Practical application of supercritical fluid chromatography for pharmaceutical research and developm

Page 1


https://ebookmass.com/product/practical-application-ofsupercritical-fluid-chromatography-for-pharmaceutical-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Bioinformatics Tools for Pharmaceutical Drug Product Development 1st Edition Edition Vivek Chavda

https://ebookmass.com/product/bioinformatics-tools-for-pharmaceuticaldrug-product-development-1st-edition-edition-vivek-chavda/

ebookmass.com

Evidence Based Practice for Nurses: Appraisal and Application of Research 4th Edition, (Ebook PDF)

https://ebookmass.com/product/evidence-based-practice-for-nursesappraisal-and-application-of-research-4th-edition-ebook-pdf/

ebookmass.com

Introduction to Forensic Psychology: Research and Application (NULL)

https://ebookmass.com/product/introduction-to-forensic-psychologyresearch-and-application-null/

ebookmass.com

John Locke and Agrarian Capitalism Neal Wood

https://ebookmass.com/product/john-locke-and-agrarian-capitalism-nealwood/

ebookmass.com

A Wolf in Duke's Clothing Susanna Allen

https://ebookmass.com/product/a-wolf-in-dukes-clothing-susannaallen-3/

ebookmass.com

Multi-Scale Approaches in Drug Discovery. From Empirical Knowledge to In Silico Experiments and Back 1st Edition Edition Alejandro Speck-Planche (Eds.)

https://ebookmass.com/product/multi-scale-approaches-in-drugdiscovery-from-empirical-knowledge-to-in-silico-experiments-andback-1st-edition-edition-alejandro-speck-planche-eds/ ebookmass.com

To Honor (The Knight School Chronicles Book 1) Cecelia Mecca

https://ebookmass.com/product/to-honor-the-knight-school-chroniclesbook-1-cecelia-mecca/

ebookmass.com

The Danger Imperative: Violence, Death, and the Soul of Policing Sierra-Arévalo

https://ebookmass.com/product/the-danger-imperative-violence-deathand-the-soul-of-policing-sierra-arevalo/

ebookmass.com

Spinoza and Biblical Philology in the Dutch Republic, 1660-1710 Jetze Touber

https://ebookmass.com/product/spinoza-and-biblical-philology-in-thedutch-republic-1660-1710-jetze-touber/

ebookmass.com

England's Jews: Finance, Violence, and the Crown in the Thirteenth Century John Tolan

https://ebookmass.com/product/englands-jews-finance-violence-and-thecrown-in-the-thirteenth-century-john-tolan/

ebookmass.com

SEPARATIONSCIENCEANDTECHNOLOGY

VOLUME14

Areferenceserieseditedby

SATINDERAHUJA

PRACTICALAPPLICATIONOF SUPERCRITICALFLUID

CHROMATOGRAPHYFOR PHARMACEUTICALRESEARCH ANDDEVELOPMENT

VOLUME14

AnalyticalResearch&Development,MerckResearchLabs,Rahway,NJ,UnitedStates

PAUL FERGUSON

NewModalities&ParenteralDevelopment,PharmaceuticalTechnology&Development,Operations, AstraZeneca,Macclesfield,UnitedKingdom

AcademicPressisanimprintofElsevier

125LondonWall,LondonEC2Y5AS,UnitedKingdom

525BStreet,Suite1650,SanDiego,CA92101,UnitedStates

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfrom anyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-88487-7

ISSN:1877-1718

ForinformationonallAcademicPresspublications

visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: CharlotteRowley

EditorialProjectManager: ZsereenaRoseMampusti

ProductionProjectManager: SruthiSatheesh

CoverDesigner: VickyPearsonEsser

TypesetbySTRAIVE,India

Dedication

Forthetwoconstantsinmylife,IsobelandEmily,withoutwho’spatienceandsupportthisbook wouldnothavebeenpossible

PaulFerguson,November2022

Formyfamily,Thomas,Brendan,Georgina,andKathy,forinspiringmeandformycolleaguesfor sharingthisjourneywithme

MichaelHicks,November2022

Contents

Contributorsxi

Prefacexiii

1.EvolutionofpackedcolumnSFC

asagreeneranalyticaltoolfor pharmaceuticalanalysis

SusanOlesikandRaffealBennett

Discoveryofsupercriticalfluidsanditsrelevanceto analyticalseparationscience1

Sustainableaspectsofsubcriticalandsupercritical chromatographicseparationmethods9

AnalyticalscalesubcriticalSFC10

Analyticalenhanced-fluidityliquid chromatography12

Preparativeandanalyticalscaleinstrument improvements13

Currentutilityandrecentadvancements20

Futuredirections22

References22

2.ApplicationspaceforSFCin pharmaceuticaldrugdiscovery anddevelopment

GioacchinoLucaLosacco,AmandineDispas,Jean-LucVeuthey, andDavyGuillarme

Introduction29

Discussion33

ConsiderationsonSFCasananalyticaltoolindrug discoveryanddevelopment38

Conclusionsandperspectives42 References43

3.SelectionofSFCstationary andmobilephases

CarolineWestandEricLesellier

Introduction49

CurrentstationaryphasechemistriesforSFC49

Flexiblemobilephasecomposition59

Otheroperatingparameters:Temperature,pressure andflowrate64

Predictingretentionandselectivity65

Summary66

References66

4.Measurementsofdrugsandmetabolites inbiologicalmatricesusingSFC andSFE-SFC-MS

BradyW.Drennan,A.PaigeWicker,BlairK.Berger, andKevinA.Schug

Introductiontodrugandmetaboliteanalysis inbiologicalmatricesusingSFCand SFE-SFC-MS73

On-lineSFE-SFC-MSmethoddevelopmentfor biologicalmatrices75

Drugmetabolismandpharmacokinetics(DMPK) monitoringindiscoveryanddevelopment88 Discoveryanddereplicationofnaturalproducts93

Conclusions94

References94

5.Syntheticchemistryscreeningforrobust analysisandpurificationfromdiscovery throughtodevelopment

TimUnderwood,SeanHindley,AndyKnaggs,andCraigWhite

Introduction101

Screeningstrategies103

Practicality119

Aspectsforconsideration123

Futurerefinements128

References129

6.ApplicationofpreparativeSFCinthe pharmaceuticalindustry

JenniferKingston,HannaLeek,AstridBuica,Kristina Ohlen, KatieProctor,JoannaRaubo,MatthewSanders,andLindaThunberg

IntroductiontotheuseofpreparativeSFC133

PreparativeSFCinstrumentationand infrastructure134

FeaturesandcontrolsduringpreparativeSFC138

Temperaturecontrol143

Detectionsystems143

Fractioncollection144

MethoddevelopmentinpreparativeSFC145

PreparativeSFCapplications:Casestudieswithin AstraZenecaresearchlaboratories148

SFCasasustainablechromatographictechnique159

Conclusions163 References163

7.Methoddevelopmentapproaches forsmall-moleculeanalytes

SyameKhater,PaulFerguson, andAlexandreGrand-Guillaume-Perrenoud

Introduction167

Methoddevelopment“prework”170

ScreeningtoolutilizationtoidentifyoptimalSFC parameters174

Methodvalidation205

Continuousmethodperformanceverification210

Summary211

Acknowledgments212 References212

8.ApplicationofSFCforthe characterizationofformulated drugproducts

PaulFerguson,RebeccaCross,andGesaSchad

Introduction221

Drugformulations222

Samplepreparationprocedures225

Waterandorganicsolventsassamplediluentsin SFCforAPIsandsolid-oraldosageforms230

AlternativeapproachestosolubilizeanalytesinSFC compatiblesolvents237

Characterizationofpolymerexcipients241

Conclusions246

Acknowledgments247

Appendix:Constituentsofformulateddrugsdiscussed inchapter247 References252

9.ExpandingtheboundariesofSFC: Analysisofbiomolecules

MartinBeres

Historicalproblemsanalyzingpolarmoleculesvia SFC257

RoleofwaterinmodernSFC261

Enhanced-fluidityliquidchromatography269

ApplicationsofSFCtobiomolecules279

Concludingremarks290

References290

10.DifferentdetectorsusedwithSFC

G.JohnLangley,SergioCancho-Gonzalez, andJulieM.Herniman

Introductiontodetectorsusedwith modernSFC299

GenericdetectorsusedwithSFC300

CouplingSFCtomassspectrometric detectors313

Conclusions321

Acknowledgment321 References321

11.SFCinGMPtestingandquality controlofmedicinaldrugproducts

AdrianClarke,PaulFerguson,andMichaelHicks

Introduction325

CurrentuseofSFCinpharmaceutical development327

TransferofmethodstomanufacturingQC facilities332

Futurerequirementstowardregulatoryacceptanceof SFCmethods344

Conclusions348

Acknowledgments348 References348

12.Bestpracticesandinstrumental troubleshootingforsuccessful SFCmethods

FionaBell,PaulFerguson,RebeccaPoulten,EmilyRoddy, andWilliamFarrell

Introduction353

Systemconfiguration354

Bestpracticeforsystemsetup356

Systemperformancechecks357

Cylinderissues361

Instrumenttroubleshootinganderrors364

Eluenteffects369

Chromatographictroubleshooting371

Optimizationofdetectorsensitivity374

Conclusions374 References375

13.Thestate-of-the-artandfuture perspectivesforSFC

PaulFergusonandMichaelHicks

Introduction377

Reflectiononpreviouschapters378

TheoreticalperformanceofSFC382

Influenceofnewcolumnparticletechnologiesand instrumentdesignonSFCperformance383

Considerationsforfutureinstrumentapplicationand design384

Methoddevelopment,performanceandprediction aspects386

Methodscaling390

FuturedirectionsandapplicationsofSFC392

Sustainableinstrumentdesign394

Conclusions397

Acknowledgments398

References398

Listofabbreviations403

Index409

Contributors

FionaBell GlobalChemicalDevelopment, PharmaceuticalTechnology&Development, Operations,AstraZeneca,Macclesfield, UnitedKingdom

RaffealBennett Merck&Co.,Inc.,MRL,AnalyticalResearch&Development,Boston,MA, UnitedStates

MartinBeres Separation&AnalysisTechnology Team,BristolMyersSquibb,Princeton,NJ, UnitedStates

BlairK.Berger DepartmentofChemistry&Biochemistry,TheUniversityofTexasatArlington,Arlington,TX,UnitedStates

AstridBuica EarlyChemicalDevelopment, PharmaceuticalSciences,BioPharmaceuticals Research&Development,AstraZeneca, Gothenburg,Sweden

SergioCancho-Gonzalez FacultyofEngineering&PhysicalSciences,SchoolofChemistry, UniversityofSouthampton,Southampton, UnitedKingdom

AdrianClarke Chemical&AnalyticalDevelopment,NovartisPharmaAG,TechnicalR&D, Basel,Switzerland

RebeccaCross GlobalChemicalDevelopment, PharmaceuticalTechnology&Development, Operations,AstraZeneca,Macclesfield, UnitedKingdom

AmandineDispas UniversityofLiege(ULiege), CIRM,Vibra-SanteHub,LaboratoryofPharmaceuticalAnalyticalChemistry;Universityof Liege(ULiege),CIRM,Mas-SanteHub,LaboratoryfortheAnalysisofMedicines,Liege, Belgium

BradyW.Drennan DepartmentofChemistry& Biochemistry,TheUniversityofTexasat Arlington,Arlington,TX,UnitedStates

WilliamFarrell OncologyMedicinalChemistry, Pfizer,Inc.,WorldwideMedicinalChemistry, LaJollaLaboratories,SanDiego,CA, UnitedStates

PaulFerguson NewModalities&Parenteral Development,PharmaceuticalTechnology& Development,Operations,AstraZeneca,Macclesfield,UnitedKingdom

AlexandreGrand-Guillaume-Perrenoud Chemical&AnalyticalDevelopment,Novartis PharmaAG,TechnicalR&D,Basel,Switzerland

DavyGuillarme SchoolofPharmaceuticalSciences;InstituteofPharmaceuticalSciencesof WesternSwitzerland,UniversityofGeneva, CMU,Geneva,Switzerland

JulieM.Herniman FacultyofEngineering& PhysicalSciences,SchoolofChemistry, UniversityofSouthampton,Southampton, UnitedKingdom

MichaelHicks AnalyticalResearch&Development,MerckResearchLabs,Rahway,NJ, UnitedStates

SeanHindley GlaxoSmithKlineMedicineResearchCentre,Stevenage,Hertfordshire, UnitedKingdom

SyameKhater TechnologieServier,Orleans, France

JenniferKingston OncologyChemistry,OncologyResearch&EarlyDevelopment, AstraZeneca,Cambridge,UnitedKingdom

AndyKnaggs GlaxoSmithKlineMedicineResearchCentre,Stevenage,Hertfordshire, UnitedKingdom

G.JohnLangley FacultyofEngineering& PhysicalSciences,SchoolofChemistry, UniversityofSouthampton,Southampton, UnitedKingdom

HannaLeek EarlyChemicalDevelopment, PharmaceuticalSciences,BioPharmaceuticals Research&Development,AstraZeneca, Gothenburg,Sweden

EricLesellier UniversityofOrleans,CNRS, InstituteofOrganic&AnalyticalChemistry (ICOA),UMR,Orleans,France

GioacchinoLucaLosacco SchoolofPharmaceuticalSciences;InstituteofPharmaceuticalSciencesofWesternSwitzerland,Universityof Geneva,CMU,Geneva,Switzerland;Analytical ResearchandDevelopment,MRL,Merck&Co, Inc.,Rahway,NJ,UnitedStates

Kristina € Ohlen EarlyChemicalDevelopment, PharmaceuticalSciences,BioPharmaceuticals Research&Development,AstraZeneca, Gothenburg,Sweden

SusanOlesik DepartmentofChemistry,The OhioStateUniversity,Columbus,OH, UnitedStates

RebeccaPoulten EarlyChemicalDevelopment, PharmaceuticalSciences,Research& Development,AstraZeneca,Macclesfield, UnitedKingdom

KatieProctor OncologyChemistry,Oncology Research&EarlyDevelopment,AstraZeneca, Cambridge,UnitedKingdom

JoannaRaubo OncologyChemistry,Oncology Research&EarlyDevelopment,AstraZeneca, Cambridge,UnitedKingdom

EmilyRoddy EarlyChemicalDevelopment, PharmaceuticalSciences,Research& Development,AstraZeneca,Macclesfield, UnitedKingdom

MatthewSanders OncologyChemistry,OncologyResearch&EarlyDevelopment, AstraZeneca,Cambridge,UnitedKingdom

GesaSchad ShimadzuEuropaGmbH, Duisburg,Germany

KevinA.Schug DepartmentofChemistry& Biochemistry,TheUniversityofTexasat Arlington,Arlington,TX,UnitedStates

LindaThunberg EarlyChemicalDevelopment, PharmaceuticalSciences,BioPharmaceuticals Research&Development,AstraZeneca, Gothenburg,Sweden

TimUnderwood GlaxoSmithKlineMedicine ResearchCentre,Stevenage,Hertfordshire, UnitedKingdom

Jean-LucVeuthey SchoolofPharmaceuticalSciences;InstituteofPharmaceuticalSciencesof WesternSwitzerland,UniversityofGeneva, CMU,Geneva,Switzerland

CarolineWest UniversityofOrleans,CNRS, InstituteofOrganic&AnalyticalChemistry (ICOA),UMR,Orleans,France

CraigWhite ExscientiaAILtd,Abingdon, Oxfordshire,UnitedKingdom

A.PaigeWicker DepartmentofChemistry& Biochemistry,TheUniversityofTexasat Arlington,Arlington,TX,UnitedStates

Preface

Supercriticalfluids

Theterm“supercritical”referstothestate ofasubstanceaboveacertaintemperature (termedits criticaltemperature, Tc)andpressure(criticalpressure, Pc).Thestatetransitions areoftendescribedthroughaphasediagram plottingstateboundaries(solid,liquid,gas, supercriticalregions)asafunctionoftemperatureandpressure.Inthesupercriticalregion,thefluidexhibitspropertiesthatare intermediatebetweenthatofaliquidanda gas.Inparticular,supercriticalfluidspossess liquid-likedensities,gas-likeviscosities,and diffusivitiesintermediatetothatofaliquid andagas.

Amodifiedphasediagramforcarbon dioxide(CO2)isshownin Fig.P1.Above modestvaluesof31°Cand74bar(7.3MPa), thefluidexistsinasupercriticalstate.Near thecriticalpoint,smallchangesinpressure ortemperaturecanresultinlargechanges indensity.Thisfactcanbeconveniently exploitedinSFC,tomodifypropertiesof supercriticalfluidstoeluteanalytesfroma chromatographiccolumnbymodification ofthetemperature,pressure,orboth.The propertieslikedensity,viscosity,anddiffusivityofsupercriticalfluidsareintermediate betweenthegasandaliquid.Asthereisno distinctgasorliquidphaseandsupercritical fluidshaveverylowornosurfacetension, thisallowstheuseofhighflowratesforfast separations,orlongercolumnsforhigher efficiency/resolutionseparationsandshort reequilibrationtimes.

Althoughthephysicochemicalproperties ofCO2 areimportanttoitsselectionasa supercriticalfluidchromatography(SFC) mobilephase,theelutionofmanyanalytes willonlyoccurwiththeinclusionofa cosolventmodifier,typicallymethanol. AlthoughthephasediagramofCO2 iscommonlyshown(see Chapter1,Fig.1.1), Fig.P1 showstheimpactoncriticalpoint withtheadditionofmethanolasamodifier. Eventheadditionofsmallvolumesofmethanolcanshiftthepropertiesawayfromsupercriticalconditionsintoa“subcritical” regionbelowthecriticaltemperatureand pressureofthemixture.However,forall practicalchromatographicpurposes,itisjust amatterofsemanticsiftheCO2-solventmodifierissub-orsupercriticalasitmaintainsits monophasicbehaviorandadvantageous chromatographicproperties,e.g.,lowviscosityandhighdiffusivity.

Historicalperspectives

Supercriticalfluidbehaviorwasfirst reportedin1822byaFrenchengineerand physicistCharlesCagniarddeLaTour throughhis“cannonbarrel”experiments [1] attheAcademiedesSciencesinParis.He listenedtodiscontinuitiesinthesoundofa rollingflintballinasealedgunbarrelfilled withavarietyofsolvents(water,ethanol, diethylether,andpetroleumspirit)atdifferenttemperaturesandhenotedthatthe splashingsoundattheliquid–airinterface

FIG.P1 Phasediagramforcarbondioxide(bluearea)orcarbondioxide/methanolmixtures(greenarea).Thered linesdenoteaconstantdensity(pertinenttotheelutioncharacteristicsofthesystem)atdifferentpercentagesofmethanolinthemobilephase. ReproducedwithpermissionofElsevierfromE.Lesellier,C.West,Themanyfacesofpackedcolumn supercriticalfluidchromatography—acriticalreview,J.Chromatogr.A1382(2015)2–46.

disappearedattemperatureswellabovethe liquid’sboilingpoints.Hehadunknowingly discoveredtheirtransitionpointstoa supercriticalphase.Inarelatedexperiment, heheatedasealedglassvialofethanolnoting itexpandedtotwiceitsoriginalvolume,and theliquidappearedtovanish.Oncooling,a cloudofmistappearedthatcorrespondedto thesolvent’scriticaltemperature [2].Inasubsequentpaper,hereportedthecriticaltemperatureofaseriesofliquidswhentheinterface tensionvanished—visualizedthroughthe disappearanceoftheliquid’smeniscus [3]

Morethan45yearslater,Andrewsauthored thefirstsystematicstudyofgas–liquidcriticalpointofcarbondioxide(generatedfrom carbonicacid)andnitrousoxide [4].The firstapplicationof“supercriticality”was reportedin1879byHannayandHogarth

whodescribedthesolubilizationofcobalt chlorideinsupercriticalethanol [5].These fundamentalexperimentssetinplacethe cornerstonesforfurtherpivotalworksin the20thcentury(see Chapter1).

In1957,JamesLovelock,oneofthepioneersofgaschromatography(GC),firstproposedtheuseofsupercriticalfluidsfor chromatographicmobilephasesfortheanalysisofnonvolatilecompounds(“criticalstate chromatography”—[6,7]).In1962,Ernst Klesperandcoworkerspresentedthefirst studyontheuseofaninorganicgasasachromatographicmobilephase [8].Theyused chlorofluorocarbons(CHClF2 andCCl2F2) abovetheircriticalpoints(pressuresof 800–2300psiand115°C)witha30-in.packed columncontainingCarbowax20M(polyethyleneglycol)ona180–250 μmChromosorbW

diatomaceousearthsupporttoseparate colorednickel–porphyrincomplexes.He termedthis“highpressuregaschromatography.”Theelutionstrengthwasfoundto beproportionaltothesystempressure, whichwascontrolledthroughrestriction capillariesandmobilephaseflowrate [6]. Astheworkwasundertakenonmodified gas-chromatographicinstrumentation(GC), thetechniquewascoined“highpressure GC”.Thisisconsideredthefirstpractical demonstrationofwhatwaslatertobecome knownasSFC.

ThetermSFCwasfirstproposedbySie andcoworkersatShellResearchLaboratories (Amsterdam,TheNetherlands)inaseriesof papersinthelate1960s.Intheseexperiments, theyinvestigatedtheeffectsofpressureand temperatureinopen-tubular(squaleneand glycerolcoated,andlaterpackedcolumn) gaschromatographywithcarbondioxideas thecarriergas [9–11].Theydescribedhowincreasingthecarbondioxidepressurealtered thedensityofthegasandreducedanalyte retention.Atasimilartimepointca.1968, J.CalvinGiddingsgroupproposedtheterm “densegaschromatography” [12] andsoon afterreportedtheinfluenceofhighpressures onanalyteretentioninGCwithcarbondioxideandammoniaasmobilephase/carrier gas [13].

Asisoftenthecaseinearlyresearch,thelate 1960sthroughtothemid-1980ssawtheriseof certainclaimsthatultimatelyhinderedthe paceofdevelopmentofthetechnique,notably theassertionthatthesolventstrengthofcarbondioxidewassimilartoisopropylalcohol [14],publicationshighlightingthedeficiencies ofpackedcolumnsonchromatographicperformance [15],andthebeliefthatmodifiers didnotincreasemobilephasesolventstrength [16].Similarly,therewerelimitationsinthe availableinstrumentation,whichmeantthat thefullbenefitsofsupercriticalmobilephases couldnotbeexploited [17].

Alltheaforementionedexperiments, amongothers,generatedacuriositythat pavedthewayfornumerousadvancesin thefield.Attheheartofthesedevelopmentswereimprovementsinunderstanding theimpactoforganicsolventonthemobile phaseelutionstrength,theroleofmobile phaseadditives,andthesignificantrole stationaryphaseinteractionsplayonanalyte retentionandselectivity.Alongsidethese theoreticaldevelopments,improvementsin instrumentdesignsawthetransitionfrom earlymodificationofgaschromatographic instruments,tomodifiedHPLCinstrumentationandthentheconcerteddevelopment ofinstrumentationdedicatedtothetask. Ateachjuncture,improvedunderstanding ofCO2 fluidmeteringallowedformore accuratedeliveryofvolumesofthecompressiblegasmobilephaseandcosolvent modifiers.Theseadvancesweresupported bydevelopmentsinthermostatedhighpressureUVflowcellsforimproveddetectionsensitivity,improvedpumpcheck valvesmaterials,andadvancesinback pressuresystemregulation.

SFCinthepharmaceuticalindustry

Havingbeenavailableformanydecades, SFCisachromatographictechniquethat manyanalyticalchemistsareawareof,but mayhavenotyetused.Itisoftenconsidered anichetechniquewithonlylimitedapplicationforpreparativeandchiralchromatography.SFChasaperceivedcomplexityover moreestablishedtechniquessuchasGC andliquidchromatography(LC),andthese perceptionshavepreventeditsapplication asastandardlabtechnique.However,ifan analysthasexperienceinliquidchromatography,thenmuchoftheknowledgeandinstrumentalunderstandingisrelevantand transferabletoSFC,andapplicationtoSFC

isnotashighabarriertoovercomeasone mightbelieve.

SFChasseveralinterestingaspectsasa separationtechniquethatarepertinentto theanalysisofbothsmallandlargepharmaceuticalmoleculesaswellasrelated materialssuchascertainformulationexcipients.Inmanycases,SFCcanprovidea bettersolutionthanLCforthecharacterizationofpharmaceuticallyrelevantmolecules. Fig.P2 showsthenumberofpublications reportingtheuseofSFCforpharmaceutical analysisyearonyearfrom1985.Thereisa clearexponentialupwardtrendreflecting thegrowinginterestandimportanceofthe techniqueintheindustry.Infact,application ofthetechniqueisexpandingsorapidlyin pharmaceuticalsciencethatwefounditchallengingtoproposepossiblefutureapplicationsareas(see Chapter13).

SomeoftheaspectsthatmakeSFCattractiveforpharmaceuticalanalysisincludethe following:

• Typicallyfasteranalysistimesand gradientreequilibrationthan(U)HPLC

duetothelowviscosityofthemobile phaseallowinghighflowratestobeused;

• Effectivewithawiderangeoforganic solventscommonlyusedinsynthetic chemistryreactions,andisparticularly usefulforanalysisofwaterlabile molecules;

• Virtuallynostationaryphaselimitations intermsofselectionchoice,usingcarbon dioxide–basedmobilephases(see Chapter3);

• Compatiblewithmanysamplediluents rangingfromfullyorganictofully aqueoussamples(dependingonmobile phasecomposition,see Chapter8);

• Asaresultofthelowmobilephase viscosity,highlyefficientcolumnswith sub-2 μmstationaryphasescanbe successfullyemployedtoachievehigher efficiencyandresolutionthananalogous LCseparations(see Chapter7);

• Isbecomingtheindustrytechnique-ofchoiceforchiralandpreparativeseparations duetothetechniqueusinglesssolvent andinstrumentalenergythantheanalogous LCseparations(see Chapters5 and 6);

FIG.P2 CASScifindersearchusingkeywords“SFC”+“pharmaceutical”fortheperiod1985–2021.

• ProduceslesssolventwastethanLCand usesa“recyclable”gasastheprimary mobilephasecomponent.Inaddition, alcoholsareoftenusedasacosolventthat furtherimprovesits“green”credentials.

Scopeandrelevanceforthistext

TheseareexcitingtimesforSFC.Therehas beenaproliferationinnewunderstanding, workflows,andinstrumentaldevelopments inrecentyears,andthepaceisnotslowing. Asanalyticalchemistsworkinginthepharmaceuticalindustry,wewantedtooutline theopportunitiestoutilizeSFCthroughout thecompletedevelopmentcycleofadrug molecule,fromdrugdiscoverythroughto developmentandcommercialreleaseofthe formulatedmedicine,inamanufacturingenvironment.Webelievethistextfillsacrucial gapinthemarket,onethatfocusesonfully utilizingthetechniqueinapharmaceutical setting.Weenvisagethisbookwillappeal notonlytoanalyticalscientistsinthepharmaceuticalindustrybutalsotoanalyticalscientistsinotherindustries.Wealsohopethat thebookwillserveasausefulreferencefor academicsofferingin-depthandpractical insightandalsoprovideaplatformtohelp teachthenextgenerationofseparationscientistsaboutthisenvironmentallysustainable technique.

Inourfinalcomments,wewouldliketo acknowledgethecontributionsofourcolleaguesandcollaborators.Indevelopingthis book,wewantedtopartnerwithscientists whohaveextensivetheoreticalknowledge andpracticalexperiencewithSFC.Thistext wasthereforecompiledbypractitionersof thetechniqueandincludesunderstanding gatheredovermanyyears(oftendecades) ofexperience.Weareindebtedtothemfor theircontribution,insight,anddedication inhelpinguscompilethistext.Wehope

youenjoythebookandfindithelpfulin expandingyourknowledgeofSFC.

MichaelHicks Rahway,NJ,UnitedStates PaulFerguson Macclesfield,UnitedKingdom November2022

References

[1] C.CagniarddeLatour,Exposedequelques resultatsobtenuparl’actioncombineedelachaleur etdelacompressionsurcertainsliquides,telsque l’eau,l’alcool,l’ethersulfuriqueetl’essencede petrolerectifiee,Ann.Chim.Phys.21(1822) 127–132.

[2] B.Berche,M.Henkel,R.Kenna,Criticalphenomena:150yearssinceCagniarddeLatour,J.Phys. Stud.13(2009)3001–3005.

[3] C.CagniarddeLatour,Nouvellenotede M.CagniarddeLatour,surleseffetsqu’onobtient parl’applicationsimultaneedelachaleuretdela compressiona ` certainsliquids,Ann.Chim.Phys. 22(1823)410–415.

[4] T.Andrews,Onthecontinuityofthegaseousand liquidstatesofmatter,Philos.Trans.R.Soc.Lond. 159(1869)575–590.

[5] J.B.Hannay,J.Hogarth,VI.Onthesolubilityof solidsingases,Proc.R.Soc.Lond.29(1879) 324–326.

[6] T.A.Berger,Thepast,present,andfuture(?)ofanalyticalsupercriticalfluidchromatography—a2018 perspective,Chromatogr.Today(2018)4–8.

[7]L.T.Taylor,Past,current,andfuturedirectionsinsupercriticalfluidchromatography,LCGC 31(2013). https://www.chromatographyonline. com/view/past-current-and-future-directionssupercritical-flui d-chromatography.(Accessed onApril3,2022).

[8] E.Klesper,A.H.Corwin,D.A.Turner,High pressuregaschromatographyabovecritical temperatures,J.Organomet.Chem.27(1962) 700–706.

[9] S.T.Sie,G.W.A.Rijnders,High-pressuregaschromatographyandchromatographywithsupercriticalfluids.III.Fluid-liquidchromatography,Sep. Sci.2(1967)729–753.

[10] S.T.Sie,G.W.A.Rijnders,High-pressuregas chromatographyandchromatographywithsupercriticalfluids.II.Permeabilityandefficiencyof packedcolumnswithhigh-pressuregasesasmobile

fluidsunderconditionsofincipientturbulence,Sep. Sci.2(1967)699–727.

[11] S.T.Sie,G.W.A.Rijnders,High-pressuregaschromatographyandchromatographywithsupercriticalfluids.IV.Fluid-solidchromatography,Sep. Sci.2(1967)755–777.

[12] L.McLaren,M.N.Myers,J.C.Giddings,Densegaschromatographyofnonvolatilesubstances ofhighmolecularweight,Science159(1968) 197–199.

[13] J.C.Giddings,M.N.Myers,L.M.McLaren,R.A. Keller,Highpressuregaschromatographyofnonvolatilespecies,Science162(1968)67–73.

[14] J.C.Giddings,M.N.Myers,J.W.King,Densegas chromatographyofpressuresto2000atmospheres, J.Chromatogr.Sci.7(1969)276–283.

[15] M.Novotny,W.Bertsch,A.Zlatkis,Temperature andpressureeffectsinsupercritical-fluidchromatography,J.Chromatogr.61(1971)17–28.

[16] B.W.Wright,R.D.Smith,Investigationofpolar modifiersincarbondioxidemobilephasesfor capillarysupercriticalfluidchromatography, J.Chromatogr.355(1986)367–373.

[17] T.A.Berger,Separationofpolarsolutesbypacked columnsupercriticalfluidchromatography, J.Chromatogr.A785(1997)3–33.

EvolutionofpackedcolumnSFC asagreeneranalyticaltool forpharmaceuticalanalysis

aDepartmentofChemistry,TheOhioStateUniversity,Columbus,OH,UnitedStates bMerck& Co.,Inc.,MRL,AnalyticalResearch&Development,Boston,MA,UnitedStates

∗Correspondingauthor:E-mail:olesik@chemistry.ohio-state.edu

Discoveryofsupercriticalfluidsanditsrelevanceto analyticalseparationscience

TheInternationalUniononPureandAppliedChemistry [1] andtheAmericanSocietyof TestingandMaterials [2] bothdescribetheregiononaphasediagram(Fig.1)abovethecriticaltemperatureandpressureasa“supercriticalfluid.”Thecriticalpointconditions(temperatureandpressure)arespecifictoeachsubstance.At,orabove,thecriticalpoint,theinterface betweenthegasandliquidphasedisappearsandahomogenousfluidresults.Supercritical fluidswerediscoveredbyCagniarddeLatourwherehenotedthedisappearanceofthemeniscusatthecriticalpointformethylalcoholandether [3].Later,HannayandHogarthillustratedthationiccompounds,suchasCoCl2,KBr,KI,andFeCl3,dissolveinsupercritical fluids,suchasCS2 andmethylalcohol [4].Theystatedthe“theliquidconditionofthefluids hasverylittletodowiththeirsolventpower,butonlyindicatesmolecularcloseness.” AnotherimportantpointdescribedbyHannayandHogarthisthatmovingfromthefluid conditionabovethecriticalpressureandtemperaturetoaliquid(downortothelefton thephasediagramrelativetothesupercriticalregion)doesnotcauseaphasetransitionor ameniscustoform,illustratingacontinuumofhomogenousconditions.Theresultanthigh fluidityconditionsbetweenasupercriticalfluidandconventionalliquidconditionsare increasinglyusedinSFCpharmaceuticalanalyses.

Theprogressionofanalyticalsupercriticalfluidchromatography

Thephysicalattributesofsub-/supercriticalfluidledtothefirstsupercriticalchromatographicseparationthatinvolvedtheresolutionofthermallylabileporphyrinsthatcould notbeseparatedbygaschromatography [5].Chlorofluorocarbonswereusedasthemobile phasewithadiatomaceousearthpackingmaterial.Shortlythereafter,Giddings,illustrated thepossibilityofdissolving,separating,anddetectingcompoundswithmolecularweights ashighas400,000amu,includingcarotenoids,cortisolsteroids,sterols,nucleosides,amino acids,carbohydrates,witheithersupercriticalNH3 orCO2 asthemobilephaseattemperaturesof140°Cand40°C,respectively,whichwasabovetheircriticaltemperatures,and PorosilB,Chromosorb-W,orUconpackingmaterialinshort1–1.5mlongcolumnswitha flameionizationdetector [6,7]

Inthe1970s,instrumentationforhigh-performanceliquidchromatography(HPLC) becameavailableandquicklyresultedinaflurryofapplicationsinmanyfieldsofscience. WiththeadvancementofHPLC,furtherdevelopmentofpackedcolumnsupercriticalfluid chromatography(SFC)didnotkeeppacewithHPLCuntilthe1980s.Intheearly1980s,a renewedinterestinpackedcolumnSFCwasshown.ThefirstcommercialSFCwasdeveloped byHewlett-PackardthroughtheleadershipofDennisGere.ThefirstSFCinstrumenthad independentcontrolofflow,mobilephasecomposition,andoutletpressureandusedacombinationofgasandliquidchromatographycomponents.Usinga10cm 4.6mmcolumn packedwith3 μmODS(octadecylsilicaorC18)particles,oligomericubiquinonesextracted from Legionellapneumophilia cellwallswereseparatedandidentifiedusingultraviolet

FIG.1 Phasediagramforcarbondioxide.

absorptionspectra [8].Thesecompoundscontainabenzoquinoneandalongisoprenoidtail group.Therepeatunitoftheseoligomersistheisoprenoidtail.Theubiquinonesinthisextract contained8–13repeatingunitswithbaselineresolutionachievedinlessthan8min.

Aroundthesametimeperiod,LeeandNovotny’sresearchgroupstogetherillustratedthe firstuseofopentubularSFCusingsilicacapillarycolumnsof50–100 μminternaldiameter [9,10].Thistechnologyprovidedconsiderablechromatographicefficiency,buttheflowrate andpressurecouldnotbeseparatelycontrolledduetotheuseoffixedrestrictors(typically smalleri.d.capillaries)tocontrolpressureandflowwithinthecolumn.Theserestrictorswere placedafterthedetectorifaspectroscopydetectorwasusedandbeforethedetectorifflame ionizationormassspectrometric(MS)detectorswereused.TheearlyadvancesofSFCinthe 1980swereclosertoopen-tubularcapillaryGCwithCO2 asthecarriergas.Accordingly,Lee ScientificprovidedopentubularSFCinstrumentation [11] thatwascommerciallyreleasedin 1985.AsopentubularSFCdidnothaveseparatecontroloftheflowrateandcolumnpressure, itwasnotwidelyused,especiallyforpharmaceuticalcompoundswhereaccuracyandprecisionofmeasurementsiscritical.

Animportantinnovationtoallowthedevelopment,andapplicationofpackedcolumnSFC inthepharmaceuticalindustrywasthebackpressureregulator.Thefirstbackpressureregulatorthatprovidedpressurecontrolindependentofmobilephasecontrolwasdevelopedin 1988,andthisdeviceconceptcontinuestobeappliedinallcommercialSFCinstrumentation today [12].TerryBergerledthedevelopmentofHewlett-Packard’s(nowAgilent)firstsupercriticalfluidchromatograph [13] thatfocusedontheuseofpackedcolumnSFC. AtabulatedchronologyreflectingtheapplicationofSFCtodifferentmoleculetypesand milestonesisshownin Table1.Forfurtherdetailonthehistoryoftheuseofsupercritical fluidsseereferences[37–40].

TABLE1 NotableapplicationsandmilestonechronologyinthedevelopmentofSFC.

YearApplicationMilestoneAuthor/vendor

1957Lovelockproposes“criticalstate chromatography”

1962Metalporphyrins“HighpressureGC.”Firstapplicationof open-tubularchromatographicseparation withfluidsabovetheircriticaltemperature andpressures

1967Term“supercriticalfluidchromatography” proposed

1968Carotenoids,steroids,sterols, nucleosides,aminoacids, carbohydrates,polymers

1969Purines,nucleosides, nucleotides,steroids,sugars, aminoacids,proteins, terpenes

Firstreportofanalysisofsmalldrug-like molecules “Densegaschromatography”terminology coined

ProposedsolventstrengthofCO2 was similartoIPA

Klesperetal. [5]

SieandRijnders [14]

McLarenetal. [7]

Giddingsetal. [15] Continued

1.EvolutionofpackedcolumnSFCasagreeneranalyticaltool

TABLE1 NotableapplicationsandmilestonechronologyinthedevelopmentofSFC.—Cont’d

YearApplicationMilestoneAuthor/vendor

1970Polyaromatichydrocarbons (PAHs)

1972PAHs Styreneoligomers

1972–1977PAHs Styreneoligomers

Firstuseofpressureprogrammingto controlmobilephasedensity

JentoftandGouw [16]

FirstautomatedpreparativeSFCJentoftandGouw [17]

Automated/preparativeSFC withmobilephasemodifiers(methanolin n-pentane)

Hartmannand Klesper [18]

1978CouplingofSFCwithMSdetectionRandalland Wahrhaftig [19]

1982KitallowingconversionofModel1084 HPLCintoSFC.Includedfirstmechanical backpressureregulator

1982PAHsUseof3 μmsphericalsilicastationary phasesinSFCillustratedthatdecreasing particlesizeincreasedchromatographic efficiency

1985CaffeineincoffeeFirstreportofhyphenatedSFE-SFCand utilizationofDADdetection

1985PhosphineoxidesFirstchiralseparationusingSFC.First mentionofadditionofwatertomobile phase

1986 D,L-AminoacidsChiralseparationofpharmaceutically relevantcompoundswithmethanolas modifier

1986OpentubularSFCinstrument commercialized

HewlettPackard

Gereetal. [20]

Sugiyamaetal. [21]

Mourieretal. [22]

Haraetal. [23] Jasco

LeeScientific

1988DevelopmentofelectronicAPBRSaitoetal. [12] Jasco

1990CouplingofSFCwithMSwithatmospheric pressureionization

1990Carbondioxideshowntobesimilarin polaritytohexane

1991Firstpublicationofenhanced-fluidity liquidchromatography

1992Releaseof“secondgeneration” instrumentationallowingindependent flowcontrolunderpressuregradient condition.HPinstrumentincludedPeltier pumpheadcooling

1995HewlettPackardSFCproductlinesoldto Bergerinstruments

Huangetal. [24]

Deyeetal. [25]

CuiandOlesik [26]

HewlettPackard Gilson

TABLE1 NotableapplicationsandmilestonechronologyinthedevelopmentofSFC.—Cont’d

YearApplicationMilestoneAuthor/vendor

2000Developmentofsemi-prepSFCsystem with“nextgeneration”samplecollection Bergeretal. [27] Berger

2001Developmentof2-ethylpridine(2-EP) phaseallowinganalysisofbasicanalytes withoutmobilephaseadditives Princeton Technologies

2001DrugmoleculesMassdirectedsemi-prepSFCWangetal. [28]

2005EstrogenmetabolitesinurineSFC/MS/MSXuetal. [29]

2006PolypeptidesSFC/MSwithmethanol/TFAmodifierZhengetal. [30]

2009Releaseof1260InfinitySFCsystemAurora/Agilent

2010Steroids,profens,xanthenes, sulfadrugs,nucleicacids

2011Steroids,profens,sulfadrugs, nucleicacids

Assessmentofsub-2 μmparticlestationary phasesinSFC Berger [31]

Assessmentofsub-2 μmsuperficially porousstationaryphasesinSFC Berger [32]

2012Releaseof1260InfinitySFC/HPLCsystemAgilent Aurigemmaetal. [33]

2012ReleaseofUPC2 systemWaters

2014ReleaseofNexerra(SFE-)SFCsystemShimadzu

2015Proprietarypharmaceutical compounds

FilingofGMPSFCmethodsfor measurementofchiralpurity Hicksetal. [34]

2018SalbutamolFirstcross-instituteSFCmethodtransfer (identicalinstrumentplatform) Dispasetal. [35]

2018–2021SalbutamolFirstcross-instituteSFCmethodtransfer (differentinstrumentplatforms) Dispasetal. [36]

Fundamentalsofmobilephases

CarbondioxideremainsthemostcommonlyusedcomponentinSFCmobilephases.The carbondioxidemoleculehasazero-dipolemoment.Carbondioxidehasadielectricconstant lowerthanthoseofhydrocarbons,butmanyhydrocarbonsarenotmisciblewithCO2.Carbon dioxideisachargeseparatedmolecule,meaningithastwopolarbondswithnonzero bond dipolemomentsthatresultsinasignificantquadrupolemoment [41].Thechargeseparation andelectronicstructureallowCO2 toactasbothaweakLewisbase(electron-pairdonor)and Lewisacid(electron-pairacceptor).Stronginteractionswithcarbonyloxygengroupshave beennotedwithCO2 actingasaLewisbase.CO2 isalsocapableofformingconventionalhydrogenbondswithproticdonorsthatassistinthesolvationofhydrogenbondingmolecules. Eventhoughforspecificcompoundssuchasketoneandaldehydessignificantintermolecular interactionsoccur,undermostconditions,CO2 isgenerallyconsiderednonpolar [25].Other morepolarsubstancesthatmayformsupercriticalfluidshavebeenconsidered,buttheir criticaltemperaturesandpressuresaretoohightobeusedforpracticalapplication.

Amajoradvancementintheunderstandingofsolvationatthemolecularlevelinsupercriticalfluidswasdensityvariationnearasolute [42,43].Fromnumerousexperimental andtheoreticalstudies,theconclusionsarethatdensityenhancementsnearasoluteoccur outtolongmoleculardistances(10–30A ˚ )awayfromthesolute [43].Accordingly,themolecularlevelviewofsolvationinsupercriticalfluidsishigherdensityclusteringaroundthe solutewithsubstantialfreevolumeinthefluidatgreaterdistances.However,specific intermolecularinteractionsbetweenthebondsofCO2 arenotusuallythecauseofthisclusteringandthereforenonpolarinteractionsarecontrollingthissolvation.Conversely,polar solutessuchassugaracetatesarehighlymisciblewithsupercriticalandliquidCO2 based onspecificintermolecularinteractions [41],whichillustratesthevariedsolvatingcapabilities ofCO2.

Forthechromatographicseparationofmanypolaranalytes,polarmodifiersarenecessary toprovidehighefficiencythroughincreaseddesorptionkineticsfromthestationaryphase. Alargerangeofpolarmodifiershasbecomepopular,especiallytheadditionoflowmolecular-weightalcohols,suchasmethanol,ethanol,andisopropylalcohol,whicharefavoredduetotheirsignificantpolarityandhydrogen-bondingability.Also,thepolarityof thesolventshellaroundasoluteallowspredictionofthesolubilityandchromatographicretention.Reportsonthepolarityofmixturesofsupercritical/liquidCO2 combinedwithpolar modifiersbeganinthe1980susingsolvatochromicstudies,whichinvolvesmonitoringshifts inthewavelengthmaximaintheopticalspectraofindicatordyesandpredictionofthepolarityofthemixturesbasedontheseshifts [44–46]

In1990,thesolventstrengthofpuresupercriticalCO2 andCO2 withpolarmodifierswas comparedtothesolventstrengthofcommonliquids. Fig.2 comparesthetransitionenergyof theabsorptionmaximumforNileRed,asolvatochromicdyeintroducedbyDeyeetal. [25],to thatofacommonlyusedsetofsolvatochromicdyes,andtheReichardt’sdyesthatareacompoundfamilyofpyridiniumbetainedyes.ReichardtdyeswerenothighlysolubleinCO2 and thatwasthereasonforintroducinganewsolvatochromicdye.NileRedissolubleinCO2,and itisabsorbancemaximashiftssubstantiallywithincreasedpolarityasshownin Fig.2.Nile Redisalsostableinallstudiedsolvents. Fig.2 comparestheshiftinthetransitionenergyfor NileRedandthespecificReichardtdye(E30)forcommondyesandforCO2.Thetransition energyforbothdyeswascalculatedusingthisequation, E ¼ 28,591.44/(wavelengthmaximuminnanometers) ¼ transitionenergyinkcal/mol [47].Usingthisanalysis,CO2 was documentedtohavealowsolventstrengthsimilartothatoflow-molecular-weighthydrocarbons(Fig.2) [25].Inthissamestudy,thesolventstrengthof10v/v%methanol/CO2 wasobservedtobeclosertothesolventstrengthexpectedforanequalmixture(i.e.,50:50)of methanol/CO2 assumingidealsolutionconditionsandindicatessignificantclusteringof methanolaroundthepolarsolvatochromicdyes.

Fromanearlystage,manyresearchersobservedthattheadditionofasmallproportionof modifierinthemobilephaseabsorbedontobothpolarandnonpolarstationaryphasesoradsorbents.Forslightlyhigherdensityconditionsthanatthecriticalcondition(i.e.,increased pressureabovethecriticalpressure),adisproportionateamountofthemodifieradsorbsto thestationaryphase,evenforanonpolarstationaryphasesuchasODS.Forexample,with 2%methanol/CO2 mixedmobilephase,theadsorbedlayeronODSwasnearly25wt% methanol [48].Therefore,theadditionofmodifiersimpactstheretentionofpolaranalytes throughchangesinthepolarity,density,andcriticalconditionofthemobilephase,and

FIG.2 ComparisonoftransitionenergiesforNileRedandE(30) solvatochromicdyes foranumberofcommonliquids andCO2. E(NR) transitionenergyfortheabsorptionmaximumofNileRed. Et(30) isthetransitionenergyforabsorption maximumofaReichardt’sdyedesignatedas30. ReprintedwithpermissionfromJ.F.Deye,T.A.Berger,A.G.Anderson, Nileredasasolvatochromicdyeformeasuringsolventstrengthinnormalliquidsandmixturesofnormalliquidswith supercriticalandnearcriticalfluids,Anal.Chem.62(1990)615–622.Copyright2022AmericanChemicalSociety.

modificationofthestationaryphase(withtheadsorptiveinteractionswithsurfacesilanols typicallyhavingthemostsignificantimpact [48–50]).

AnotheradvancementinSFCthatallowedtheseparationofionicpharmaceuticalcompoundswastheadditionofionpairingreagentsintothemobilephasemodifiers [51]. However,therearelimitationstothismethodbecausemanyofthedesiredionpairing reagentswerenotsolubleinconventionalSFCmobilephases—evenwhenmodifierswere added [51].

Asmodifierswereincreasinglyemployed,theneedtoremainatsupercriticalconditions becamelessrelevant.Forexample,Sandra’sresearchgroupin1994showedsub-andsupercriticalpackedcapillaryconditionsworkedwellfortheseparationofbothbasicandacidic drugsandillustratedtheimportanceofpolarmodifiers [52]

AlfredFranciswasthefirsttostudythesolubilityofalargerangeofcompoundsinliquid carbondioxideandtostudyternarysystemsofliquidCO2 mixedwithorganicsolvents [53] Inthiswork,hedescribed464ternarymixturesystemscontainingliquidCO2.In1991,the Olesikresearchgrouppublishedthefirststudyofenhanced-fluidityliquidchromatography, EFLC,whichmixesconventionalliquidswithsmallamountsofliquidcarbondioxide [26]. Soonthereafter,thecapacityforenhanced-fluidityliquidmixturestoformsolventclustering

orenhancedsolventdensityaroundanalyteswasreported.Thiswassimilartothatobserved insupercriticalfluidsexceptthatanintermediateclustersize,betweenthatobserved insupercriticalfluidsandconventionalliquids,wasnoted [54].Also,formanypolarliquids, asmuchas40–50molw/w%CO2 canbeaddedtothemixturebeforethesolventstrengthis markedlydecreased(i.e.,thesemixtureshaveasolventstrengthsimilartotheoriginalorganic solventorsolventmixture [26,55,56]).Thisattributewasnotedforalltheenhanced-fluidity liquidmixturesstudiedtodate.Enhanced-fluidityliquidmixturesprovidediffusionrates approachingthoseofsupercriticalfluids(andloweredviscosities),butwithhighsolvent strength.Chemicalengineersbeganstudyingsimilarliquidmixturesaroundthesametime forseparationsinprocessingconditionsandcoinedtheterm“gas-expandedliquids”or “GXLs” [57].Asnumerousscientistshavenoted,SFCorchromatographycontainingliquefiedgasesprovidesacontinuumconditioninpropertiesandapplicationsbetweenthatofGC andHPLC.Termssuchas“unifiedchromatography”and“convergentchromatography” emergedtodescribetheseconditions [6,58–60].

Insummary,supercriticalfluids,subcriticalliquids,orenhanced-fluidityliquidshave physicochemicalpropertiesthatareintermediatebetweenthoseofgasesandliquids.These fluidsaretypicallycompatiblewithdetectorsthatarecommonlyusedbygaschromatographyandliquidchromatography.Inthemostcommonpractice,whichistousecarbon dioxideinthesemixtures,thefluidshavelowtoxicity.Furthermore,theretentionfactors inthesechromatographicsystemsareprimarilycontrolledbythesolventstrengthofthe CO2-solventmixture.However,finetuningofthesolventstrengthofagivensolvent-CO2 mixtureiscontrolledbysystemdensity(i.e.,pressure).Finally,mostchromatographicexperimentsareaccomplishedatflowratesabovetheoptimalflowvelocitythatmeanstheband dispersionisinverselyrelatedtothediffusioncoefficient;andchromatographicefficiencies aredirectlyproportionaltothediffusioncoefficient,whichexplainswhytheefficienciesof gaschromatographyarehigherthanthoseforSFC,whichareinturnhigherthanEFLC andconventionalreversedandnormal-phaseliquidchromatography. Table2 providesa comparisonofthediffusioncoefficientsandviscositiesofgases,supercriticalfluids, enhanced-fluidityliquids,andconventionalliquids. Fig.3 showsacomparisonoftheband dispersionforthesamecompoundwiththesamechromatographiccolumnusingreversedphaseHPLCconditionscomparedtoreversed-phaseSFCconditions.SFCshowsmarked efficiencygainsinlinewiththetheorydiscussedearlier.

TABLE2 Masstransportpropertiesofmobilephasesobservedwithdifferentseparationapproaches.

FIG.3 Variationplateheight, H,vsmobilephaselinearspeed(u)forHPLC(squares)andSFCat20°C(diamonds are for95/5v/v%CO2/methanoland triangles areforpureCO2)usinga5 μmRP-C18,250mm 4.6mm.i.d.column. ReproducedwithpermissionofElsevierfromE.Lesellier,L.Fougere,D.P.Poe,Kineticbehaviorinsupercriticalfluidchromatographywithmodifiedmobilephasefor5 μmparticlesizeandvariedflowrates,J.Chromatogr.A1218(2011)2058–2064.

Sustainableaspectsofsubcriticalandsupercriticalchromatographic separationmethods

Worldwide,annualsolventuseanditsdisposalacrossallapplicationsisapproximately 30millionmetrictons [61].IntheUnitedStates,theaveragehumanweighs137lbs(62kg). Thirtymillionmetrictonsistheweightof482,763,504humans,whichiswelloverthetotal population(327.2million)oftheUnitedStates.Inaddition,solventusagecontinuesto increaseworldwide—mainlyduetoexpandingeconomies.Theapplicationsofsolventsin separationsciencecontributesignificantlytoorganicwaste.Estimatesofsolventuseinliquid chromatography(LC)areapproximately150,000tonsannually [62].

Thepharmaceuticalindustryisaheavyuserofliquidchromatographyrangingfrom applicationsindrugdiscoverytolarge-scaledrugproduction.Theindustryisthereforea significantcontributortoglobalsolventuseanddisposalchallenges.Accordingly,most pharmaceuticalmanufacturershavemadetheuseofgreensolventsahighpriority.Many pharmaceuticalcompanies,includingPfizer [63],AstraZeneca [64],andGlaxoSmithKline [65],havedevelopedsolventselectionguidestofacilitatetheuseoflesshazardoussolvents bytheiremployees.Theseguidesareuseful;however,thecharacterizationofasolvent’s propertiesisnotuniform.TheAmericanChemicalSocietyGreenChemistryInstitutePharmaceuticalRoundtablewasestablishedin2007 [66].TheRoundtablehasdevelopedtools [67,68] toprovideastandardizedassessmentofsolventgreenness.Recently,theRoundtable publishedtheAnalyticalMethodGreennessScore(AMGS)calculator [69] toquantifythe “greenness”ofcommonlyusedseparationtechniques.TheAMGScalculatorincludes cumulativeenergydemand,instrumentalenergydemand,themassofsolventconsumed, andenvironmental,healthandsafety(EHS)scores.Also,theAMGStoolisthefirstselection guidethatincludestheinformationonthegreennessofsupercritical/subcriticalfluid chromatography.

1.EvolutionofpackedcolumnSFCasagreeneranalyticaltool

TheAMGScalculatorallowsfordetailedcomparisonsofseparationsmethodsbasedon solventwaste,instrument,andsolventenergy.Fast,efficientseparationsprovidethegreenest conditions.UsingtheAMGScalculator,scientistsfromeightpharmaceuticalcompanies comparedtypicalinternalmethodsusingHPLC,ultrahighpressureHPLC(UHPLC),and SFCforanalyticalandpreparativeseparations.ThegeneraltrendwasthatSFCmethods andUHPLCmethodsweregreenerthanHPLCmethodsforanalyticalseparations.Forpreparativeseparations,preparativeSFC,andaqueous-basedHPLChadsimilargreenness scores.However,whentheenergyneededtoremovethewateraftertheseparationwas included,SFCwassubstantiallygreener [69].TheAMGScalculatorisexpectedtoprovide greatvalueinmethodandsolventselectionatboththeanalyticalandpreparativescalebeing aonestopshopforsolventsafety,solventenergy,instrumentenergy,andwaste.EnhancementstotheAMGScalculatorforsupercriticalandsubcriticalfluidchromatographyusing CO2 wererecentlydevelopedthatincludecorrectionstotheEHSparameter,acorrection forthedensityofCO2 valuesusedintypicalSFCconditions,andanewparametertoadd totheAMGSthatallowsforthecalculationoftheflammabilityhazardofmobilephasesif aleakoccurs [70].Thisisparticularlyimportantasthescaleoftheseparationincreasesfrom analyticaltosemipreparativeandpreparativescale.

UsingtheupdatedAMGScalculatorandalif ecycleanalysis(LCA),thegreennessof HPLCandSFCreversed-phaseseparationsofp harmaceuticalcompoundswerecompared. BoththeAMGSandtheLCAshowedsimilartrend s.Acorrectholisticanalysismustinclude theinstrumentenergyconsumptionforboth.WhencomparingHPLCseparationsusing alcohol/watermobilephasetoSFCseparationswithalcohol/H 2 O/CO2 ,theresultsshow thattheadditionalenergyconsumptionofc urrentSFCinstrumentsmustbecounterbalancedbytakingadvantageofhigherflowrat es.HPLCmethodsusingacetonitrile-water, whichareconsideredthegoldstandardforHPLC separations,weresignificantlylessgreen thantheSFCmethodsexaminedonbothananalyticalandpreparativescale [71].Duetothe lowvolumesused,commonlyusedacidandbaseadditivestothemobilephasessuchas formicacidorammoniumhydroxidedidnotsignificantlyimpactthegreennessofthe separations.

AnalyticalscalesubcriticalSFC

Asnotedinthephasediagram(Fig.1),thereisnobarriertotransitioningfromsupercritical tosubcriticalconditionsorviceversa.Asearlyastheearly2000s,mostofthereported SFCfunctionedundersubcriticalconditions.ConsiderableprogressintheSFCfieldwas drivenbytheadventofnewSFCinstrumentationthatprovidedreproducibleretentiontimes foranalytes,reproduciblecontrolofcolumnbackpressure,andseparatecontrolofflow rate.Furthermore,effectiveinterfacestomassspectrometersandcommonlyusedHPLCdetectorsbecamecommonplace.Theseadvanceswerequicklyacceptedbythepharmaceutical, foodcharacterization,andenvironmentalresearchers—greatlyexpandingtheapplication spaceofSFC.

ImprovementsinSFCinstrumentation,includingpumps,mixers,autosamplers,back pressureregulators,andreducedextracolumndispersionvolumes,enabledhigh-performance andhigh-speedseparationsofcompoundsinsecondsthatcomparefavorablytofastHPLC

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.