1 Lightsourcesfor photonanotechnology
SeokKiChoi
MichiganNanotechnologyInstituteforMedicineandBiologicalSciences, andDepartmentofInternalMedicine,UniversityofMichiganMedicalSchool, AnnArbor,MI,UnitedStates
OUTLINE
1.1Introduction1
1.2Basicpropertiesoflight2
1.2.1Absorption3
1.2.2Scattering3
1.2.3Penetration3
1.3Divisionoflightsources3
1.3.1Ultravioletlight4
1.3.2Visiblelight6
1.3.3Nearinfraredlight6
1.4Nanotechnologyforphototherapy: overview9
1.4.1Light-controlleddrugrelease10 1.4.2Photothermaltherapy10
1.4.3Photodynamictherapy13 1.5Summary14 Abbreviations14 Acknowledgments15 References15
1.1Introduction
Lighthastheabilitytoinduceoralterchemical,physical,orbiologicalactivitiesincertain classesofnanometer-sizedparticles(NPs)[ 1 8].SuchNPs,genericallyreferredtoasphotoactivenanomaterials,havemadesignifi cantcontributionstothecreationofnovelapplicationsanddevelopmentinnanotechnolog y.Theirapplicationsarehighlybene fi cialina
1.Lightsourcesforphotonanotechnology
rangeof fi eldsincludingenergy[9 ],chemicalcatalysis[9 ,10],sensors[9 , 11 ],therapeutics [7 ,12 14 ],imaging[ 15 ,16 ],anddiagnostics[17].
Lightplaysanactiveroleinservingasanexternalstimuluswithitssuperbtemporaland spatialcontrolcapabilities[18 21].Itcarriesabroadrangeofactivationenergy,whichis tunableforactivatingaspecificphotoactiveNPcoreoritsperipheralcomponenttoinduce light-inducedoutputsuchasscattering, fluorescence,andluminescence(Fig.1.1).Useoflight constitutesanessentialcomponentinNPdetectionandimagingmethods[22,23].Light absorptionoffersanumberofmechanismsthatallowforcontrolorinducementoftherapeuticeffects.TheserelatetoenablingthecontrolledreleaseofatherapeuticagentcarriedbyNP [7],inductionoflocalizedheatinphotothermaltherapy(PTT),orproductionofcytotoxic reactiveoxygenspecies(ROS)inphotodynamictherapy(PDT)[22 24].
Inadditiontosuchactivecontrol,usingalightstimulusoffersahighdegreeofprecisionin thespatiotemporalcontrolofNPactivation[7,18,21,25].Thesebene fitsarenotgenerally achievableinNPactivationtriggeredbyapassivestimulussuchasanendogenous,acellular, orapathophysiologicalfactor(lowpH,enzymes,andthiols)[7].Furthermore,lightstimulationoffershigherprecisioninthespatialresolutionoflightexposurethanothertypesof externalstimulibasedonheatorultrasound[26,27].
Incontrasttoitsbene ficialproperties,theapplicationoflightinnanotechnologyfaces certaindrawbacksdeterminedbytheintrinsicpropertiesoflight.ItisthuscriticaltounderstandlightpropertiesandconsiderintheearlyphasesofNPdesign.Thischapterdescribes lightsourceswithafocusonthreespectralregionsofrelevance ultraviolet(UV),visible (Vis),andnear-infrared(NIR) andtheirpropertiesandusesinlight-controlleddrug delivery,PDT,andPTT.
1.2Basicpropertiesoflight
Selectionoflightsourcesplaysafundamentalroleincontrollingthespeci ficfunctionsof photoactiveNPsbecauseonlyaspeci ficwavelengthoflightisbestabletotriggerorconfera desiredeffectsuchascleavingadrug-NPlinkerfordrugrelease,activatingaphotosensitizer moleculeforPDT,orexcitinga fluorescentmoleculeforopticalimaging(Fig.1.1).
FIGURE1.1 Photophysicalandphotochemicaleventsthatpertaintolightexposedtoaphotoactivenanoparticle (NP).
1.2.1Absorption
LightabsorptionbyasmallmoleculeoranNPoccursmostef ficientlyataparticularwavelengthoflightdictatedbyachromophoregroupconstitutingthemoleculeorpresentedinthe NPcore.ItslightabsorptionisdefinedaccordingtotheBeer Lambertlaw(A ¼ ε l c) [28]inwhich ε,l,andcrefertoitsmolarabsorptivity(molarextinctioncoef ficient,M 1 cm 1) atthespecificwavelengthoflight,thepathlengthoflight(cm),anditsconcentration(M), respectively.Thisrelatestheextentoflightabsorptiontothenumberandabsorptivityofmoleculesexposedalongthelightpath.
Underbiologicalconditions,watermoleculesareabundantlypresentinserum,bloodcells, andtissues,andtheycontributesignificantlytolightabsorption[29].Avarietyofmolecules/ macromoleculesofbiologicalabundancealsocontributetolightabsorptionandincludesmall pigmentmolecules,(oxy)hemoglobin,aminoacids,proteins,andnucleicacids[30].Thus, lightabsorptionoccurringbymoleculesinbiologicalmediaconstitutesaprimaryfactor thatcanadverselyinfluencetheef ficiencyoflightapplications inparticular,invivo[29].
1.2.2Scattering
LightscatteringoccurswhenitinteractswithNPsaswellasmacromolecularparticles, whichareabundantinbloodcells,skinpigments, fibers,andbones[31,32].Theextentoflight scatteringatagivenwavelength(l)variesnonlinearlytoatermofa (l/500nm) b withan inversecorrelationtob,inwhichaandbeachreferstoatissue-specificvalue[33].Ingeneral, thescatteringdecreasesasafunctionofwavelength(l),withhigherscatteringoccurringat theshorterUVandVislightwavelengthsthanatNIRwavelengths(Fig.1.2).Itisalsodependentontissuetypes,withhigherscatteringobservedinskinthaninsoftandfattytissues[33].
1.2.3Penetration
Duetolightscatteringandabsorption,onlyacertainfractionoflightisabletopass throughabiologicalsample,whileitsintensitynonlinearlydecreasesalongitspath (Fig.1.2).Theextentoflightpenetrationisgenerallydependentonlightwavelength [33 35].Lightpenetratesmoreeffectivelyatalongerwavelengththanashorterwavelength asschematicallyillustratedinamodelforhumanskinstructure[36].ComparedwithUVand Vis,NIRlight(800 1000nm)showsanabilityfordeeperpenetration,whichmakesita preferredsourceforopticalimaginginvivo.
1.3Divisionoflightsources
LightsourcesfrequentlyusedinimagingandtherapeuticactivationconsistofthreespectralregionsthatspanUV(200 400nm),Vis(400 800nm),andasubsectionofNIR (800 1000nm)(Fig.1.2).Eachoftheselightsourcesdisplaysadistinctsetofphotochemical andphotophysicalpropertiesthatvaryasafunctionofwavelength.
FIGURE1.2 Spectralrangeoflightsourcesfrequentlyusedinnanotechnology(top),andlightpropertiesassociatedwiththebiologicaltissue(bottom).
1.3.1Ultravioletlight
LightintheUVzoneissubdividedintothreeregionscomposedofshort(UVC, 100 280nm),medium(UVB,280 315nm),andlong(UVA,315 400nm)wavelengths. Theshortest,UVC,isthemostharmfultomammaliancellsbecauseofitsabilitytocause DNAdamage,whichmakesitrarelyusedinbiologicnanotechnology.However,itisbeneficialforcertainapplicationsbecauseofitsbroad-spectrumcidalityagainstbacterialpathogens.ThisisevidentfromthecurrentpracticeofusingUVCinlight-basedtherapytotreat woundinfections.Thisapplicationdoesnotinvolvetreatmentwithanantibacterialagent butirradiationalone[37].
ComparedwithUVC,thetwolongerUVlights(UVAandUVB)causeonlyinsignificant cellulartoxicity[38 40].Theycarryhigh-enoughenergyforimagingandtherapeuticapplicationsinnanotechnology.First, fluorescentimagingexperimentsonphotoactiveNPssuch asquantumdots(QDs)[41 43],grapheneoxide(GO)[44,45],andcarbondots(CDs)involve excitationatUVAandUVBwavelengths(Table1.1)[23,58].Second,theseUVlightsare frequentlyusedforROSproductioninthePDTapplicationofphotosensitizers(chlorine6 [59],protoporphyrinIX[51])andphotoactiveNPs(nano-TiO2 [60 62],nano-ZnO[63],GO nanosheet[64,65],andfullerene[66,67]).Third,theyplayanimportantroleinlightcontrolleddrugdeliveryasappliedinabroadrangeoftherapeuticagents(Table1.2)
TABLE1.1 Lightwavelengthsofrelevancetonanoparticleactivationandimaging.
lex (nm)PhotoresponsiveordyemoleculePhotoactivenanoparticle
300
400 AlexaFluor 405,488,568, 594,633
Chlorine6[59]; protoporphyrin IX
Fluorescein isothiocyanate; Hoescht33258; DAPI
QD(360 400nm) [41 43]
GQD (320nm) [44,45]
CD(330 475) [23,46]
500 Cyanine: Cy3,Cy5 Rhodamine;PI
600
700
800
Nano-Au,nano-Ag(500 800nm)[5,6,46,47]
UCN(808nm)[48 50];UCN (980nm)[14,48,49,51 53]
SWNT (808nm)[54]
900 1000 Metaloxide NP[55 57]
AuNP,goldnanoparticle; CD,carbondot; GQD,graphenequantumdot; NP,nanometer-sizedparticle(nanoparticle); QD,quantumdot; SWNT,single-walledcarbonnanotube; UCN,upconversionnanocrystal.
TABLE1.2 Typesofphotonanotherapyincludinglight-controlleddrugdelivery,photothermaltherapy,and photodynamictherapy.
l (nm)PayloadreleasePTTPDT
UVB254MTX[68]
300Phosphoramide[69]
UVA308 L-Glutamate[70]
347; 350 Choline[71];EGTA[72];glutamate[73 75]; oligonucleotide[76];tegafur[77];taxol[78]
365Ciprofloxacin[39];camptothecin[79];DOX[38,80]; doxycycline[81];5-FU[82]; glutamate-kinate[73,74];inositolphosphate[83]; MTX[68,84];TAM[20,85,86];taxol[78,87]; insulin[88]
Vis420Chlorambucil[89,90]
430Taxol[92]
690Duocarmycin[93];4-Hydroxycyclofen[96,97]
780Duocarmycin[93];4-hydroxytamoxifen[94]
NIRa 808Chlorambucil[89,90]
980Chlorambucil[97];DOX[14,40];Luciferin[98]; siRNA[99]
360 600nm Nano-TiO2 [60 62]; nano-ZnO[63]; graphene oxidenanosheet[64,65]; fullerene[66,67]
500 800nm nano-Au[5,6]; nano-Ag [46,47,91]
UCN(808nm)[50,53]; UCN(980nm) [14,27,51,53,95,96]
aMediatedbyUV VisemissionfromNIR-excitedupconversionnanocrystal(UCN); 5-FU,5-fluorouracil; DOX,doxorubicin; EGTA,egtazic acid; MTX,methotrexate; PDT,photodynamictherapy; PTT,photothermaltherapy; TAM,tamoxifen.
[7,23,100,101].Theseincludeanticanceragentssuchasdoxorubicin(DOX)[38,80],5-FU[82], methotrexate[68,84],paclitaxel(taxol)[78,87],camptothecin[79],tamoxifen[20,85,94],antibacterialagentssuchasciprofloxacin[39],andinsulin[88].
Inspiteofsuchwideutility,usingUVlightisnotfreefromunfavorableproperties,particularlyinvivo.ItundergoeslightscatteringtoanextentgreaterthanforlongerVisorNIR light(Fig.1.2).Itshowsabsorptionbymostbiologicalmoleculespresentinbloodandtissues, inparticularinyellowpigments(bilirubin, b-carotene)and(oxy)hemoglobinmolecules[33]. UVabsorptionbythesepigmentsandmoleculesispartlyresponsibleforthelowerlevelof tissuepenetrationthanoccurswithVisandNIR.Forexample,shortandmediumUVlight showspoorskinpenetration(w2 mm)[36,102].LongUVAshowsagreaterlevelofpenetration,asdeepas60 90 mmat350 400nm[36,102].NumerousUVAapplicationshavebeen demonstratedinvivoforUVA-mediateddrugactivationorimagingstudies[103].
1.3.2Visiblelight
LightintheVisregioncompriseswavelengthsfrom400nm(violet)to800nm(red) (Fig.1.2).Vislightoffersapromisingopportunitywithitssigni ficantlyincreasedtissuepenetrationdepth(150 750 mmat450 700nm; Fig.1.3)[36,102].ComparedwiththatofUV,light scatteringoccursweaklyinVislight.However,Vislightshowsstrongabsorbancebyyellow pigmentsaswellasmelaninand(oxy)hemoglobinmoleculesinitsshorterrange (400 600nm)(Fig.1.3)[33,104].Suchabsorptionisasourcefortheauto fluorescenceoften observedinimagingstudiesinvivo,whichreducesresolutioncapability[105].Vislight alsoshowsincreasedabsorptionbywaterinthelongerrangeofitswavelength( 600nm) [29].Forthisreason,Vislightisbettersuitedforimagingatissuesamplethanabloodsample, whichconsistsmostlyofwatermolecules[29,36].
Vislightservesasaprimaryexcitationsourcein fluorescentimagingstudiesofNPs labeledwithstandarddyemoleculessuchas fluoresceinisothiocyanate,AlexaFluor,rhodamine,andcyanine(Table1.1).LikeUVA,VislightofferssignificantutilityinPDTapplications.ManyphotoactiveNPsincludingnano-TiO2 [60 62],nano-ZnO[63],GOnanosheet [64,65],andfullerene[66,67]employVisirradiationforROSproduction.Vislightalsoplays anessentialroleinPTTapplicationsduetoitsstrongabsorptivitybynoblemetalNPssuchas nano-Auandnano-Ag(500 800nm)[5,6,46].
Initsapplicationsforcontrolleddrugdelivery,Vislightplaysalesssignificantrolethan thatoflong-wavelengthUVA.Currently,mostlinkermoleculesdevelopedforlight-triggered cleavagerequirephotonabsorptionwithhigherenergyequivalenttothatofUVAorUVB[7]. Onlyafewlinkerstructures,includingcyanine(690nm)[93,106]orcoumarin-basedlinkers (430nm)[92],offerlinkercleavageinresponsetostimulationbyVislight.Alternatively,the mechanismoftwo-photonexcitationisoccasionallyapplicableinVislight induceddrug release(Fig.1.5)[90].Thishasbeenreportedinanumberoftherapeuticagentsincluding chlorambucil[89]and4-hydroxytamoxifen[94].
1.3.3Nearinfraredlight
NIRlightcomprisesalongerrangeofwavelengthsspanningfrom700to2500nm (Fig.1.2).ItislessscatteredthanVislight.NIRlightislessabsorbedby(oxy,deoxy)
FIGURE1.3 (A)Molarabsorptivity(ε)ofmajorchromophoresinbloodincludingwater,hemoglobin(Hb)and oxygen-boundhemoglobin(HbO2).(B)Depthofskinpenetrationbyultraviolet(UV),visible(Vis),andnear-infrared (NIR)light.Note:Eachplotispreparedfromvaluesreportedinliteratureascitedbelow. W.S.Pegau,D.Gray,J.R.V. Zaneveld,Absorptionandattenuationofvisibleandnear-infraredlightinwater:dependenceontemperatureandsalinity,Appl. Opt.36(1997)6035 6046;F.E.Robles,S.Chowdhury,A.Wax,Assessinghemoglobinconcentrationusingspectroscopic opticalcoherencetomographyforfeasibilityoftissuediagnostics,Biomed.Opt.Express1(2010)310 317.
hemoglobins(39% 64%)andlipidsthanthatoccurringwithVislight(Fig.1.3)[105].Their absorptiongraduallydecreasesasthelightwavelengthincreases.Watermoleculescontribute tothemostsigni ficantabsorptioninthisregion.Overall,NIRlightshowsthehighesttissuepenetrationabilityamongallthreelightsources,reachingasdeepas1200 2200 mmat 800 1200nm[102].
AshortersegmentofNIR,whichextendsfromapproximately650to950nm,isreferredto asthe firstbiologicalwindow(I-BW)foropticalimaging[35,107].Relativetothelonger segment,thisNIRoffersgreatbene fitsforopticalimagingofNPsinvivo[34,35,105]because
ofitslowerabsorptionbywaterandhemoglobinmolecules[104].NIRsegmentslongerthan 950nmserveastwoadditionalwindowsforopticalimaging thesecondbiologicalwindow (II-BW;950 1350nm)andthirdbiologicalwindow(III-BW;1500 1800nm)[107].ThisNIR rangeshowsalowerleveloftissueauto fluorescencethanthatofI-BW[107],whichcan improvethesignal-to-background(noise)ratio.However,inthesespectralranges,bothwater andhemoglobinmoleculesincreasetheirabsorptivitybyapproximatelyonetotwoordersof magnitudeoverthatofI-BW[104].Suchhigherabsorptioncontributestoalocalheatingeffect,limitingthescopeoftheirutility.
NIRlightcarriesthelowestenergy,limitingitsapplicabilityinimagingandtherapeutic nanotechnology.ItsapplicationsarelimitedtoacertainclassofdyemoleculesorNPsthat showabsorptionincludingsingle-walledcarbonnanotubes(808nm)[54],metaloxideNPs [55 57],andupconversionnanocrystals(UCNs;808,980nm)[14,48 53].OftheseNPs, UCNspossessauniquemechanismofphotophysicalactivationinwhichNIRabsorption leadstoluminescenceemissionatashorterwavelengthintheUVAandVisregions [3,48,49].ThispropertyofupconversionluminescenceservesasausefulrouteforUCNdetectionandimagingthatisachievablewithoutlabelingwithanexternaldyemolecule(Table1.1) [14,40].Inaddition,itsluminescenceemissionallowsfortherapeuticapplicationsthatare otherwiseenabledbyactivationthroughonlyUVAorVislight.TheseincludeNIRinducedROSproductionforPDT[14,27,50,51,53,95,96]andlinkercleavageforcontrolled drugrelease[14,40,53,97,98].
Insummary,selectinganoptimallightsourceplaysacriticalroleintheimagingandtherapeuticapplicationsofmultifunctionalNPs.Itrequirescarefulconsiderationinthedesign phaseoftheseNPs.Avarietyofportablelamps,LEDdevices,andlaserequipmentare commerciallyavailableassummarizedin Table1.3.
TABLE1.3 Listofcommerciallightsources.
LightWavelength(nm)TypeSupplier
UVUVA254LightbulblampSpectroline
UVB312
UVA365LEDlampNichiaCorp.
Visible420LEDlampLuzchemResearch;NichiaCorp.
445 465(blue)
510 530(green)
580 600(amber/yellow)
630 650(red)
Near-infrared808PortablelaserCNIOptoelectronics;ThorLabs
1.4Nanotechnologyforphototherapy:overview
1.4Nanotechnologyforphototherapy:overview
NPsdesignedforphotoapplicationsarebroadlydividableintotwogroupsaccordingto theirintrinsiccoreproperties:(1)anNPconstructmadeofaphotoactivecoreand(2)an NPconstructthatlacksaphotoactivecorebutpresentsaperipheralphotoactivemolecule eitherattachedthroughcovalentconjugationornoncovalentlyencapsulatedinashelllayer orporouscorestructure.ThoseNPsthatbelongtothe firstgroupvarywidelyinthesize, shape,andcompositionofthecoreelementsthatconferintrinsicphotoactivity.Theseinclude nanogoldornanosilverintheshapeofananosphere[5],nanorod[5],ornanocage[1]aswell asTiO2 nanosphere[4,5],carbonnanotube[6],graphenenanosheet[3],andhexagonaldiskshapedUCN[2,3](Fig.1.4).
EachNPthatbelongstothesecondgrouphasamodificationinthecoreorperipherythat allowstheinductionoflight-controlledactivity.ModificationoftheseNPsinvolvesdrug
FIGURE1.4 Divisionofnanometer-sizedparticles(NPs)(size1 1000nm)byintrinsicphotoproperty. MSN, mesoporoussilicananoparticle; QD,quantumdot; UCN,upconversionnanocrystal. S.K.Choi,Mechanisticbasisoflight inducedcytotoxicityofphotoactivenanomaterials,NanoImpact3 4(2016)81 89.Copyright © 2016Elsevier.
conjugationthroughaphotocleavablelinkerforlight-controlledrelease[7].Italsoinvolves photosensitizerattachmentorencapsulationforPDTinwhichthephotosensitizermolecule intheNPconstructcatalyzestheproductionofROSuponstimulationbylight[108,109]. Regardlessoftheirclassi fication,thesephotoactivenanomaterialsaredesignedtooffer certaintherapeuticmodalitiesbasedondrugrelease,PTT,andPDT.
1.4.1Light-controlleddrugrelease
Useoflightprovidesanactivemechanismtoenablethereleaseofapayloadlinkedtoa nanoscalecarrier[7,110].Thisisachievableusingaclassofaromaticlinkermoleculesthat displayphotocleavableproperties.Eachlinkerhastwofunctionalarmsdesignedinan orthogonalmanner.Thus,itsphotocleavablefunctionalityservesfortetheringapayload, whileitssecondfunctionalityservesforNPconjugation,whichremainsasastablelinkage (Fig.1.5).Thephotocleavablelinkerengagesinpayloadreleasebyitslightabsorption,which occursviatwomechanisms,one-photon(single-photon)andtwo-photonabsorption.
Mostreleasedstudiesreportinginvitroandinvivoresultsinvolvelinkercleavage conferredbytheone-photonmechanism[7,110 113].Thismechanismisbroadlyapplicable toexistingphotocleavablelinkers[114]including ortho-nitrobenzene[72,110,115 117],thioacetal ortho-nitrobenzene[87],coumarin[90,115,117],carbazole[118,119],quinolone[120],xanthene[121], ortho-hydroxycinnamate[122],benzoin[123,124],andbenzophenone[125].The efficiencyofdrugreleaseisdeterminedbythequantumef ficiency(F)oflinkercleavage, whichisdefinedasthenumberofmoleculescleavedperthenumberofphotonsabsorbed. Releaseefficiencyvarieswidelywithvariousfactors,butitlargelydependsonlinkertypes andactivationwavelengths[87,94,118,126,127].
UsingUVAorUVBlightishighlyeffectiveforone-photonactivationinmostlinkers.In contrast,Vislightthatcarrieslowerenergyshowsrelativelylowquantumefficiencyfor linkercleavagebyone-photonactivation.Onlyafewlinkersretaintheabilitytoundergoa cleavageuponstimulationbyVislight.Theseincludethosederivedfromcoumarin (420nm)[89,90,92,113,126,127]andquinoline(458nm)[128].Ofparticularnoteisa cyanine-basedlinkerthatdisplaystheabilityforefficientcleavagebyVis(690nm)orNIR light(780nm)[93,106].Itsmechanismoflinkercleavage,however,isattributabletoitschemicalreactionwithsingletoxygenspecies(ROS)producedbylightstimulationratherthanits photochemicalfragmentation(Fig.1.5).
NIRlightdoesnotcarryenoughenergytoallowforone-photonabsorptionbymostlinker molecules.Instead,NIRisapplicableforlinkercleavageviatwo-photonabsorption,whichis equivalenttoaUVAenergylevel.Linkerssuchas ortho-nitrobenzeneandcoumarinshowthe abilityforcleavagebyactivationat800nm(Fig.1.5)[89,94].However,linkercleavageby two-photonabsorptionislesseffectivethanthatofone-photonabsorption,anditleadsto alowerquantumefficiencyindrugrelease[94].
1.4.2Photothermaltherapy
LightstimulationcanproducelocalizedheatincertaintypesofNPsorpolymersviathe mechanismofplasmonicactivation(Fig.1.6)[5,25,47,129 131].Thisphotothermalactivation occursefficientlybynoblemetalNPssuchasnano-Au[5,6,91]andnano-Ag[46]bylight
FIGURE1.5 (A)Conceptforlight-controlleddrugdeliveryinnanotechnology.(B)Underlyingmechanismsof lightabsorptionbyphotocleavablelinkers:one-photon(upper)andtwo-photon(lower). NP,nanoparticle.
absorptionintherangeofVisandNIRlight(500 800nm).Theproducedheatundergoes rapiddissipationintheareaaroundtheNP,offeringamechanismforelevatinglocaltemperaturethatishighenoughtoinducealethaleffectinpathogensandcancercellsinclose proximity[132,133].ThisphotothermaleffectservesasamechanisticbasisforPTT[129,132].
(A)
(B)
FIGURE1.6 (A)PlasmonicphotothermalactivationofAunanorodsand(B)itsapplicationforphotothermal therapy. AuNP,goldnanoparticle. S.K.Choi,Mechanisticbasisoflightinducedcytotoxicityofphotoactivenanomaterials, NanoImpact3 4(2016)81 89.Copyright © 2016Elsevier.
Thistherapeuticmodalityoffersapromisin gopportunityinthetrea tmentofcancersand antibacterialinfections[27 ,53].
Theefficiencyofphotothermalheatingbymetalnanomaterialsvarieswithcorecompositionandstructuralpropertiesincludingsize[133],shape[133 135],andsurfacemorphology [134,136,137].Inparticular,theaspectratio(width length 1)thatdefinestheNPshape playsthemostcriticalroleindeterminingphotothermalefficiency.Thisphotothermalheatingoccursmoreef ficientlyathigheraspectratios,anditsextentispositivelycorrelatedwith theinductionofcytotoxicity[5,138].NonsphericalAunanorodshavinganaspectratio greaterthan1caninducecytotoxicitymoreeffectivelythanthatinducedbyAunanospheres havinganaspectratioof1[133,139,140].
Tumor cell
Cell death
AuNP
(A)
(B)
1.4.3Photodynamictherapy
Asanothertherapeuticmodality,lightstimulationenablesphotoactivenanomaterialsto produceROS[141].Itbelongstoaclassofchemicallyreactivemoleculesthatconsistsof variousspeciesincludingfreeradicals( OH, OOH, NO),superoxideanion( O2 ),orsinglet oxygen(1O2)species[142](Fig.1.7).
ROSproductionoccursthroughlightactivationofeitheraphotoactivecoreorseparately throughsmallphotosensitizermoleculesencapsulatedinsideorattachedtoNPs[141].
FIGURE1.7 (A)Mechanisticbasisofphotodynamictherapy.Light-inducedproductionofreactiveoxygenspecies(ROS)asillustratedwithaphotoactivenanocore(top)andperipherallyattachedphotosensitizermolecules (bottom).(B)ROS-mediatedcellulardamageleadingtocelldeath. S.K.Choi,Mechanisticbasisoflightinducedcytotoxicityofphotoactivenanomaterials,NanoImpact3 4(2016)81 89.Copyright © 2016Elsevier.
AnumberofphotoactivecoreshaveaprovenabilityfordirectROSproductionincluding carbonnanotubes(single-walledandmultiwallednanotubes)[6 ,143, 144 ],fullerene(C 60 ) [66 ,67],GOnanosheet[ 64 ,65 ],nano-TiO2 [4 ,60 62, 145 ]andnano-ZnO[ 63 , 146],andQDs [41 ,147 ].CoreactivationoccursbyirradiationintheUV Visrange(360 600nm).Photosensitizermoleculesarealsoabletoproducesingletoxygen( 1O 2)speciesbyUV Vis irradiation[148].
1.5Summary
Photoactivenanomaterialshavemadeasignificantcontributionintheapplicationofnanotechnologyforphototherapy[7,12 14],imaging[15,16],anddiagnosis[17].Asacontrol, lightirradiationplaysacommonroleindefiningandcharacterizingtheirphotophysical andphotochemicalproperties.LightsourcesforapplicationconsistofUV,Vis,andNIRlight, eachdisplayingadistinctsetofpropertiesinabsorption,scattering,andtissuepenetration.
UsingUVlighthascertaindrawbacksandispartlylimitedbyitsscatteringandsuboptimaldepthofpenetration.However,longUVAoffersoutstandingbene fitsduetoitslackof intrinsiccytotoxicityanditstunableenergy,whichisapplicableforQDimaging,ROSproduction,orenablingalinkercleavageforcontrolleddrugdelivery[7].Vislightalsoplays animportantroleinNPdetection,imaging,anddrugrelease.ItsuseismoreevidentintherapeuticapplicationsforPTTandPDTperformedwithnoblemetalNPs,nano-TiO2,GO,or photosensitizer-conjugatedNPs[22 24].NIRlightoffersbene ficialpropertiessuchaslow lightscatteringwithanabilityfordeeptissuepenetration.Itplaysanessentialroleinimaging applicationsinvivoattheI-BWorII-BW[53].NIRlackssuf ficientenergytoinduceeither photochemicallinkercleavagefordrugdeliveryorNPactivationforPDTorPTT.However, UCNsallowNIR-inducedtherapeuticeffectsviadrugrelease,ROSproduction,photothermal activation,ortheircombination.
Insummary,identifyingtherightlightsourcesishighlycriticalfordesigningandconductinglight-controlledNPsystemsforimaging,drugdelivery,PTT,andPDTassummarizedin Table1.2.Thischapteraimstohelpunderstandthebasicpropertiesoflightfor theoptimaldesignofphotoactivenanomaterials,imagingmethods,andtherapeuticapplications.Detaileddescriptionsoftheseconstitutethesubjectsoftheindividualchaptersthat follow.
Abbreviations
AuNP Goldnanoparticle
CDs Carbondots
CNTs Carbonnanotubes
GO Grapheneoxide
GQD Graphenequantumdot
Hb Hemoglobin
HbO2 Oxygen-boundhemoglobin
I-BW (First)biologicalwindow
II-BW (Second)biologicalwindow
III-BW (Third)biologicalwindow
NIR Near-infrared
NPs Nanometer-sizedparticles
PDT Photodynamictherapy
PTT Photothermaltherapy
QDs Quantumdots
ROS Reactiveoxygenspecies
SWNT Single-walledcarbonnanotube
UCN Upconversionnanocrystal
UV Ultraviolet
UVA Long-wavelengthUV
UVB Medium-wavelengthUV
UVC Short-wavelengthUV
Vis Visible
F Quantumefficiency
Acknowledgments
TheauthorwishestothankfundingsupportovertheyearsbyGlobalInnovationInitiativefromtheBritishCouncil andtheUSDepartmentofState.
References
[1]Y.Xia,W.Li,C.M.Cobley,J.Chen,X.Xia,Q.Zhang,M.Yang,E.C.Cho,P.K.Brown,Goldnanocages:from synthesistotheranosticapplications,Acc.Chem.Res.44(2011)914 924.
[2]M.Haase,H.Schäfer,Upconvertingnanoparticles,Angew.Chem.Int.Ed.50(2011)5808 5829.
[3]G.Chen,H.Qiu,P.N.Prasad,X.Chen,Upconversionnanoparticles:design,nanochemistry,andapplicationsin theranostics,Chem.Rev.114(2014)5161 5214.
[4]M.Dahl,Y.Liu,Y.Yin,Compositetitaniumdioxidenanomaterials,Chem.Rev.114(2014)9853 9889.
[5]M.-C.Daniel,D.Astruc,Goldnanoparticles;assembly,supramolecularchemistry,quantum-size-relatedproperties,andapplicationstowardbiology,catalysis,andnanotechnology,Chem.Rev.104(2004)293 346.
[6]D.Eder,Carbonnanotube inorganichybrids,Chem.Rev.110(2010)1348 1385.
[7]P.T.Wong,S.K.Choi,Mechanismsofdrugreleaseinnanotherapeuticdeliverysystems,Chem.Rev.115(2015) 3388 3432.
[8]P.T.Yin,S.Shah,M.Chhowalla,K.-B.Lee,Design,synthesis,andcharacterizationofgraphene nanoparticle hybridmaterialsforbioapplications,Chem.Rev.115(2015)2483 2531.
[9]D.Astruc,E.Boisselier,C.Ornelas,Dendrimersdesignedforfunctions:fromphysical,photophysical,and supramolecularpropertiestoapplicationsinsensing,catalysis,molecularelectronics,photonics,andnanomedicine,Chem.Rev.110(2010)1857 1959.
[10]D.Astruc,F.Chardac,Dendriticcatalystsanddendrimersincatalysis,Chem.Rev.101(2001)2991 3024.
[11]M.E.Stewart,C.R.Anderton,L.B.Thompson,J.Maria,S.K.Gray,J.A.Rogers,R.G.Nuzzo,Nanostructured plasmonicsensors,Chem.Rev.108(2008)494 521.
[12]O.C.Farokhzad,R.Langer,Impactofnanotechnologyondrugdelivery,ACSNano3(2009)16 20.
[13]J.F.Kukowska-Latallo,K.A.Candido,Z.Cao,S.S.Nigavekar,I.J.Majoros,T.P.Thomas,L.P.Balogh, M.K.Khan,J.R.BakerJr.,Nanoparticletargetingofanticancerdrugimprovestherapeuticresponseinanimal modelofhumanepithelialcancer,CancerRes.65(2005)5317 5324.
[14]P.T.Wong,D.Chen,S.Tang,S.Yanik,M.Payne,J.Mukherjee,A.Coulter,K.Tang,K.Tao,K.Sun, J.R.BakerJr.,S.K.Choi,Modularintegrationofupconversionnanocrystal-dendrimercompositesforfolate receptor-specificnearinfraredimagingandlighttriggereddrugrelease,Small11(2015)6078 6090.
[15]X.Shi,S.H.Wang,S.D.Swanson,S.Ge,Z.Cao,M.E.VanAntwerp,K.J.Landmark,J.R.BakerJr.,Dendrimerfunctionalizedshell-crosslinkedironoxidenanoparticlesforin-vivomagneticresonanceimagingoftumors, Adv.Mater.20(2008)1671 1678.
[16]E.-K.Lim,T.Kim,S.Paik,S.Haam,Y.-M.Huh,K.Lee,Nanomaterialsfortheranostics:recentadvancesand futurechallenges,Chem.Rev.115(2015)327 394.
[17]N.L.Rosi,C.A.Mirkin,Nanostructuresinbiodiagnostics,Chem.Rev.105(2005)1547 1562.
[18]X.Xue,Y.Zhao,L.Dai,X.Zhang,X.Hao,C.Zhang,S.Huo,J.Liu,C.Liu,A.Kumar,W.-Q.Chen,G.Zou, X.-J.Liang,Spatiotemporaldrugreleasevisualizedthroughadrugdeliverysystemwithtunable aggregation-inducedemission,Adv.Mater.26(2014)712 717.
[19]A.Benedetto,G.Accetta,Y.Fujita,G.Charras,Spatiotemporalcontrolofgeneexpressionusingmicrofluidics, LabChip14(2014)1336 1347.
[20]T.Faal,P.Wong,S.Tang,A.Coulter,Y.Chen,C.H.Tu,J.R.Baker,S.K.Choi,M.A.Inlay,4-Hydroxytamoxifen probesforlight-dependentspatiotemporalcontrolofCre-ERmediatedreportergeneexpression,Mol.Biosyst. 11(2015)783 790.
[21]J.M.Chan,L.Zhang,R.Tong,D.Ghosh,W.Gao,G.Liao,K.P.Yuet,D.Gray,J.-W.Rhee,J.Cheng,G.Golomb, P.Libby,R.Langer,O.C.Farokhzad,Spatiotemporalcontrolleddeliveryofnanoparticlestoinjuredvasculature,Proc.Natl.Acad.Sci.U.S.A.107(2010)2213 2218.
[22]J.Li,F.Cheng,H.Huang,L.Li,J.-J.Zhu,Nanomaterial-basedactivatableimagingprobes:fromdesigntobiologicalapplications,Chem.Soc.Rev.44(2015)7855 7880.
[23]O.S.Wolfbeis,Anoverviewofnanoparticlescommonlyusedin fluorescentbioimaging,Chem.Soc.Rev.44 (2015)4743 4768.
[24]J.Nicolas,S.Mura,D.Brambilla,N.Mackiewicz,P.Couvreur,Design,functionalizationstrategiesandbiomedicalapplicationsoftargetedbiodegradable/biocompatiblepolymer-basednanocarriersfordrugdelivery, Chem.Soc.Rev.42(2013)1147 1235.
[25]S.K.Choi,Mechanisticbasisoflightinducedcytotoxicityofphotoactivenanomaterials,NanoImpact3 4(2016) 81 89.
[26]V.G.Deepagan,D.G.You,W.Um,H.Ko,S.Kwon,K.Y.Choi,G.-R.Yi,J.Y.Lee,D.S.Lee,K.Kim,I.C.Kwon, J.H.Park,Long-circulatingAu-TiO2 nanocompositeasasonosensitizerforROS-mediatederadicationofcancer, NanoLett.16(2016)6257 6264.
[27]F.Xu,M.Hu,C.Liu,S.K.Choi,Yolk-structuredmultifunctionalup-conversionnanoparticlesforsynergistic photodynamic-sonodynamicantibacterialresistancetherapy,Biomater.Sci.5(2017)678 685.
[28]D.F.Swinehart,Thebeer-lambertlaw,J.Chem.Educ.39(1962)333 335.
[29]W.S.Pegau,D.Gray,J.R.V.Zaneveld,Absorptionandattenuationofvisibleandnear-infraredlightinwater: dependenceontemperatureandsalinity,Appl.Opt.36(1997)6035 6046.
[30]F.E.Robles,S.Chowdhury,A.Wax,Assessinghemoglobinconcentrationusingspectroscopicopticalcoherence tomographyforfeasibilityoftissuediagnostics,Biomed.Opt.Express1(2010)310 317.
[31]W.Qian,X.Huang,B.Kang,M.A.El-Sayed,Dark-fieldlightscatteringimagingoflivingcancercellcomponent frombirththroughdivisionusingbioconjugatedgoldnanoprobes,J.Biomed.Opt.15(2010)46025 46029.
[32]S.H.Yun,S.J.J.Kwok,Lightindiagnosis,therapyandsurgery,Nat.Biomed.Eng.1(2017)0008.
[33]L.J.Steven,Opticalpropertiesofbiologicaltissues:areview,Phys.Med.Biol.58(2013)R37.
[34]A.M.Smith,M.C.Mancini,S.Nie,Bioimaging:secondwindowforinvivoimaging,Nat.Nanotechnol.4(2009) 710 711.
[35]R.Weissleder,Aclearervisionforinvivoimaging,Nat.Biotechnol.19(2001)316.
[36]G.M.Hale,M.R.Querry,Opticalconstantsofwaterinthe200-nmto200-mmwavelengthregion,Appl.Opt.12 (1973)555 563.
[37]A.Gupta,P.Avci,T.Dai,Y.-Y.Huang,M.R.Hamblin,Ultravioletradiationinwoundcare:sterilizationand stimulation,Adv.WoundCare2(2013)422 437.
[38]S.K.Choi,T.Thomas,M.Li,A.Kotlyar,A.Desai,J.R.BakerJr.,Light-controlledreleaseofcageddoxorubicin fromfolatereceptor-targetingPAMAMdendrimernanoconjugate,Chem.Commun.46(2010)2632 2634.
[39]P.Wong,S.Tang,J.Mukherjee,K.Tang,K.Gam,D.Isham,C.Murat,R.Sun,J.R.Baker,S.K.Choi, Light-controlledactivereleaseofphotocagedciprofloxacinforlipopolysaccharide-targeteddrugdeliveryusing dendrimerconjugates,Chem.Commun.52(2016)10357 10360.
[40]P.T.Wong,S.Tang,J.Cannon,D.Chen,R.Sun,J.Lee,J.Phan,K.Tao,K.Sun,B.Chen,J.R.Baker,S.K.Choi, Photocontrolledreleaseofdoxorubicinconjugatedthroughathioacetalphotocageinfolate-targetednanodeliverysystems,Bioconjug.Chem.28(2017)3016 3028.
[41]J.Zhou,Y.Yang,C.-y.Zhang,Towardbiocompatiblesemiconductorquantumdots:frombiosynthesisandbioconjugationtobiomedicalapplication,Chem.Rev.115(2015)11669 11717.
[42]D.Geißler,C.Würth,C.Wolter,H.Weller,U.Resch-Genger,ExcitationwavelengthdependenceofthephotoluminescencequantumyieldanddecaybehaviorofCdSe/CdSquantumdot/quantumrodswithdifferent aspectratios,Phys.Chem.Chem.Phys.19(2017)12509 12516.
[43]X.Michalet,F.F.Pinaud,L.A.Bentolila,J.M.Tsay,S.Doose,J.J.Li,G.Sundaresan,A.M.Wu,S.S.Gambhir, S.Weiss,Quantumdotsforlivecells,invivoimaging,anddiagnostics,Science307(2005)538 544.
[44]R.Justin,S.Roman,D.Chen,K.Tao,X.Geng,R.T.Grant,S.MacNeil,K.Sun,B.Chen,Biodegradableand conductivechitosan-graphenequantumdotnanocompositemicroneedlesfordeliveryofbothsmallandlarge molecularweighttherapeutics,RSCAdv.5(2015)51934 51946.
[45]X.T.Zheng,A.Ananthanarayanan,K.Q.Luo,P.Chen,Glowinggraphenequantumdotsandcarbondots: properties,syntheses,andbiologicalapplications,Small11(2015)1620 1636.
[46]Y.-H.Hsin,C.-F.Chen,S.Huang,T.-S.Shih,P.-S.Lai,P.J.Chueh,Theapoptoticeffectofnanosilverismediated byaROS-andJNK-dependentmechanisminvolvingthemitochondrialpathwayinNIH3T3cells,Toxicol.Lett. 179(2008)130 139.
[47]X.Wu,L.Zhou,Y.Su,C.-M.Dong,Plasmonic,targeted,anddualdrugs-loadedpolypeptidecompositenanoparticlesforsynergisticcocktailchemotherapywithphotothermaltherapy,Biomacromolecules17(2016) 2489 2501.
[48]N.M.Idris,M.K.G.Jayakumar,A.Bansal,Y.Zhang,Upconversionnanoparticlesasversatilelightnanotransducersforphotoactivationapplications,Chem.Soc.Rev.44(2015)1449 1478.
[49]J.-N.Liu,W.-B.Bu,J.-L.Shi,Silicacoatedupconversionnanoparticles:aversatileplatformforthedevelopment ofefficienttheranostics,Acc.Chem.Res.48(2015)1797 1805.
[50]F.Ai,Q.Ju,X.Zhang,X.Chen,F.Wang,G.Zhu,Acore-shell-shellnanoplatformupconvertingnear-infrared lightat808nmforluminescenceimagingandphotodynamictherapyofcancer,Sci.Rep.5(2015)10785.
[51]D.Chen,R.Tao,K.Tao,B.Chen,S.K.Choi,Q.Tian,Y.Xu,G.Zhou,K.Sun,Efficacydependenceofphotodynamictherapymediatedbyupconversionnanoparticles:subcellularpositioningandirradiationproductivity,Small13(2017)1602053.
[52]Q.Tian,K.Tao,W.Li,K.Sun,Hot-injectionapproachfortwo-stageformedhexagonalNaYF4:Yb,Ernanocrystals,J.Phys.Chem.C115(2011)22886 22892.
[53]F.Xu,Y.Zhao,M.Hu,p.zhang,N.Kong,r.Liu,C.Liu,S.K.Choi,Lanthanide-dopedcore-shellnanoparticles asamultimodalityplatformforimagingandphotodynamictherapy,Chem.Commun.54(2018)9525 9528.
[54]K.Welsher,Z.Liu,S.P.Sherlock,J.T.Robinson,Z.Chen,D.Daranciang,H.Dai,Aroutetobrightly fluorescent carbonnanotubesfornear-infraredimaginginmice,Nat.Nanotechnol.4(2009)773.
[55]I.Celardo,J.Z.Pedersen,E.Traversa,L.Ghibelli,Pharmacologicalpotentialofceriumoxidenanoparticles, Nanoscale3(2011)1411 1420.
[56]J.Bai,Y.Liu,X.Jiang,MultifunctionalPEG-GO/CuSnanocompositesfornear-infraredchemo-photothermal therapy,Biomaterials35(2014)5805 5813.
[57]S.Ma,S.Zhan,Y.Jia,Q.Zhou,SuperiorantibacterialactivityofFe3O4-TiO2 nanosheetsundersolarlight,ACS Appl.Mater.Interfaces7(2015)21875 21883.
[58]G.E.LeCroy,F.Messina,A.Sciortino,C.E.Bunker,P.Wang,K.A.S.Fernando,Y.-P.Sun,Characteristicexcitationwavelengthdependenceof fluorescenceemissionsincarbon “quantum” dots,J.Phys.Chem.C121(2017) 28180 28186.
[59]A.Amirshaghaghi,L.Yan,J.Miller,Y.Daniel,J.M.Stein,T.M.Busch,Z.Cheng,A.Tsourkas,Chlorine6-coated superparamagneticironoxidenanoparticle(SPION)nanoclustersasatheranosticagentfordual-modeimaging andphotodynamictherapy,Sci.Rep.9(2019)2613.
[60]R.J.Miller,S.Bennett,A.A.Keller,S.Pease,H.S.Lenihan,TiO2 nanoparticlesarephototoxictomarinephytoplankton,PLoSOne7(2012)e30321.
[61]K.Pathakoti,S.Morrow,C.Han,M.Pelaez,X.He,D.D.Dionysiou,H.-M.Hwang,Photoinactivationof Escherichiacoli bysulfur-dopedandnitrogen fluorine-codopedTiO2 nanoparticlesundersolarsimulatedlightand visiblelightirradiation,Environ.Sci.Technol.47(2013)9988 9996.
[62]W.F.Vevers,A.N.Jha,Genotoxicandcytotoxicpotentialoftitaniumdioxide(TiO2)nanoparticleson fishcells invitro,Ecotoxicology17(2008)410 420.
[63]C.-C.Wang,S.Wang,Q.Xia,W.He,J.-J.Yin,P.P.Fu,J.-H.Li,Phototoxicityofzincoxidenanoparticlesin HaCaTkeratinocytes-generationofoxidativeDNAdamageduringUVAandvisiblelightirradiation, J.Nanosci.Nanotechnol.13(2013)3880 3888.
[64]J.Ge,M.Lan,B.Zhou,W.Liu,L.Guo,H.Wang,Q.Jia,G.Niu,X.Huang,H.Zhou,X.Meng,P.Wang,C.-S.Lee, W.Zhang,X.Han,Agraphenequantumdotphotodynamictherapyagentwithhighsingletoxygengeneration, Nat.Commun.5(2014)4596.
[65]L.Zhou,S.Wei,X.Ge,J.Zhou,H.Jiang,F.Li,J.Shen,Combinationofchemotherapyandphotodynamic therapyusinggrapheneoxideasdrugdeliverysystem,J.Photochem.Photobiol.B135(2014)7 16.
[66]P.Mroz,G.P.Tegos,H.Gali,T.Wharton,T.Sarna,M.R.Hamblin,Photodynamictherapywithfullerenes, Photochem.Photobiol.Sci.6(2007)1139 1149.
[67]B.Zhao,P.J.Bilski,Y.-Y.He,L.Feng,C.F.Chignell,Photo-inducedreactiveoxygenspeciesgenerationby differentwater-solublefullerenes(C60)andtheircytotoxicityinhumankeratinocytes,Photochem.Photobiol. 84(2008)1215 1223.
[68]S.K.Choi,M.Verma,J.Silpe,R.E.Moody,K.Tang,J.J.Hanson,J.R.BakerJr.,Aphotochemicalapproachfor controlleddrugreleaseintargeteddrugdelivery,Bioorg.Med.Chem.20(2012)1281 1290.
[69]R.Reinhard,B.F.Schmidt,Nitrobenzyl-basedphotosensitivephosphoramidemustards:synthesisandphotochemicalpropertiesofpotentialprodrugsforcancertherapy,J.Org.Chem.63(1998)2434 2441.
[70]L.Niu,K.R.Gee,K.Schaper,G.P.Hess,Synthesisandphotochemicalpropertiesofakainateprecursorand activationofkainateandAMPAreceptorchannelsonamicrosecondtimescale,Biochemistry35(1996) 2030 2036.
[71]L.Peng,M.Goeldner,Synthesisandcharacterizationofphotolabilecholineprecursorsasreversibleinhibitors ofcholinesterases:releaseofcholineinthemicrosecondtimerange,J.Org.Chem.61(1996)185 191.
[72]A.Momotake,N.Lindegger,E.Niggli,R.J.Barsotti,G.C.R.Ellis-Davies,Thenitrodibenzofuranchromophore:a newcaginggroupforultra-efficientphotolysisinlivingcells,Nat.Methods3(2006)35 40.
[73]F.M.Rossi,M.Margulis,C.-M.Tang,J.P.Y.Kao,N-Nmoc-l-glutamate,anewcagedglutamatewithhigh chemicalstabilityandlowpre-photolysisactivity,J.Biol.Chem.272(1997)32933 32939.
[74]F.M.Rossi,J.P.Y.Kao,Nmoc-DBHQ,anewcagedmoleculeformodulatingsarcoplasmic/endoplasmicreticulumCa2þ ATPaseactivitywithlight flashes,J.Biol.Chem.272(1997)3266 3271.
[75]S.Kantevari,S.Passlick,H.-B.Kwon,M.T.Richers,B.L.Sabatini,G.C.R.Ellis-Davies,Developmentofanionicallydecoratedcagedneurotransmitters:invitrocomparisonof7-nitroindolinyl-and2-(p-phenyl-onitrophenyl)propyl-basedphotochemicalprobes,ChemBioChem17(2016)953 961.
[76]R.Johnsson,J.G.Lackey,J.J.Bogojeski,M.J.Damha,Newlightlabilelinkerforsolidphasesynthesisof 20 -O-acetalesteroligonucleotidesandapplicationstosiRNAprodrugdevelopment,Bioorg.Med.Chem.Lett. 21(2011)3721 3725.
[77]W.Lin,D.Peng,B.Wang,L.Long,C.Guo,J.Yuan,Amodelforlight-triggeredporphyrinanticancerprodrugs basedonan o-nitrobenzylphotolabilegroup,Eur.J.Org.Chem.2008(2008)793 796.
[78]M.Noguchi,M.Skwarczynski,H.Prakash,S.Hirota,T.Kimura,Y.Hayashi,Y.Kiso,Developmentofnovel water-solublephotocleavableprotectivegroupanditsapplicationfordesignofphotoresponsivepaclitaxelprodrugs,Bioorg.Med.Chem.16(2008)5389 5397.
[79]X.Hu,J.Tian,T.Liu,G.Zhang,S.Liu,Photo-triggeredreleaseofcagedcamptothecinprodrugsfromdually responsiveshellcross-linkedmicelles,Macromolecules46(2013)6243 6256.
[80]F.Huang,W.-C.Liao,Y.S.Sohn,R.Nechushtai,C.-H.Lu,I.Willner,Light-responsiveandpH-responsiveDNA microcapsulesforcontrolledreleaseofloads,J.Am.Chem.Soc.138(2016)8936 8945.
[81]D.J.Sauers,M.K.Temburni,J.B.Biggins,L.M.Ceo,D.S.Galileo,J.T.Koh,Light-activatedgeneexpression directssegregationofCo-culturedcellsinvitro,ACSChem.Biol.5(2010)313 320.
[82]S.S.Agasti,A.Chompoosor,C.-C.You,P.Ghosh,C.K.Kim,V.M.Rotello,Photoregulatedreleaseofcaged anticancerdrugsfromgoldnanoparticles,J.Am.Chem.Soc.131(2009)5728 5729.
[83]I.Pavlovic,D.T.Thakor,J.R.Vargas,C.J.McKinlay,S.Hauke,P.Anstaett,R.C.Camuña,L.Bigler,G.Gasser, C.Schultz,P.A.Wender,H.J.Jessen,CellulardeliveryandphotochemicalreleaseofacagedinositolpyrophosphateinducesPH-domaintranslocationincellulo,Nat.Commun.7(2016)10622.
[84]S.K.Choi,T.P.Thomas,M.-H.Li,A.Desai,A.Kotlyar,J.R.Baker,Photochemicalreleaseofmethotrexatefrom folatereceptor-targetingPAMAMdendrimernanoconjugate,Photochem.Photobiol.Sci.11(2012)653 660.
[85]M.A.Inlay,V.Choe,S.Bharathi,N.B.Fernhoff,J.R.Baker,I.L.Weissman,S.K.Choi,Synthesisofaphotocaged tamoxifenforlight-dependentactivationofCre-ERrecombinase-drivengenemodification,Chem.Commun.49 (2013)4971 4973.
[86]K.H.Link,Y.Shi,J.T.Koh,Lightactivatedrecombination,J.Am.Chem.Soc.127(2005)13088 13089.
[87]P.T.Wong,S.Tang,J.Cannon,J.Mukherjee,D.Isham,K.Gam,M.Payne,S.A.Yanik,J.R.Baker,S.K.Choi, Athioacetalphotocagedesignedfordualrelease:applicationinthequantitationoftherapeuticreleasebysynchronousreporterdecaging,ChemBioChem18(2017)126 135.
[88]B.R.Sarode,K.Kover,P.Y.Tong,C.Zhang,S.H.Friedman,Lightcontrolofinsulinreleaseandbloodglucose usinganinjectablephotoactivateddepot,Mol.Pharm.13(2016)3835 3841.
[89]Q.Lin,Q.Huang,C.Li,C.Bao,Z.Liu,F.Li,L.Zhu,Anticancerdrugreleasefromamesoporoussilicabased nanophotocageregulatedbyeitheraone-ortwo-photonprocess,J.Am.Chem.Soc.132(2010)10645 10647.
[90]T.Furuta,S.S.H.Wang,J.L.Dantzker,T.M.Dore,W.J.Bybee,E.M.Callaway,W.Denk,R.Y.Tsien,Brominated 7-hydroxycoumarin-4-ylmethyls:photolabileprotectinggroupswithbiologicallyusefulcross-sectionsfortwo photonphotolysis,Proc.Natl.Acad.Sci.U.S.A.96(1999)1193 1200.
[91]X.Li,L.Xing,K.Zheng,P.Wei,L.Du,M.Shen,X.Shi,Formationofgoldnanostar-coatedhollowmesoporous silicafortumormultimodalityimagingandphotothermaltherapy,ACSAppl.Mater.Interfaces9(2017) 5817 5827.
[92]M.Skwarczynski,M.Noguchi,S.Hirota,Y.Sohma,T.Kimura,Y.Hayashi,Y.Kiso,Developmentof firstphotoresponsiveprodrugofpaclitaxel,Bioorg.Med.Chem.Lett.16(2006)4492 4496.
[93]R.R.Nani,A.P.Gorka,T.Nagaya,T.Yamamoto,J.Ivanic,H.Kobayashi,M.J.Schnermann,Invivoactivation ofduocarmycin antibodyconjugatesbynear-infraredlight,ACSCent.Sci.3(2017)329 337.
[94]P.T.Wong,E.W.Roberts,S.Tang,J.Mukherjee,J.Cannon,A.J.Nip,K.Corbin,M.F.Krummel,S.K.Choi, Controlofanunusualphoto-claisenrearrangementincoumarincagedtamoxifenthroughanextendedspacer, ACSChem.Biol.12(2017)1001 1010.
[95]L.Liang,Y.Lu,R.Zhang,A.Care,T.A.Ortega,S.M.Deyev,Y.Qian,A.V.Zvyagin,Deep-penetratingphotodynamictherapywithKillerRedmediatedbyupconversionnanoparticles,ActaBiomater.51(2017)461 470.
[96]M.K.Gnanasammandhan,N.M.Idris,A.Bansal,K.Huang,Y.Zhang,Near-IRphotoactivationusingmesoporoussilica-coatedNaYF4:Yb,Er/Tmupconversionnanoparticles,Nat.Protoc.11(2016)688 713.
[97]L.Zhao,J.Peng,Q.Huang,C.Li,M.Chen,Y.Sun,Q.Lin,L.Zhu,F.Li,Near-infraredphotoregulateddrug releaseinlivingtumortissueviayolk-shellupconversionnanocages,Adv.Funct.Mater.24(2014)363 371.
[98]Y.Yang,Q.Shao,R.Deng,C.Wang,X.Teng,K.Cheng,Z.Cheng,L.Huang,Z.Liu,X.Liu,B.Xing,Invitro andinvivouncagingandbioluminescenceimagingbyusingphotocagedupconversionnanoparticles,Angew. Chem.Int.Ed.51(2012)3125 3129.
[99]M.K.G.Jayakumar,N.M.Idris,Y.Zhang,Remoteactivationofbiomoleculesindeeptissuesusingnearinfrared-to-UVupconversionnanotransducers,Proc.Natl.Acad.Sci.U.S.A.109(2012)8483 8488.
[100]C.Alvarez-Lorenzo,L.Bromberg,A.Concheiro,Light-sensitiveintelligentdrugdeliverysystems,Photochem. Photobiol.85(2009)848 860.
[101]R.Tong,D.S.Kohane,Sheddinglightonnanomedicine,WileyInterdiscip.Rev.4(2012)638 662.
[102]R.R.Anderson,J.A.Parrish,Theopticsofhumanskin,J.Investig.Dermatol.77(1981)13 19.
[103]D.K.Sinha,P.Neveu,N.Gagey,I.Aujard,T.L.Saux,C.Rampon,C.Gauron,K.Kawakami,C.Leucht,L.BallyCuif,M.Volovitch,D.Bensimon,L.Jullien,S.Vriz,PhotoactivationoftheCreERT2recombinaseforconditionalsite-specificrecombinationwithhighspatiotemporalresolution,Zebrafish7(2010)199 204.
[104]Y.Tanaka,K.Matsuo,S.Yuzuriha,H.Yan,J.Nakayama,Non-thermalcytocidaleffectofinfraredirradiation onculturedcancercellsusingspecializeddevice,CancerSci.101(2010)1396 1402.
[105]J.V.Frangioni,Invivonear-infrared fluorescenceimaging,Curr.Opin.Chem.Biol.7(2003)626 634.
[106]A.P.Gorka,R.R.Nani,J.Zhu,S.Mackem,M.J.Schnermann,Anear-IRuncagingstrategybasedoncyanine photochemistry,J.Am.Chem.Soc.136(2014)14153 14159.
[107]B.delRosal,I.Villa,D.Jaque,F.Sanz-Rodríguez,Invivoautofluorescenceinthebiologicalwindows:therole ofpigmentation,J.Biophot.9(2016)1059 1067.
[108]A.Shrestha,A.Kishen,Polycationicchitosan-conjugatedphotosensitizerforantibacterialphotodynamictherapy,Photochem.Photobiol.88(2012)577 583.
[109]N.Nishiyama,Y.Morimoto,W.-D.Jang,K.Kataoka,Designanddevelopmentofdendrimerphotosensitizerincorporatedpolymericmicellesforenhancedphotodynamictherapy,Adv.DrugDeliv.Rev.61(2009) 327 338.
[110]G.Mayer,A.Heckel,Biologicallyactivemoleculeswithalightswitch,Angew.Chem.Int.Ed.45(2006) 4900 4921.
[111]T.Dvir,M.R.Banghart,B.P.Timko,R.Langer,D.S.Kohane,Photo-Targetednanoparticles,NanoLett.10(2010) 250 254.
[112]G.Han,C.-C.You,B.-j.Kim,R.S.Turingan,N.S.Forbes,C.T.Martin,V.M.Rotello,Light-regulatedreleaseof DNAanditsdeliverytonucleibymeansofphotolabilegoldnanoparticles,Angew.Chem.Int.Ed.45(2006) 3165 3169.
[113]M.J.Hansen,W.A.Velema,M.M.Lerch,W.Szymanski,B.L.Feringa,Wavelength-selectivecleavageofphotoprotectinggroups:strategiesandapplicationsindynamicsystems,Chem.Soc.Rev.44(2015)3358 3377.
[114]G.Dormán,G.D.Prestwich,Usingphotolabileligandsindrugdiscoveryanddevelopment,TrendsBiotechnol. 18(2000)64 77.
[115]M.Goard,G.Aakalu,O.D.Fedoryak,C.Quinonez,J.StJulien,S.J.Poteet,E.M.Schuman,T.M.Dore,Lightmediatedinhibitionofproteinsynthesis,Chem.Biol.12(2005)685 693.
[116]P.Neveu,I.Aujard,C.Benbrahim,T.LeSaux,J.-F.Allemand,S.Vriz,D.Bensimon,L.Jullien,Acagedretinoic acidforone-andtwo-photonexcitationinzebrafishembryos,Angew.Chem.Int.Ed.47(2008)3744 3746.
[117]I.Aujard,C.Benbrahim,M.Gouget,O.Ruel,J.-B.Baudin,P.Neveu,L.Jullien,o-Nitrobenzylphotolabileprotectinggroupswithred-shiftedabsorption:synthesesanduncagingcross-sectionsforone-andtwo-photon excitation,Chem.EurJ.12(2006)6865 6879.
[118]Y.Venkatesh,S.Nandi,M.Shee,B.Saha,A.Anoop,N.D.P.Singh,Bis-acetylcarbazole:aphotoremovableprotectinggroupforsequentialreleaseoftwodifferentfunctionalgroupsanditsapplicationintherapeuticrelease, Eur.J.Org.Chem.2017(2017)6121 6130.
[119]Y.Venkatesh,Y.Rajesh,S.Karthik,A.C.Chetan,M.Mandal,A.Jana,N.D.P.Singh,Photocagingofsingleand dual(similarordifferent)carboxylicandaminoacidsbyacetylcarbazoleanditsapplicationasdualdrug deliveryincancertherapy,J.Org.Chem.81(2016)11168 11175.
[120]Y.M.Li,J.Shi,R.Cai,X.Chen,Z.F.Luo,Q.X.Guo,Newquinoline-basedcaginggroupssynthesizedforphotoregulationofaptameractivity,J.Photochem.Photobiol.A211(2010)129 134.
[121]H.Du,M.K.Boyd,The9-xanthenylmethylgroup:anovelphotocleavableprotectinggroupforamines, TetrahedronLett.42(2001)6645 6647.
[122]A.Paul,R.Mengji,O.A.Chandy,S.Nandi,M.Bera,A.Jana,A.Anoop,N.D.P.Singh,ESIPT-induced fluorescento-hydroxycinnamate:aself-monitoringphototriggerforpromptimage-guideduncagingofalcohols,Org. Biomol.Chem.15(2017)8544 8552.
[123]K.R.Gee,L.W.Kueper,J.Barnes,G.Dudley,R.S.Givens,Desylestersofaminoacidneurotransmitters.Phototriggersforbiologicallyactiveneurotransmitters,J.Org.Chem.61(1996)1228 1233.
[124]D.S.Esen,N.Arsu,J.P.DaSilva,S.Jockusch,N.J.Turro,Benzointypephotoinitiatorforfreeradicalpolymerization,J.Polym.Sci.PartA51(2013)1865 1871.
[125]N.Qvit,G.Monderer-Rothkoff,A.Ido,D.E.Shalev,O.Amster-Choder,C.Gilon,Developmentofbifunctional photoactivatablebenzophenoneprobesandtheirapplicationtoglycosidesubstrates,Pept.Sci.90(2008) 526 536.
[126]N.Kotzur,B.Briand,M.Beyermann,V.Hagen,Wavelength-selectivephotoactivatableprotectinggroupsfor thiols,J.Am.Chem.Soc.131(2009)16927 16931.
[127]A.Rodrigues-Correia,X.M.M.Weyel,A.Heckel,Fourlevelsofwavelength-selectiveuncagingforoligonucleotides,Org.Lett.15(2013)5500 5503.
[128]T.Narumi,K.Miyata,A.Nii,K.Sato,N.Mase,T.Furuta,7-Hydroxy-N-methylquinoliniumchromophore:a photolabileprotectinggroupforblue-lightuncaging,Org.Lett.20(2018)4178 4182.
[129]H.Chen,L.Shao,Q.Li,J.Wang,Goldnanorodsandtheirplasmonicproperties,Chem.Soc.Rev.42(2013) 2679 2724.
[130]Y.Zhou,Y.Hu,W.Sun,S.Lu,C.Cai,C.Peng,J.Yu,R.Popovtzer,M.Shen,X.Shi,Radiotherapy-sensitized tumorphotothermalablationusing g-polyglutamicacidnanogelsloadedwithpolypyrrole,Biomacromolecules 19(2018)2034 2042.