Principles and practice of modern chromatographics methods second edition robarts - Get instant acce

Page 1


PrinciplesandPracticeofModernChromatographics MethodsSecondEditionRobarts

https://ebookmass.com/product/principles-and-practice-ofmodern-chromatographics-methods-second-edition-robarts/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Cosmetic Dermatology: Principles and Practice, Second Edition: Principles & Practice 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/cosmetic-dermatology-principles-andpractice-second-edition-principles-practice-2nd-edition-ebook-pdf/

ebookmass.com

Principles and Practice of Big Data Second Edition Jules J. Berman

https://ebookmass.com/product/principles-and-practice-of-big-datasecond-edition-jules-j-berman/

ebookmass.com

Programming: Principles and Practice Using C++ , Second Edition Stroustrup

https://ebookmass.com/product/programming-principles-and-practiceusing-c-second-edition-stroustrup/

ebookmass.com

Essentials of Marketing Research 4th Edition Joseph F.

https://ebookmass.com/product/essentials-of-marketing-research-4thedition-joseph-f/

ebookmass.com

https://ebookmass.com/product/parliamo-italianoedition-5-a-communicative-approach/

ebookmass.com

The Griffin's Hearts: A Paranormal MMM Daddy/little/middle Romance (Forest Edge Book 6) Alexis Woods

https://ebookmass.com/product/the-griffins-hearts-a-paranormal-mmmdaddy-little-middle-romance-forest-edge-book-6-alexis-woods/

ebookmass.com

Through Their Eyes: A Graphic History of Hill 70 and the First World War Matthew Barrett

https://ebookmass.com/product/through-their-eyes-a-graphic-history-ofhill-70-and-the-first-world-war-matthew-barrett/

ebookmass.com

Blood Lust: A Dark Vampire Mafia Romance (Guns vs Fangs Book 1) Aj Wolf & Salem Sinclair

https://ebookmass.com/product/blood-lust-a-dark-vampire-mafia-romanceguns-vs-fangs-book-1-aj-wolf-salem-sinclair/

ebookmass.com

Introduction to Experimental Linguistics Christelle Gillioz

https://ebookmass.com/product/introduction-to-experimentallinguistics-christelle-gillioz/

ebookmass.com

Imagining Socialism: Aesthetics, Anti-politics, and Literature in Britain, 1817-1918 Mark A. Allison

https://ebookmass.com/product/imagining-socialism-aesthetics-antipolitics-and-literature-in-britain-1817-1918-mark-a-allison/

ebookmass.com

PRINCIPLESANDPRACTICEOFMODERN CHROMATOGRAPHICMETHODS

PRINCIPLES ANDPRACTICE OFMODERN

CHROMATOGRAPHIC METHODS

SECONDEDITION

KEVIN ROBARDS

EmeritusProfessor,CharlesSturtUniversity,WaggaWagga,NSW,Australia

DANIELLE RYAN

SeniorLecturerinChemistry,CharlesSturtUniversity,WaggaWagga,NSW,Australia

Preface

My(KR)firstencounterwithchromatographywasatthetailendofthe1960swithpaperandthinlayerchromatographyandthenwithagaschromatographmanufacturedintheworkshopsoftheUniversityofNewSouthWales, Sydney,Australia.Outputfromthegaschromatographwascapturedonachartrecorderwhichconstantlyslippeda gearorfailedcompletely,abortingachromatographicrun.However,lookingbackIwasfortunateasIdidnothaveto generatemychromatogramsbyplottingthemfromspotgalvanometerreadingsasdidtheveryearlypioneers.Onthe otherhand,perhapsIwastheunfortunateoneasIamsurethattheexperienceofthoseearlypioneersdevelopedan associationwith,andfeelfor,thetechniqueofwhichwelatecomerscanonlydream.Itisappropriatethatthesecond author(DR)wasinvolvedintheearlydaysoftwo-dimensionalcomprehensiveGCwithPhilMarriottforitwasthe introductionofthismodificationthatheraldedtheneedfornewdemandsoninstrumentationandmethodsofdata management.a

Ourbasicgoalinre-writingisunchangedfromthefirsteditionandthatistoprovide:

• newusersofchromatographywithanhistoricalcontextandthebasicknowledgeandterminologytogetstartedin thisfield,and

• experienceduserswitharevisionofthefundamentalsofchromatographyanditsvarioustechniques.

Whytheinterestinterminologyanddefinitions?Thesayingthat “preciselogicaldefinitionsofconceptsareafundamentalprerequisitetotrueknowledge” isattributedtoSocrates.Itisdoubtfulthatanindividualcandevelopafull comprehensionofthescienceofchromatographywithouttheappropriatelanguage.Theterminologyassociatedwith chromatographyhasoftenbeenusedratherlooselywithmanytextsfailingtodistinguishdifferentterminologiesand classificationsystems.Clearenunciationanddifferentiationofclassificationsystemswasastrengthofthefirstedition thathasbeenbuiltuponinthissecondeditionwhichisclearerandmorelogicalparticularlyintheexpositionofchromatographictheorywhichhasbeenextensivelyrevisedandexpanded.

Asinanyarea,thelanguageandassociateddefinitionsmustevolveanddevelopwithprogressfor,indeed,nothing inthislifeisconstant;changeisuniversal.Theextent,nature,andrateofchangehavedifferedgreatlybothwithinand betweenthedifferentareasofchromatography.Forexample,gaschromatographyasamaturefieldhasundergone evolutionarychangeinthelast30yearswhererevolutionarychangehascharacterizedsomeotherareas.Columnsin gaschromatographyareessentiallythesamenowastheywerein1990althoughnewcolumnchemistrieshavebeen developed.Onethingthathaschangedistheaccelerationintheabuseofnomenclature.Coupled,hyphenated,multidimensional,etc.havealwayspresentedanomenclatureproblemandtherehavebeennumerousattemptstoresolve thesituation.Thehistoricaldevelopmentofthefieldofchromatographyandtheindependentdevelopmentandtiming ofdevelopmentscontributedtotheseproblemswithnomenclature.However,insteadoflearningfrompastmistakes theproblemhasproliferatedwithtermssuchashighspeed,fast,andmicrogaschromatographybeingusedwithwild abandonpresumablyinsomeinstancestomakeapapermoreappealingtoreadersandconvinceeditorstoacceptfor publication.Thisisconfusingandobfuscatestheabilityofanewcomertointegratewiththefield.

Searchingtheliteraturedemonstratesalargechangeinresearchoutputsincethefirsteditionwaswritten.Then, researchintochromatographictechniquesandinstrumentationincludingconsumableswasrelativelyprolific;now itismuchmoresparseexceptinafewisolatedinstances.Theothermajordifferenceacrossallareasofchromatography hasbeentheembraceofcomputertechnology.Computersystemsnowbothcontroltheinstrumentandprocessand reporttheresults.Onemightexpectthatthiswouldallowmoretimeforcontemplationofthesystemandhowitfunctions.However,justtheoppositehasoccurredwithmanychromatographersbecomingoperatorswithverylittle knowledgeofthefundamentalprocessesthatcontroltheseparation.Theresultisagenerationofill-prepared analysts.b,c

a ColinF.Poole,J.Chromatogr.A1421(2015)1.

b LauraBush,LCGCNorthAmerica30(8)(2012)656.

c ColinF.Poole,andSalwaK.Poole,JournalofChromatographyA,1184(2008)254.ColinPooleJ.Chromatogr.A1250(2012)157.

Itisfortunatethatwithinallthischange,somethingsareconstantapartfromdeathandtaxes;thefundamental chemistryandbasicprinciplesofchromatographyareunalteredfromitsinceptionalthoughourunderstanding mayhaveimproved. “Thedeepandconcreteknowledgeofbasictheorybehindseparationscienceandmainlychromatographictechniquesisfundamentalforanyanalystorlabpractitioner.Theusersofchromatographicinstruments mustbeawareofthetheoreticalaspectsoftheirtechniquesinordertobeabletodevelopandapplyspecificanalytical methodsaccordingtotheirneeds ” (unknown).Thisbookprovidesthisessentialinformationtoreadersinaclearand concisestyle.

Thebookhasbeenextensivelyrevisedandupdatedwiththeadditionofanumberofnewtopicsplusupdatedschematicoverviewsofthecontentofeachchapter.Topiccoverageisbothintegratedandcomprehensivebasedonchromatographicbibliometricsandsurveyreportsontherelativeusageofchromatographictechniques.However,the philosophicalapproachhasnotchangedfromthefirstedition.Thebookuseslanguagethatisclearandconcisewith astyleandformatthatengagesthereaderandfacilitatesadeeperunderstanding – aclear,logicaldevelopmentof conceptsandideasthatavoidstheobfuscationofdifferentterminologiesandclassificationsystemsprevalentin thearea.Thisapproachmakesiteasierforbothspecialistandnon-specialistreaderstobridgegapsbetweenexisting knowledgeandtheirneeds(e.g.specialisttomovefromonetechniqueinchromatographytoanother;non-specialistto obtainacomprehensiveoverviewofchromatography).

Thisbookwillbeofvalueandinteresttobothpostgraduatestudentsandundergraduatestudents,notonlythose studyingchemistry,butotherscientifictopicsaswell,e.g.biology,pharmacy,forensictoxicology,etc.Itwillbenefitall practitioners/analystsinvolvedinallfieldsofapplicationsofchromatography;notonlythosewholackthefundamentalbackgroundinchromatographybutalsothosewhowishtorefreshtheirknowledgewithupdatedinformation. Thoseinvolvedincriminalforensiclawwillfinditausefulintroductiontoanareathatfeaturesprominentlyinforensic cases. d Thebookwillbenefitusersofchromatography,eitherthoseexperiencedinoneareaofchromatographythat needtomovetoanother,ornewuserswhowanttounderstandthebackgroundofwhattheydo.

Prefacetofirstedition

Chromatographyisanestablishedanalyticalprocedurewithahistoryofusespanningatleastsevendecades.Itis, nevertheless,acontinuouslyevolvingtechniquewithnewvariantsandmodifiedprocedures.Inmanywaysthishas ledtoaplethoraoftermsthatareconfusingtothespecialistandbeginneralike.Mosttextscurrentlyavailableare writtenforthespecialistandconcentrateononeparticularformofchromatography.Thisisunderstandable,given thevolumeofinformationavailableoneachofthembutitisnotofmuchhelptotheuserrequiringanoverview ofdevelopmentsacrossallareasofchromatography.Certainly,aunifiedapproachisessentialforthenovicebut shouldalsobeofassistancetothespecialistsuddenlyfacedwiththeneedtoswitchfromonetechniquetoanother.

Theauthorshavetaughtandresearchedextensivelyinbothacademicandindustrialareas.Theintentioninwriting thistextwastoappealtoaswideanaudienceaspossible.Tothenon-chemistitishopedthatthismaterialwillprovide aneasy-to-readoverviewinanareathathashadaprofoundeffectinfieldsasdiverseasclinicalchemistry,geology, andfoodscience.Formanyscientistsengagedintheseareas,theirfirstrealcontactwithchromatographycomeswhen facedwithananalyticalproblemrequiringtheseparatingpowerthatonlychromatographycanprovide.Tothepractisingchromatographerinvolvedinresearchorroutineanalysesitwillprovideanupdateinthosetechniqueswith whichtheyarelessfamiliar.Studentswillfindthematerialsuitableasanundergraduatetext.

d https://www.paduiblog.com/pa-dui/a-large-problem-in-gas-chromatography-no-uniform-standard-for-gc-run-position-or-composition/

CHAPTER 1

Introductionandoverview

1.1Introduction

Thisisaseeminglysimpleandlogicalquestion.Atthemostbasiclevel,chromatographyisaseparationtechniqueorprocess.Itsvaluedependsontheabilitytoresolveorseparatethecomponentsof mixtureswithalargenumberofeithersimilar(molecularsize,polarity,etc.)and/ordissimilaranalytes.Theresult ispresentedinachromatogram,thenatureofwhichisdifferentdependingontheactualprocess.Inpaperchromatography,itisapieceofchromatographypaperwithaseriesofvisiblespots.However,themostcommonformof

chromatogramisnowacomputer-generatedprint-outcomprisingaseriesofpeaksrisingfromabaselinedrawnona timeaxis.Eachpeakrepresentsthedetectorresponseforadifferentcompound.Thetimefromthepointofinjectionof sampleintothechromatographtotheapexorpeakmaximumisreferredtoastheretentiontimeofthatparticular compound.

Anexampleofa2019state-of-the-artseparationbychromatographyisshowninthechromatogramof Fig.1.1 for 12analytesin6min.Thechromatogram(aplotofdetectorresponseversustime)providesdirectlybothqualitativeand quantitativeinformation.Eachcompoundinthemixturehasitsowncharacteristicelutionorretentiontime(thetime pointatwhichthesignalappearsinthechromatogram)underagivensetofconditions(qualitativeanalysis)andthe areaandheightofeachsignalareproportionaltotheamountofthecorrespondingsubstance(quantitativeanalysis). Thismakeschromatographyaverypowerfulandusefultechnique.

ChromatographywasoriginallydevelopedbytheRussianbotanistM.S.Tswett(1872–1919)(Fig.1.2)asatechniquefortheseparationofcolouredplantpigments.Acleardefinitionofchromatographyisclearlydesirableand shouldanswerourquestion.Tswettgaveaverypragmaticdefinition [1,2].However,thefirstdetaileddefinition

FIG.1.1 Anexampleofthemostcommonformofachromatogram inwhichthe x-axisrepresentstimeandthe y-axisisthedetector response.Thechromatogramshowstheseparationof12analytesin 6min.Thepeaksobservednear1minarecomponentsofthesample solventandsomeminorpeaksarealsoseenthroughoutthe chromatogram.

FIG.1.2 PhotographofMikhailTswett(1872–1919),thesonofaRussianforeignserviceofficialandanItalianmother.HestudiedattheUniversityofGenevabutthenreturnedtoRussia beforeworkingatWarsawUniversityandthenbeingevacuatedtoMoscowinWorldWarI. Credit:Elsevier.

appearstobeduetoZechmeister [3] andvarioussubsequentdefinitionshavesincebeenformulated.Ageneralized definitionwasprovidedin1974 [4] andessentiallyconfirmedwithminorrefinementsin1993 [5] byaspecialcommitteeoftheInternationalUnionofPureandAppliedChemistrywhichregardschromatographyas ‘ amethod,used primarilyforseparationofthecomponentsofasample,inwhichthecomponentsaredistributedbetweentwophases, oneofwhichisstationarywhiletheothermoves.Thestationaryphasemaybeasolid,liquidsupportedonasolid,ora gel.Thestationaryphasemaybepackedinacolumn,spreadasalayer,ordistributedasafilm … Themobilephase maybegaseousorliquid’.Thisdefinitionneglectedthepossibilityofusingasupercriticalfluidasthemobilephase whichhighlightsthedifficultiesassociatedwithprovidinganadequatedefinition.

WhiletheIUPACdefinitionregardschromatographyasa ‘method’,theScientificCouncilonChromatography, RussianAcademyofSciences [6] definedchromatographyasfollows:

• Scienceofintermolecularinteractionsandtransportofmoleculesorparticlesinasystemofmutuallyimmiscible phasesmovingrelativetoeachother;

• Processofmultipledifferentiatedrepeateddistributionofchemicalcompounds(orparticles),asaresultof molecularinteractions,betweenmutuallyimmisciblephases(oneofwhichisstationary)movingrelativetoeach otherleadingtoformationofconcentrationzonesofindividualcomponentsoforiginalmixturesofsuchsubstances orparticles;and

• Methodofseparationofmixturesofsubstancesorparticlesbasedondifferencesinvelocitiesoftheirmovementina systemofmutuallyimmisciblephasesmovingrelativetoeachother.

Thisdefinitionrecognizesthatchromatographyissimultaneouslyaprocess,amethod,andabranchofscience.Itis identifiedas ‘anewbranchofscience ’ [7] andas ‘abodyofknowledgethatisnowtoolargeformanyscientiststofully grasp?’ Thisreferenceisanexcellenttributetothepioneersandbuildersofchromatographyandtotheirachievements. Whilethedefinitionmightappearirrelevant,inactualfact,Socratesheldtheviewthatthe ‘preciselogicaldefinitionsof conceptsareafundamentalprerequisitetotrueknowledge’.Indeed,therehasbeenconsiderabledebateonthis topic [8].

Novákapproachesthisproblemfromadifferentperspectiveandprovidesaphenomenologicaldefinition,amolecularkineticdefinitionandvariousworkingdefinitions [9].Whatisofinterestisthatwitheachsuccessivedefinitionthe criteriaforaprocesstobecalledchromatographyhavegenerallybeenliberalized.Thisisnotsurprisingaschromatography,likemostscientificdisciplines,iscontinuouslyevolving.Thusweshouldnotallowourselvestobedistracted bytheneedforaclearandconcisedefinition,butratherregardchromatographyasagroupofseparationmethods whichareundergoingcontinuousdevelopmentandrefinement.Alternatively,itisalsoappropriatetoseechromatography [10] asaunifiedscientificdiscipline: ‘the “bridge”—asacentralscience akeyfoundationbuiltonthetwentieth centuryformajoradvancesanddiscoveriesyettocomeacrossmanysciencesofthetwenty-firstcentury’

Theoriginsoftheword ‘chromatography’ arenolessobscure [11,12].A1952paper [11] commentedontheuseofthe wordchromatographyforoveracenturyandahalfpriortoTswett’suseofthetermalthoughwithadifferentconnotation.InTswett’spapers,itwascoinedbycombiningtwoGreekwords, chroma, ‘colour’ and graphein, ‘towrite’ selectedtoindicatetheindividualcolouredbandsobservedbyTswettinhisseparations(Fig.1.3).Atthesametime Tswettemphasizedthatcolourlesssubstancescanbeseparatedinthesameway.However,itmaywellbethatTswett, whowasinvolvedinabittercontroversywithhispeers,gavereferencetotheGreekwordsonlyasanexcuseforas Purnell [13] states ‘ itwouldbenicetothinkthatTswett,whosename,inRussian,meanscolour,tookadvantageof theopportunitytoindulgehissenseofhumour’.TheGermanictranscriptionofhisCyrillicname,Tswettismostly usedbutitoccasionallyappearsastheEnglishtranscription,Tsvet.

Irrespectiveofsuchconsiderationschromatographyisauniversalandversatiletechnique.Whilethemorelimited IUPACdefinitionjustifiesthoseinvolvedinapplicationsofchromatographyinfieldsasdiverseasmedicineandengineering,thebroaderconceptofascientificdisciplinelegitimizesbasicresearchinthefieldwhichisanessentialsupport fortheappliedaspects.Itisequallyapplicableinallareasofchemistryandbiochemistry,biology,qualitycontrol, research,analysis,preparativescaleseparations,andphysicochemicalmeasurements.Itcanbeappliedwithequal successonthemacroandmicroscale.Chromatographyisusedindustriallyinthepurificationofsuchdiversematerialsascanesugar,pharmaceuticals,andrareearths.Ontheotherhand,itiswidelyusedinthelaboratoryforthe separationofminutequantitiesofsubstance,asintheinitialchromatographicexperimentsleadingtothediscovery ofelementnumber100whichinvolvedonlyabout200atoms.Thissurelyrepresentsoneofthemostremarkable achievementsofmodernscience [14]

Theachievementofsuchseparationsdemonstratestheroleofchromatographynotonlyinchemistrybutalsoin scienceandmedicinewheretheimportanceofchromatographyisindisputable.TwoNobelPrizesinChemistry(to A.TiseliusofSwedenin1948andtoA.J.P.MartinandR.L.M.SyngeofGreatBritainin1952)havebeenawarded

FIG.1.3 Illustration(idealized)ofclassical columnchromatographyshowingthecolumn priortoadditionofsampleandatfourdifferent stagesofdevelopmentillustratingtheseparationofthreeanalytesfromamixture.Sandis addedtothetopofthecolumntominimizedisturbancetothesorbentassampleandmobile phaseareadded.Thisisessentiallythesystem asusedbyTswettinhisoriginalexperiments. Priorto1935thecolumnpackingwasremoved fromthecolumnafteruseandtheseparated zoneswereextractedinordertorecoverthe ‘ pure ’ components.

forworkdirectlyinthefieldofchromatography.Inaddition,chromatographyplayedavitalroleinworkleadingto theawardofafurther25NobelPrizesinthe62yearsbetween1937and1999,and19between2000and2007 [10]

Theuseandimportanceofchromatographytosocietycanbeillustratedinmanyways.Thevalueofsalesofchromatographicequipmentdemonstratesadirecteconomicimportancetothecommunity.However,therearemany othereconomicimpactsthataredifficulttoassess.Forexample,theuseofchromatographyinensuringthehealth oftheenvironment,qualityofourfood,waterandairsupply,andclinicalmonitoring,amongothers,arelesstangible andmoredifficulttoassignadollarvalue.Equipmentsalesalsoprovideanindirectmeasureofhowwidelychromatographyisused.Anothermeasureistheuseofscientificpublicationsbutthisreflectsresearchoutputratherthan routinedailyuseoccurringingovernmentorganizationsanddepartments,foodandpharmaceuticalindustrylaboratories,hospitals,racingclubs,sportingorganizations,themobilesciencelabinFerrari’sF1garage(theovenwitha 30-mcoilinsideisagaschromatograph) [15],thePhilaelanderonComet67Plocatedover500millionkilometresfrom Earth [16],oranyoneofthemanylaboratoriesworldwideusingchromatography.

Theauthorsofapaperontheself-imageofchemistsbetweentheyears1950and2000 [17] identifiedthe1960sasthe periodof ‘chromatographictakeover.’ Theynotedtheexistenceatthattimeoftwoworlds, ‘thatoftraditional chemistry,basicallyunchangedfortwoorthreecenturies,andthatofmodernchemistry,withaplethoraofnew andpowerfulphysicalmethods’ withchemistsseeingthemselveswithafootineachofthetwoworlds.Hopefully, thereareatleastsomechemistsstillstraddlingbothoftheseworlds.

1.2Coverage

Inthisbookweexaminealltechniquesthatfitthedefinitionofchromatographyprovidedearlierinthischapter.The orderofpresentationoftopicshaschangedfromthefirsteditiontobetterreflectthedistinctionbetweenplanarand columntechniques.Newchaptershavebeenaddedonhyphenatedtechniquesandpreparativechromatographywhile thechapterontheoryhasbeenextendedandre-written.

Referenceshavebeenupdatedandextendedandpartlyforthisreasonbutalsoreflectingthegreatereaseof literaturesearching,thebibliographywitheachchapterhasbeendeleted.

Electrophoretictechniquesbearsomesimilaritytochromatographyinthatamobileandstationaryphaseare involvedand,onthisbasis,itiseasytoarguefortheinclusionofmodernelectrophoretictechniquesinthecurrent book.Sixtypesofcapillaryelectroseparation(Fig.1.4)canbeidentifiedas:capillaryzoneelectrophoresis(CZE),capillarygelelectrophoresis(CGE),micellarelectrokineticcapillarychromatography(MEKC),capillaryelectrochromatography(CEC),capillaryisoelectricfocusing(CIEF),andcapillaryisotachophoresis(CITP) [18].

FIG.1.4 Flowchartshowingthecategorizationofelectrophoretictechniques.

Themeansofdrivingthemobilephaseinliquidchromatographicseparationshasevolvedfromgravityinclassical columnchromatographythroughcapillaryactioninpaperandthinlayerchromatographytohydrodynamicpressure inhigh-performanceliquidchromatography.However,inthecaseofelectrophoresis,solutemigrationisalsounder theinfluenceofanexternalforceintheformofanelectricfield.

Ofthesixtechniques,CECisatruehybridofelectrophoresisandchromatographyandastrongerargumentcould bemadeforitsinclusion.TheCECprocesstakesplaceinacapillarycolumn,containingaselectedstationaryphase, wherethemobilephaseisdeliveredbyanelectro-osmoticflowcontrolledbytheapplicationofarelativelyhighelectric field.CECpresentsanumberofadvantagesrelativetohigh-performanceliquidchromatography(HPLC) [19] butthe mostsignificantconsiderationistheimprovedchromatographicefficiency.TheflowrateinCECisindependentof particlediameterandcolumnlengthandthereisnopressuredependencyunlikeHPLC,wherethecolumnpressure isinverselyproportionaltotheparticlediametersquaredanddirectlyproportionaltocolumnlength,So,CEChasthe potentialtogeneratehigherplatecountsthanHPLC.Theplug-likeflowvelocityprofileintheelectro-drivensystem furtherreducesbanddispersionandthusachievesahigherefficiency [20] totheparabolicorGaussianprofile associatedwithhydraulic-drivenflowinHPLC.

TherearedivergentviewsontheutilityofCEC.Accordingtoonesourcepublishedin2018 [21],interestinopentubularCEC(OT-CEC)continuestothrivewhereasa2009paperposedthequestion ‘whateverhappenedtocapillary electrochromatography?’ [22].Cantheseviewsbereconciledorhasthetechniqueexperiencedaresurgencebetween 2009and2017?Between1998and2009therewasanaverageofaround150publishedpapersperyear.Thetechnique doesappeartohavehadarenaissancesince2009basedonpublicationnumbersbutthesearestillrelativelyfewcomparedwithHPLCandCEChasfailedtobecomeamainstreamseparationtechnique [20].Lookingatthetitlesofpublishedpapersgivesafeelingthatitisatechniqueseekingapplicationareas.Thedevelopmentofnovelstationary phases [23] hasalwaysbeentheresearchfocus.ThetheoreticalbasisofCEChasbeenfirmlyestablishedsothataspect isnotanimpedance.Ratherthemajorissuesinthelackofwidespreadacceptancearetheabsenceofdedicatedcommercialinstruments [24] withthefeaturesneededtocompetewithHPLCandCE,andthelackofapplicationswhere establishedmethodsfail.However,scientistsarestillinvestigatingtheparametersforCECanddevelopingapplicationsdespitethelackofcommercialsupport.Indeed,thedevelopmentofrapid,effective,andselectivechiralseparationmethodsisgettingincreasinglyimportantfordrugqualitycontrol,pharmacodynamicandpharmacokinetic studies,andtoxicologicalinvestigations [25] andthisisoneareainwhichCECmaycompete.

WehaveexcludedtreatmentofCECinthisbookfortworeasons.Firstly,themeansofdrivingthemobilephasein electrophoresisisnotencapsulatedbythedefinitionwehavegivenofchromatography.Secondly,CEChasnotdevelopedintoaroutinetechniqueorestablishedparticularnichemarkets.TheauthorsacknowledgethepotentialCEC offersandrecognizethatitsinclusioninthenexteditionofthisbookmaybewarrantedtotheexclusionor,morelikely, reductionintreatmentofanothertechnique(s).

1.3Chromatographicseparationsimplyexplained

Thedefinitionofchromatographyimpliesthattheseparationofthecomponentsofasampleoccursbydistribution ofthecomponentsbetweentwophases,oneofwhichisstationary(asolidorliquid)andtheothermovingormobile(a liquid,gasorsupercriticalfluid).Consideratwo-componentmixturewhichisintroducedattime,to,intoamoving phasewhichisincontactwithasecondphase,thestationaryphase.Acontinuoussupplyoffreshmobilephaseisthen providedtotransportthesamplecomponentsthroughthestationaryphase.Astheanalytescomeintocontactwiththe stationaryphase,theydistributeorpartitionbetweenthetwophasesdependingontheirrelativeaffinitiesforthe phasesasdeterminedbymolecularstructuresandintermolecularforces.Thisprocessisdepictedin Fig.1.5 where

FIG.1.5 Schematicrepresentationofachromatographicdevelopmentonapackedcolumn showingtheseparationofamixtureoftwo dyesofequimolarconcentrationsunderideal conditionsandinthesituationpertainingin realsystems,wherebothseparationanddispersionofanalytebandsoccurduringtheseparationprocess.Thecolumnisdepictedatthe pointofinjection, t0,andattwosubsequent times, t1 and t2.Althoughnotdepicted,thesoluteconcentrationprofilealongthecolumn lengthisGaussianattimes, t1 and t2

analyteAhasahigheraffinitythananalyteBforthestationaryphaseandthusspendsagreaterproportionofthe availabletimeinthestationaryphase.Whenananalyteispresentinthemobilephase,itwillpassthroughthesystem withthesamevelocityasthemobilephasebutwhenitisinthestationaryphase,itsvelocitywillbezero.Hence,analyteswithahighaffinityforthestationaryphasewillmovethroughthesystemveryslowlywhereasanalyteswitha loweraffinitywillmigratemorerapidly.Thisdifferentialmigrationrateofanalytesresultsinseparationofthecomponentsastheymovethroughthesystem,asshownin Fig.1.5 attimest0,t1,andt2,underidealandrealconditions.

Eventhoughthesystemisdynamic,itmustbeoperatedasclosetoequilibriumconditionsaspossiblebyoptimizing themobilephasevelocityanddesigningthestationaryphasetoallowrapidequilibrationtobeachieved;i.e.thetimescalefordistributionofsolutemoleculesbetweenphasesmustberapidcomparedtothevelocityofthemobilephase. Wecanwriteforanysolute, A:

where m and s representmobileandstationaryphase,respectively.Undertheseconditions,thesystemcanbecharacterizedbyathermodynamicdistributionconstant, K,whichisusuallyexpressedastheratioofanalyteconcentration inthestationaryphase, CA(s) tothatinthemobilephase, CA(

Thedescriptionof K asadistributionconstantisconsistentwithIUPACnomenclaturebutoldertermssuchaspartition coefficientanddistributioncoefficientarealsostillinuse.

Ananalogymightimproveunderstanding [26] ofEq. (1.1).Ifweassumethattherehasbeenrainwhichhaslefta puddleofwater.Itiswellknownthatthepuddledisappearsovertimeduetoevaporationeventhoughtheambient temperatureneverreachestheboilingpointofwater.Thiscanbedescribedbythefollowingequilibrium:

where KP isthepressure-basedequilibriumconstantfortheevaporationprocessand PH2O isthevapourpressureofthe water.Onacooldryday,theairabovethepuddlebecomessaturated(100%relativehumidity).Theliquidandgaseous watermoleculesareinorclosetoequilibriumandnofurtherevaporationoccurs.Onawindydaythepuddleevaporatesmorerapidlybecausethegaseouswatermoleculesarebeingcontinuouslyremovedsothatmoremolecules enterthegasphasetorestoretheequilibrium.

ThedistributionconstantofEq. (1.1) isacharacteristicphysicalpropertyofananalytewhichdependsonlyonthe structureoftheanalyte,thenatureofthetwophases,andthetemperature.Phenolicsolutes,forexample,wouldbe expectedtoformintermolecularattractionswithphenolicstationaryphasestoamuchhigherdegreethanwould hydrocarbonsolutesexposedtothesamestationaryphase.Thusthe K valueofaphenolishigherthanthatofahydrocarbonofcorrespondingchainlengthinaphenolicphase.Theseparationoftwocompoundsonaparticularchromatographicsystemrequiresthattheyhavedifferentdistributionconstants.Conversely,twocompoundswiththesame distributionconstantwillnotbeseparated.Inthiscase,theseparationcanbeimprovedbyvaryingthemobilephase,

thestationaryphase,orthetemperatureofthesystem.Inpractice,itisoftendifficulttopredicttheeffectsofchanging themobilephaseorstationaryphaseandtheonlymethodistomakethechangeexperimentally.Ingaschromatography,thepartitionpropertiesofthegasesusedasmobilephasearesimilarandthemobilephaseisdescribedas non-interactive,sothatonlythestationaryphaseandtemperaturecanbevariedtoimproveseparation.Thegreater versatilityofliquidandsupercriticalfluidchromatographyispossiblebecausethemobilephaseisinteractiveandall threevariablescanbealtered,althoughtemperaturechangesareveryrestricted.

Eq. (1.1) isanoversimplification,sinceK,likeanythermodynamicequilibriumconstant,isreallyaquotientofanalyteactivities.However,inchromatographicsystemswearenormallydealingwithsolutionswhichtendtowardsinfinitedilutionandthereforetheactivitycoefficientisone.Thisequationalsoassumesthattheanalyteispresentasonly onemolecularstructureorionandthattheanalytedoesnotinteractwithotheranalytemoleculesatinfinitedilution. Consideringthelowlevelsofanalytesinvolved,thisisareasonableassumption.Theconcentrationprofilesdepictedin Fig.1.5 asidealareneverachievedinpractice.Atthemolecularlevel,varioussolutediffusionaleffectsandrandom statisticalmotionofmoleculescausespreadingoftheanalytebands(asshownin Fig.1.5)whichassumethenormal Gaussiandistribution(providedadsorptiveeffectsareabsent discussedinlaterchapters)(notdepictedin Fig.1.5).

1.4Classificationofchromatography

Classificationisusedtosimplifyourunderstandingoftheuniversebydividingasubjectintosmaller,moremanageable,andmorespecificparts.Bookscanbeclassifiedaccordingtomanycriteriaincludingcolourofthecover, height,orsubjectmatter.Thelatteristhemostusefulsystemforalibrariantousebutheightismoreusefulforme becauseIcanthenfitbooksonmylimitedshelfspace.Similarly,anyoneofseveralfactors(stationaryormobilephase, separationprocess,oreventhetypeofsolute)canserveasabasisforclassificationofchromatography.Thuschromatographicseparationscanbeclassifiedinanumberofwaysdependingontheinterestsofthechromatographer. Whiletheultimategoalofanyclassificationsystemissimplification,unfortunatelythismultiplicityofoverlapping systems,togetherwiththediversityofchromatographyasnowpractised,hasledtoaproliferationofterminology whichcanbeconfusingforboththenoviceandspecialistchromatographeralike.

Thereareotheraspectsofnomenclaturethatarepotentiallyconfusingtothenovice.Forinstance,aswewillsee,a chromatographicsysteminwhichacolumnisconnectedtoapumpandspectrophotometeriscalledanHPLC,butif wetakethesamepumpandcolumnandconnectittoamassspectrometer,wehaveahyphenatedtechniqueor,more specifically,inthisinstance,anLC-MS.Onemightsaythatthisdistinctionisillogicalbutitisunderstandableinterms ofthehistoricaldevelopmentofthefieldofchromatography.Inotherexamples,thetermsrapidresolutionLC [27], ultra-high-performanceliquidchromatography(UHPLC) [28–31],andultra-highpressureLC [32] describeessentially thesameprocedure [33] butemphasizedifferentaspectsreflectingthepersonalbiasofthespeaker.Forexample, UHPLC [34,35] isdistinguishedfromHPLCbythesizeofstationaryphaseparticles:sub-2 μmforUHPLCversus 5 μmforHPLCwithtypicalpumppressuresa of1000bar(14,500psi)and4000bar(5800psi),respectively.

Agraspofthefundamentalspresentedhereandinwhatfollowswillhelptoreducesuchconfusion.

1.4.1Mobilephase

Onesystemofclassificationrecognizestheimportanceofthemobilephaseanddivideschromatographyintothree broadareasofliquidchromatography(LC),gaschromatography(GC),andsupercriticalfluidchromatography(SFC) (Fig.1.6),dependingonwhetherthemobilephaseisaliquid,gas,orsupercriticalfluid,respectively.Furtherclassificationispossiblebyspecifyingboththemobileandstationaryphasesleading,forexample,togassolidchromatography(GSC)andgasliquidchromatography(GLC)inwhichthemobilephaseisagasbutthestationaryphaseisa solid(GSC)oraliquid(GLC).AsGSCislittleusedexceptinveryspecificapplicationsonenormallyreferstogaschromatographyorGCunlessasolidstationaryphaseisusedinwhichcaseitisspecificallynotedbyspeakingofGSC.

Morerecently,supercriticalfluidshavebeenemployedasmobilephasesandthesetechniquesareatpresenttermed supercriticalfluidchromatography(SFC)irrespectiveofthestateofthestationaryphase.Thesituationwithliquid chromatographyisintermediateinthatdistinctionbetweenliquid-solidchromatography(LSC)andliquid-liquid

a Variouspressureunitsareusedinchromatography.Thosecommonlyencounteredandrelevantconversionsare

FIG.1.6 Flowchartshowingtheclassificationofchromatographicsystemsbasedonmobilephase,stationaryphase,configuration,and technique.

chromatography(LLC)issometimesmadebut,inmostcases,itisjustreferredtoasliquidchromatography(LC) regardlessofthestateofthestationaryphase.

1.4.1.1Reversed-phaseandnormal-phasechromatography

Inliquidandsupercriticalfluidchromatography,systemsinvolvingapolarstationaryphaseandanon-polar mobilephasearetermednormal-phasesystems.Withthiscombinationofphases,soluteretentiongenerallyincreases withsolutepolarity.Ontheotherhand,ifthestationaryphaseislesspolarthanthemobilephase,thesystemis describedasreversedphaseandpolarmoleculeshavealoweraffinityforthestationaryphaseandelutefaster (Table1.1).

Thechoiceofthesetermsispurelyhistoricalandnospecialsignificance(beyondthatindicated)isattachedtothe useoftheterm ‘normal’.TheoriginalseparationsofplantextractsperformedbyTswettusedapolarstationaryphase (chalkinaglasscolumn)withamuchlesspolar(indeed,non-polar)mobilephaseandthiscombinationbecameknown asnormalphase.However,reversed-phasesystemsbecauseoftheirbroadapplicabilityandbetterreproducibilityare nowfarmorecommonthannormal-phasesystemsinliquidchromatography.

Withnormal-phasesystems,increasingthemobilephasepolaritymakesitmorelikethestationaryphasesothatthe mobilephasecompetesmoreeffectivelywiththestationaryphaseforsolutemolecules.Thesolutemoleculestherefore spendlesstimeinthestationaryphaseandelutefaster.Usingasimilarargument,wepredictslowerelutionasmobile phasepolarityisincreasedinreversed-phasechromatography [36].

TABLE1.1 Normal-phaseandreversed-phasechromatography.

ClassificationStationaryphaseMobilephaseOrderofsoluteelution

NormalphasePolarNon-polarMosthydrophobicsolutesfirstandfinallymosthydrophilicsolutes

ReversedphaseNon-polarPolarMosthydrophilicsolutesfirstandfinallymosthydrophobicsolutes

1.4.2Developmentmode

Thechromatographicbeddescribestheconfigurationofthestationaryphase.Inthesimplestterms,thebediseither planaroracolumn.Theprocesswherebyasamplecomprisingamixtureofsolutesprogressesthroughthechromatographicbed,whileinthemobilephase,iscalledchromatographicdevelopment.Threemodesofchromatographic developmentwereidentifiedin1943 [37] bythe1948ChemistryNobelLaureate [38],ArneTiselius,as elution development, displacementdevelopment, andfrontalanalysis.Thedevelopmentmodereferstothemannerinwhichthe sampleandmobilephaseareappliedtothestationaryphasebed(columnorplane)andasshownin Fig.1.7,thenature oftheresultingpeakprofile,termedthechromatogram,differsbetweenthethreemodes.IUPACdistinguishesthe threemodesasfollows:

FIG.1.7 Schematicrepresentationofthedifferent chromatographicdevelopmentmodesshowingthe effectonmigrationofsamplecomponentsandthe resultingzoneprofile.AandBrepresentsamplecomponentsandCthedisplacer.

• FrontalChromatography.Aprocedureinwhichthesample(solid,liquid,orgas)dissolvedinmobilephaseisfed continuouslyintothechromatographicbed.Infrontalchromatographynoadditionalmobilephaseisused.

• DisplacementChromatography.Aprocedureinwhichthemobilephasecontainsacompound(theDisplacer)more stronglyretainedthanthecomponentsofthesampleunderexamination.Thesampleisfedintothesystemasa finiteslug.

• ElutionChromatography.Aprocedureinwhichthemobilephaseiscontinuouslypassedthroughoralongthe chromatographicbedandthesampleisfedintothesystemasafiniteslug.Elutiondevelopmentisnowvirtuallythe onlydevelopmenttechniqueemployedforanalyticalseparations.

Infrontalchromatographythesampleissweptcontinuouslyontothecolumnbythemobilephaseduringtheentire courseoftheprocess.Whenthecolumnbecomessaturatedwithrespecttoaparticularcomponent,thatcomponentis thenelutedfromthecolumn.Whenthezoneofpurecomponenthascompletelyeluted,itisfollowedbyamixturewith thenextcomponent,andsoon.Acompleteseparationcannotbeachievedandthemethodhaslimitedapplicationfor quantitativemeasurements.Atypicalapplicationwouldbetheestimationofatraceimpurityinahighpuritysubstancewheretheimpuritycanbeconcentratedinfrontofthemainconstituent,providedthatitwasthelessstrongly retained.Frontalanalysisisnowprobablyofacademicinterestonlyalthoughitisusefulforobtainingthermodynamic datafromchromatographicmeasurements [39,40].Itisquiteinappropriateformostpracticalanalyticalapplications andhasbeencompletelysupersededbyelutiondevelopment.

Theadventofdisplacementchromatographycanbeattributed [37] toTiselius.Withthismode,thesampleis appliedtothesystemasadiscreteplugasinelution,butunlikeelution,themobilephasehasahigheraffinityfor thestationaryphasethananysamplecomponent.Alternatively,asubstancemorestronglyretainedthananyof thecomponentsofthesampleisaddedcontinuouslytothemobilephase.Thissubstanceisknownasthedisplacer andit ‘pushes’ thesamplecomponentsdownthecolumn.Themixtureresolvesitselfintozonesofpurecomponents inorderofthestrengthofretentiononthestationaryphase.Eachpurecomponentdisplacesthecomponentaheadofit withthelastandmoststronglyretainedcomponentbeingforcedalongbythedisplacer.Therecorddepictingtheconcentrationofcomponentcomingfromthecolumn(Fig.1.7)isseentoresembletherecordobtainedwithfrontalanalysisbutwithanimportantdifference.Indisplacement,thestepsinthechromatogramrepresentpurecomponents.

Historicallyitwasusedforpreparativeseparationsofaminoacidsandrareearthelements.Morerecently,ithasfound manyapplicationsintherealmofbiologicalmacromoleculepurifications [41].

Inthisbookwearereferringtoelutiondevelopmentinallcasesunlessspecificallymentionedotherwise.

1.4.3Technique

ChromatographycanbeperformedusingverysimpleapparatusasinTswett’soriginalexperimentsor,ascommonlypractisednowadays,withmuchmoresophisticatedequipment(Fig.1.8)costingintothemillion-dollarmark forthemostsophisticatedsystem.However,allofthesediversetechniquescanbeclassifiedintooneoftwobroad categories;namely,columnandplanarchromatography,buttheseencompassanumberofvariants.

1.4.3.1Planarandcolumnchromatography

Therearetwotechniquesinwhichthestationaryphaseissupportedonaplanarsurface:paperchromatography (PC)andthinlayerchromatography(TLC)whichcollectivelyaretermedplanarchromatography.WithPC,asheetof paperorsubstrate-impregnatedpapercomprisestheplane(sorbedwateristhestationaryphase)whereasinTLC,the planeisaflatsheetofglass,plasticoraluminiumcoateduniformlywithathinlayerofsolidcomprisingthestationary phase.Alternatively,thestationaryphasemaybepackedinaclosedcolumnandthetechniqueisreferredtoascolumn chromatography.

Ifthestationaryphaseisaliquid,itmustbeimmobilizedonthethinlayerorinthecolumnandthisisconveniently achievedbycoatingorchemicallybondingtheliquidstationaryphasetoaninertsolidsupport(e.g.silica)whichis thenpackedinthecolumnorspreadinathinlayeroveraflatplate.Planarprocedureshavebeenrestrictedtoliquid chromatographybecauseofthetechnicaldifficultiesassociatedwithconfiningagasorsupercriticalfluidtoaplanar surface.Incontrasttoplanarprocedures,columnchromatographyisusedinLC,GC,andSFC.Inthecaseofliquid chromatography,therearetwovariantswhichbecauseoftheirchronologicaldevelopmentmaybetermedclassical columnchromatographyandmoderncolumnchromatography.Thelatterisreferredtoashigh-performanceliquid chromatography,HPLC.Thetermliquidchromatographyisoftenusedtodenoteliquidchromatographyincolumns andparticularly(ultra)high-performanceliquidchromatography,(U)HPLCbecauseofitsextensiveuse.

Methodsinvolvinggaseous,liquid,andsupercriticalfluidmobilephaseswillbetreatedindividuallyinlater chapters.Althoughtherearefewfundamentalreasonsforseparatetreatment,itisnonethelesswarrantedbydifferencesinequipmentandoperationalprocedures.Fornow,itissufficienttomakeacomparisonofthedifferent techniquesonthebasisofoperationalproceduresandresultsasshownin Fig.1.9

FIG.1.8 Photographofalaboratoryset-upforliquid chromatography-massspectrometry. Credit:DanielleRyan.

FIG.1.9 Pictorialcomparisonofchromatographictechniquesshowingthevariousstagesoftheprocess:bedpreparation,sampleapplication,natureofthestationaryphase,methodof mobilephaseaddition,methodofdetection,andformatforpresentationofresults.

Columntypes

Itisoftenstatedthatthecolumnistheheartofthechromatographemphasizingitsimportancetotheseparation. Columnproceduresmaybefurtherclassifiedaccordingtothenatureanddimensionsofthecolumn.Conventional columnproceduresbothingasandliquidchromatographyand,morerecently,supercriticalfluidchromatography, exploit ‘wide’ borepackedcolumnswithinternaldiameters(i.d.)exceeding1.0mm.InGC,theinternaldiametersof suchcolumnsaretypicallyof2–4mmandinHPLCof4.6mm.Thesepackedcolumnsgenerallycontainastationary phaseconsistingofeitherasolidoraliquidcoatedorbondedtoaninertsolidsupport.Specificdetailsrelatingto stationaryphaseswillbepresentedintherelevantchapter.Thissectionisconcernedwiththephysicalconstruction oftheactualcolumn.

Therearemanybenefitsassociatedwithcolumnminiaturizationandthefirststepinthisdirectionwasmadein1957 withthedevelopmentofcapillarycolumnsforGC [42].Itisnowrealizedthatminiaturizedseparationcolumns, whetherusedinvariousformsofgas,liquid,orsupercriticalfluidchromatography,sharesimilartechnologiesand instrumentalrequirements [43].In1981Novotny [44] identifiedadvantagesofmicrocolumnsashighercolumnefficiencies,improveddetectionperformance,variousbenefitsofdrasticallyreducedflowrates,andtheabilitytowork withsmallersamples.Prioritieshavechangedovertheyearsasdifferentapplicationshavevariedtheemphasisof theseuniquecapabilitiesofminiaturizedsystems.Miniaturizationisnotwithoutproblemshowever,andthechief disadvantagesofcapillarycolumnsarethattheyaremoredemandingofinstrumentperformance,lessforgivingof pooroperatortechnique,andpossessalowersamplecapacitythanpackedcolumns.

In gaschromatography,columnscanbeclassified [45] asfollows:

Conventionalpackedcolumnswereoriginallyconstructedofstainlesssteelorothermetalsuchascopperofabout 1–2mlong,2–4mmi.d.,andformedintoacoil.Astheperformanceofdetectorsimproved,lesssamplewasappliedto thesystemandthesemetalcolumnsweretooreactiveforthesmallerquantitiesofanalytes.Forexample,withasample injectioncorrespondingto1mganalyte,decompositioncatalysedbythemetaltubingof1–10 μgoftheanalytewas relativelyinsignificant.However,withanimproveddetectorandinjectionequivalentto1–10 μgofanalyte,catalytic decompositionofthissameamountofanalyterepresentedaverysignificantloss.Thuscolumnsconstructedofglass whichwasmoreinertwereintroducedbutwithsimilardimensionstothepreviouslyusedmetalcolumns.

Miniaturizationofthecolumns(diameter)proceededintwodirections.Micropackedorpackedcapillarycolumns [46,47],characterizedbysmallinternaldiameters,usuallylessthan1.0mm,areminiaturizedversionsofconventional packedcolumns.Theyaretypicallyconstructedofstainlesssteelandare1–2mlong.Theirusehasbeenlimitedby practicalproblems,particularlywithinjectionathighbackpressuresbuttheyarecommerciallyavailableandareusefulforseparationofgasmixturesincludingsulphurcompoundsorlighthydrocarbons.Incontrast,thedevelopmentof opentubularcolumns [48] withaninternaldiameterlessthan1.0mmhasbeenimmenselysuccessful.Opentubular columnsarealsoreferredtoascapillarycolumns.However,thecharacteristicfeatureofthesecolumnsistheiropenness,whichprovidesanunrestrictedgaspaththroughthecolumn.Hence,opentubularcolumnisamoreaptdescriptionalthoughbothtermswillundoubtedlycontinuetobeusedandcanbeconsideredinterchangeable(butwitha cautiontocheckthecontext).Thecolumnswereoriginallyconstructedofglassbutthecommercialavailabilityin the1980soffusedsilicaopentubularcolumnscoatedontheoutsidewithaprotectivepolyimidelayerrevolutionized theindustry.Theyrapidlybecamewidelyacceptedandusedasthestandardagainstwhichothercolumnswere judged.Highlyinertmetalopentubularcolumnswereamorerecentaddition.

Ifthestationaryphaseisapplieddirectlyasathinlayertotheinternalwalloftheopentubularcolumn,thenitis knownasawallcoatedopentubular(WCOT)column.Whilenon-bondedphasesaresimplycoatedontheinternal wallofthecolumn,thestationaryphasecanalsobechemicallybondedtothewall.Inmostcases,thepolymerchainsof thestationaryphasearealsocross-linked.Generally,abondedandcross-linkedphaseispreferablebecauseitcanbe usedtohighertemperaturesandhaslesscolumnbleed(Chapter4)duringuse.Moreover,thesephasescanberinsed

withsolventstoremoveanyaccumulatednon-volatilematerials.Lowpolaritystationaryphasesaretypicallybonded andcross-linkedbut,insomeinstances,suchashighlypolarphases,optionsaremorerestricted [49].

ThesamplecapacityofWCOTcolumnscanbeadjustedbyvaryingthecolumndiameterandthefilmthicknessof thestationaryphase.AlternativestotheWCOTcolumnaretheporouslayeropentubular(PLOT)columnandsurface coatedopentubular(SCOT)column.TheinnerwallofthecolumnisextendedinPLOTcolumnsbyadditionofa porouslayersuchasfusedsilica.InSCOTcolumns,thestationaryphaseisappliedtoasolidsupportwhichiscoated ontheinternalwallofthecolumn.SCOTcolumnswerepopularbecauseofhighersamplecapacityalthoughwidebore ormegabore(0.53–1.00mmi.d.)WCOTcolumnsarecompetitiveinthisrespectandareeasiertouseandmorestable. SCOTcolumntechnologyallowsaccesstomanystationaryphasesthatarenotcompatiblewithconventionalWCOT columnmanufacturingtechnology.PLOTcolumnsareidealforseparatingcompoundsthataregasesatroomtemperatures,lowmolecularmasshydrocarbonisomers,andreactiveanalytessuchashydrides,amines,andsulphur gases.ThevariouscolumntypeshavebeencomparedbyDuffy [50]

Itisdifficulttoestablishaccuratelytheproportionofroutineseparationsthatuseopentubularversuspackedcolumns.Thevastmajorityofpublishedpapers(probablywellinexcessof90%)involvetheformer.However,papers representresearchactivityratherthanroutineapplications.Ontheotherhand,therelativeamountofspacedevotedto thedifferentcolumntypesincolumnmanufacturers ’ literatureandthevolumeofsalesprobablygiveagoodindicationoftherelativeimportanceacrossalluses.Onthisbasis,wecanstatethatseparationsonopentubularcolumns dominateGCexceptinaveryfewspecialtyareas.

In liquidchromatography,conventionalpackedcolumnsforclassicalcolumnchromatographycomprisedacylindricalglasstubeabout200–800mmlongand20–60mmwidealthoughlargercolumnshavealsobeenusedinthelaboratory(Fig.1.10).Inalmostallinstances,suchcolumnsweredesignedforasingleuse.

ThedesignofacolumnforHPLCisverysimpleintheory.Allthatisneededisaninerttubethatwillretainthe stationaryphaseandallowmovementofthemobilephase.However,thepracticalrequirementsareverydemanding asnotedbyMajors [51,52]: ‘Thetubeitselfmustbeabletowithstandthepressuregeneratedbythepackedbedand shouldnotexpandorchangeitsdimensionsifthepressureortemperatureishighorcontractifthetubeiscooled.Next,

FIG.1.10 PhotographofachemistemployedbytheUSFoodand DrugAdministrationinthemid-1950susingacolumnchromatographicapparatustoseparatetheconstituentsinacoaltarcolouranalysis. Credit: https://en.wikipedia.org/wiki/Column_chromatography#/ media/File:FDA_History_-_Column_Chromatography.jpg

oneneedsadevicetocontainthepackingandnotpermitanyminuteparticles(fromadistributionofparticles)toexit thepackedcolumn.Evenwiththisrestriction,thisdevicemustbeabletoprovideadequateflowandbeinert’.IncolumnsusedathighpressuresforHPLCasinteredmetalfritisusedforthispurposeandameansofsealingthecolumn isrequiredsothatitholdsthispressurewithoutleakingfluid. ‘Sealingisaccomplishedbycompressionendfittingsor specialmodifiedendfittingsthatcanconsistentlywithstandthesehighpressures.Thesefittingsmustallowflowto enterandexitthecolumnatthesehighpressureswithoutleaking.Thefittingsalsoshouldprovidenarrow,well-swept flowchannelssothatflowingsolventcanpassthroughthemathighandlowlinearvelocitieswithoutthecreationof flowdisturbances,floweddys,orunevenflow.Formodernhighefficiencycolumns,theflowdesignshouldallowthe injectedsampletopassthroughthesechannelsinanarrowplugwithoutspreadingthisband.Othercolumndesign issuesthatareimportantarethesmoothnessoftheinsidewall,whichisincontactwiththepacking,thechemical resistance,andinertnessofthecolumncomponentsincontactwiththemobilephaseandthesample,thecostof thematerialsusedtoconstructthehardware,andthesturdinessoftheassembledcolumnhardware’

ColumntechnologyinHPLC [51–54] advancedrapidlyinthelate1960sandearly1970s.Between1975and2000,the conventionalcolumnforHPLCwasastainlesssteeltubeof4.6mmi.d.packedwithsphericalparticlesofbetween 10and5 μmindiameter.Overthisperiodcolumnlengthgraduallydecreasedfrom300to150mm.Interestingly, theoriginalcolumnswereeither1.0mmor2.1mmi.d.Theestablishmentofthe4.6mmi.d.columnasstandard resultedfrompurelypracticalandpragmaticconsiderationsratherthanarigoroustheoreticalstudy.Stainlesssteel tubeof4.6mmwasreadilyavailableatareasonableprice,wascompatiblewithcompressionfittingsborrowedfrom packedcolumngaschromatographs,andwasofsufficientwallthicknesstowithstandoperatingpressures.Thusit wasadoptedasthestandardmaterialforcolumnconstruction.Morerecently,glass-linedorTeflon-linedstainlesssteel hasbeenintroducedforcolumnconstructiontoenhanceinertnessandreducesurfaceinteractions.Manymanufacturerssupplycolumnsforbiochromatographywithpolyetheretherketone(PEEK)construction.

ThenextmajordevelopmentwasthecommercializationofmonolithicsilicacolumnsbyMerckin1999.Thesenew columnsweremadeofasingleblockofsilica,withabimodalporesizedistribution,encapsulatedinaPEEKtubewith dimensionsof100mm 4.6mm.Thesecolumnsofferedfasteranalysesthantheconventionalpackedcolumnsat equivalentresolutionandlookedaverypromisingalternativeintheearly2000s.Polymericmonolithcolumnswere alsodevelopedconsistingofacontinuouscross-linked,porousmonolithicpolymerusuallypolymethacrylatesor methacrylatecopolymerizates.Interestinmonolithiccolumnsfadedandtheyseemedtobeontheirwaytooblivion [55] buttheyexperiencedarenaissance [56] andareenjoyingrenewedpopularity.

Manufacturersofconventionalpackingsrespondedtothepotentialthreatofmonolithiccolumnsbycommercializingcolumnspackedwithfullyporousparticlesofdecreasingsizes,5,then3.5,2.5,andeventually1.7and1.5 μm.At thesametime,columnlengthsgraduallydecreasedfrom150to50mm.Thesedevelopmentswitnessedthebirthof veryhigh-pressureliquidchromatographyin2004involvingnarrowbore(2.1mmi.d.)short(50mmlong)columns packedwithsub-2 μmparticles [57].Thesecolumnsofferedsuperiorperformancetothemonolithiccolumnsduetothe radialheterogeneityofthesilicarodsinthelatterandthisprobablyexplainedthesuddendeclineininterestinthe monolithiccolumns.

Asecondandveryunexpecteddevelopmentincolumntechnologyoccurredafewyearslaterwithare-visittopellicularparticles.Theoriginalmaterials,alsoreferredtoassuperficiallyporouspackingsorporouslayeredbeads,were of40–50 μmdiameterandexhibitedgoodefficiency(ameasureofseparation)relativetothelarge(100 μm)porous particlestheninvoguebuttheyhadpoorsamplecapacity.Thustheywererejectedintheearly1970sinfavourof packingsbasedonsmallerporousparticles.Thepellicularpackingsthathaveemergedinthelastfewyearshavemuch smallerparticlesizesthantheir1960sforerunnersandpotentiallycandelivercomparableseparationstotheveryfine fullyporousparticles.

Therearethreetypesofmicrocolumnforliquidchromatographyalthoughtheiruseisnotwidespread.Microbore columnsaresimilarinconstructiontoconventionalpackedcolumnsexceptthatthecolumndiameterisreducedto 1mm.Packedcapillarieshaveacolumndiameterof70 μmorlessandarelooselypackedwithparticleshavingdiametersoffrom5to30micrometres.Nanooropenmicrotubularcolumnsaretheequivalentofthecapillaryoropen tubularcolumninGC.Ideally,theyhavediametersof10–30micrometresandcontainastationaryphaseoranadsorbenteithercoatedon,orchemicallybondedto,thecolumnwall [58] Table1.2 presentsanomenclatureappliedtoLC columnsbyMajors [51].Nanocolumnsaremostcommonlyconstructedfromfusedsilicawhilestainlesssteel,lined stainlesssteel,andPEEK-cladfusedsilicatubinghavebeenusedtomakecapillaryLCcolumns.

Nanocolumnscanbereplacedpotentiallybychip-basedLCsystems [52] inwhichthechromatographycolumnis fabricatedonglassorplasticchips.Thenarrowchannelscanbeetchedorlaserablatedwithdimensionsinthe50 μm diameterrangebylengthsaslongastensofcentimetres.Althoughtheflowofmobilephasecanbeviaconventional

TABLE1.2 ClassificationandcolumndimensionsforHPLC.

ColumnInternaldiameter(mm)Length(mm)Particlesize(

Nano0.1,0.07550,1503.55,5.0

Capillary0.3,0.535–2503.55,5.0

Microbore1.030–1503.55,5.0

Narrowbore2.115–

Solventsaver3.0150,250sub-2,3.0

Analytical4.615

Semi-preparative9.450–2505.0

Preparative21.2,30.0,50.050–2505.0,7.0,10.0

hydraulicmeansusingpumpingsystemsandnano-valvesintegratedontothechip,electroosmoticflowisalso possible.

Althoughthesituationislessclear-cutthaninGC,conventionalpackedcolumnsstilldominateroutineseparations byHPLC.Anumberofpublications [53,55,59–64] coverthedevelopmentofcolumntechnologyinLC.Conventional analyticalcolumnsintheyear2020fallintoparticle-packedcolumnsandmonolithiccolumnsofbetween1mmand 4.6mminternaldiameter.Theformercanbesubdividedintofullyporous,core-shell,andnon-porousparticleswhich arefurtherdiscriminatedonthebasisoftheirchemicalcompositionintoeithersilica-basedorpolymer-based (cross-linkedorganicpolymers).

Thedevelopmentof supercriticalfluidchromatography occurredinthedecadefrom1980atatimewhencolumn technologyinbothGCandHPLChadbeenwelldeveloped.CommercialcolumnmanufacturerstendedtoignoreSFC untilthemarketgrewlargeenoughtojustifyaninvestment [65].ThustherewerefewSFC-specificcolumnsandcolumntechnologyforSFCwaslargelyborrowedfromHPLCforthepackedcolumnformatorfromGCfortheopen tubularformat.Intheearly1980s,foraverybriefperiod,theusualcolumnwasastandardnormal-phasecolumn borrowedfromHPLC,typically250 4.6mmwith5 μmtotallyporoussilicapackings.Capillaryoropentubular SFCwasoriginallyreportedbyMiltonLeeandothers [44,66] in1981anditwascommercializedby1986.Itwasin thisperiodthatSFCresearchwasdominatedbygaschromatographerswhotransferredtheirknowledgeofopentubularcolumnstotheirnewinterestandopentubularcolumnSFCrapidlybecamethestandardapproachalthoughthere remainedasignificantcoreemployingpackedcolumnSFC [67,68].Generally,thediameterofopentubularcolumns forSFCwassmallerthan100 μmtomaintainbothreasonableanalysistimesandhighresolution [69].By2000,itwas acknowledged [70] thatcapillarySFChadbeenoversoldespeciallyfortheelutionofpolarsolutes.Aboutthissame timeSFC-specificcolumnsofbothpackedandopentubularvarietiesbecameprogressivelyavailablefrommanufacturers.Nevertheless,SFCalthoughconsideredamaturetechniquebyage,inotherways,itisstillinitsinfancyand doesnotreceivethesameattentionbycolumnmanufacturersasdoesHPLCorGC [71].

1.4.4Separationmechanism

Molecularinteractionsplayafundamentalroleinthebehaviourofthechemicalandphysicalpropertiesofany physicochemicalsystemincludingchromatography.Thenatureofthisinteractionbetweensamplecomponents andthetwophasesformsafurtherbasisforclassificationofchromatography.Sincethesemolecularinteractions (Table1.3)determinetheretentionbehaviourofthesolute,thisisthemostfundamentalofallclassificationsofchromatography.However,inmanywaysitisthemostdifficultsince,inanumberofinstances,itisnotclearexactlywhat mechanismisinvolved.Nevertheless,aknowledgeofthemechanismiscrucialtoourunderstandingofthechromatographicprocess,toenablepredictionsabouttheexpectedbehaviourofasystemandinchoosingastationaryphase/ mobilephasecombinationtoobtainadesiredseparation.Inmostinstancesitispossibletospecifythepredominant mechanismoperatinginaparticularsituationeventhoughthenominatedmechanismisrarely,ifever,thesole mechanism.

Themechanismscanbeclassified b intoanumberoftypesasfollows:

b Thetermssorptionandsorbareusedinthistexttodenoteasolute–stationaryphaseinteractionofunspecifiednature.Itisusedintwo circumstances;wherethenatureoftheinteractionisunknownorasagenerictermtocoverseveraltypesofinteraction.

TABLE1.3 Intermolecularinteractionsinvolvedindifferentliquidchromatographicmethods.

Intermolecularinteractions(interactionenergykJmol 1)

Mechanism

Vander Waals(0.4–4)Repulsion

dispersion (2–4)

(4)

(4–17)

Important; ♦Mostimportant; ♣ Importancevariabledependentoncolumnpacking.

• adsorption

• partition(includingcountercurrentchromatography)

• bondedphase

• hydrophilicinteractionliquidchromatography(HILIC)

• ionexchange

• ioninteraction

• sizeexclusion

• affinity

• micellar

• complexation

• ionexclusion

• chiral

Separationsexploitingeachofthesemechanismshavebeendevelopedinliquidchromatographywhereasgas chromatographyisrestrictedtoseparationsinvolvingoneormoreofthefirstthreenamedmechanismspluschiral separations.TheflexibilityofSFCintermsofthemechanismsexploitedapproachesthatofliquidchromatography.

Chromatographicretentionisaverycomplexprocessinvolvingvariousspecificandnon-specificphysicochemical interactions,reflectingtherelativeattractionandrepulsionthattheparticlesofthecompetingphasesshowforthe soluteandforthemselvesthroughmultiplemolecularinteractions.Thethreebasictypesofmolecularinteraction orforce,allofwhichareelectricalinnature,aredispersionforces(duetochargefluctuationsthroughoutamolecule resultingfromrandomelectron/nucleivibrations),polarforces(arisefromelectricalforcesbetweenlocalizedcharges suchaspermanentorinduceddipoles),andionicforces.Manydifferenttermsareusedtodescribethemolecularinteractions(e.g.hydrogenbonding, π-π interactions,coulombicorelectrostaticinteractions,hydrophobicforceswhich refertodispersiveinteractions,etc.)butallareofoneofthethreebasictypes.Thedifferentmolecularinteractionsthat determinesoluteretentioncomprise:

• ArepulsivecomponentresultingfromthePauliexclusionprinciplethatpreventsthecollapseofmolecules.

• Attractiveorrepulsiveelectrostaticorcoulombicorientationforcesbetweenpermanentcharges(inthecaseof molecularions),dipoles(inthecaseofmoleculeswithoutinversioncentre),andquadrupoles(sometimescalledthe Keesominteraction).Hydrogenbondingisanexampleofanextremedipole-dipoleinteraction.

• Attractiveinductionorpolarizationforcesbetweenapermanentdipoleononemoleculewithaninduceddipoleon another(sometimescalledDebyeforce).

• Attractive(London)dispersionforcesbetweenanypairofmolecules,includingnon-polaratoms,arisingfromthe interactionsofinstantaneousdipolescausedbyrandomdistortionoftheelectroniccloudofamolecule,causinga slightelectrostaticpolarization.Thisspontaneouspolarizationtheninducesanoppositepolarizationin neighbouringmolecules.

Theterm ‘vanderWaalsforces’ issometimesusedasacollectivetermforthetotalityofforces(includingrepulsion) but,moreoften,itisrestrictedtotheattractiveforces(Keesom,Debye,anddispersionforces).

Thecomplexinteractionbetweensolute,stationaryphase,andmobilephaseduetothemolecularinteractionsleads todistributionofthesolutebetweenthetwophases.Chromatographicbehaviourisalsoimpactedbyotherfactors suchassterichindranceofsubstituentgroupswithinthesolutemolecule.ThemolecularforcesinvolvedintheseinteractionsareusuallyweakervanderWaalsforcesorhydrogenbondingbut,insomeinstances,strongerionicinteractionsasinion-exchangechromatographyareexploited [72] and,inrarecases,specificinteractionssuchascharge transferforces [73,74]

Bywayofillustration,dispersionforcesareobservedbetweenallmolecules,buttheyaretheonlyforcesexerted betweennon-polarmoleculessuchashydrocarbons.Thustheseparationofn-alkanesonasqualane(abranchedparaffin)stationaryphasebyGCinvolvesdispersionforcesalone.Forthesenon-polarspecies,polarizabilityofthesolute moleculesincreasesasthemolecularsizeincreasesandthedispersionforcesalsoincreaseallowingustopredictthat thechromatographicretentionwillincreaseasthecarbonnumberofthen-alkaneincreases.Asafurtherexample, aromatichydrocarbonsarepolarizableduetothe π-electronsandexhibitinduceddipoleinteractionsaswellasdispersiveinteractions.RetentionandseparationofthesecompoundscanbeachievedbyGConasqualanestationary phaseexploitingdispersiveforcesalone.Alternatively,theycanberetainedandseparatedbyexploitinginduced dipoleanddispersiveinteractionsinHPLConsilicagelasastationaryphaseandadispersivemobilephasesuch asn-hexane.

Inthischaptersufficientdetailisgiventoprovideanunderstandingofthegeneralprinciplesinvolvedineachmechanism.Thisissupplementedintherelevantsectionsongaschromatography,liquidchromatography [75–77] (planar andcolumn),andsupercriticalfluidchromatography.Itishopedthatreaderswillexaminethisandsubsequent materialcloselyfor,asPoole [71] hasnoted,thereisadeclineinunderstandingofseparationmechanismsbythose whoperformthemajorityofroutinemethodsandmethoddevelopment.Theoutlookforthefuturedevelopment ofchromatographywillbebleakifthissituationisallowedtopersist.

1.4.4.1Adsorptionchromatography

AdsorptionwasexploitedbyTswettintheformofliquid-solidchromatographyincolumnsandthusrepresentsthe oldestofthechromatographictechniques.Inseparationsinvolvingadsorption [78–81],soluteandmobilephasemoleculescompeteforactivesitesonthesurfaceofthesolidstationaryphasewhichiscalledtheadsorbent.Adsorption ontothesurfaceoftheadsorbentisdistinguishedfrompartitionprocessesinwhichthesolutealsodiffusesintothe interiorofthestationaryphase.Amoreappropriatetermforthelatterwouldprobablybeabsorptioninwhichcasethe generalprocesscouldbetermedsorption.Nevertheless,theterminologyusedinthismonographconformstousual practiceandreferstoadsorptionandpartition.

Separationinadsorptionchromatographyisduetointeractionofpolarfunctionalgroupsonthesolutewithdiscrete adsorptionsitesontheadsorbentsurface.Theselectivityoftheseparationisdependentontherelativestrengthofthese polarinteractions.Theextenttowhichasolutecanbeaccommodatedonanadsorbentsurfacedependsonitsspatial configurationanditsabilitytohydrogenbondwiththeadsorbentsurface.Adsorptionprocessesarethereforesensitive tospatialdifferencesinsolutesandareideallysuitedtoseparationsofmoleculeshavingslightdifferencesinshape(i.e. geometricisomers).Adsorbentsalsodemonstrateauniqueabilitytodifferentiatesolutespossessingdifferentnumbers ofelectronegativeatomssuchasoxygenornitrogen,orformoleculeswithdifferentfunctionalgroups.Thisleadstothe useofadsorptionforclassseparations.Ontheotherhand,partitionprocessesdependonacompetitivesolubility betweentwoliquidphasesandarequitesensitivetosmalldifferencesinmolecularmass.Forthisreason,members ofanhomologousseriesaregenerallybestseparatedbyapartitionsystem.Moreover,partitionisusuallymoresuitablethanadsorptionforhighlypolarsubstancessuchasaminoacidsandcarbohydrates.Inthiscase,theneedtouse highlypolarmobilephasesinadsorptionwouldnegateanysmalldifferencesbetweenadsorptivepropertiesofthe solutesandproducenoseparation.

Adsorptionstillfindsuseinliquidcolumnchromatography(bothclassicalandhighperformance)andiswidely exploitedinthinlayerchromatography,whereasapplicationsofadsorptioninGCarelimitedmainlytoseparations wheretheanalytesarepermanentgases.Becausethestationaryphaseinsuchseparationsisasolid,thesystemsare referredtoasliquid-solidchromatographyandgassolidchromatography(GSC).ThepracticalapplicationofGSC (basedonadsorption)antedatedthenowmorepopularformofGLC(basedonpartition).Oneofthefirstimportant accountsofGSCwaspublishedin1946byClaesson [82] whouseddisplacementdevelopmentfortheseparationof hydrocarbonsoncolumnspackedwithactivatedcarbon.Phillipsandco-workersusedthesamemethod [83] butthis approachwasabandonedafter1952infavourofpartitionsystemsasdevelopedbyMartinandJames [84].Nevertheless,forcertainseparations,namelythatofpermanentgases,GSChascomebackintofavour.Typicaladsorbentsfor GSCarezeolites(aluminiumsilicates),Porapaks(cross-linkedpolystyrene),andmolecularsievesinadditiontothe morecommonadsorbentssuchassilicagel,charcoal,andaluminaencounteredinliquidchromatography.

Theparticlesizeisanimportantcharacteristicofanadsorbent.Toafirstapproximationsampleretentionisproportionaltosurfaceareawhich,inturn,dependsontheparticlesizeandontheinternalstructureoftheadsorbent particles.Thesmallertheaverageparticlesize,thegreaterthesurfaceareaoftheadsorbentandhencethenumber ofactivesitesavailableforadsorption.Mostadsorbentsareavailableinarangeofparticlesizestosuittheneeds ofthevariouschromatographictechniques.Forthinlayerchromatography,particlesizesof20to40 μmhavebeen mostcommon,whereasforclassicalliquidchromatographyincolumnstheparticlesarelarger(100to30 μm).For themoderncounterpart(i.e.HPLC)ofthisparticulartechniquetheyaresmaller(10,5or3 μm)andforhighperformancethinlayerchromatography,particlesizesof5 μmareused.AdsorbentsforGCaretypicallyinthesizerangeof 125–150 μmupto177–250 μm.

1.4.4.2Partitionchromatography

PartitionchromatographyoriginatedwiththeNobelPrizewinningworkofMartinandSyngein1941andhasasits basisthepartitioningofasolutebetweentwoimmiscibleliquids,asinsolventextraction,exceptthatoneoftheliquids isheldstationaryonasolidsupportsuchassilicagel,diatomaceousearth,cellulose,polytetrafluoroethylene(PTFE),or polystyrene.Thesolidsupportis,inprinciple,inertandsolelyprovidesalargesurfaceareaonwhichthestationary phaseisretained.Partitionchromatographyexploitsthefactthatasoluteincontactwithtwoimmiscibleliquids(or phases)willdistributeitselfbetweenthemaccordingtoitsdistributionconstant, K (Eq. 1.1).Theprincipal

intermolecularforcesinvolvedaredispersion,induction,orientation,anddonor-acceptorinteractionsincluding hydrogenbonding.Theseforcesprovidetheframeworkforaqualitativeunderstandingoftheseparationprocess.

Theimportanceofpartitionsystemshasdeclinedinallareasofchromatographywiththedevelopmentofbonded phases.Nevertheless,inGCwithpackedcolumns,partitionsystemsarestillusedonrareoccasions.Ontheotherhand, useofpartitionsystemsinliquidandsupercriticalfluidchromatographyisrestrictedbyinstabilityofcoatedliquid stationaryphases.Thisiscausedbythesmallbutfinitesolubilityoftheliquidstationaryphaseinsolventsusedas mobilephasesleadingtostrippingofthestationaryphasefromthecolumn.Oneapplicationareainliquidchromatographywheretheseparationmechanismispredominantlypartitionispaperchromatography.Here,thewater sorbedoncellulosefunctionsasthestationaryphase.

Countercurrentchromatography [85–87] issimilartoconventionalliquid-liquidpartitionchromatographywiththe distinctionthatthestationaryliquidphaseisretainedintheapparatuswithoutuseofanadsorptiveorporoussupport. Inonevariant,calleddropletcountercurrentchromatography,thestationaryphaseisretainedbygravitationalforcein anarrowverticaltube(ca.2mmi.d.)whiledropletsofanimmisciblemobilephasearepassedthroughit.Themobile phaseiseitheraddedatthetoporbaseofthetubedependingonwhetherithasahigherorlowerdensitythanthe stationaryphase.Typically,300tubesareconnectedinseriesusingcapillary-borepolytetrafluoroethylene(PTFE)tubingtoprovideacolumnofhighefficiency.Withthemorecommonsystems,thestationaryphaseisretainedinmoreor lesssegmentedcompartmentswithinacoiledtubingwhilethemobilephaseispassedthroughit.Coils(2–3mmi.d.) areusuallymadeofPTFEandrangeinlengthfromafewmetrestomorethan100m.Incontrasttoconventionalliquidliquidchromatographywherethevolumeofstationaryphaseinthecolumnisrelativelysmall,thestationaryphasein countercurrentchromatographyoccupiesfrom40%to90%ofthetotalcolumnvolume.Oneoftheproblemsofcountercurrentchromatographyistherelativelylonganalysistimes.Forexample,arelativelysimpleseparationof10compoundsmayrequireanythingfromafewtoseveralhoursusingcentrifugallyoperatedunitsupto1–3daysforunits operatedinaunitgravitationalfield.Themainroleforcountercurrentchromatographyisforpreparativescaleseparationsinthemilligramtogramrange.Newerdevicesalsofunctionasefficientextractorstoconcentratetracecomponentsfromenvironmentalsamples,suchasriverwaterandbiologicalfluids,suchasurinebyreplacingthe relativelylongseparationcolumnwithashortcolumn.

1.4.4.3Bondedphasechromatography

Bondedphases,inwhichthestationaryphaseiscross-linkedandbondedtotheinternalwallofthecolumnorchemicallybondedtoasolidsupport,arepopularinallformsofchromatography.Thegroup(e.g.anoctadecylhydrocarbon)thatischemicallybondedtothesupportisreferredtoasaligand.Thepopularityofbondedphasesistestimonyto theirmanyadvantages.TheywereoriginallydevelopedforopentubularcolumnsinGCinanattempttostabilizethe stationaryphaseatelevatedtemperatures.Bondedphasesarealsoavailableinliquidandsupercriticalfluidchromatographywheretheyovercometheproblemsofcolumnbleedassociatedwithphysicallybondedphasesinwhichthe stationaryphaseissimplycoatedonasupportmaterial.Comparedtoadsorptionsystemsinliquidchromatography, theyequilibratefaster,donotexhibitirreversiblesorption,andareavailablewithawiderangeoffunctionalities.

GCisuniqueinthatthemobilephasetransportssolutesthroughthechromatographicbedbutitisotherwisenoninteractive.ThissimplifiestheretentionmechanisminGCasmolecularinteractionsareessentiallylimitedtothesolute andstationaryphase.Themechanismwastreatedasapartitionthatcanbeapproximatedbyaphysicalprocessof solutevaporizationandsolutioninthemobileandstationaryphase.Thusretentionisdeterminedmostlybysolute vapourpressureandvolatility.Indeed,partitionisthedominantprocessformanysolutes;however,amixedmechanismofadsorptionandpartitionisnowregardedasamoreaccuratedescriptionalthoughtheextentofcross-linking ofbondedphasesisanimportantfactorforGC(Chapter4).

InLCandSFC,chemicallybondedphasesarenowcommoninallareasincludingionexchange,hydrophilicinteractionliquidchromatography(HILIC),etc.butthemechanismintheseprocessesissufficientlydistinctthattheretentionmechanismisnotregardedasbondedphasechromatography.Thebondedphasemechanismisrestrictedto normal-phase(liquid)chromatography(NPLC)andreversed-phase(liquid)chromatography(RPLC).Withnon-polar ligandssuchasanoctadecylhydrocarbon,thestationaryphaseisalwayslesspolarthantheassociatedmobilephase andthisconstitutesRPLC.Withmorepolarligands,thebondedphasescanbeusedwitheithermoreorlesspolar mobilephases,andincasesinvolvinglesspolarmobilephases,thenitconstitutesNPLC.

Themechanismofbondedphasechromatographyiscomplex [76] butappearstoinvolveacombinationofpartition andadsorption.Inanumberofinstances,bondedphasechromatographyhasbeenreferredtoaspartitionchromatographybecausetheorganicsurfacelayerisregardedasa ‘boundliquidfilm’.However,Locke [88] concluded,asearlyas 1974,thatbondedphasesactedmorelikemodifiedsolidsthanthinliquidfilms.Nevertheless,themechanisminvolved withbondedphases [75] issufficientlydifferentfrombothadsorptionandpartitiontowarrantseparatetreatment.

Innormal-phasesystems,thedominantinteractionsbetweenthesoluteandthestationaryphasethatcauseretentionandselectivityarepolarinnaturewhiledispersiveinteractionsdominateinthenon-polarmobilephase.Retention innormal-phasebondedLCwasoriginallyregardedassimilartothatinadsorptionchromatographyinvolvingcompetitiveadsorptionbetweensoluteandmobilephasemoleculesforactivesitesonthestationaryphasesurface.However,subtlenuancesinretentionbehaviourrequiredmodificationstothissimplisticretentionmechanism.

Inreversed-phaseLC,themostextensivelyusedofallformsofchromatography,theretentionmechanismhasbeen studiedoverseveraldecades [89] basedonclassicalandstatisticalthermodynamicstodescribethefundamentalprinciplesgoverningseparationbutaunifiedviewhasnotbeenachieved.Thiscanbeattributedtothecomplexityofthe retentionprocessandtheinterplayofmyriadmolecularinteractionsbetweentheanalyte,mobilephase,andstationary phase.Thesolvophobictheorywasoneofthefirstattemptstodescribechromatographicretentionusingclassicalthermodynamics.Thepartitionmodelwasdevelopedasananswertothecriticismsofthesolvophobictheorywiththe adsorptionmodelpresentingasanalternativeapproach.Anadsorption-partitionmodelbasedonsolutiontheory andsolubilityparametermodels,forexample,hasalsobeenpresented(seeRef. [90]).Eachoftheseandthemanyother models,withafocusonthestationaryphaseand/ormobilephase,representsadifferentviewoftheretentionmechanisminreversed-phasechromatography.Theygenerallyinvokeeitherthepartitionoradsorptionprocesswhichhas causeddebateovermanyyearsabouttherelativeroleofsolutepartitionbetweenthephasesandadsorptionofthe solutetothestationaryphase [91].Thesetworetentionprocessesrepresenttheextremesofaspectrumofpossible retentionmodels.Inthepartitionmechanism,thesolutetransfersfromthebulkmobilephasetothestationaryphase whereitisfullyembedded.Intheadsorptionmechanism,thesolutetransfersfromthebulkmobilephasetotheinterfacebetweenthestationaryphaseandmobilephasebutisnotfullyembeddedinthestationaryphase [91].Thesolvophobictheorywasthefirstrigorousattempttoexplainreversed-phaseretentionandattributedtheretentionprocess tothemobilephase,ignoringcontributionsofthebondedstationaryphase [75].Thetheoryidentifiedthemajorcontributiontotheretentionprocessasthehydrophobicbindinginteractionbetweenthesolutemoleculeinthemobile phaseandthestationaryphase.However,theactualnatureofthehydrophobicinteractionremainsamatterofheated debate.Indeed,itismoreappropriatelytermedasolvophobicinteractioninreversed-phasesystemsasthemobile phaseisrarelywaterbutahydroorganicmixtureorapolarorganicsolvent.Itisnowclearthatthestationaryphase alsoinfluencesretentionandthatthepropertiesofthestationaryphaseareinfluencedbythecompositionofthemobile phase.

1.4.4.4Hydrophilicinteractionliquidchromatography(HILIC)

HILICemploystraditionalpolarstationaryphasessuchassilicaandaminoorcyanobondedphasesbutwith mobilephasesmorecloselyassociatedwithreversed-phasesystems.Itprovidesanalternativeapproachtoseparate smallpolarcompounds.Theseparationmechanismisbasedonbothspecificandnon-specificinteractionsandhas beenmodelledaspartition,adsorption,ionexchange,andsizeexclusion [92].Ithasbeenreportedasavariantof normal-phaseLC(NPLC)buttheseparationmechanisminvolvedinHILICismorecomplicatedthanthatinNPLC [93].ThemechanismofHILICisnotcompletelyelucidated [94] butisthoughttoinvolvevariouscombinationsof hydrophilicinteractions,ionexchange,andreversed-phaseretentionbythesiloxaneonthesilicasurfaceofthestationaryphase,whichcontributetovariousdegreesdependingontheparticularconditionsemployed [93,95,96].

1.4.4.5Ion-exchangechromatography

Ionexchangeentailsareversible,stoichiometricexchangebetweensampleionsinthemobilephaseandionsoflike chargeassociatedwiththeion-exchangesurface.Thestationaryphaseisarigidmatrix,thesurfaceofwhichcarries fixedpositivelyornegativelychargedfunctionalgroups(A).Counter-ions(Y)ofoppositechargeareassociatedwith eachsiteinthematrixandthesecanexchangewithsimilarlychargedionsinthemobilephase.Ifthematrixcontains negativelychargedacidicfunctionalgroupsthenitiscapableofexchangingcationsandiscalledacationexchanger;if itbearspositivelychargedbasicgroupsitisananionexchangercapableofexchanginganions.Ifthesampleionsare depictedasM+ orX theprocesscanberepresentedasfollows:

Inordertoachieveaseparation,thematrixmustexhibitsomeaffinityforthesampleions.Thecounter-ionalreadyon theresinmustalsonotbetoostronglyheldthatitcannotbedisplacedbysampleions.Secondaryeffectscanarisedue toadsorptionorhydrophobicinteractionbythematrixitself.Duetotheionicnatureoftheinteractions,ionexchangeis restrictedtoaqueousliquidchromatography.

1.4.4.6Ion-interactionchromatography

Ionpairextractionisavaluableliquid-liquidseparationtechniqueforisolatingwater-solubleioniccompoundsby partitioningthembetweenwaterandanimmiscibleliquid.Theionicsolutespartitionformallyasionpairsaccording totheequilibrium:

inwhich Am+ representsthesoluteand Bn thepairingionorviceversa.ThisprinciplewasextendedbyEksborgand Schill [97] tochromatographyduringthe1970sandquicklygainedacceptanceasaversatiletechniquefortheseparationofionizedandweaklyionizedsolutes.Theearlysuccessespromotedgeneralinterestinion-interactionchromatographywhichusesconventionalhighefficiencymicroparticulate,normal-phaseorreversed-phasepackings. However,theforteofion-interactionchromatographyliesinitsabilitytosimultaneouslyseparateionicandmolecular species.Inreversed-phasechromatography,ionicspeciesgenerallyshowlittle,ifany,retentionandareelutedasan unresolvedmixture.Ion-interactionchromatographydoeshavesomedisadvantages.Theionicsolutionscanresultin shortcolumnlifeoraffectmetalcomponentsofthesystem.

ThetechniqueasdescribedbySchillandhisgroupbecameknownasextractionchromatographybutwasdubbed soapchromatographybyKnoxandco-workers [98] becauseoftheiruseofthedetergentcetyltrimethylammonium bromideasthepairingioninthemobilephase.Subsequenttermsusedtodescribetheprocedurehaveincluded ionpair,pairedion,andmobilephaseionchromatography(proposedbytheDionexCorporation),solventgenerated ionexchange,ionassociationchromatography,anddynamicionexchange,althoughtheauthorsprefertheuseofioninteractionchromatography.Itisunfortunatethatthediversityoftermsanddebateoverthemechanismofretention havecausedconsiderableconfusion.

1.4.4.7Size-exclusionchromatography

Separationsinsize-exclusionchromatographyarebasedonaphysicalsievingprocessandthusdifferfromallother mechanismsintherespectthatneitherspecificnornon-specificinteractionsbetweenanalytemoleculesandthestationaryphaseareinvolved.Infact,everyeffortismadetoeliminatesuchinteractionsbecausetheyimpaircolumn efficiency.Variousnameshavebeenusedtodescribethisformofchromatographyincludinggelpermeation,gelfiltration,andstericexclusion.Historically,gelfiltrationreferredtoseparationsofbiopolymers,suchasproteins,ondextranoragarosegelsusingaqueousmobilephases,whereasseparationsoforganicpolymersinorganicmobilephases onapolystyrenephaseweretermedgelpermeation.

Internalsurfacereversed-phasesupports,orPinkertoncolumns,becameavailableinthemid-1980s [99] andinvolve adualmechanism sizeexclusionandreversed-phasebondedsupport.Thesematerialscontainstationaryphaseon theinternalsurfaceoftheporesofthesupportwithanexternalsurfacewhichisnon-adsorptive.Thuslargebiomoleculesareelutedunretainedwhereassmallermoleculespenetratetheporesandareseparatedbyaconventional reversed-phasemechanism.

1.4.4.8Affinitychromatography

Affinitychromatographyisattheoppositeextremetosizeexclusioninthatveryspecificanalyte-stationaryphase interactionsareexploitedtoachieveseparation.Thestationaryphaseconsistsofabioactiveligandbondedtoasolid support(e.g.cross-linkedagaroseorpolyacrylamide).Sincethelattermaystericallyhindertheligand’saccessibility, theconceptofaspacerarmwasintroduced.Thisconsistsofashortalkylchaininsertedbetweentheligandandsolid supporttoreduceoreliminatethestericinfluenceofthematrix.Separationreliesonbiospecificinteractionssuchas antibody-antigeninteractions,chemicalinteractionssuchasthebindingofcis-diolgroupstoboronateorotherinteractions,whosenatureisnotfullyunderstood,suchastheattractionofalbumintoCibacronBlueF3G-Adye.Thespecificityoftheligandsetsthesebondedphasesapartfromallothers.Ligandsmayshowabsolutespecificityforasingle substanceormaybegroupspecific [100].Theinteractionbetweenligandandanalytemustbespecificbutreversible. Onaddingthesampleinasuitablemobilephase,the ‘active’ componentswithanaffinityfortheligandarebound andretainedwhiletheunboundmaterialiselutedinthemobilephase.ThecompositionorpHofthemobilephaseis thenalteredtoweakenthespecificinteractionofligandandactiveanalyte,whichisreleasedandeluted.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.