Polymers for vibration damping applications b. c. chakraborty - Quickly download the ebook to start

Page 1


https://ebookmass.com/product/polymers-for-vibration-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

An Introduction to Redox Polymers for Energy-Storage Applications Ulrich S. Schubert

https://ebookmass.com/product/an-introduction-to-redox-polymers-forenergy-storage-applications-ulrich-s-schubert/

ebookmass.com

Polymers Coatings: Technology and Applications 1st Edition Inamuddin

https://ebookmass.com/product/polymers-coatings-technology-andapplications-1st-edition-inamuddin/

ebookmass.com

Reactive polymers fundamentals and applications : a concise guide to industrial polymers Third Edition. Edition Fink

https://ebookmass.com/product/reactive-polymers-fundamentals-andapplications-a-concise-guide-to-industrial-polymers-third-editionedition-fink/

ebookmass.com

Torde la Vérité: Une drame romantique basé sur l'amour, les mensonges et la perte C.S. Pearson

https://ebookmass.com/product/torde-la-verite-une-drame-romantiquebase-sur-lamour-les-mensonges-et-la-perte-c-s-pearson/

ebookmass.com

Shipwrecks and the Bounty of the Sea David Cressy

https://ebookmass.com/product/shipwrecks-and-the-bounty-of-the-seadavid-cressy/

ebookmass.com

Case

Files Internal Medicine 6th Edition Eugene C. Toy

https://ebookmass.com/product/case-files-internal-medicine-6thedition-eugene-c-toy/

ebookmass.com

Liberty Hill (The Liberty Hill Series, #1) Sonja Heisinger

https://ebookmass.com/product/liberty-hill-the-liberty-hillseries-1-sonja-heisinger/

ebookmass.com

Visualization, Modeling, and Graphics for Engineering Design 2nd Edition – Ebook PDF Version

https://ebookmass.com/product/visualization-modeling-and-graphics-forengineering-design-2nd-edition-ebook-pdf-version/

ebookmass.com

Pierre Werner and Europe: The Family Archives Behind the Werner Report 1st ed. Edition Elena Danescu

https://ebookmass.com/product/pierre-werner-and-europe-the-familyarchives-behind-the-werner-report-1st-ed-edition-elena-danescu/

ebookmass.com

Held by the Mountain Man: A Mountain Man/Curvy Woman Short Instalove Romance (Men of Big Horn Ridge Book 3) 1st

https://ebookmass.com/product/held-by-the-mountain-man-a-mountain-mancurvy-woman-short-instalove-romance-men-of-big-horn-ridge-book-3-1stedition-carly-keene/ ebookmass.com

PolymersforVibration DampingApplications

PolymersforVibration DampingApplications

B.C.Chakraborty

DebdattaRatna

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfulof theirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN978-0-12-819252-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: EdwardPayne

EditorialProjectManager: JohnLeonard

ProductionProjectManager: AnithaSivaraj

CoverDesigner: VictoriaPearson

TypesetbySPiGlobal,India

Preface

Thisbookisdedicatedtopolymerscientistsassociatedwithvibrationdamping.Vibrationsinstructures andmachinescausecomponentfatigueandhumandiscomfortiftheyarenotproperlycontrolled. Forwarshipsandsubmarines,controllingvibrationofhullstructureisaveryimportantaspectofunderwateracousticstealthtechnology.Oneofthemosteffectivemethodsofvibrationdampingis passivemethod,wherein,asuitablepolymersystemwithappropriateviscoelasticpropertyisused accordingtotheapplicationenvelope.Thisrequiresunderstandingthebasicsofshockandvibration, developmentofsuitablematerialsthroughsynthesis,modification,formulation,andfinally,engineeringdesignofdampingtreatmentofthemachineryorstructure.Therefore,acombinedeffortof physicists,mechanicalengineers,materialsscientists,andchemistsisabsolutelynecessaryforthesuccessfuldevelopmentofvibrationdampingsystems.

Wehavedoneextensiveworkinthefieldofmaterialsanddevelopedseveralproductssuitable forcivilanddefenceapplications.Whileworkinginthisareaforalongtime,wefeltthenecessity ofaself-sufficientbookinthisfield.Therefore,wedecidedtocompileourfundamentalunderstanding andlongresearchexperienceinthedevelopmentofpolymersandcompositesforvibrationdamping andpresentintheformofabook.

Thisbookisdividedintosixchapters.Itstartswithageneralintroductiontovibrationin Chapter1. Inthischapter,basicmathematicalexpressionsonfreeandforcedvibrationofobjects,bothundamped andwithviscoelasticdampinginsingledegreeoffreedom,arediscussed.Examplesofnumerical calculationofundampedanddampedfreeandforcedvibrationareprovidedwithgraphicalrepresentations.Anappendixisaddedtodemonstratetheselectionofanappropriateelastomerfromseveral compositionsformachinerymount.

Chapter2 includesfundamentalmathematicalexpressionsofshockpulseandshockresponse spectraforasingledegreeoffreedomsystem.Graphicalrepresentationsofvariousresponsespectra (calculatedbysimpleequationsofresponse)areincluded.

Viscoelasticpropertiesarecoveredin Chapter3.Onlylinearviscoelasticityisdiscussedinthis chapter.Variousphysicalandmathematicalmodelsforpolymersarediscussedwithexamples.Dynamicviscoelasticityisdealtwithsomedetailsincludingphenomenologicalrelaxationtheorywithnumericalexamplesoffrequencyandtemperaturedependenceandtime–temperaturesuperpositionsas well.Abriefdiscussiononthecomparisonofstaticanddynamicpropertiesisincludedwithnumerical examples.

Chapter4 dealswiththedesignofpolymersystemforvibrationdampingapplicationsandreviewof recentadvancesinthefield.Thischapterincludesthevariousclassificationofpolymers,basicprinciplefortheselectionofpolymersanddesignofpolymersystemsforvibrationdampingapplications. Variousstrategies,whicharetobeadoptedtoachievevibrationdampinginabroadfrequencyrange, havebeenelaborated.

Themodeofdampingandthecorrespondingdesignrulesrequiredtobeadoptedforefficientvibrationdampingwithsomeexampleshavebeenpresentedin Chapter5.Variousmathematicalexpressionsforconstrainedandunconstrainedlayerdampingaredescribedwithexamples.

Chapter6 describesequipment,instruments,andmethodsofcharacterisationandtesting,whichare relevanttothedevelopmentandselectionofpolymersforvibrationandshockdamping.

Withsuchbroadtechnicalcontentscoveringthebasicconcepts,practicalexamples,andrecent advances,wearesurethatthisbookwillserveasausefultextbook-cum-handbookforthestudents, researchers,engineers,R&Dscientistsfromacademia,researchlaboratories,andindustriesrelated totheapplicationofpolymersforvibrationandshockdamping.

Wewouldliketodedicatethisbooktoourlateparents.Weareindebtedtothemembersofour familiesfortheirpatienceandforalwaysbeingthesourceofinspiration,withoutwhichthisbook wouldnothavebeenareality.Dr.Chakrabortythankshiswife(Mitali),son(Abhishek),anddaughter (Anwesha)fortheirencouragementandsupport.Dr.Ratnawouldliketoplaceonrecordhissincere thankstohiswife(Sujata)andsons(SaptarshiandDebarshi).Althoughithasbeenourendeavourto makethebookcomprehensiveandofahighstandard,errorsthatmaycreepinaresincerelyregretted.

WearethankfultothepublicationteamofM/sElsevier,UnitedKingdom,fortheircooperation andencouragement.WearealsothankfultoDr.M.Patri,Director,andothercolleaguesofNMRL, especiallySriPraveenSrinivasan,fortheircooperationandsuggestionandSriRamakantKhushwaha forhishelpinpreparingthebook.

DebdattaRatna BikashChandraChakraborty

Fundamentalsofvibrationdamping 1

Abbreviations

DSAdynamicsignalanalyser

FFTFastFourierTransform

SHMsimpleharmonicmotion

SDOFsingledegreeoffreedom

SONARsoundnavigationandranging

VEMviscoelasticmaterial

Symbolswithunits

A amplitudeofvibration(displacement)(m)

a acceleration(m/s2)

C1, C2 constantsofintegration

E modulusofelasticity(N/m2 (Pa))

F force(N)

f frequency(Hz)

g accelerationduetogravity(9.81m/s2)

h heightorthickness(m)

i imaginaryquantity(¼ 1 p )

k stiffness(springconstant)(N/m)

m mass(kg)

n modenumber(dimensionless)

P power(WorJ/s)

Q qualityfactor(dimensionless)

R ratioofvibrationintensities(dimensionless)

T timeperiodofoscillation(s)

t time(s)

u displacement(m)

v velocity(m/s)

W weight(N)

δ deflection(m)

ε transmissibility(dimensionless)

η viscoelasticlossfactor(dimensionless)

Δ logarithmicdecrement(dimensionless)

φ phaseangle(radian)

λ dampingcoefficient(Ns/m)

ω angularfrequency(rad/s)

ξ dampingfactor(dimensionless)

1.1 Vibration

Vibrationisaverycommonphenomenon.Infact,everythingvibrates—itisonlythequestionofintensityanditseffectonman,machine,andenvironmentthatcanbeaconcerntothemankind.Vibration maybedefinedasatime-dependentmovementofaparticlearounditsequilibriumposition.The dynamic(time-dependent)displacementiseitheruniformintimescale(harmonic)ornonuniform(nonharmonic).However,thedifferenceinoscillationandvibrationisthatinoscillation,themattermoves periodicallyaroundanequilibriumpositionwithoutanydeformationofthebody,butincaseofvibration,periodicdeformationofastructurewouldalsobeinvolved.Vibrationsalsoresultinawave,which ispurelyamechanicalpressurewavethatcanpropagatethroughamediumsuchasgas,liquid,andsolid andistermed‘Sound’.Thehumanearcanlistenairbornesoundwithinthefrequencylimitsof 16–20,000Hz.Typicalexamplesofsoundproducedbyvibrationarethevehiclehorns,vocalcord, andallmusicalinstruments.

Forathree-dimensionalobject,vibrationscanbeinallthreecoordinatesandhencethedegreeof freedomwillbe3orevenmore.However,forsimplicity,onlysingle-degreeoffreedom(SDOF)in vibrationisbeingaddressedinthisbook.Thevibrationreductionmechanisminanydegreeoffreedom willbethesamebypassivedampingmaterialssuchaspolymericviscoelasticmaterials(VEM).

1.2 Importanceofthestudyofvibration

Thestudiesofsoundandvibrationarecloselyrelated.Soundwaves,inturn,canalsoinducethevibrationofobjects,forexample,tuningfork.Inmanyoccasions,soundandvibrationarerequired.Asan example,soundisnecessaryfortheformofmusic,speeches,verbalcommunication,signalling,etc. Vibrationsarerequiredformaterialhandlingsizeseparation,sieving,mechanicaloperationssuchas pneumaticdrilling,medicaltreatmentsandhealthcare,physiotherapy,etc.Inmanyothercases, vibrationandsoundareundesirable.Undesirablesoundistermedas‘noise’andthequalityofanacousticsignalisdecidedbythe‘signaltonoiseratio’.Sincesoundisaresultofmaterialvibration,primarily, attempttoreducenoiseisrelatedtocontrollingthevibrationatthesource.Vibrationsarecloselyassociatedwiththemanandmachinery.Thevibrationsofthemachineryarearesultoftheimbalanceof rotationalmovements(eccentricity)suchasformotors,engines,turbines,etc.Machineryvibrations cancauseseriousdamagestothemachineduetoexcessivedynamicdisplacementsapartfrom undesirableradiatednoiseintheatmosphere.Heavymachineryundervibrationcanbedamaged permanentlyduetofatigueresultingfromthecyclicvariationofinducedstresses.Furthermore,the vibrationcausesmorerapidwearofmachinepartssuchasbearingsandgearsandalsocreatesexcessive noise.Inmachines,vibrationcanloosenfastenerssuchasnuts,etc.Inmetalcuttingprocesses, vibrationcancausechatter,whichleadstoapoorsurfacefinish.Vibrationinducedbytheexternal

sourceoninstrumentsandmachineryisdetrimentalasitmightaffecttheperformance.Anexampleis opticalrecordingandexperiments,whereeveryminutevibrationoftheopticaltablewouldcauseopticaldistortions.Similarly,vibrationduetotransportationofequipmentmaycausedamage.Therefore, studyofexternallyinducedvibrationonobjectsisalsoimportant.

Anotherconcernforthevibrationofmachineryandradiatednoiseistheenvironmentalproblem. Probably,thenoisepollutioncreatedbyvehiclesisthemostseriousprobleminurbanlife.Withrapid urbanisationandrandomuseofautomobilesonstreets,railandairtraffic,loudpublicaddresssystems, constructionmachinery,etc.,theenvironmentissubjectedtoahighlevelofnoisepollution.The excessivesoundintheatmospherecancausepermanentdamagetooureardrum,orpartiallossofhearing [1].Noisecancauseischemicheartdisease,hypertension,cardiovascularproblems,etc. [2] Increasednoiselevelscancreatestress,increasedaggressionandworkplaceaccidentrates,andpossiblyenhanceantisocialbehaviours [3].Loudnoisemayaffectthenervoussystemofthebrainand createpsychologicaldisorders [1–3].Birthdefectssuchasharelip,cleftpalate,anddefectsinthespine arealsopossiblefromhigh-intensitysoundssuchasairportenvironment.Typicalnoiselevelsofsound originatedfromnormalhumanconversationcanbe60dB,whilenoiseofgroundvehiclescanbe80–90dBandjetengineattake-offcanbe120dB [4].However,continuousnoiselevel80dBisdangerous forhumanhealth.InIndia,thenoiseintensitylimitinthedaytimeis75dB(A)inindustrialareas, whereas55dB(A)inresidentialareasasperthenoisepollutionrules [5].

Earthquakesarethemostimportantexampleoftheilleffectofvibration.Itisaseismicwaveonthe earthsurfaceanditsdevastatingeffectiswellexperiencedbymankind.Itresultsfromasuddenrelease ofhugeenergyintheearth’scrust.Thesewavescanbeviolentcausinglossoflifeandcanevendestroy anentirecivilisationaround.Theintensitiesofsuchseismicwavesaremeasuredinacomparativescale called‘Richter’,namedaftertheseismologistCharlesFrancisRichter.Itisalogarithmicscale,where, amagnitudeof3ontheRichterscaleisnotdangerous,while7onthescalecancauselarge-scale devastation.Richterscaleisdevelopedasanempiricalformulausingthelogarithmofamplitudes attherecordingseismometer,arbitraryvalue,andtheepicentraldistanceoftherecordingstationas parameters [6].

Soundandvibrationarealsoimportantsubjectsofstudyforunderwaterobjects.Acousticsignals areusedforbathymetricseabedmappingstudies,todetectandidentifyunderwaterobjectslikerocks, submarines,mines,andeventodetectmarineanimalssuchasaclusteroffishes,sharks,whales,etc., usingadevicecalledsoundnavigationandranging(SONAR).Therearetwomethodsforthedetection ofanunderwaterobject,namelyactiveandpassivedetections.Inactivedetectionsystem,theSONAR sendsasoundpulsetogetareflectionfromanyobjecthavingadifferenceinspecificacousticimpedancecomparedtowaterandanalysethereflectedsignaltodeterminethetypeofobjectandits coordinates(location),whilepassiveSONARonlyreceivestheunderwaternoiseradiatedfromany objectnearby.Forthedefenceforces,navalshipsandsubmarinesneedtobeassilentaspossible toavoiddetectionbythepassiveSONAR.Vibrationsofmachineryinsidethevesselsaretransmitted tothehullofthevesselthroughinternalstructuresandinturntransmittedtotheseawaterasradiated noise,whichispickedupbythepassiveSONAR.Sincethereisanumberofsuchmachineryina submarine/ship,therewouldbeaparticularunderwateracousticsignatureoftheship/submarine. Thevibrationspectrumwoulddependonthetypeofmachinery,theirdesign,manufacturingprocess, installationmethodologies,andalsoonageingeffects.Ingeneral,vibrationsofheavymachinerysuch asdieselalternatorsandturbinesinashiporsubmarineproducelow-frequencyradiatednoiseinthe sea.Thecavitationduetorotationofpropellersofships/submarinesalsoproducessoundlikenoisein

theseawater.Thecavitationnoisespectrumwoulddependonthenumberofblades,rpmofthe propeller,cavitationvolume,skinfrictionoftheblades,thethrust,andpropellerloading [7].Both theradiatednoiseduetomachineryandthecavitationcanbedetectedbypassiveSONARs.

Thestudyofvibrationandsoundpropagationindifferentmediaisveryimportantforpredictionand enhancingthefatiguelifeofanequipment,prediction,andmitigationofcatastrophicfailureofmachineries,reductionofenvironmentalacousticpollution,studiesonacousticnoise-relatedhealthhazardof thesociety,andfordesignofacousticallystealthystrategicobjectsofdefenceforces.

1.3 Simpleharmonicmotion(SHM)

Asimpleandperiodicoscillationofapointobjectiscalledharmonicmotionifitpassesthrougha referencepointafteradefiniteintervalandfollowsthesamelocusperiodically.Thenumberofsuch motionperunittimeistermedas‘frequency’andtheintervalisthe‘timeperiod’,whilethelength betweentwoconsecutivepointshavingthesamephaseiscalledthe‘wavelength’.Itisexplainedin Fig.1.1AandB.Letusimagineapointrotatinginacircularpathrepeatedlyataconstantangularspeed. Therefore,thepointwouldcrossanyreferencepointonthecircleataregularinterval.Thelocusofthe pointisthecircleasshownin Fig.1.1A,andwhenthemovementofthepointisplottedagainsttime, thelocusdescribesaperfectsinusoidalcurveasin Fig.1.1B.From Fig.1.1B,thewavelengthisthe distanceAB,thetimetakentocoverthisdistanceis‘timeperiod’,andnumberofsuchdistance travelledinonesecondisthe‘frequency’ofthewave.Itmeans,onewaveisequivalenttoonerotation ofthepointonthecircleandcorrespondinglythedistancetraveledbythewaveisAB,whichis thewavelength.Thespeedofthewavepropagationisthustheproductofthefrequencyandthe wavelength.Theconventionofsymbolsandunitsforwavepropertiesaregivenin Table1.1.Simple vibration,inthebasicanalysis,isassumedtobeharmonicmotion,thatis,asinusoidalwave,thoughthe actualvibrationsignaturemaycontainvariousperiodicities(frequency).Anonharmonicvibrationisa randomvibrationwithnoregularityinperiodicity.

FIG.1.1

SHM:(A)locusofapointinSHM,(B)time-dependentdisplacementofthepoint.

Table1.1Propertiesofawave:symbolsandunits

1.3.1 Displacement,velocity,andacceleration

ASHMcanberepresentedbyasinusoidalwavewhichalsorepresentstheexpressionfortimedependentdisplacement:

wheretheangularfrequencyisgivenby: ω ¼ 2π f and f isthefrequencyincyclespersecondorHzof thedynamicdisplacement.Onecommonterminacircularmotionisrevolutionperminute(rpm), whichisusedforrotatingmachinelikeamotor.Thecorrespondingfrequencyisthen f ¼ (rpm/60)Hz. ThevelocityandaccelerationcanbederivedfromEq. (1.1) as

Graphicalrepresentationofdisplacement,velocity,andaccelerationisshownin Fig.1.2.Itcanbeseen fromEqs (1.2), (1.3),and Fig.1.2:

(i) Theratiosofvelocitiesoraccelerationsarethesameasthedisplacementratio.Thisisusedinthe calculationofvibrationsensitivityofobjectsinacomparativeevaluation.

(ii) Thevelocitychangeswiththefirstpoweroffrequencyandthephasedifferencebetweenthe displacementandthevelocityis90°,whichmeansthatwhenthedisplacementisateitherpositive ornegativemaximum,thevelocityiszeroandvice-versa.

(iii) Theaccelerationincreaseswiththesecondpoweroffrequencyandthephasedifferencebetween thedisplacementandaccelerationis180°,whichmeansthattheaccelerationispositivemaximum whenthedisplacementisatnegativemaximumandvice-versa.Also,attheneutralpoint, bothaccelerationanddisplacementarezero.

(iv) Thedisplacement,thevelocity,andthedynamicforcecanbecalculatedfromtheabove expressionsatanygiventimebymeasuringtheamplitudeoftheaccelerationcorrespondingtoa frequencywhenthemassoftheobjectisknown.

Itcanbeseenfrom Fig.1.2 thatthenumericalvalueofaccelerationamplitudeisquitehighcomparedto displacement.Atthesamedynamicforce,avibrationamplitudereduceswithincreasingfrequency,but theaccelerationincreaseswiththesquareofthefrequency.Thisisusedinthemeasurementofvibration studieswheretestprotocolsdefineaccelerationbothasinputandmeasuringparameters.

Inaddition,forthestudyofstructuralvibrationandtransients(shock),theaccelerationisconventionallyrepresentedasmultipleofaccelerationduetogravity(g)andinSIunit,thevalueof‘g’istaken

FIG.1.2

Displacement,velocity,andaccelerationofasimpleharmonicmotion.

as9.81m/s2.Secondly,allvibrationintensitiesareexpressedasaratioofaccelerationnormalisedby theforce[a(t)/F0].

1.3.2 Freevibrationandnaturalfrequency

Ifabodyisallowedtovibratebyaninitialimpactforce,thevibrationiscalledfreevibrationandthe frequencyofthevibrationistermedasthenaturalfrequencyofthebody.Everymatterorobjecthasa naturalfrequencyofvibrationdependingonitsphysicalcharacteristicssuchaselasticmodulus,mass, size,andshape [8,9].Asanexample,ifastringwithafixedlengthinaguitarisplucked,therewillbea soundofaparticularfrequencyandeverytimethesametunewillbeheard.Therecanbesubsequent higherharmonicswhicharemultiplesofthefirstnaturalfrequencyoftheobject.Inthecaseofathin beam,modesintheaxialdirectionisenoughtostudyvibration,foraflatplateofnegligiblethickness, twodirectionsaretobeconsidered,andforathree-dimensionalbody,therewillbenaturalfrequencies andmodalsinthreedirections,forexample,acylinderwillhaveaxial,circumferential,andradialnaturalfrequenciesandhighermodesofeachtoo.

1.3.3 Forcedvibrationandresonance

Whenanexternaldynamicforceisappliedtoanobjectforaperiodgreaterthanitsowntimeperiodof oscillation,thevibrationistermedasforcedvibration.Theobjectvibratesatthesamefrequencyas isimposedbytheexternalforce.Runningmachinery(suchasmotor,engine,pump,centrifuge, etc.)issubjectedtoforcedvibration.

Whenthefrequencyofanexternaldynamicforcecoincideswiththenaturalfrequencyofthebody, therewillbeaverylargeamplitudeofdisplacementandthephenomenonistermedasresonance.Itis alsothefrequency,atwhichthepotentialenergyoftheobjectistotallyconvertedtokineticenergy. Therefore,atresonance,thevibrationamplitudeattainsamaximumvalue.Therecanbeseveralmodes ofresonances,whicharehigherharmonicsofthefirstnaturalfrequency.Ineachmode,theintensity peaksareobserved.Systemresonanceformachinerywithverylargeamplitudemaycausesevere damageorcatastrophicfailure.Thus,thestudyofthevibrationresponseofastructurewithrespect totimeandfrequencyisveryimportanttotakemeasurestoavoidsuchdamagesorfailures.

1.4 Randomvibration

Ifthemagnitudeofexternaldynamicforceatagiventimeisknown,thenthevibrationisdeterministic vibration.Whenthemagnitudescannotbedeterminedatagiventime,thenitisrandomvibration.Ina randomvibrationscenario,aclusterofvibrationintensitiesandfrequencieswouldexist.Therefore, whateverbethecomplexityofarandomvibrationsignature,itcanbeassumedasasumofmanypure sinewavesofdifferentamplitudeswithcorrespondingharmonicfrequenciessuchas

Generally,therecordingofarandomvibrationspectrumisdonewithrespecttotime(timedomain). FourierTransformisappliedtofindtheindividualintensitiesinthefrequencyscaleafterselectionofa timedomainwindowoftherandomsignal.Theexampleofrandomvibrationiswindvelocity,earthquakes,etc.Iflargedataisavailable,astatisticalanalysismaybedonetodeterminethedifferentmagnitudesandfrequenciesoftherandomvibration [10,11].TypicalFouriertransformofrandom vibrationintimedomainandfrequencydomaintakingthelimitsof ∞ to+∞ forfrequencyandtime areexpressedmathematicallyas

Theinfinitelimits,however,isonlytheoretical,andthelimitscanbedecidedwheretheintensityisbelow 1%ofthehighestintensityinthefrequencyscale.Present-dayFastFourierTransform(FFT)analysisof vibrationandshockspectraiscomputerisedasstandardsoftwareavailablewithallvibrationanalysers.

1.5 Undampedanddampedvibration

Afreeorforcedvibrationmayormaynotexperienceresistanceslikeinternalfrictionorinelasticdeformationoftheobject.Anundampedvibrationisacasewherethereisnoresistancetothevibration andthevibrationisnotdampedorattenuatedwithtime,whichimpliesthatthedynamicdeformationis perfectlyelasticinnature.Therefore,inanundampedsystem,thereisnolossofmechanicalenergyin thesystem.

Ifthevibratingbodyexperiencesfrictionalorothertypesoflossofmechanicalenergy,thevibration intensityisattenuatedordampedwithtime.Thetimedependenceofresponsecausesaphaseshiftfor thestatevariablesuchasstrainandismathematicallyexpressedasacomplexquantity.Thephaseshift representstheextentofdampingorlossofenergyinadampedoscillatorysystem.Thelossmechanism couldbeinelastic(dashpot)orviscoelasticdamping,magneto-rheologicalorelectro-rheologicaldamping,oractivecontrolorshearthinning-typedamping.

1.5.1 Expressionsforfree,undampedvibration

AnSDOFsystemofamassattachedtoaspringisshownin Fig.1.3.Therotatingoroscillatorymachinesandmanysuchreal-lifesystemscanbemodelledasamass-springsystemasshowninthefigure. Mostmetallicobjects,suchasmachinesandequipment,haveverylowinherentlossesandthevibrationsareapproximatelyundamped.

Thekeyassumptionsfortheabovesystemarethatthespringhasverylowmass,andcanbe neglectedanditsbehaviourisHookean,thatis,theforceislinearlyproportionaltothedeflection ofthespring.Theproportionalityconstantistermedas SpringConstant,denotedby‘k’.Theresponse ofthespringisinstantaneous,whichmeansthereisnotimelagbetweentheforceanddeformationand alsothespringcomestoitsundeformedstateinstantlyonwithdrawaloftheforce.Therefore,thereisno lossofenergyduetodeformationandretractioncycle.

Consideringtheforcebalance,theforceexertedbythestretchingofthespringisbalancedbythe forceduetotheaccelerationofthemass:

Onesolutiontotheabovesecond-orderdifferentialequationcanbe

where u0 istheinitialdisplacement, v0 istheinitialvelocity,and ωn isthe NaturalAngularFrequency ofthespring-masssystemandisgivenby

FIG.1.3

Spring-massarrangementinanSDOFsystem:undampedfreevibration.

Unitofnaturalangularfrequency(ωn)isradian/s.Theexpressionofnaturalfrequencyissignificantfor thedesignofmachinerymountsincethestiffnessofthemountandthemassofthemachinewould decidethesystemresonance.Asystemofhighstiffnessandlowermasswouldhaveahighnatural frequency,andthedampingsystemshouldbetunedtocaterforhighdampingatsuchfrequencyto reducethehighvibrationintensityatresonance.

Inanelasticvibrationsystem,whenthemassisplacedoverthespring,andthereisastaticdeflection δs asaresultoftheweightofthemass,theresonancefrequencyofsuchavibratingsystemcanbe expressedas

where‘g’isaccelerationduetogravity.

Theaboveexpressionfornaturalfrequencyisonlyvalidforasystemwhichisbothlinearandelasticinbehavioursincestaticanddynamicstiffnessofanelasticmaterialaresameanddoesnotdepend onthefrequencyofvibration.Theexpressionisnotvalidforhighdampingmaterialssincetheyare neitherlinearnorelasticinbehaviour.

AnothersolutiontoEq. (1.4) canbeofgeneralexpressionas

Thewaverepresentsasinusoidalcurvewithaphaseoffsetof‘φ’andthedisplacementvariesfrom A to +A asshownin Fig.1.4.

Theamplitude A andphase φ arerelatedtotheinitialconditions u0 and v0 as

FIG.1.4 Undampedvibrationcomparedtoapuresinusoidalwave.

Thephaseangle(φ)canbeverysmallincaseofasystemwithahighnaturalfrequency,orinanother way,highstiffnessandlowmass.

1.5.2 Expressionsforfreedampedvibration

Continuingwiththeundampedsystemasaspring-masscombination,aviscousdashpotcanbeintroducedtorepresentadampedvibration.Aviscouspotconsistsofacylinderfilledwithaviscousfluid suchassiliconeoilandapistoninthecylinder.Theviscousdissipationtakesplaceforaforceappliedto thepistonduetoshearingoftheviscousfluid.Theforceisproportionaltothevelocityofthepiston:

where λ iscalled Dampingcoefficient oftheviscousdashpot.

Thedampedvibratingsystemisassumedtobeacombinationofspring,mass,andadashpot.A typicalsketchofthespring-mass-dashpotsystemisshownin Fig.1.5.TheforcebalanceofsuchasystemwithanSDOF,underfreevibration,wouldbe [12]

Thesolutiontothisequationdependsonthevalueofthedampingcoefficient‘λ’.Ifthedampingis small,asformetallicbeams,thesystemwillcontinuetooscillatebutwithdiminishingamplitudewith time.Thesystemissaidtobe Underdamped.Ifthedampingisjustenoughtostoptheoscillation,thenit istermedas CriticallyDamped.Whenthedampingexceedsthecriticalvalue,thesystemiscalled Overdamped.Thevalueofcriticaldampingis

FIG.1.5

AschematicrepresentationofafreevibrationwithdampingsystemforSDOF.

Undampedanddampedvibration

Dampingisoftenexpressedbyadimensionlessquantitycalled DampingFactor ‘ξ’definedastheratio ofthedampingcoefficienttothecriticaldamping:

Thesolutionsforthethreecasesofdampedvibrationaredescribedbelowwithexamples.

1.5.2.1 Case(1)—Underdampedsystem

Intheaboveexpression,wecanidentifyamodifieddampednaturalfrequency ωd definedas

Thenatureofthecurveissinusoidalwithanexponentialdecaywithaphaseshiftof φ comparedtoan undampedsystemasshownin Fig.1.6

Eq. (1.15) oftheunderdampedsystemsuggeststhatathighfrequency(beyond10Hz),thedamping isveryfast,inafractionofasecondatadampingfactorofeven0.1.Itwillbeseeninconsecutive chaptersthatthedampingfactorofmostmountsandvibrationdampingmaterialsarelowatlow frequenciesexceptforactivevibrationdampingorsmartdamping,wheredampingcanbeenhanced byasmartoractivesystematevenverylowfrequencies.

FIG.1.6

Underdampedandundampedsysteminfreevibration.

Thetimeperiodofdampedoscillation, Td ismodifiedsincethedampedresonancefrequencyis expressedbyEq. (1.16). Td isdefinedas

Thedecayofthewavecanbeexpressedbytakingtheratiooftwoconsecutiveamplitudesas

Thenaturallogarithmoftheamplituderatioalsotermedaslogarithmicdecrement(Δ)expressedas

ThisgivesusanimportantconclusionthatinanunderdampedfreevibrationwithanSDOF,thelogarithmicdecrementdependsonlyonthedampingfactor. Fig.1.7 showsthevariationinlogarithmic decrement Δ, ondampingfactor ξ.

1.5.2.2 Case(2)—Criticallydampedsystem

Inthiscase, λ ¼ λC ¼ 2 kmp and ξ ¼ 1.

ThesolutiontotheEq. (1.12) couldbe

Solvingfor C1 and C2,usinginitialconditionsas:

FIG.1.7

Dependenceoflogarithmicdecrementondampingfactor.

1.5 Undampedanddampedvibration

FIG.1.8

FreevibrationofanSDOFsystem,undampedandcriticallydamped.

Itcanbeseenthatthedisplacementcanhaveoneovershootcomparedtotheundampedinitialdisplacement. Fig.1.8 depictsthenatureofthedecay,whichisanexponentialcurvehavingnosinusoidal component.

1.5.2.3 Case(3)—Overdampedsystem

Thevibrationresponseisoverdampedwhenthedampingfactoris >1,thatis, λ/λC or ξ > 1.The solutiontoEq. (1.12) canbe

where C1 and C2 arethecoefficientsofintegrationandcanbefoundoutbysolvingtheequationusing initialconditions u0 and v0.Thesolutionbecomes

Thisisalsoauniformexponentialdecaycurvewithoutanyvibrationcharacteristics.Atypicalresponse curveisgivenin Fig.1.9.Exampleofanunderdampedsystemiscommon,includingcuredrubber bushesandmounts,whileatypicalexampleofanoverdampedsystemistheunvulcanisedbutyl rubberlatex.

FIG.1.9

OverdampedSDOFsysteminfreevibration,comparedwithundampedandcriticallydampedsystems.

1.5.3 Forcedvibration

Whenanexternaloscillatoryexcitationforceisappliedontoabody,theresultingvibrationistermedas forcedvibration.Intheeventofafrequencysweepbyanexternalexciter,whenthesweepingfrequency coincideswiththatofthenaturalfrequencyofthesystem,thephenomenoniscalledresonanceandat thatpoint,theamplitudeofvibrationwouldbemaximum.Inarandomvibration,suchasarunning turbine,therecanbemanysubsequenthighermodes.

1.5.3.1 Frequencyresponseinundampedforcedvibration

Let F0sin(ωt)betheexternaloscillatingforceonabodywithoutdamping(mass-springsystem).

Theforcebalancewouldbe

Solutiontotheaboveequationatsteadystateis

where ωn isthenaturalfrequencyofthesystem,definedbyEq. (1.6).

Inareal-worldapplicationofforcedvibration,itisimportanttostudytheforcetransmittedtothe foundationduetoavibratingmachineorviceversa.Thetransmissibilityofoutputforcecomparedto inputforcecanbecalculatedandcanbemeasuredforavibratingsystem.Theforcetransmissibility(ε) insuchaspring-masssystemisdefinedbytheratioofexciterforceamplitudetotheresultingforce amplitude.FollowingEq. (1.24),weget,transmissibility, ε:

Theratioofforceisnumericallythesameastheratioofaccelerationorvelocityordisplacement amplitudesandhencethedisplacement,velocity,acceleration,andforcetransmissibilityisexpressed bythesameEq. (1.25).

Thetransmissibilityexpressionabovesuggeststhatthedisplacementamplitudeofvibrationwill assumeinfinitevalueattheresonance,thatis,whentheforcingfrequencyequalsthenaturalfrequency ofthemachine(ω ¼ ωn).

Incaseofmachinesinstalledonfoundations,andhavingarotationaloroscillatorymovementlike anengineormotor,thefirstnaturalfrequency f0 canbederivedfromEq. (1.7) andisgivenby

Fig.1.10 showsthetypicaltransmissibilityasatheoreticalcurveforanundampedforcevibrationinan SDOFsystem.Here, ω0 istakenasthefirstnaturalangularfrequencyofthesystemhaving rad/s asthe unit,and ω0 ¼ 2π f0.

From Fig.1.10,itisobservedthatthetransmissibilityincreasesinfinitelyattheresonance,thatis, whentheimposedfrequency(ω)coincideswiththefirstnaturalfrequency(ω0).Secondly,thetransmissibilitydecreaseswiththefrequencybeyondresonance.Atafrequencyof √ 2timestheresonance frequency,thatis,at ω ¼ √ 2ω0,thevalueoftransmissibilityis1,meaningtheimposedforceisthe sameastheoutputascanbecalculatedfromEq. (1.25).Beyondthispoint,thevibrationisdamped monotonically.Atveryhighfrequencies,beyondresonance,thetransmissibilityisinversely

FIG.1.10

AtypicaltransmissibilitycurveforanSDOFundampedforcedvibration.

proportionaltothesquareoftheimposingfrequency.However,inpractise,therewillbepeaksof highermodesalsointhevibrationspectrumbeyondthefirstresonancefrequencyforallvibratingplatformsandmachines.Thehighermodeswillshowsharplyincreasedintensitiesofvibration.Ifthese highermodesareintheregionof‘mostdisturbingfrequency’domain,theyshouldbeattenuated byadampingmechanismwhichcantakecareofallmodesaseffectivelyaspossible.

1.5.3.2 Frequencyresponseindampedforcedvibration

NowconsideradampedforcedvibrationinSDOFsystem.Theclassicalmechanicaldampersystem consistsofamass,spring,andaviscousdashpot.Thedashpotisacylinder-pistonassemblyhavinga viscousliquidinside,which,onpistonmovement,convertsthetotalenergyintoviscousenergyand ultimatelytoheat.Therefore,thispartoftheenergyconsumedbythedashpotisirrecoverable.It is,inreality,amachinemountedonshockandvibrationmounts,havingonlyonedirectionofvibration. ThemountismadeofaVEMandisassumedtobeacombinationofaspringandadashpotforboth physicalandmathematicalrepresentation.Thespringrepresentstheelasticpartoftheviscoelastic responseandthedashpotrepresentstheviscousdissipationcharacteroftheVEM.Themachine undergoesvibrationduetooscillatoryorrotationalmotionandthevibrationforceisreduceddueto thedashpotactionofthemount.

Theequationofmotioncanberepresentedas

Forthefirstnaturalfrequencyofthemachine ω0 andwithadampingfactor ξ,weobtain

Theforcetransmittedtothefoundationofavibratingmachineisofimportanceinthestudyofreduction ofstructuralvibration.Forafloatingfoundationorbaseplatesofavessel,thevibrationtransmittedto thebaseisimportantfromthepointofviewofacousticnoisereduction.Theforcetransmittedtothe foundationcanbegivenby

Sincetheforceissinusoidal,theforceforviscousdampingandforceforspringdeflectionasgiven inEq. (1.29) are90° outofphasetoeachother.

Thesteady-stateratiooftransmittedforce(onthefoundation)totheappliedforce(bythemachine) canbegivenas

where εd istheforetransmissibility,andgivenby

andthephaseangleisgivenby

Thephaseangle(Eq. 1.32)isnotcommonlyusedinmountdesign.Thetransmissibilitiesfordisplacement,velocity,andaccelerationarenumericallythesameastheforcetransmissibility. Fig.1.11 shows thetransmissibilitycurvesasafunctionoffrequencyratioforseveraldampingfactors.

Thefirstnaturalfrequencyofamachinecanbefoundoutbythedeflectionduetotheweightofthe machine.ReferringtoEq. (1.26),thedeflectionofthebasemountduetothemachineweightdecides thenaturalfrequency.Thedeflectionoftheamountisdecidedbytheelasticmodulus,thenumberof mounts,contactareaofeachmount,andthetotalload.Eq. (1.26) isonlyvalidwhenthedampingfactor isverysmall,typicallybelow0.1andthedynamicstiffnessofthemountisnotmuchdifferentfromthe staticstiffness.Formostmounts,thedynamicstiffnessvarieswithfrequencyandtemperature.

From Fig.1.11,itcanbeseenthatusingvariousdampingfactorsof0.01,0.1,and0.5,thedecayin transmissibilitybeyond ω ¼ √ 2ω0 ismuchfasterwithfrequencyforlowdampingfactorthanthatfor thehigherdampingfactor.Thereductionoftransmissibilitydependsonthedampingpropertyofthe system.Forinstance,whenamachineisinstalledonashockandvibrationdampingmount,supposedly madeofanelastomer,thedamping,whichisadynamicviscoelasticlosspropertyoftheelastomer, stronglydependsonthefrequencyandenvironmenttemperature.Similarbehaviourwouldbe expectedfromdampersmadeofshearthickeningordilatantfluids.Hence,theextentofreduction

FIG.1.11

TransmissibilityofdampedforcedvibrationcasesforanSDOFsystemwithdifferentdampingfactors(0.01,0.1, and0.5).

intransmissibilitymaynotbethesameasatheoreticalcurvecalculatedasin Fig.1.11,sinceitisassumedinthiscase,thatthedampingfactoristhesamefortheentirefrequencyband.

However,progressivelyhigherdampingfactorwithfrequencyisnecessaryforshockandvibration mountsformachinesafetyandtoreducethepeaksofhighermodes.Atypicalmachinesuchasadiesel alternatormaycauseavibrationspectrumof10–5000Hzwithvaryingintensitiesatthefoundation.It isobviousthattomakethemachinerelativelysilentinthesonicrange,vibrationintensitiesaretobe reducednotonlyatfirstresonancefrequencybutatallhighermodesalso.Theradiatednoisedueto machinevibrationshouldbereducedfornotonlystealthpurposebutalsoforhumancomfortinindustriesbywayofreducingintensitiesofnoiseatafrequencyrangeof3000–6000Hz,whichareconsidereddisturbingfrequencyrange,mostdisturbingbeing4000Hzforhumanear [13]

Ifamaterialhasadampingfactorwhichgraduallychangeswithfrequency,thenatureofthecurve willbedifferent.Asanexample,twoVEMsareselected,oneacommonVEMhavingvariablebutlow dampingfactorinfrequencyscaleandahighdampingVEM(EAP-XN,energyabsorbingpolymerXN)developedbyus.Theirviscoelasticlossfactorsaregivenin Fig.1.12.Arotatingmachineis assumedtobemountedontheseVEMsseparately.Themachinetransmitsthevibrationtoafoundation. Hence,thefoundationresponseistakenasgivenbyEq. (1.31).Thevibrationdampingbythesetwo VEMsiscomparedastransmissibility(inpowerratio,dB)againstaseeminglyrigidmountingonsteel blockwithanassumeddampingfactorof0.002.Thetransmissibilitywithfrequencyiscalculatedwith threemodesofresonancesat145,500,and1036HzofthemachineusingEq. (1.31).Thetransmissibility(indB)curvesforeachmountareaddeduptogetthemodalsforeachmount.Thecombined responseinfrequencyscaleisshownin Fig.1.13.ItcanbeseenthattheadvantageofusingaVEMwith higherdampingisthatitreducessuccessiveintensitiesofhigherresonancesquiteeffectivelyifits dampingfactorfurtherincreaseswithfrequency,whichistrueformanytailor-madeVEMs.

FIG.1.12

DynamicviscoelasticlossfactorofacommonVEMandEAP-XNinfrequencyscaleat30°C.

FIG.1.13

AcomparisonofvibrationtransmissibilityofahighdampingVEM(EAP-XN)versusacommonVEMasmounts forfirstthreenaturalfrequenciesof145,500,and1036Hz.

Inthecaseofsuspensiondesignofautomobiles, Fig.1.11 canbeexaminedtoreducevibrationintensity.Ifwecanmake ω/ω0 ≫ 1,byreducingthesuspensionspringstiffness(softspring)andwith increasedmass,thenaturalfrequency(ω0)oftheunitisrenderedlowerandattheworkingfrequency (ω),theattenuationinvibrationwillbebetter.However,lowerstiffnessmayresultinmorechancesof transversedeflectioninarubber-basedmount,causingmorevibrationsinotherdirections.Alargereductioninvibrationamplitudeisalsopossiblebeyondresonancebyalowerdampingfactor.However, lowdampingfactorhastwomajorproblems,one,thatatanyextratransientforce,whichisvery oftenpossibleforvehicles,thenaturaldecaywilltakealongtime,andsecondly,neartheresonance frequency,thevehiclemaybedamagedduetohighamplitudeofvibration.Athirdproblemwouldbe radiatednoiseathighermodes.Thedesignofasuspensionis,therefore,abalancedselectionofspring anddamper,whichrequiresanoptimumVEMdesign.

Whenamachineisvibratingduetothebaseexcitationwithaviscoelasticdampingmount,the amplitudeofvibrationisrepresentedby

where F/k isthestaticdeflection(δST)ofthemount.Thisexpressionisactuallyacomparisonofthe vibrationamplitudeateveryfrequencypointtothestaticdeflection.Thereductionofamplitudeissubjecttotwoparameters,thefrequencyratioandthedampingfactor.Higherthefrequencyratio,higheris thereductioninamplitude.However,theintensityatresonance(ω ¼ ω0)isinfiniteintheabsenceofa dampingmount.

1.5.3.3 Propertiesofasystemfromforcedvibrationresponse

Thevibrationresponsecurveforamachineisusedtodetermineseveraldynamicpropertiesofasystem.Inanexperimentofrecordingvibrationspectraofamachinewithrespecttofrequency,therewill beabandofthefrequencywithpeaksasdifferentmodesofresonances.Fromthenatureofthepeaks, thebandwidth,quality,anddampingfactorcanbedetermined.

Letusexaminethefirstresonancepeakofaforcedvibrationasdepictedin Fig.1.14.Fromthe figure,letustakethevalue umax whichisthepeakvalue.FollowingEq. (1.31),itcanbeseenthat at ω ¼ 0,thetransmissibility ¼ 1andalso,at ω ¼ √ 2ω0,thetransmissibilityisagain ¼ 1andbeyond thiscut-offfrequency,thetransmissibilityis <1,meaningthattheisolationofvibrationoccurscontinuouslyasthefrequencyincreasesfurther.Thevibrationenergy,representedbypowerintermsofdB, ishalfwhentheintensityis1/√ 2timesthepeakintensityatresonance.Therefore,athalfpower,the amplitudeofvibrationis ¼ umax/√ 2.

Ifwedrawahorizontallinealongavalueof umax/√ 2,wegettwofrequencyvaluesatwhichthis conditionprevails, ω1 and ω2 asshownin Fig.1.14.Wenotethevaluesoffrequencies ω1 and ω2 from theintersectionsofthedrawnlinewiththeresponsecurve.Thedifferencebetweenthesetwofrequenciesisthe‘frequencybandwidth’atwhichband,thetransmittedvibrationpowerisequaltohalfthe peakpower.Itiscustomarytorelatehalf-powerbandwidthwiththequalityoftheresonancepeak.

Thehalf-powerbandwidthofthecurveis

Thequalityfactor,whichissimilartothatinsoundandelectricalcircuits,isdefinedas

FIG.1.14

Firstresonancepeakforaforcedvibrationwithasmalldampingfactor.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Polymers for vibration damping applications b. c. chakraborty - Quickly download the ebook to start by Education Libraries - Issuu