinitial methodologiesmakeuseoftheconceptsoftasksandphenomena,givingriseto theconceptsofphenomenabuildingblocks(PBBs),whichrepresentthetasks involvedinaprocessunitsuchasreaction,heating,cooling,masstransfer,and soforth;thecombinationofPBBsprovidessimultaneousphenomenabuilding blocks(SPBBs),whichareusedtomodeltheoperationsinvolvedinaprocess.For instance,inadistillationcolumn,thefollowingSPBBscanbeobserved.Eachtray showsamixturewithtwophases,withcontact,transfer,andseparationbetween thetwophases(vaporandliquid),whilethecondenseraddscoolingandthe reboileraddsheatingtothepreviousSPBBs,asshowninFigure1.2foracolumn withfivetrays.

M = C = 2phM = PC(VL) = PT(VL) = PS(VL)

Distillate

Feed

M = 2phM = PC(VL) = PT(VL) = PS(VL)

M = 2phM = PC(VL) = PT(VL) = PS(VL)

M = 2phM = PC(VL) = PT(VL) = PS(VL)

M = 2phM = PC(VL) = PT(VL) = PS(VL)

M = 2phM = PC(VL) = PT(VL) = PS(VL)

M = H = 2phM = PC(VL) = PT(VL) = PS(VL)

Bottom

Figure1.2 Simultaneousphenomenabuildingblocksinaconventionaldistillationcolumn.

Usingtheseconcepts,Lutzeetal.[36]developedamethodologyforprocess designofintensifiedprocesses,consistingofthreestages.Inthefirstone,abasic processflowsheetissynthesized.Inthesecondstage,SPBBsaredevelopedand asuperstructurethatcontainsallthepossibletasksofthesystemisformulated. Theproblemisthensolvedasamixed-integernonlinearprogramming(MINLP) modeltoobtaintheintensifiedstructurethatminimizesagivenobjective functionsuchasthetotalannualcostofthesystem.Babietal.[34]applied anextendedformulationofthatmodelthatincludedsustainabilitymetricsto acasestudydealingwiththeproductionofdimethylcarbonate.Inthework byCastillo-Landeroetal.[37],suchamethodologywastakenasabasis,but insteadofformulatinganMINLPmodeltosearchfortheoptimalintensified configuration,asequentialapproachwithgradualintensificationoftheprocess wasconducteduntilafinalstructurewithaminimumnumberofequipment unitswasobtained.Oneadvantageofthisprocedureisthatonecanassess individuallevelsofprocessintensificationsothatastructurethatfavorsagiven metricofinterestcanbeselected.

Interestingchallengesarisewhenshalegasprocessesareconsideredfor processintensification.Letustake,forinstance,thebasicflowsheetforthe productionofethylenefromshalegas,ornaturalgas,showninFigure1.3.As discussedearlier,thisprocessshowsafairlysimplestructurebutanadverse profitability,whichposesaparticularincentivetoexplorepotentialbenefitsthat aneffectiveprocessintensificationtaskcouldprovide.Nonetheless,noticeable challengesexistforitstransformationintoanintensifiedprocessthatcombines

Figure1.3 Basicflowsheetforethyleneproductionfromshale/naturalgas. theprocesstasks,namely,reactionandseveralseparationtasks.Firstofall, thereactorperformsacatalytic,gas-phasereactiontask,whichconsistsof acomplexreactionmechanism.Secondly,theseparationtasksconsistofa combinationofcompressionforwatercondensationandabsorptionforCO2 removal(typicallycarriedoutwithanaminesuchasMEA).Combinationof absorptionandmembranecouldpossiblybeconsidered.Thedistillationtrain, finally,ishighlyenergyintensive.Giventhetasksidentifiedforthisprocess, andtheaimtointensifyit,theuseofmembraneunitswouldbeofspecial consideration.Membraneunitscouldconceptuallybedesignedfirsttocarryout theindividualtasks.Then,combinationsofreactionandseparationtasksbased onsuchmembraneunitscouldbeconsidered.Theresultingstructurewould includeinnovativegas-phasemembrane-reactive-separationunits.Thedesign ofeffectivemembranesthat,amongotherthings,couldseparatethegasmixture thatrequirescryogenicdistillationsystemscouldprovideasignificantimpact ontheprocesseconomics.Itshouldbementionedthatsomeeffortstocombine reactivedistillationwithmembraneseparationhavebeenreported(e.g.[38]). However,thereactionforwhichtheintensificationwithmembraneunitshas beenconsideredhasbeentypicallyimplementedforliquid-phasereactions.In suchcases,membranesaidinimprovingtheeffectivenessoftheprocess,for instance,byreleasingoneoftheproductsofthereversiblereactiontoimprove itsyield.Theproblemposedbyshalegasprocessesisthegas-phasereactionthat requiresspecialmembranematerialsforitseffectiveapplication.Theaspects outlinedheretakingtheOCMtransformationtechnologyasanexampleprovide aclearincentivetowardthedesignofmorecompetitivealternativesbasedon morecompact,innovativeshalegas-intensifiedtechnologies.

1.12PotentialBenefitsandTradeoffsAssociated

Althoughintensificationopportunitiesforshalegastechnologiesremaintobe explored,itisworthyofmentionitspotentialbenefitsandpossibletradeoffs basedontheresultsfromresearchandapplicationsofintensificationmethodologies.First,itcouldbementionedthatadirecteconomicimpactthatwould

favorinvestmentandoperatingcostscouldbeobserved.Anotableexampleisthe intensifiedprocessdesigndevelopedbyEastmanChemicalsfortheproduction of400kT/yrofmethylacetatethattransformedaflowsheetwith10units(one reactorandnineseparationcolumns)intoasinglereactive-distillationpiece ofequipment.Theresultingintensifiedprocesshad1/5ofcapitalinvestment and1/5ofenergycostswithrespecttotheoriginalprocess[39].Onecould alsoexpectimprovementsinotherfactorssuchascarbonfootprintandglobal warmingmetrics[37].However,tradeoffswithotheraspectssuchasprocess inherentsafetyandprocesscontrollabilityremaintobeassessed.Inaninitial worktoaccountforprocessinherentsafetyforacasestudydealingwiththe intensificationofanisoamylacetateprocess,itwasfoundthatapartially intensifiedprocesscouldprovideabetteralternativeintermsofinherentsafety expectationswithrespecttoafullyintensifiedprocess[40].Ontheotherhand, theeffectoflosingdegreesoffreedomforprocesscontrolthatarisesfrom intensifyinganoriginalprocessandhowitaffectstheprocessoperabilityand controllabilityisanitemthatremainstobeaddressed.

1.13Conclusions

Ananalysisofshalegasavailabilityanditspotentialimplicationstosupporta shalegasindustrythatexpandsitsuseasanenergysourcetoincludetransformationprocessesintovalue-addedchemicalproductshasbeenpresented.Designs forshalegastransformationintovaluablechemicalssuchasmethanolandethyleneareexamplesofcurrenteffortstoproducehighervalue-addedmolecules particularlyvaluableasprecursorsofimportantendproducts.Thedevelopment ofextractiontechnologieshasprovidedthebasisforthedevelopmentofshale gasmonetizationstrategies.Ithasbeenshownhowtheprofitabilityofshalegas processesmaybeinconflictwithotherimportantconsiderationssuchasthe processsafety,whichsetstheincentiveforthedevelopmentofmulti-objective optimizationformulationstoobtaindesignsthatofferthebestcompromises betweensuchconflictingmetrics.Anotherinterestingchallenge,inadditionto thedevelopmentofefficientandprofitableshalegasflowsheets,liesinthedesign ofintensifiedprocessesforflowsheetsoriginallybasedonconventionalreaction andseparationunits.Currentintensificationmethodologiescouldbetakenasa basis,withthechallengeofitsapplicationforcasesbasedongas-phasereactions thatinvolvecomplexreactionmechanismsanddifferenttypesofseparationprocesses.Thedevelopmentofmembrane-basedprocessesseemslikeapromising alternativeinthesearchforinnovativeshalegasintensifiedprocesses.

References

1 Wang,Q.,Chen,X.,Jha,A.N.,andRogers,H.(2014).Naturalgasfromshale formation–theevolution,evidencesandchallengesofshalegasrevolutionin UnitedStates. RenewableandSustainableEnergyReviews 30:1–28.https:// doi.org/10.1016/j.rser.2013.08.065.

2 EPA(2018). TheProcessofUnconventionalNaturalGasProduction.U.S. EnvironmentalProtectionAgency.https://www.epa.gov/uog/processunconventional-natural-gas-production(accessed7March2019).

3 Gao,J.andYou,F.(2017).Designandoptimizationofshalegasenergysystems:overview,researchchallenges,andfuturedirections. Computersand ChemicalEngineering 106:699–718.https://doi.org/10.1016/j.compchemeng. 2017.01.032.

4 EIA(2018). WhereOurNaturalGasComesFrom.U.S.EnergyInformation Administration.https://www.eia.gov/energyexplained/index.php?page=natural_ gas_where(accessed4March2019).

5 Al-Douri,A.,Sengupta,D.,andEl-Halwagi,M.M.(2017).Shalegasmonetization–areviewofdownstreamprocessingtochemicalfuels. Journalof NaturalGasScienceandEngineering 45:436–455.https://doi.org/10.1016/j. jngse.2017.05.016.

6 Hu,D.andXu,S.(2013).Opportunity,challengesandpolicychoicesfor Chinaonthedevelopmentofshalegas. EnergyPolicy 60:21–26.https://doi. org/10.1016/j.enpol.2013.04.068.

7 LozanoMaya,J.R.(2013).TheUnitedStatesexperienceasareferenceofsuccessforshalegasdevelopment:thecaseofMexico. EnergyPolicy 62:70–78. https://doi.org/10.1016/j.enpol.2013.07.088.

8 OGJ-editors(2019). WoodMacLowersChinaGasProductionForecast .Oil andGasJournal.https://www.ogj.com/drilling-production/article/14038976/ woodmac-lowers-china-gas-production-forecast(accessed18September 2019).

9 EIA(2019a). GrowthinArgentina’sVacaMuertaShaleandTightGasProductionLeadstoLNGExports.U.S.EnergyInformationAdministration.https:// www.eia.gov/todayinenergy/detail.php?id=40093(accessed17September 2019).

10 EIA(2019b). BackgroundReference:Algeria.U.S.EnergyInformationAdministration.https://www.eia.gov/beta/international/analysis_includes/countries_ long/Algeria/background.htm(accessed18September2019).

11 NationalEnergyBoard(2018). Canada’sEnergyFuture2018Supplement: NaturalGasProduction.NationalEnergyBoard.https://www.cer-rec.gc.ca/ nrg/ntgrtd/ftr/2018ntrlgs/nrgftrs2018spplmntsntrlgs-eng.pdf(accessed18 September2019).

12 Duhalt,A.,Mikulska,A.,andMaher,M.D.(2019). AProposedShaleBanin Mexico.BakerInstituteIssueBriefNo.05.03.19.Houston,TX:RiceUniversity’sBakerInstituteforPublicPolicy.

13 EIA(2015). WorldShaleResourceAssessments.U.S.EnergyInformation Administration.https://www.eia.gov/analysis/studies/worldshalegas(accessed 17September2019).

14 Bullin,K.A.andKrouskop,P.E.(2009).Compositionalvarietycomplicates processingplansforUSshalegas. OilandGasJournal 107:50–55.

15 EIA(2019c). HenryHubNaturalGasSpotPrices.U.S.EnergyInformation Administration.https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm(accessed7 March2019).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.