Physics of cryogenics: an ultralow temperature phenomenon bahman zohuri - Read the ebook online or d

Page 1


https://ebookmass.com/product/physics-of-cryogenics-anultralow-temperature-phenomenon-bahman-zohuri/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Transcranial Magnetic and Electrical Brain Stimulation for Neurological Disorders 1st Edition Bahman Zohuri

https://ebookmass.com/product/transcranial-magnetic-and-electricalbrain-stimulation-for-neurological-disorders-1st-edition-bahmanzohuri/ ebookmass.com

Mexico's Fuel Trafficking Phenomenon: Analysing an Emerging Black Market 1st ed. 2021 Edition León Sáez

https://ebookmass.com/product/mexicos-fuel-trafficking-phenomenonanalysing-an-emerging-black-market-1st-ed-2021-edition-leon-saez/

ebookmass.com

High Temperature Gas-cooled Reactors Takeda

https://ebookmass.com/product/high-temperature-gas-cooled-reactorstakeda/ ebookmass.com

A New Dawn for Politics 1st Edition Alain Badiou

https://ebookmass.com/product/a-new-dawn-for-politics-1st-editionalain-badiou/

ebookmass.com

The Politicization of Social Divisions in Post-War Poland Piotr Borowiec

https://ebookmass.com/product/the-politicization-of-social-divisionsin-post-war-poland-piotr-borowiec/

ebookmass.com

Matemáticas III Ron Larson

https://ebookmass.com/product/matematicas-iii-ron-larson/

ebookmass.com

Essential guide to marketing planning 4th Revised edition Edition Wood

https://ebookmass.com/product/essential-guide-to-marketingplanning-4th-revised-edition-edition-wood/

ebookmass.com

ASTRO 3: Introductory Astronomy 3rd Edition Michael A. Seeds

https://ebookmass.com/product/astro-3-introductory-astronomy-3rdedition-michael-a-seeds-2/

ebookmass.com

Psychotherapy, Literature and the Visual and Performing Arts 1st ed. Edition Bruce Kirkcaldy

https://ebookmass.com/product/psychotherapy-literature-and-the-visualand-performing-arts-1st-ed-edition-bruce-kirkcaldy/

ebookmass.com

Printable Mesoscopic Perovskite Solar Cells 1st Edition

Hongwei Han

https://ebookmass.com/product/printable-mesoscopic-perovskite-solarcells-1st-edition-hongwei-han/

ebookmass.com

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2018ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageandretrieval system,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-814519-7

ForinformationonallElsevierpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: JohnFedor

AcquisitionEditor: AnitaKoch

EditorialProjectManager: KaterinaZaliva

ProductionProjectManager: NileshKumarShah

CoverDesigner: GregHarris

TypesetbyTNQBooksandJournals

ThisbookisdedicatedtomysonSasha.

AbouttheAuthor

Dr.BahmanZohuricurrentlyworksfor GalaxyAdvancedEngineering,Inc.,a consulting fi rmthathestartedin1991when heleftboththesemiconductoranddefense industriesaftermanyyearsworkingasa chiefscientist.Aftergraduatingfromthe UniversityofIllinoisinthe fi eldofphysics, appliedmathematics,hewenttotheUniversityofNewMexico,wherehestudied nuclearengineeringandmechanicalengineering.HejoinedWestinghouseElectric Corporation,whereheperformedthermal hydraulicanalysisandstudiednaturalcirculationinaninherentshutdown,heat removalsystem(ISHRS)inthecoreofa liquidmetalfastbreederreactor(LMFBR)as asecondaryfullyinherentshutdownsystem forsecondaryloopheatexchange.Allthese designswereusedinnuclearsafetyand reliabilityengineeringforaself-actuated shutdownsystem.Hedesignedamercury heatpipeandelectro magneticpumpsfor largepoolconceptsofanLMFBRforheat rejectionpurposesforthisreactoraround 1978,whenhereceivedapatentforit.He wassubsequentlytransferredtothedefense divisionofWestinghouse,whereheoversawdynamicanalysisandmethodsof launchingandcontrollingMXmissilesfrom canisters.TheresultswereappliedtoMX launchsealperformanceandmuzzleblast phenomenaanalysis(i.e.,missilevibration andhydrodynamicshockformation).Dr. Zohuriwasalsoinvolvedinanalyticalcalculationsandcomputationsinthestudyof nonlinearionwavesinrarefyingplasma. Theresultswereappliedtothepropagation ofso-calledsolitonwavesandtheresulting

chargecollectortracesintherarefaction characterizationofthecoronaoflaserirradiatedtargetpellets.Aspartofhis graduateresearchworkatArgonneNational Laboratory,heperformedcomputationsand programmingofmultiexchangeintegralsin surfacephysicsandsolid-statephysics.He earnedvariouspatentsinareassuchas diffusionprocessesanddiffusionfurnace designwhileworkingasaseniorprocess engineeratvarioussemiconductorcompanies,suchasIntelCorp.,VarianMedical Systems,andNationalSemiconductorCorporation.HelaterjoinedLockheedMartin MissileandAerospaceCorporationasSenior ChiefScientistandoversawresearchand development(R&D)andthestudyofthe vulnerability,survivability,andbothradiationandlaserhardeningofdifferentcomponentsoftheStrategicDefenseInitiative, knownasStarWars.

Thisincludedpayloads(i.e.,IRsensor) fortheDefenseSupportProgram,theBoost SurveillanceandTrackingSystem,and SpaceSurveillanceandTrackingSatellite againstlaserandnuclearthreats.Whileat LockheedMartin,healsoperformedanalysesoflaserbeamcharacteristicsandnuclearradiationinteractionswithmaterials, transientradiationeffectsinelectronics, electromagneticpulses,system-generated electromagneticpulses,single-eventupset, blast,thermomechanical,hardnessassurance,maintenance,anddevicetechnology.

Hespentseveralyearsasaconsultantat GalaxyAdvancedEngineeringservingSandia NationalLaboratories,wherehesupported thedevelopmentofoperationalhazard

assessmentsfortheAirForceSafetyCenterin collaborationwithotherresearchersandthird parties.Ultimately,theresultswereincluded inAirForceInstructionsissuedspecificallyfor directedenergyweaponsoperationalsafety. Hecompletedthe firstversionofacomprehensivelibraryofdetailedlasertoolsfor airbornelasers,advancedtacticallasers, tacticalhigh-energylasers,andmobile/ tacticalhigh-energylasers,forexample.

HealsooversawSDIcomputerprograms,in connectionwithBattleManagementC3I andartificialintelligence,andautonomous systems.Heistheauthorofseveralpublicationsandholdsseveralpatents,suchasfora laser-activatedradioactivedecayandresultsof athrough-bulkheadinitiator.Hehaspublished

thefollowingworks: HeatPipeDesignand Technology:APracticalApproach (CRCPress); DimensionalAnalysisandSelf-SimilarityMethods forEngineeringandScientists (Springer); High EnergyLaser(HEL):Tomorrow’sWeaponin DirectedEnergyWeaponsVolumeI (Trafford PublishingCompany);andrecentlythebook onthesubject DirectedEnergyWeaponsand PhysicsofHighEnergyLaser withSpringer.He haspublishedotherbookswithSpringerPublishingCompanyandCRCinvarioussubjects relatedto: ThermodynamicsinNuclearPower PlantSystems (Springer);and Thermal-Hydraulic AnalysisofNuclearReactors (Springer),heatpipe technology,artificialintelligence,andsoon.He alsohasmorethan60softwarecopyrightsand patents.

Acknowledgments

Iamindebtedtothemanypeoplewho aidedme,encouragedme,andsupported mebeyondmyexpectations.Somearenot aroundtoseetheresultsoftheirencouragementintheproductionofthisbook,yetI hopetheyknowofmydeepestappreciation.

Aboveall,Iofferveryspecialthanksto mylatemotherandfather,andtomy

children,inparticular,mysonSasha.They haveprovidedconstantinterestand encouragement,withoutwhichthisbook wouldnothavebeenwritten.Theirpatience withmymanyabsencesfromhomeand longhoursinfrontofthecomputerto preparethemanuscriptareespecially appreciated.

CryogenicTechnologies

OUTLINE

1.1Introduction2

1.2LowTemperatureinScienceand Technology4

1.3Defi ningCryogenicFluidsor Liquids8

1.3.1TypeofCryogenicLiquids10

1.3.2ThermophysicalProperties13

1.3.3LiquidBoil-Off13

1.3.4CryogenUseforEquipment Cool-Down14

1.3.5PhaseDomains15

1.3.6PersonalProtectiveEquipment toBeWorn15

1.3.7HandlingCryogenicLiquids16

1.3.8StoringCryogenicLiquids16

1.3.9HazardsofCryogenicLiquids17

1.3.10GeneralHazardsofCryogenic Liquids17

1.4HeatTransferandThermalDesign18

1.4.1SolidConduction18

1.4.2Radiation19

1.4.3Convection21

1.4.4GasConduction22

1.4.5MultilayerInsulation22

1.4.6VaporCoolingofNecksand Supports23

1.5RefrigerationandLiquefaction25

1.5.1Thermodynamicsof Refrigeration25

1.5.2HeliumRefrigeratorsversus Lique fiers26

1.5.3RealCyclesandRefrigeration Equipment28

1.6IndustrialApplications33

1.6.1CryogenicProcessingforAlloy Hardening33

1.6.2CryogenicFuels34

1.6.3CryogenicApplicationin NuclearMagneticResonance Spectroscopy34

1.6.4CryogenicApplicationin MagneticResonanceImage35

1.6.5CryogenicApplicationin ElectricPowerTransmission WithinBigCities35

1.6.6CryogenicApplicationin FrozenFoodTransport36

1.6.7CryogenicApplicationin ForwardLookingInfrared37

1.6.8CryogenicApplicationin Space38

1.6.9CryogenicinBloodBanking, Medicine,andSurgery39

1.6.10CryogenicinManufacturing Process42

1.6.11CryogenicinRecyclingof Materials43

1.6.12CryogenicEnergyStorage43

1.6.12.1CESCharacteristics44

1.6.13CESinNuclearPowerPlants45

1.6.14CryogenicApplicationin Research47

1.7CryogenicFluidManagement47

1.7.1Benefits47

1.7.2ResearchOverview47

1.7.3Right:Lightweight, High-EfficientCryocooler48

1.7.4Background49

1.7.5Right:Lique fierDemoand CryogenicInsulationTest Facility49

1.8Conclusion50 References50 FurtherReading51

Cryogenicsisthesciencethataddressestheproductionandeffectsofverylowtemperatures.ThewordoriginatesfromtheGreekwords kryos meaning “frost” and genic meaning “toproduce.” Undersuchadefinition,itcouldbeusedtoincludealltemperaturesbelow thefreezingpointofwater(0 C).However,Prof.KamerlinghOnnesoftheUniversityofLeidenintheNetherlands firstusedthewordin1894todescribetheartandscienceofproducingmuchlowertemperatures.Heusedthewordinreferencetotheliquefactionofpermanent gasessuchasoxygen,nitrogen,hydrogen,andhelium.Oxygenhadbeenliquefiedat 183 C afewyearsearlierin1887,andaracewasinprogresstoliquefytheremainingpermanent gasesatevenlowertemperatures.Thetechniquesusedinproducingsuchlowtemperatures werequitedifferentfromthoseusedsomewhatearlierintheproductionofartificialice.In particular,ef ficientheatexchangersarerequiredtoreachverylowtemperatures.Overthe years,theterm “cryogenics” hasgenerallybeenusedtorefertotemperaturesbelow approximately 150 C(123.15K, 238.00 F).

1.1INTRODUCTION

Accordingtothelawsofthermodynamics,thereexistsalimittothelowesttemperature thatcanbeachieved,whichisknownasabsolutezero.Moleculesareintheirlowest,but finite, energystateatabsolutezero.Suchatemperatureisimpossibletoreachbecausetheinputpowerrequiredapproachesinfinity.However,temperatureswithinafewbillionthsofadegree aboveabsolutezerohavebeenachieved.Absolutezeroisthezerooftheabsoluteorthermodynamictemperaturescale.Itisequalto 273.15 Cor 459.67F.ThemetricorSI(InternationalSystem)absolutescaleisknownastheKelvinscale,whoseunitisthekelvin(not Kelvin),whichhasthesamemagnitudeasthedegreeCelsius.ThesymbolfortheKelvinscale isK,asadoptedbythe13thGeneralCouncilonWeightsandMeasures(CGPM)in1968.Thus, 0 Cequals273.15K.TheEnglishabsolutescale,knownastheRankinescale,usesthesymbolR andhasanincrementthesameasthatoftheFahrenheitscale.IntermsoftheKelvinscale,the cryogenicregionisoftenconsideredtobethatbelowapproximately120K( 153 C).Thecommonpermanentgasesreferredtoearlierchangefromgastoliquidatatmosphericpressureat thetemperaturesshownin Table1.1,calledthenormalboilingpoint(NBP).Inthistable,we

was firstdiscoveredin1911byKamerlinghOnnes,butsince1986,anotherclassofmaterials, knownashightemperaturesuperconductors,hasbeenfoundtobesuperconductingatmuch highertemperatures,currentlyuptoabout145K.Theyareatypeofceramic,andbecauseof theirbrittlenature,theyaremoredifficulttofabricateintowiresformagnets.

Otherapplicationsofcryogenicsincludefastfreezingofsomefoodsandthepreservation ofsomebiologicalmaterialssuchaslivestocksemenaswellashumanblood,tissue,andembryos.Thepracticeoffreezinganentirehumanbodyafterdeathinthehopeoflaterrestoring lifeisknownascryonics,butitisnotanacceptedscienti ficapplicationofcryogenics.The freezingofportionsofthebodytodestroyunwantedormalfunctioningtissueisknownas cryosurgery.Itisusedtotreatcancersandabnormalitiesoftheskin,cervix,uterus,prostate gland,andliver.

1.2LOWTEMPERATUREINSCIENCEANDTECHNOLOGY

Cryogenicsasitwasdescribedinprevioussectionisdefinedas thatbranchofphysics,which dealswiththeproductionofverylowtemperaturesandtheireffectonmatter, 1 aformulationthat addressesbothaspectsofattaininglowtemperaturesthatdonotnaturallyoccuronEarth andofusingthemforthestudyofnatureorthehumanindustry.Inamoreoperational way, 2 itisalsodefinedas thescienceandtechnologyoftemperaturesbelow 120K.Thereason forthislatterdefinitioncanbeunderstoodbyexaminingcharacteristictemperaturesofcryogenic fluidsasshownin Table1.1

Thelimittemperatureof120KcomprehensivelyincludestheNBPsofthemainatmosphericgases,aswellasofmethane,whichconstitutestheprincipalcomponentofnatural gas.Today,liquidnaturalgas(LNG)representsoneofthelargest andfast-growing industrialdomainsofapplicationofcryogenics(see Fig.1.1),togetherwiththeliquefaction andseparationofairgases(see Fig.1.2).Thedensificationbycondensationandseparation bydistillationofgaseswashistorically andremainstoday-themaindrivingforcefor thecryogenicindustry.Thisisexemplifiednotonlybyliquidoxygen,andbynitrogen

FIGURE1.1 A130,000m3 liquidnaturalgascarrierwithintegratedinvartank.

configurations.Boltzmannalsofoundthattheaveragethermalenergyofaparticleina systeminequilibriumattemperature T is

Consequently,atemperatureof1Kisequivalenttoathermalenergyof10 4 eVor10 23 J perparticle.

Atemperatureisthereforelowforagivenphysicalprocesswhen kB T issmallcomparedto thecharacteristicenergyoftheprocessthatisconsidered.

Cryogenictemperaturesthusrevealphenomenawithlowcharacteristicenergy(Table1.2) andenabletheirapplicationwhensignificantlylowerthanthecharacteristicenergyofthe

TABLE1.2 CharacteristicTemperatureofLow-Energy Phenomena

PhenomenonTemperature(K)

DebyetemperatureofmetalsFew100

High-temperaturesuperconductors w100

Low-temperaturesuperconductors w10

Intrinsictransportpropertiesofmetals <10

CryopumpingFew

Cosmicmicrowavebackground2.7

Super fluidhelium42.2

Bolometersforcosmicradiation <1

LowdensityatomicBose-Einsteincondensates w10 6

FIGURE1.5 LvdwigBoltzmann’sgraveintheZentralfriedhofVienna,bearingtheentropyformula.

Vaporpressureofcommongasesatcryogenictemperature.

withcryogenicliquidsmustbeawareoftheirhazardsandknowhowtoworksafelywith them. Fig.1.8 isapresentationofliquidnitrogen(LN).

Thediscoveryofsuperconductingmaterialswithcriticaltemperaturessignificantlyabove theboilingpointofliquidnitrogenhasprovidednewinterestinreliable,low-costmethodsof

FIGURE1.7
FIGURE1.8 Liquidnitrogen.

TABLE1.3 SomePropertiesofCryogensatTheirNormalBoilingPoints

Normalboiling point(K)

4.2220.423.727.177.381.785.087.390.2111.6120.0165.0169.4

Liquiddensity(kg/m3)12571.0163120580979215021393114142324003040568

Liquiddensity/vapor density

Enthalpyofvaporization (kJ/kg)

Enthalpyofvaporization (kJ/kg-mol)

7.45371126175181267241255236270297272

20.424463018619921617516121351210896482

80.689912112333556560406659644167988206904212.60413.534

Volumeofliquid vaporizedbyenergyinput of1W-hr(cm3) 14101147433222114161517141313

Dynamicviscosityof liquid(mNsec/m2)

3.313.328.3124152 240260195119404506170

Surfacetension(mN/m)0.101.9 w34.88.99.614.812.513.213.25.518.316.5

Thermalconductivityof liquid(mW/mK) 18.7100 w100113135 1281521879474192

Volumeofgasat15 C releasedfrom1volumeof liquid

Pressureof1.01,323bar.

7398308301412681806905824842613689520475

HandsBA,editor. CryogenicEngineering:AcademicPress;1996.

oxidizerseveninliquidform.Somecryogensare flammable;hydrogenisespeciallydelicate tohandle.

Hydrogenisanunusual fluidinthatthemoleculeexistsintwoformsknownas ortho and para,withsomewhatdifferentproperties.Theratioof ortho to para isdeterminedbyconventionalthermodynamicsandisdependentontemperature.Therearealsodifferentformsof isotopes(deuteriumandtritium)andthesetwoisotopesareusedindrivingfusionenergy productionviaeithermagneticconfinementfusion7 orinertialconfinementfusion.7

Anexplanationofthebehaviorofthehydrogenmoleculerequiresknowledgeofquantum mechanicsandwillnotbediscussedhere.Atlowtemperatures,equilibriumhydrogen(e-H2) isentirely para. Atroomtemperature,the ortho:para ratiois3.Theequilibriumstateatroom temperatureisoftenknownasnormalhydrogenorn-hydrogen.Thetransitionfromtheortho totheparastateinvolvesaheatofconversion whichcanbegreaterthantheenthalpyof vaporization sothatthevaporizationratesofhydrogenareoftenmuchlargerthanexpected.Itisforthisreasonthatacatalystisoftenincludedinahydrogenliquefiertoensure thatonly para hydrogenispresentintheliquid.8

Heliumisthecryogenic fluidthatcanbeclaimedtobeunique.Becauseofitslowmolecularweightandchemicalinertness,quantummechanicaleffectsareimportant.Therearetwo isotopicforms:thenaturalformHe4,whichhasanucleusconsistingoftwoprotonsandtwo

TABLE1.5 VaporizationofLiquidHeliumandLiquidNitrogenat NormalBoilingPointUnder1WAppliedHeatLoad

Cryogen(mg/s)(1/hLiquid)(1/minGasNTP)

Helium481.3816.4 Nitrogen50.020.24

escapingthecryostat,whichcanbewarmeduptoroomtemperatureandmeasuredina conventionalgas flowmeter.Ondecreasingtheliquidlevel,though,partofthevaporwill takethevolumeinthecryostatpreviouslyoccupiedbytheliquid,whichhasvaporized, andtheescaping flowwillbelowerthantheboil-off.Moreprecisely,iftheboil-offvapor istakenatsaturationinequilibriumwiththeliquid

Theescapinggas flowmeasuredmust,therefore,becorrectedupwardtoobtainthetrue boil-off.Fromvaluesofsaturatedliquidtovapordensityratiosin Table1.4,thiscorrection factorisonly1.006fornitrogenandcanthereforebeneglected.Forhelium,though,it amountsto1.16andmustclearlybetakenintoaccount.

1.3.4CryogenUseforEquipmentCool-Down

Forboth fluids,thesensibleheatofthevaporoverthetemperaturerangefromliquidsaturationtoambientiscomparabletoorlargerthanthelatentheatofvaporization.Thisprovidesavaluablecoolingpotentialatintermediatetemperature,whichcanbeusedfor thermalshieldingorforprecoolingofequipmentfromroomtemperature.Theheatbalance equationforcoolingamassof,say,iron mFe ofspeci ficheat CFe ðT Þ attemperature T byvaporizingamass dm ofcryogenicliquidatsaturationtemperature Tv ,latentheatofvaporization Lv andvaporspeci ficheat C takenasconstant,isassumingperfectheatexchangewiththe liquidandthevapor.

Hence,thespeci ficliquidcryogenrequirementforcool-downfromtemperature T0 :

Theterm CðT Tv Þ addingto Lv inthedenominatorbringsastrongattenuationtothe speci ficliquidrequirement,providedthereisgoodheatexchangebetweenthesolidand theescapingvapor.Calculatedvaluesofspecificliquidcryogenrequirementsforironare givenin Table1.6,clearlydemonstratingtheinterestofrecoveringthesensibleheatofhelium vapor,aswellasthatofprecoolingequipmentwithliquidnitrogen.

• Donotstoreinaconfinedspace.

• Cryogeniccontainersareequippedwithpressurereliefdevicestocontrolinternalpressure.Undernormalconditions,thesecontainerswillperiodicallyventproduct.Donot plug,remove,ortamperwithpressurereliefdeviceasthiscouldcauseanexplosion.

• Containersshallbehandledandstoredinanuprightposition.

• SmallquantitiesofliquidnitrogencanbestoredinDewarbottles.Dewarbottlesare hollow-walledglass-linedcontainers,whichprovideexcellentinsulation.

1.3.9HazardsofCryogenicLiquids

Hazardsofcryogenicliquidsarelisted:

• ExtremeColdHazard:Cryogenicliquidsandtheirassociatedcoldvaporsandgases canproduceeffectsontheskinsimilartoathermalburn.Briefexposuresthatwould notaffectskinonthefaceorhandscandamagedelicatetissuessuchastheeyes. Prolongedexposureoftheskinorcontactwithcoldsurfacescancausefrostbite.The skinappearswaxyyellow.Thereisnoinitialpain,butthereisintensepainwhenfrozen tissuethaws.Unprotectedskincansticktometalthatiscooledbycryogenicliquids. Theskincanthentearwhenpulledaway.Evennonmetallicmaterialsaredangerousto touchatlowtemperatures.Prolongedbreathingofextremelycoldairmaydamagethe lungs.

• AsphyxiationHazard:Whencryogenicliquidsformagas,thegasisverycoldand usuallyheavierthanair.Thiscold,heavygasdoesnotdisperseverywellandcan accumulatenearthe floor.Evenifthegasisnontoxic,itdisplacesair.Whenthereisnot enoughairoroxygen,asphyxiationanddeathcanoccur.Oxygendeficiencyisaserious hazardinenclosedorconfinedspaces.Smallamountsofliquidcanevaporateintovery largevolumesofgas.

• ToxicHazards:Eachgascancausespecifichealtheffects.Refertothe Myelodysplastic syndromesforinformationaboutthetoxichazardsofaparticularcryogen.

1.3.10GeneralHazardsofCryogenicLiquids

Thefollowingpointsareimportanttobearinmindwhenitcomestogeneralhazardsof cryogenicliquids:

• FireHazard:Flammablegasessuchashydrogen,methane,carbonmonoxide,andLNG canburnorexplode.Hydrogenisparticularlyhazardous.Itforms flammablemixtures withairoverawiderangeofconcentration.Itisalsoveryeasilyignited.

• Oxygen-EnrichedAir:Whentransferringliquidnitrogenthroughnoninsulatedmetal pipes,theairsurroundingacryogencontainmentsystemcancondense.Nitrogen,which hasalowerboilingpointthanoxygen,willevaporate first.Thisevaporationcanleave anoxygen-enrichedcondensateonthesurfacethatcanincreasethe flammabilityor combustibilityofmaterialsnearthesystem,creatingpotentiallyexplosiveconditions. Equipmentcontainingcryogenic fluidsmustbekeptclearofcombustiblematerialsto minimizethe firehazardpotential.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.