Photonanotechnology for therapeutics and imaging 1st edition ph.d. choi - The full ebook set is avai

Page 1


https://ebookmass.com/product/photonanotechnology-fortherapeutics-and-imaging-1st-edition-ph-d-choi/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Many-Sorted Algebras for Deep Learning and Quantum Technology 1st Edition

https://ebookmass.com/product/many-sorted-algebras-for-deep-learningand-quantum-technology-1st-edition-giardina-ph-d/

ebookmass.com

Reorienting Ozu: A Master and His Influence 1st Edition

https://ebookmass.com/product/reorienting-ozu-a-master-and-hisinfluence-1st-edition-jinhee-choi/

ebookmass.com

Biomaterials for cancer therapeutics: evolution and innovation Second Edition Park

https://ebookmass.com/product/biomaterials-for-cancer-therapeuticsevolution-and-innovation-second-edition-park/

ebookmass.com

Machine Learning for Time Series Forecasting with Python

https://ebookmass.com/product/machine-learning-for-time-seriesforecasting-with-python-francesca-lazzeri/

ebookmass.com

India–Africa Partnerships for Food Security and Capacity

Building : South–South Cooperation 1st Edition Renu Modi

https://ebookmass.com/product/india-africa-partnerships-for-foodsecurity-and-capacity-building-south-south-cooperation-1st-editionrenu-modi/

ebookmass.com

The Gene's-Eye View of Evolution 1st Edition J. Arvid Ågren

https://ebookmass.com/product/the-genes-eye-view-of-evolution-1stedition-j-arvid-agren/

ebookmass.com

Handbook of Metal Injection Molding 2nd Edition Heaney

https://ebookmass.com/product/handbook-of-metal-injection-molding-2ndedition-heaney/

ebookmass.com

Night of the Billionaire Wolf Terry Spear

https://ebookmass.com/product/night-of-the-billionaire-wolf-terryspear-3/

ebookmass.com

(eTextbook PDF) for Sociology in Modules 5th Edition by

https://ebookmass.com/product/etextbook-pdf-for-sociology-inmodules-5th-edition-by-richard-t-schaefer/

ebookmass.com

El teléfono negro Joe Hill

https://ebookmass.com/product/el-telefono-negro-joe-hill/

ebookmass.com

PHOTONANOTECHNOLOGY FORTHERAPEUTICSAND IMAGING

MichiganNanotechnologyInstituteforMedicineandBiologicalSciences, andDepartmentofInternalMedicine,UniversityofMichiganMedicalSchool, AnnArbor,MI,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-817840-9

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: SimonHolt

EditorialProjectManager: PeterAdamson

ProductionProjectManager: NirmalaArumugam

CoverDesigner: GregHarris

TypesetbyTNQTechnologies

Contributors

SamirAcherar UniversitédeLorraine,LaboratoiredeChimiePhysiqueMacromoléculaire, UMR7375CNRS,Nancy,France

ShaswatBarua SchoolofMechanicaland AerospaceEngineering,QueenUniversity Belfast,Belfast,UnitedKingdom;Department ofChemistry,SchoolofBasicScience,Assam KazirangaUniversity,Jorhat,Assam,India

AminaBen-Mihoub UniversitédeLorraine, LaboratoiredeChimiePhysiqueMacromoléculaire,UMR7375CNRS,Nancy,France

BiqiongChen SchoolofMechanicalandAerospaceEngineering,QueenUniversityBelfast, Belfast,UnitedKingdom

SeokKiChoi MichiganNanotechnologyInstituteforMedicineandBiologicalSciences,and DepartmentofInternalMedicine,Universityof MichiganMedicalSchool,AnnArbor,MI, UnitedStates

Chang-MingDong SchoolofChemistryand ChemicalEngineering,ShanghaiKeyLaboratoryofElectricalInsulationandThermalAging,ShanghaiJiaoTongUniversity,Shanghai, People’sRepublicofChina

CélineFrochot UniversitédeLorraine,LaboratoireRéactionsetGéniedesProcédés,UMR 7274CNRS,Nancy,France

XiangshuaiGeng DepartmentofMaterialsScienceandEngineering,UniversityofShef field, Sheffield,UnitedKingdom

MinHu DepartmentofChemistry,Schoolof Science,Xi’anJiaotongUniversity,ShaanXi Province,Xi’an,People’sRepublicofChina

DuLi StateKeyLaboratoryforModificationof ChemicalFiberandPolymerMaterials,College ofChemistry,ChemicalEngineeringandBiotechnology,DonghuaUniversity,Shanghai, People’sRepublicofChina

WenbinLiu DepartmentofChemistry,School ofScience,Xi’anJiaotongUniversity,ShaanXi Province,Xi’an,People’sRepublicofChina

AlbertMoussaron UniversitédeLorraine,LaboratoiredeChimiePhysiqueMacromoléculaire,UMR7375CNRS,Nancy,France; UniversitédeLorraine,LaboratoireRéactions etGéniedesProcédés,UMR7274CNRS, Nancy,France

XiangyangShi StateKeyLaboratoryforModificationofChemicalFiberandPolymerMaterials,CollegeofChemistry,Chemical EngineeringandBiotechnology,Donghua University,Shanghai,People’sRepublicof China

KangSun StateKeyLaboratoryofMetalMatrix Composites,SchoolofMaterialsScienceand Engineering,ShanghaiJiaoTongUniversity, Shanghai,People’sRepublicofChina

KeTao StateKeyLaboratoryofMetalMatrix Composites,SchoolofMaterialsScienceand Engineering,ShanghaiJiaoTongUniversity, Shanghai,People’sRepublicofChina

RégisVanderesse UniversitédeLorraine, LaboratoiredeChimiePhysiqueMacromoléculaire,UMR7375CNRS,Nancy,France

XingjieWu SchoolofPharmaceuticalScience, GuizhouMedicalUniversity,Guizhou, People’sRepublicofChina

ZahraaYoussef UniversitédeLorraine,LaboratoireRéactionsetGéniedesProcédés,UMR 7274CNRS,Nancy,France

ChangchangZhang StateKeyLaboratoryfor ModificationofChemicalFiberandPolymer Materials,CollegeofChemistry,Chemical EngineeringandBiotechnology,DonghuaUniversity,Shanghai,People’sRepublicofChina

Preface

Photonanotechnologyisanemerging branchofnanotechnologyfocusingonphotoactivenanomaterialsandapproachesthat cangeneratefunctionaleffectsinresponseto lightstimulation.Thesenanomaterialshave beenplayinganincreasinglymorecentral roleasnovelresearchtoolsandcutting-edge platformsinvariousbiomedicalapplications fortherapy,imaging,anddiagnosticdevices. Giventheirrapidlygrowingimpacts,itisof considerableinterestaswellasaworthwhile expenditureoftimetoaddresstheirdesign conceptsandpracticalapplications.

Despiteitssigni ficantuseinthe field, photonanotechnologyremainsratherundefinedforbeginnersaswellascurrentinvestigators,inpartduetoitsengagementin multipleinterdisciplinaryareas.Thisbook aimstohelpclarifyprinciplesandfunctions inphotonanotechnologysuccinctlyand thoroughly.Forthispurpose,itbrings togetherdozensofexpertsfrommultidisciplinaryareasforchaptercontributionsabout thestatusandfutureprospectsofphotonanotechnology.Theauthorsidentifymajor areasofitsimpactsonthebasisoftherapeuticandimagingmodalitiesthatcomprise photothermaltherapy(PTT),photodynamic therapy(PDT),photocontrolleddrugdelivery,andtheranosticnanodevices.This bookillustratestheirrelevanceandcapabilitytoaddressunmetneedsinthedetectionandtreatmentofseriousdisease conditionsrelatedtocancersandbacterial infections.

Chapter1introduceslightsourceswithan emphasisontheirpropertiesofrelevanceto

absorption,scattering,andpenetrationin threespectralregions ultraviolet,visible, andnear-infrared(NIR).Ithelpsinbetter understandingandselectinglightsourcesfor theoptimaldesignofphotoactive nanomaterials.

Chapter2describeshybridnanogel systemsandtheirapplicationsinphotoacoustictumorimagingandPTT.Theauthors provideathoroughframeworkforaddressingachievementsandchallengesinthe developmentofphototheranosticplatforms fortumors.

Chapter3isdevotedtoaclassof graphene-basedphotoactivenanomaterials includingquantumdotsandtheirimportant contributionstohealthcareapplications. Theauthorsaddresstheiruniquebene fits, challenges,andoutlookswithregardtothe aspectsofbiomedicalimaging,PDT,PTT, anddrugdelivery.

Chapter4focusesonplasmonicgold(Au) nanoparticlesandtheirclinicalprospectsby NIR-light-mediatedPTT.Theauthors elaborateontheirfabricationmethodsand anticancerapplicationsincludingcombinationtherapieswithchemotherapyand immunotherapy.

Chapter5discussesthedevelopmentof newtheranosticnanosystemsreportedover thelast10yearswithafocusontheirPDT therapyandimagingmodalityagainst cancers.Theauthorsprovideanoverviewof variousnanosystemsfrompolymer,graphene,inorganicmetaloxide,copper,and goldtoupconversionnanocrystals(UCNs)

andconcludewithconditionallyactivatable PDTsystems.

Chapters6and7arededicatedtorecent advancesinUCNs,focusingontheirdesign concepts,synthesis,andapplicationsintherapyandimaging.Theauthorsprovidea systematicanalysisofvarioussyntheticapproaches,luminescencemechanisms,surface engineeringmethods,andtheirbiomedical applications,focusedonmultimodalityimagingandPDT.Theyconcludewithchallengesandoutlooksforfuturedevelopments.

Chapter8continuesthediscussionof multifunctionalUCNsfromabroad perspective.Theauthorspresentbasictheoriesaboutluminescence,methodsforsynthesisandmodification,andapplicationsin bioimaging,therapeutics,andtheranostics.

Chapter9discussesthedesignofphotocleavablelinkersusedindrugconjugation. Theauthorprovidesacomprehensivesurveyoflinkerprinciples,themechanisticaspectsoflinkercleavage,anddrug conjugationmethodsforlight-controlled drugdelivery.

Chapter10addresseschallengesinthe developmentofphotocontrollednanosystems withfolatereceptor(FAR)-targeteddendrimerforanticancerdrugdelivery.The authorvalidatesspecificdesignprinciplesfor photoreleasabledrug dendrimerconjugates appliedtoanticancertherapeuticagents.

Chapter11describesmultifunctional nanoplatformsdevelopedforantibacterial therapy.Theauthorpresentsbacterialtargets,multivalentliganddesignforbacteria targeting,andvariousphotoactiveplatforms validatedforlight-controlleddeliveryof antibacterialactivity.

Chapter12describesUCN-basedtheranosticsystemsforNIR-controlleddrug release.Theauthorspresenttheirdesign principleswithafocusonFAR-targeted dendrimersvalidatedforanticancerdrug delivery.

Theappendixsectionpresentstwelvetables,eachaddressingakeyaspectand includingreferencescitedtherein.These relatetolightsources,photocleavable linkers,photoactivenanosystemsdeveloped foranticancerandantibacterialapplications, andsurfacebiomarkersfoundincancerand bacterialcells.

Insummary,thisbookservesasaprincipalsourceforphotonanotechnology.Itoffersalargebodyofknowledgeand referencescollectedaboutphotoactive nanomaterialsintheaspectsofdesign,synthesis,characterization,therapeuticeffects, andimagingmodalitiesinvitroandinvivo. Theeditorbelievesthatthisbookprovides significantbene fitstoreadersindiverse areasinchemistry,biologicalsciences,materialssciences,engineering(chemical, biomedical,macromolecular),pharmaceuticalsciences,andappliedphysics(photonics)aswellasmedicinemorebroadly.

Lastly,asamostimportantnote,theeditorwouldliketothankeachprimarychapter authorandcontributingcoauthorfortheir valuabletimeandsignificanteffortsinthe timelycompletionoftheirchapters.Initial bookreviewersclearlydeservecreditforthe foundationofthisbook.Theircontribution helpedexpanditsscope,quality,andimpact. Theeditorisalsothankfultothepublisher, Elsevier,anditseditorialboardincluding Dr.PeterAdamsonandMr.SimonHoltfor theirdedicatedsupportsovertheyears.

Editor SeokKiChoi,PhD AssociateProfessor MichiganNanotechnologyInstitutefor MedicineandBiologicalSciences,and DepartmentofInternalMedicine, UniversityofMichiganMedicalSchool, AnnArbor,MI,UnitedStates

1 Lightsourcesfor photonanotechnology

SeokKiChoi

MichiganNanotechnologyInstituteforMedicineandBiologicalSciences, andDepartmentofInternalMedicine,UniversityofMichiganMedicalSchool, AnnArbor,MI,UnitedStates

OUTLINE

1.1Introduction1

1.2Basicpropertiesoflight2

1.2.1Absorption3

1.2.2Scattering3

1.2.3Penetration3

1.3Divisionoflightsources3

1.3.1Ultravioletlight4

1.3.2Visiblelight6

1.3.3Nearinfraredlight6

1.4Nanotechnologyforphototherapy: overview9

1.4.1Light-controlleddrugrelease10 1.4.2Photothermaltherapy10

1.4.3Photodynamictherapy13 1.5Summary14 Abbreviations14 Acknowledgments15 References15

1.1Introduction

Lighthastheabilitytoinduceoralterchemical,physical,orbiologicalactivitiesincertain classesofnanometer-sizedparticles(NPs)[ 1 8].SuchNPs,genericallyreferredtoasphotoactivenanomaterials,havemadesignifi cantcontributionstothecreationofnovelapplicationsanddevelopmentinnanotechnolog y.Theirapplicationsarehighlybene fi cialina

1.Lightsourcesforphotonanotechnology

rangeof fi eldsincludingenergy[9 ],chemicalcatalysis[9 ,10],sensors[9 , 11 ],therapeutics [7 ,12 14 ],imaging[ 15 ,16 ],anddiagnostics[17].

Lightplaysanactiveroleinservingasanexternalstimuluswithitssuperbtemporaland spatialcontrolcapabilities[18 21].Itcarriesabroadrangeofactivationenergy,whichis tunableforactivatingaspecificphotoactiveNPcoreoritsperipheralcomponenttoinduce light-inducedoutputsuchasscattering, fluorescence,andluminescence(Fig.1.1).Useoflight constitutesanessentialcomponentinNPdetectionandimagingmethods[22,23].Light absorptionoffersanumberofmechanismsthatallowforcontrolorinducementoftherapeuticeffects.TheserelatetoenablingthecontrolledreleaseofatherapeuticagentcarriedbyNP [7],inductionoflocalizedheatinphotothermaltherapy(PTT),orproductionofcytotoxic reactiveoxygenspecies(ROS)inphotodynamictherapy(PDT)[22 24].

Inadditiontosuchactivecontrol,usingalightstimulusoffersahighdegreeofprecisionin thespatiotemporalcontrolofNPactivation[7,18,21,25].Thesebene fitsarenotgenerally achievableinNPactivationtriggeredbyapassivestimulussuchasanendogenous,acellular, orapathophysiologicalfactor(lowpH,enzymes,andthiols)[7].Furthermore,lightstimulationoffershigherprecisioninthespatialresolutionoflightexposurethanothertypesof externalstimulibasedonheatorultrasound[26,27].

Incontrasttoitsbene ficialproperties,theapplicationoflightinnanotechnologyfaces certaindrawbacksdeterminedbytheintrinsicpropertiesoflight.ItisthuscriticaltounderstandlightpropertiesandconsiderintheearlyphasesofNPdesign.Thischapterdescribes lightsourceswithafocusonthreespectralregionsofrelevance ultraviolet(UV),visible (Vis),andnear-infrared(NIR) andtheirpropertiesandusesinlight-controlleddrug delivery,PDT,andPTT.

1.2Basicpropertiesoflight

Selectionoflightsourcesplaysafundamentalroleincontrollingthespeci ficfunctionsof photoactiveNPsbecauseonlyaspeci ficwavelengthoflightisbestabletotriggerorconfera desiredeffectsuchascleavingadrug-NPlinkerfordrugrelease,activatingaphotosensitizer moleculeforPDT,orexcitinga fluorescentmoleculeforopticalimaging(Fig.1.1).

FIGURE1.1 Photophysicalandphotochemicaleventsthatpertaintolightexposedtoaphotoactivenanoparticle (NP).

1.2.1Absorption

LightabsorptionbyasmallmoleculeoranNPoccursmostef ficientlyataparticularwavelengthoflightdictatedbyachromophoregroupconstitutingthemoleculeorpresentedinthe NPcore.ItslightabsorptionisdefinedaccordingtotheBeer Lambertlaw(A ¼ ε l c) [28]inwhich ε,l,andcrefertoitsmolarabsorptivity(molarextinctioncoef ficient,M 1 cm 1) atthespecificwavelengthoflight,thepathlengthoflight(cm),anditsconcentration(M), respectively.Thisrelatestheextentoflightabsorptiontothenumberandabsorptivityofmoleculesexposedalongthelightpath.

Underbiologicalconditions,watermoleculesareabundantlypresentinserum,bloodcells, andtissues,andtheycontributesignificantlytolightabsorption[29].Avarietyofmolecules/ macromoleculesofbiologicalabundancealsocontributetolightabsorptionandincludesmall pigmentmolecules,(oxy)hemoglobin,aminoacids,proteins,andnucleicacids[30].Thus, lightabsorptionoccurringbymoleculesinbiologicalmediaconstitutesaprimaryfactor thatcanadverselyinfluencetheef ficiencyoflightapplications inparticular,invivo[29].

1.2.2Scattering

LightscatteringoccurswhenitinteractswithNPsaswellasmacromolecularparticles, whichareabundantinbloodcells,skinpigments, fibers,andbones[31,32].Theextentoflight scatteringatagivenwavelength(l)variesnonlinearlytoatermofa (l/500nm) b withan inversecorrelationtob,inwhichaandbeachreferstoatissue-specificvalue[33].Ingeneral, thescatteringdecreasesasafunctionofwavelength(l),withhigherscatteringoccurringat theshorterUVandVislightwavelengthsthanatNIRwavelengths(Fig.1.2).Itisalsodependentontissuetypes,withhigherscatteringobservedinskinthaninsoftandfattytissues[33].

1.2.3Penetration

Duetolightscatteringandabsorption,onlyacertainfractionoflightisabletopass throughabiologicalsample,whileitsintensitynonlinearlydecreasesalongitspath (Fig.1.2).Theextentoflightpenetrationisgenerallydependentonlightwavelength [33 35].Lightpenetratesmoreeffectivelyatalongerwavelengththanashorterwavelength asschematicallyillustratedinamodelforhumanskinstructure[36].ComparedwithUVand Vis,NIRlight(800 1000nm)showsanabilityfordeeperpenetration,whichmakesita preferredsourceforopticalimaginginvivo.

1.3Divisionoflightsources

LightsourcesfrequentlyusedinimagingandtherapeuticactivationconsistofthreespectralregionsthatspanUV(200 400nm),Vis(400 800nm),andasubsectionofNIR (800 1000nm)(Fig.1.2).Eachoftheselightsourcesdisplaysadistinctsetofphotochemical andphotophysicalpropertiesthatvaryasafunctionofwavelength.

FIGURE1.2 Spectralrangeoflightsourcesfrequentlyusedinnanotechnology(top),andlightpropertiesassociatedwiththebiologicaltissue(bottom).

1.3.1Ultravioletlight

LightintheUVzoneissubdividedintothreeregionscomposedofshort(UVC, 100 280nm),medium(UVB,280 315nm),andlong(UVA,315 400nm)wavelengths. Theshortest,UVC,isthemostharmfultomammaliancellsbecauseofitsabilitytocause DNAdamage,whichmakesitrarelyusedinbiologicnanotechnology.However,itisbeneficialforcertainapplicationsbecauseofitsbroad-spectrumcidalityagainstbacterialpathogens.ThisisevidentfromthecurrentpracticeofusingUVCinlight-basedtherapytotreat woundinfections.Thisapplicationdoesnotinvolvetreatmentwithanantibacterialagent butirradiationalone[37].

ComparedwithUVC,thetwolongerUVlights(UVAandUVB)causeonlyinsignificant cellulartoxicity[38 40].Theycarryhigh-enoughenergyforimagingandtherapeuticapplicationsinnanotechnology.First, fluorescentimagingexperimentsonphotoactiveNPssuch asquantumdots(QDs)[41 43],grapheneoxide(GO)[44,45],andcarbondots(CDs)involve excitationatUVAandUVBwavelengths(Table1.1)[23,58].Second,theseUVlightsare frequentlyusedforROSproductioninthePDTapplicationofphotosensitizers(chlorine6 [59],protoporphyrinIX[51])andphotoactiveNPs(nano-TiO2 [60 62],nano-ZnO[63],GO nanosheet[64,65],andfullerene[66,67]).Third,theyplayanimportantroleinlightcontrolleddrugdeliveryasappliedinabroadrangeoftherapeuticagents(Table1.2)

TABLE1.1 Lightwavelengthsofrelevancetonanoparticleactivationandimaging.

lex (nm)PhotoresponsiveordyemoleculePhotoactivenanoparticle

300

400 AlexaFluor 405,488,568, 594,633

Chlorine6[59]; protoporphyrin IX

Fluorescein isothiocyanate; Hoescht33258; DAPI

QD(360 400nm) [41 43]

GQD (320nm) [44,45]

CD(330 475) [23,46]

500 Cyanine: Cy3,Cy5 Rhodamine;PI

600

700

800

Nano-Au,nano-Ag(500 800nm)[5,6,46,47]

UCN(808nm)[48 50];UCN (980nm)[14,48,49,51 53]

SWNT (808nm)[54]

900 1000 Metaloxide NP[55 57]

AuNP,goldnanoparticle; CD,carbondot; GQD,graphenequantumdot; NP,nanometer-sizedparticle(nanoparticle); QD,quantumdot; SWNT,single-walledcarbonnanotube; UCN,upconversionnanocrystal.

TABLE1.2 Typesofphotonanotherapyincludinglight-controlleddrugdelivery,photothermaltherapy,and photodynamictherapy.

l (nm)PayloadreleasePTTPDT

UVB254MTX[68]

300Phosphoramide[69]

UVA308 L-Glutamate[70]

347; 350 Choline[71];EGTA[72];glutamate[73 75]; oligonucleotide[76];tegafur[77];taxol[78]

365Ciprofloxacin[39];camptothecin[79];DOX[38,80]; doxycycline[81];5-FU[82]; glutamate-kinate[73,74];inositolphosphate[83]; MTX[68,84];TAM[20,85,86];taxol[78,87]; insulin[88]

Vis420Chlorambucil[89,90]

430Taxol[92]

690Duocarmycin[93];4-Hydroxycyclofen[96,97]

780Duocarmycin[93];4-hydroxytamoxifen[94]

NIRa 808Chlorambucil[89,90]

980Chlorambucil[97];DOX[14,40];Luciferin[98]; siRNA[99]

360 600nm Nano-TiO2 [60 62]; nano-ZnO[63]; graphene oxidenanosheet[64,65]; fullerene[66,67]

500 800nm nano-Au[5,6]; nano-Ag [46,47,91]

UCN(808nm)[50,53]; UCN(980nm) [14,27,51,53,95,96]

aMediatedbyUV VisemissionfromNIR-excitedupconversionnanocrystal(UCN); 5-FU,5-fluorouracil; DOX,doxorubicin; EGTA,egtazic acid; MTX,methotrexate; PDT,photodynamictherapy; PTT,photothermaltherapy; TAM,tamoxifen.

[7,23,100,101].Theseincludeanticanceragentssuchasdoxorubicin(DOX)[38,80],5-FU[82], methotrexate[68,84],paclitaxel(taxol)[78,87],camptothecin[79],tamoxifen[20,85,94],antibacterialagentssuchasciprofloxacin[39],andinsulin[88].

Inspiteofsuchwideutility,usingUVlightisnotfreefromunfavorableproperties,particularlyinvivo.ItundergoeslightscatteringtoanextentgreaterthanforlongerVisorNIR light(Fig.1.2).Itshowsabsorptionbymostbiologicalmoleculespresentinbloodandtissues, inparticularinyellowpigments(bilirubin, b-carotene)and(oxy)hemoglobinmolecules[33]. UVabsorptionbythesepigmentsandmoleculesispartlyresponsibleforthelowerlevelof tissuepenetrationthanoccurswithVisandNIR.Forexample,shortandmediumUVlight showspoorskinpenetration(w2 mm)[36,102].LongUVAshowsagreaterlevelofpenetration,asdeepas60 90 mmat350 400nm[36,102].NumerousUVAapplicationshavebeen demonstratedinvivoforUVA-mediateddrugactivationorimagingstudies[103].

1.3.2Visiblelight

LightintheVisregioncompriseswavelengthsfrom400nm(violet)to800nm(red) (Fig.1.2).Vislightoffersapromisingopportunitywithitssigni ficantlyincreasedtissuepenetrationdepth(150 750 mmat450 700nm; Fig.1.3)[36,102].ComparedwiththatofUV,light scatteringoccursweaklyinVislight.However,Vislightshowsstrongabsorbancebyyellow pigmentsaswellasmelaninand(oxy)hemoglobinmoleculesinitsshorterrange (400 600nm)(Fig.1.3)[33,104].Suchabsorptionisasourcefortheauto fluorescenceoften observedinimagingstudiesinvivo,whichreducesresolutioncapability[105].Vislight alsoshowsincreasedabsorptionbywaterinthelongerrangeofitswavelength( 600nm) [29].Forthisreason,Vislightisbettersuitedforimagingatissuesamplethanabloodsample, whichconsistsmostlyofwatermolecules[29,36].

Vislightservesasaprimaryexcitationsourcein fluorescentimagingstudiesofNPs labeledwithstandarddyemoleculessuchas fluoresceinisothiocyanate,AlexaFluor,rhodamine,andcyanine(Table1.1).LikeUVA,VislightofferssignificantutilityinPDTapplications.ManyphotoactiveNPsincludingnano-TiO2 [60 62],nano-ZnO[63],GOnanosheet [64,65],andfullerene[66,67]employVisirradiationforROSproduction.Vislightalsoplays anessentialroleinPTTapplicationsduetoitsstrongabsorptivitybynoblemetalNPssuchas nano-Auandnano-Ag(500 800nm)[5,6,46].

Initsapplicationsforcontrolleddrugdelivery,Vislightplaysalesssignificantrolethan thatoflong-wavelengthUVA.Currently,mostlinkermoleculesdevelopedforlight-triggered cleavagerequirephotonabsorptionwithhigherenergyequivalenttothatofUVAorUVB[7]. Onlyafewlinkerstructures,includingcyanine(690nm)[93,106]orcoumarin-basedlinkers (430nm)[92],offerlinkercleavageinresponsetostimulationbyVislight.Alternatively,the mechanismoftwo-photonexcitationisoccasionallyapplicableinVislight induceddrug release(Fig.1.5)[90].Thishasbeenreportedinanumberoftherapeuticagentsincluding chlorambucil[89]and4-hydroxytamoxifen[94].

1.3.3Nearinfraredlight

NIRlightcomprisesalongerrangeofwavelengthsspanningfrom700to2500nm (Fig.1.2).ItislessscatteredthanVislight.NIRlightislessabsorbedby(oxy,deoxy)

FIGURE1.3 (A)Molarabsorptivity(ε)ofmajorchromophoresinbloodincludingwater,hemoglobin(Hb)and oxygen-boundhemoglobin(HbO2).(B)Depthofskinpenetrationbyultraviolet(UV),visible(Vis),andnear-infrared (NIR)light.Note:Eachplotispreparedfromvaluesreportedinliteratureascitedbelow. W.S.Pegau,D.Gray,J.R.V. Zaneveld,Absorptionandattenuationofvisibleandnear-infraredlightinwater:dependenceontemperatureandsalinity,Appl. Opt.36(1997)6035 6046;F.E.Robles,S.Chowdhury,A.Wax,Assessinghemoglobinconcentrationusingspectroscopic opticalcoherencetomographyforfeasibilityoftissuediagnostics,Biomed.Opt.Express1(2010)310 317.

hemoglobins(39% 64%)andlipidsthanthatoccurringwithVislight(Fig.1.3)[105].Their absorptiongraduallydecreasesasthelightwavelengthincreases.Watermoleculescontribute tothemostsigni ficantabsorptioninthisregion.Overall,NIRlightshowsthehighesttissuepenetrationabilityamongallthreelightsources,reachingasdeepas1200 2200 mmat 800 1200nm[102].

AshortersegmentofNIR,whichextendsfromapproximately650to950nm,isreferredto asthe firstbiologicalwindow(I-BW)foropticalimaging[35,107].Relativetothelonger segment,thisNIRoffersgreatbene fitsforopticalimagingofNPsinvivo[34,35,105]because

ofitslowerabsorptionbywaterandhemoglobinmolecules[104].NIRsegmentslongerthan 950nmserveastwoadditionalwindowsforopticalimaging thesecondbiologicalwindow (II-BW;950 1350nm)andthirdbiologicalwindow(III-BW;1500 1800nm)[107].ThisNIR rangeshowsalowerleveloftissueauto fluorescencethanthatofI-BW[107],whichcan improvethesignal-to-background(noise)ratio.However,inthesespectralranges,bothwater andhemoglobinmoleculesincreasetheirabsorptivitybyapproximatelyonetotwoordersof magnitudeoverthatofI-BW[104].Suchhigherabsorptioncontributestoalocalheatingeffect,limitingthescopeoftheirutility.

NIRlightcarriesthelowestenergy,limitingitsapplicabilityinimagingandtherapeutic nanotechnology.ItsapplicationsarelimitedtoacertainclassofdyemoleculesorNPsthat showabsorptionincludingsingle-walledcarbonnanotubes(808nm)[54],metaloxideNPs [55 57],andupconversionnanocrystals(UCNs;808,980nm)[14,48 53].OftheseNPs, UCNspossessauniquemechanismofphotophysicalactivationinwhichNIRabsorption leadstoluminescenceemissionatashorterwavelengthintheUVAandVisregions [3,48,49].ThispropertyofupconversionluminescenceservesasausefulrouteforUCNdetectionandimagingthatisachievablewithoutlabelingwithanexternaldyemolecule(Table1.1) [14,40].Inaddition,itsluminescenceemissionallowsfortherapeuticapplicationsthatare otherwiseenabledbyactivationthroughonlyUVAorVislight.TheseincludeNIRinducedROSproductionforPDT[14,27,50,51,53,95,96]andlinkercleavageforcontrolled drugrelease[14,40,53,97,98].

Insummary,selectinganoptimallightsourceplaysacriticalroleintheimagingandtherapeuticapplicationsofmultifunctionalNPs.Itrequirescarefulconsiderationinthedesign phaseoftheseNPs.Avarietyofportablelamps,LEDdevices,andlaserequipmentare commerciallyavailableassummarizedin Table1.3.

TABLE1.3 Listofcommerciallightsources.

LightWavelength(nm)TypeSupplier

UVUVA254LightbulblampSpectroline

UVB312

UVA365LEDlampNichiaCorp.

Visible420LEDlampLuzchemResearch;NichiaCorp.

445 465(blue)

510 530(green)

580 600(amber/yellow)

630 650(red)

Near-infrared808PortablelaserCNIOptoelectronics;ThorLabs

1.4Nanotechnologyforphototherapy:overview

1.4Nanotechnologyforphototherapy:overview

NPsdesignedforphotoapplicationsarebroadlydividableintotwogroupsaccordingto theirintrinsiccoreproperties:(1)anNPconstructmadeofaphotoactivecoreand(2)an NPconstructthatlacksaphotoactivecorebutpresentsaperipheralphotoactivemolecule eitherattachedthroughcovalentconjugationornoncovalentlyencapsulatedinashelllayer orporouscorestructure.ThoseNPsthatbelongtothe firstgroupvarywidelyinthesize, shape,andcompositionofthecoreelementsthatconferintrinsicphotoactivity.Theseinclude nanogoldornanosilverintheshapeofananosphere[5],nanorod[5],ornanocage[1]aswell asTiO2 nanosphere[4,5],carbonnanotube[6],graphenenanosheet[3],andhexagonaldiskshapedUCN[2,3](Fig.1.4).

EachNPthatbelongstothesecondgrouphasamodificationinthecoreorperipherythat allowstheinductionoflight-controlledactivity.ModificationoftheseNPsinvolvesdrug

FIGURE1.4 Divisionofnanometer-sizedparticles(NPs)(size1 1000nm)byintrinsicphotoproperty. MSN, mesoporoussilicananoparticle; QD,quantumdot; UCN,upconversionnanocrystal. S.K.Choi,Mechanisticbasisoflight inducedcytotoxicityofphotoactivenanomaterials,NanoImpact3 4(2016)81 89.Copyright © 2016Elsevier.

conjugationthroughaphotocleavablelinkerforlight-controlledrelease[7].Italsoinvolves photosensitizerattachmentorencapsulationforPDTinwhichthephotosensitizermolecule intheNPconstructcatalyzestheproductionofROSuponstimulationbylight[108,109]. Regardlessoftheirclassi fication,thesephotoactivenanomaterialsaredesignedtooffer certaintherapeuticmodalitiesbasedondrugrelease,PTT,andPDT.

1.4.1Light-controlleddrugrelease

Useoflightprovidesanactivemechanismtoenablethereleaseofapayloadlinkedtoa nanoscalecarrier[7,110].Thisisachievableusingaclassofaromaticlinkermoleculesthat displayphotocleavableproperties.Eachlinkerhastwofunctionalarmsdesignedinan orthogonalmanner.Thus,itsphotocleavablefunctionalityservesfortetheringapayload, whileitssecondfunctionalityservesforNPconjugation,whichremainsasastablelinkage (Fig.1.5).Thephotocleavablelinkerengagesinpayloadreleasebyitslightabsorption,which occursviatwomechanisms,one-photon(single-photon)andtwo-photonabsorption.

Mostreleasedstudiesreportinginvitroandinvivoresultsinvolvelinkercleavage conferredbytheone-photonmechanism[7,110 113].Thismechanismisbroadlyapplicable toexistingphotocleavablelinkers[114]including ortho-nitrobenzene[72,110,115 117],thioacetal ortho-nitrobenzene[87],coumarin[90,115,117],carbazole[118,119],quinolone[120],xanthene[121], ortho-hydroxycinnamate[122],benzoin[123,124],andbenzophenone[125].The efficiencyofdrugreleaseisdeterminedbythequantumef ficiency(F)oflinkercleavage, whichisdefinedasthenumberofmoleculescleavedperthenumberofphotonsabsorbed. Releaseefficiencyvarieswidelywithvariousfactors,butitlargelydependsonlinkertypes andactivationwavelengths[87,94,118,126,127].

UsingUVAorUVBlightishighlyeffectiveforone-photonactivationinmostlinkers.In contrast,Vislightthatcarrieslowerenergyshowsrelativelylowquantumefficiencyfor linkercleavagebyone-photonactivation.Onlyafewlinkersretaintheabilitytoundergoa cleavageuponstimulationbyVislight.Theseincludethosederivedfromcoumarin (420nm)[89,90,92,113,126,127]andquinoline(458nm)[128].Ofparticularnoteisa cyanine-basedlinkerthatdisplaystheabilityforefficientcleavagebyVis(690nm)orNIR light(780nm)[93,106].Itsmechanismoflinkercleavage,however,isattributabletoitschemicalreactionwithsingletoxygenspecies(ROS)producedbylightstimulationratherthanits photochemicalfragmentation(Fig.1.5).

NIRlightdoesnotcarryenoughenergytoallowforone-photonabsorptionbymostlinker molecules.Instead,NIRisapplicableforlinkercleavageviatwo-photonabsorption,whichis equivalenttoaUVAenergylevel.Linkerssuchas ortho-nitrobenzeneandcoumarinshowthe abilityforcleavagebyactivationat800nm(Fig.1.5)[89,94].However,linkercleavageby two-photonabsorptionislesseffectivethanthatofone-photonabsorption,anditleadsto alowerquantumefficiencyindrugrelease[94].

1.4.2Photothermaltherapy

LightstimulationcanproducelocalizedheatincertaintypesofNPsorpolymersviathe mechanismofplasmonicactivation(Fig.1.6)[5,25,47,129 131].Thisphotothermalactivation occursefficientlybynoblemetalNPssuchasnano-Au[5,6,91]andnano-Ag[46]bylight

FIGURE1.5 (A)Conceptforlight-controlleddrugdeliveryinnanotechnology.(B)Underlyingmechanismsof lightabsorptionbyphotocleavablelinkers:one-photon(upper)andtwo-photon(lower). NP,nanoparticle.

absorptionintherangeofVisandNIRlight(500 800nm).Theproducedheatundergoes rapiddissipationintheareaaroundtheNP,offeringamechanismforelevatinglocaltemperaturethatishighenoughtoinducealethaleffectinpathogensandcancercellsinclose proximity[132,133].ThisphotothermaleffectservesasamechanisticbasisforPTT[129,132].

(A)
(B)

FIGURE1.6 (A)PlasmonicphotothermalactivationofAunanorodsand(B)itsapplicationforphotothermal therapy. AuNP,goldnanoparticle. S.K.Choi,Mechanisticbasisoflightinducedcytotoxicityofphotoactivenanomaterials, NanoImpact3 4(2016)81 89.Copyright © 2016Elsevier.

Thistherapeuticmodalityoffersapromisin gopportunityinthetrea tmentofcancersand antibacterialinfections[27 ,53].

Theefficiencyofphotothermalheatingbymetalnanomaterialsvarieswithcorecompositionandstructuralpropertiesincludingsize[133],shape[133 135],andsurfacemorphology [134,136,137].Inparticular,theaspectratio(width length 1)thatdefinestheNPshape playsthemostcriticalroleindeterminingphotothermalefficiency.Thisphotothermalheatingoccursmoreef ficientlyathigheraspectratios,anditsextentispositivelycorrelatedwith theinductionofcytotoxicity[5,138].NonsphericalAunanorodshavinganaspectratio greaterthan1caninducecytotoxicitymoreeffectivelythanthatinducedbyAunanospheres havinganaspectratioof1[133,139,140].

Tumor cell
Cell death
AuNP
(A)
(B)

1.4.3Photodynamictherapy

Asanothertherapeuticmodality,lightstimulationenablesphotoactivenanomaterialsto produceROS[141].Itbelongstoaclassofchemicallyreactivemoleculesthatconsistsof variousspeciesincludingfreeradicals( OH, OOH, NO),superoxideanion( O2 ),orsinglet oxygen(1O2)species[142](Fig.1.7).

ROSproductionoccursthroughlightactivationofeitheraphotoactivecoreorseparately throughsmallphotosensitizermoleculesencapsulatedinsideorattachedtoNPs[141].

FIGURE1.7 (A)Mechanisticbasisofphotodynamictherapy.Light-inducedproductionofreactiveoxygenspecies(ROS)asillustratedwithaphotoactivenanocore(top)andperipherallyattachedphotosensitizermolecules (bottom).(B)ROS-mediatedcellulardamageleadingtocelldeath. S.K.Choi,Mechanisticbasisoflightinducedcytotoxicityofphotoactivenanomaterials,NanoImpact3 4(2016)81 89.Copyright © 2016Elsevier.

AnumberofphotoactivecoreshaveaprovenabilityfordirectROSproductionincluding carbonnanotubes(single-walledandmultiwallednanotubes)[6 ,143, 144 ],fullerene(C 60 ) [66 ,67],GOnanosheet[ 64 ,65 ],nano-TiO2 [4 ,60 62, 145 ]andnano-ZnO[ 63 , 146],andQDs [41 ,147 ].CoreactivationoccursbyirradiationintheUV Visrange(360 600nm).Photosensitizermoleculesarealsoabletoproducesingletoxygen( 1O 2)speciesbyUV Vis irradiation[148].

1.5Summary

Photoactivenanomaterialshavemadeasignificantcontributionintheapplicationofnanotechnologyforphototherapy[7,12 14],imaging[15,16],anddiagnosis[17].Asacontrol, lightirradiationplaysacommonroleindefiningandcharacterizingtheirphotophysical andphotochemicalproperties.LightsourcesforapplicationconsistofUV,Vis,andNIRlight, eachdisplayingadistinctsetofpropertiesinabsorption,scattering,andtissuepenetration.

UsingUVlighthascertaindrawbacksandispartlylimitedbyitsscatteringandsuboptimaldepthofpenetration.However,longUVAoffersoutstandingbene fitsduetoitslackof intrinsiccytotoxicityanditstunableenergy,whichisapplicableforQDimaging,ROSproduction,orenablingalinkercleavageforcontrolleddrugdelivery[7].Vislightalsoplays animportantroleinNPdetection,imaging,anddrugrelease.ItsuseismoreevidentintherapeuticapplicationsforPTTandPDTperformedwithnoblemetalNPs,nano-TiO2,GO,or photosensitizer-conjugatedNPs[22 24].NIRlightoffersbene ficialpropertiessuchaslow lightscatteringwithanabilityfordeeptissuepenetration.Itplaysanessentialroleinimaging applicationsinvivoattheI-BWorII-BW[53].NIRlackssuf ficientenergytoinduceeither photochemicallinkercleavagefordrugdeliveryorNPactivationforPDTorPTT.However, UCNsallowNIR-inducedtherapeuticeffectsviadrugrelease,ROSproduction,photothermal activation,ortheircombination.

Insummary,identifyingtherightlightsourcesishighlycriticalfordesigningandconductinglight-controlledNPsystemsforimaging,drugdelivery,PTT,andPDTassummarizedin Table1.2.Thischapteraimstohelpunderstandthebasicpropertiesoflightfor theoptimaldesignofphotoactivenanomaterials,imagingmethods,andtherapeuticapplications.Detaileddescriptionsoftheseconstitutethesubjectsoftheindividualchaptersthat follow.

Abbreviations

AuNP Goldnanoparticle

CDs Carbondots

CNTs Carbonnanotubes

GO Grapheneoxide

GQD Graphenequantumdot

Hb Hemoglobin

HbO2 Oxygen-boundhemoglobin

I-BW (First)biologicalwindow

II-BW (Second)biologicalwindow

III-BW (Third)biologicalwindow

NIR Near-infrared

NPs Nanometer-sizedparticles

PDT Photodynamictherapy

PTT Photothermaltherapy

QDs Quantumdots

ROS Reactiveoxygenspecies

SWNT Single-walledcarbonnanotube

UCN Upconversionnanocrystal

UV Ultraviolet

UVA Long-wavelengthUV

UVB Medium-wavelengthUV

UVC Short-wavelengthUV

Vis Visible

F Quantumefficiency

Acknowledgments

TheauthorwishestothankfundingsupportovertheyearsbyGlobalInnovationInitiativefromtheBritishCouncil andtheUSDepartmentofState.

References

[1]Y.Xia,W.Li,C.M.Cobley,J.Chen,X.Xia,Q.Zhang,M.Yang,E.C.Cho,P.K.Brown,Goldnanocages:from synthesistotheranosticapplications,Acc.Chem.Res.44(2011)914 924.

[2]M.Haase,H.Schäfer,Upconvertingnanoparticles,Angew.Chem.Int.Ed.50(2011)5808 5829.

[3]G.Chen,H.Qiu,P.N.Prasad,X.Chen,Upconversionnanoparticles:design,nanochemistry,andapplicationsin theranostics,Chem.Rev.114(2014)5161 5214.

[4]M.Dahl,Y.Liu,Y.Yin,Compositetitaniumdioxidenanomaterials,Chem.Rev.114(2014)9853 9889.

[5]M.-C.Daniel,D.Astruc,Goldnanoparticles;assembly,supramolecularchemistry,quantum-size-relatedproperties,andapplicationstowardbiology,catalysis,andnanotechnology,Chem.Rev.104(2004)293 346.

[6]D.Eder,Carbonnanotube inorganichybrids,Chem.Rev.110(2010)1348 1385.

[7]P.T.Wong,S.K.Choi,Mechanismsofdrugreleaseinnanotherapeuticdeliverysystems,Chem.Rev.115(2015) 3388 3432.

[8]P.T.Yin,S.Shah,M.Chhowalla,K.-B.Lee,Design,synthesis,andcharacterizationofgraphene nanoparticle hybridmaterialsforbioapplications,Chem.Rev.115(2015)2483 2531.

[9]D.Astruc,E.Boisselier,C.Ornelas,Dendrimersdesignedforfunctions:fromphysical,photophysical,and supramolecularpropertiestoapplicationsinsensing,catalysis,molecularelectronics,photonics,andnanomedicine,Chem.Rev.110(2010)1857 1959.

[10]D.Astruc,F.Chardac,Dendriticcatalystsanddendrimersincatalysis,Chem.Rev.101(2001)2991 3024.

[11]M.E.Stewart,C.R.Anderton,L.B.Thompson,J.Maria,S.K.Gray,J.A.Rogers,R.G.Nuzzo,Nanostructured plasmonicsensors,Chem.Rev.108(2008)494 521.

[12]O.C.Farokhzad,R.Langer,Impactofnanotechnologyondrugdelivery,ACSNano3(2009)16 20.

[13]J.F.Kukowska-Latallo,K.A.Candido,Z.Cao,S.S.Nigavekar,I.J.Majoros,T.P.Thomas,L.P.Balogh, M.K.Khan,J.R.BakerJr.,Nanoparticletargetingofanticancerdrugimprovestherapeuticresponseinanimal modelofhumanepithelialcancer,CancerRes.65(2005)5317 5324.

[14]P.T.Wong,D.Chen,S.Tang,S.Yanik,M.Payne,J.Mukherjee,A.Coulter,K.Tang,K.Tao,K.Sun, J.R.BakerJr.,S.K.Choi,Modularintegrationofupconversionnanocrystal-dendrimercompositesforfolate receptor-specificnearinfraredimagingandlighttriggereddrugrelease,Small11(2015)6078 6090.

[15]X.Shi,S.H.Wang,S.D.Swanson,S.Ge,Z.Cao,M.E.VanAntwerp,K.J.Landmark,J.R.BakerJr.,Dendrimerfunctionalizedshell-crosslinkedironoxidenanoparticlesforin-vivomagneticresonanceimagingoftumors, Adv.Mater.20(2008)1671 1678.

[16]E.-K.Lim,T.Kim,S.Paik,S.Haam,Y.-M.Huh,K.Lee,Nanomaterialsfortheranostics:recentadvancesand futurechallenges,Chem.Rev.115(2015)327 394.

[17]N.L.Rosi,C.A.Mirkin,Nanostructuresinbiodiagnostics,Chem.Rev.105(2005)1547 1562.

[18]X.Xue,Y.Zhao,L.Dai,X.Zhang,X.Hao,C.Zhang,S.Huo,J.Liu,C.Liu,A.Kumar,W.-Q.Chen,G.Zou, X.-J.Liang,Spatiotemporaldrugreleasevisualizedthroughadrugdeliverysystemwithtunable aggregation-inducedemission,Adv.Mater.26(2014)712 717.

[19]A.Benedetto,G.Accetta,Y.Fujita,G.Charras,Spatiotemporalcontrolofgeneexpressionusingmicrofluidics, LabChip14(2014)1336 1347.

[20]T.Faal,P.Wong,S.Tang,A.Coulter,Y.Chen,C.H.Tu,J.R.Baker,S.K.Choi,M.A.Inlay,4-Hydroxytamoxifen probesforlight-dependentspatiotemporalcontrolofCre-ERmediatedreportergeneexpression,Mol.Biosyst. 11(2015)783 790.

[21]J.M.Chan,L.Zhang,R.Tong,D.Ghosh,W.Gao,G.Liao,K.P.Yuet,D.Gray,J.-W.Rhee,J.Cheng,G.Golomb, P.Libby,R.Langer,O.C.Farokhzad,Spatiotemporalcontrolleddeliveryofnanoparticlestoinjuredvasculature,Proc.Natl.Acad.Sci.U.S.A.107(2010)2213 2218.

[22]J.Li,F.Cheng,H.Huang,L.Li,J.-J.Zhu,Nanomaterial-basedactivatableimagingprobes:fromdesigntobiologicalapplications,Chem.Soc.Rev.44(2015)7855 7880.

[23]O.S.Wolfbeis,Anoverviewofnanoparticlescommonlyusedin fluorescentbioimaging,Chem.Soc.Rev.44 (2015)4743 4768.

[24]J.Nicolas,S.Mura,D.Brambilla,N.Mackiewicz,P.Couvreur,Design,functionalizationstrategiesandbiomedicalapplicationsoftargetedbiodegradable/biocompatiblepolymer-basednanocarriersfordrugdelivery, Chem.Soc.Rev.42(2013)1147 1235.

[25]S.K.Choi,Mechanisticbasisoflightinducedcytotoxicityofphotoactivenanomaterials,NanoImpact3 4(2016) 81 89.

[26]V.G.Deepagan,D.G.You,W.Um,H.Ko,S.Kwon,K.Y.Choi,G.-R.Yi,J.Y.Lee,D.S.Lee,K.Kim,I.C.Kwon, J.H.Park,Long-circulatingAu-TiO2 nanocompositeasasonosensitizerforROS-mediatederadicationofcancer, NanoLett.16(2016)6257 6264.

[27]F.Xu,M.Hu,C.Liu,S.K.Choi,Yolk-structuredmultifunctionalup-conversionnanoparticlesforsynergistic photodynamic-sonodynamicantibacterialresistancetherapy,Biomater.Sci.5(2017)678 685.

[28]D.F.Swinehart,Thebeer-lambertlaw,J.Chem.Educ.39(1962)333 335.

[29]W.S.Pegau,D.Gray,J.R.V.Zaneveld,Absorptionandattenuationofvisibleandnear-infraredlightinwater: dependenceontemperatureandsalinity,Appl.Opt.36(1997)6035 6046.

[30]F.E.Robles,S.Chowdhury,A.Wax,Assessinghemoglobinconcentrationusingspectroscopicopticalcoherence tomographyforfeasibilityoftissuediagnostics,Biomed.Opt.Express1(2010)310 317.

[31]W.Qian,X.Huang,B.Kang,M.A.El-Sayed,Dark-fieldlightscatteringimagingoflivingcancercellcomponent frombirththroughdivisionusingbioconjugatedgoldnanoprobes,J.Biomed.Opt.15(2010)46025 46029.

[32]S.H.Yun,S.J.J.Kwok,Lightindiagnosis,therapyandsurgery,Nat.Biomed.Eng.1(2017)0008.

[33]L.J.Steven,Opticalpropertiesofbiologicaltissues:areview,Phys.Med.Biol.58(2013)R37.

[34]A.M.Smith,M.C.Mancini,S.Nie,Bioimaging:secondwindowforinvivoimaging,Nat.Nanotechnol.4(2009) 710 711.

[35]R.Weissleder,Aclearervisionforinvivoimaging,Nat.Biotechnol.19(2001)316.

[36]G.M.Hale,M.R.Querry,Opticalconstantsofwaterinthe200-nmto200-mmwavelengthregion,Appl.Opt.12 (1973)555 563.

[37]A.Gupta,P.Avci,T.Dai,Y.-Y.Huang,M.R.Hamblin,Ultravioletradiationinwoundcare:sterilizationand stimulation,Adv.WoundCare2(2013)422 437.

[38]S.K.Choi,T.Thomas,M.Li,A.Kotlyar,A.Desai,J.R.BakerJr.,Light-controlledreleaseofcageddoxorubicin fromfolatereceptor-targetingPAMAMdendrimernanoconjugate,Chem.Commun.46(2010)2632 2634.

[39]P.Wong,S.Tang,J.Mukherjee,K.Tang,K.Gam,D.Isham,C.Murat,R.Sun,J.R.Baker,S.K.Choi, Light-controlledactivereleaseofphotocagedciprofloxacinforlipopolysaccharide-targeteddrugdeliveryusing dendrimerconjugates,Chem.Commun.52(2016)10357 10360.

[40]P.T.Wong,S.Tang,J.Cannon,D.Chen,R.Sun,J.Lee,J.Phan,K.Tao,K.Sun,B.Chen,J.R.Baker,S.K.Choi, Photocontrolledreleaseofdoxorubicinconjugatedthroughathioacetalphotocageinfolate-targetednanodeliverysystems,Bioconjug.Chem.28(2017)3016 3028.

[41]J.Zhou,Y.Yang,C.-y.Zhang,Towardbiocompatiblesemiconductorquantumdots:frombiosynthesisandbioconjugationtobiomedicalapplication,Chem.Rev.115(2015)11669 11717.

[42]D.Geißler,C.Würth,C.Wolter,H.Weller,U.Resch-Genger,ExcitationwavelengthdependenceofthephotoluminescencequantumyieldanddecaybehaviorofCdSe/CdSquantumdot/quantumrodswithdifferent aspectratios,Phys.Chem.Chem.Phys.19(2017)12509 12516.

[43]X.Michalet,F.F.Pinaud,L.A.Bentolila,J.M.Tsay,S.Doose,J.J.Li,G.Sundaresan,A.M.Wu,S.S.Gambhir, S.Weiss,Quantumdotsforlivecells,invivoimaging,anddiagnostics,Science307(2005)538 544.

[44]R.Justin,S.Roman,D.Chen,K.Tao,X.Geng,R.T.Grant,S.MacNeil,K.Sun,B.Chen,Biodegradableand conductivechitosan-graphenequantumdotnanocompositemicroneedlesfordeliveryofbothsmallandlarge molecularweighttherapeutics,RSCAdv.5(2015)51934 51946.

[45]X.T.Zheng,A.Ananthanarayanan,K.Q.Luo,P.Chen,Glowinggraphenequantumdotsandcarbondots: properties,syntheses,andbiologicalapplications,Small11(2015)1620 1636.

[46]Y.-H.Hsin,C.-F.Chen,S.Huang,T.-S.Shih,P.-S.Lai,P.J.Chueh,Theapoptoticeffectofnanosilverismediated byaROS-andJNK-dependentmechanisminvolvingthemitochondrialpathwayinNIH3T3cells,Toxicol.Lett. 179(2008)130 139.

[47]X.Wu,L.Zhou,Y.Su,C.-M.Dong,Plasmonic,targeted,anddualdrugs-loadedpolypeptidecompositenanoparticlesforsynergisticcocktailchemotherapywithphotothermaltherapy,Biomacromolecules17(2016) 2489 2501.

[48]N.M.Idris,M.K.G.Jayakumar,A.Bansal,Y.Zhang,Upconversionnanoparticlesasversatilelightnanotransducersforphotoactivationapplications,Chem.Soc.Rev.44(2015)1449 1478.

[49]J.-N.Liu,W.-B.Bu,J.-L.Shi,Silicacoatedupconversionnanoparticles:aversatileplatformforthedevelopment ofefficienttheranostics,Acc.Chem.Res.48(2015)1797 1805.

[50]F.Ai,Q.Ju,X.Zhang,X.Chen,F.Wang,G.Zhu,Acore-shell-shellnanoplatformupconvertingnear-infrared lightat808nmforluminescenceimagingandphotodynamictherapyofcancer,Sci.Rep.5(2015)10785.

[51]D.Chen,R.Tao,K.Tao,B.Chen,S.K.Choi,Q.Tian,Y.Xu,G.Zhou,K.Sun,Efficacydependenceofphotodynamictherapymediatedbyupconversionnanoparticles:subcellularpositioningandirradiationproductivity,Small13(2017)1602053.

[52]Q.Tian,K.Tao,W.Li,K.Sun,Hot-injectionapproachfortwo-stageformedhexagonalNaYF4:Yb,Ernanocrystals,J.Phys.Chem.C115(2011)22886 22892.

[53]F.Xu,Y.Zhao,M.Hu,p.zhang,N.Kong,r.Liu,C.Liu,S.K.Choi,Lanthanide-dopedcore-shellnanoparticles asamultimodalityplatformforimagingandphotodynamictherapy,Chem.Commun.54(2018)9525 9528.

[54]K.Welsher,Z.Liu,S.P.Sherlock,J.T.Robinson,Z.Chen,D.Daranciang,H.Dai,Aroutetobrightly fluorescent carbonnanotubesfornear-infraredimaginginmice,Nat.Nanotechnol.4(2009)773.

[55]I.Celardo,J.Z.Pedersen,E.Traversa,L.Ghibelli,Pharmacologicalpotentialofceriumoxidenanoparticles, Nanoscale3(2011)1411 1420.

[56]J.Bai,Y.Liu,X.Jiang,MultifunctionalPEG-GO/CuSnanocompositesfornear-infraredchemo-photothermal therapy,Biomaterials35(2014)5805 5813.

[57]S.Ma,S.Zhan,Y.Jia,Q.Zhou,SuperiorantibacterialactivityofFe3O4-TiO2 nanosheetsundersolarlight,ACS Appl.Mater.Interfaces7(2015)21875 21883.

[58]G.E.LeCroy,F.Messina,A.Sciortino,C.E.Bunker,P.Wang,K.A.S.Fernando,Y.-P.Sun,Characteristicexcitationwavelengthdependenceof fluorescenceemissionsincarbon “quantum” dots,J.Phys.Chem.C121(2017) 28180 28186.

[59]A.Amirshaghaghi,L.Yan,J.Miller,Y.Daniel,J.M.Stein,T.M.Busch,Z.Cheng,A.Tsourkas,Chlorine6-coated superparamagneticironoxidenanoparticle(SPION)nanoclustersasatheranosticagentfordual-modeimaging andphotodynamictherapy,Sci.Rep.9(2019)2613.

[60]R.J.Miller,S.Bennett,A.A.Keller,S.Pease,H.S.Lenihan,TiO2 nanoparticlesarephototoxictomarinephytoplankton,PLoSOne7(2012)e30321.

[61]K.Pathakoti,S.Morrow,C.Han,M.Pelaez,X.He,D.D.Dionysiou,H.-M.Hwang,Photoinactivationof Escherichiacoli bysulfur-dopedandnitrogen fluorine-codopedTiO2 nanoparticlesundersolarsimulatedlightand visiblelightirradiation,Environ.Sci.Technol.47(2013)9988 9996.

[62]W.F.Vevers,A.N.Jha,Genotoxicandcytotoxicpotentialoftitaniumdioxide(TiO2)nanoparticleson fishcells invitro,Ecotoxicology17(2008)410 420.

[63]C.-C.Wang,S.Wang,Q.Xia,W.He,J.-J.Yin,P.P.Fu,J.-H.Li,Phototoxicityofzincoxidenanoparticlesin HaCaTkeratinocytes-generationofoxidativeDNAdamageduringUVAandvisiblelightirradiation, J.Nanosci.Nanotechnol.13(2013)3880 3888.

[64]J.Ge,M.Lan,B.Zhou,W.Liu,L.Guo,H.Wang,Q.Jia,G.Niu,X.Huang,H.Zhou,X.Meng,P.Wang,C.-S.Lee, W.Zhang,X.Han,Agraphenequantumdotphotodynamictherapyagentwithhighsingletoxygengeneration, Nat.Commun.5(2014)4596.

[65]L.Zhou,S.Wei,X.Ge,J.Zhou,H.Jiang,F.Li,J.Shen,Combinationofchemotherapyandphotodynamic therapyusinggrapheneoxideasdrugdeliverysystem,J.Photochem.Photobiol.B135(2014)7 16.

[66]P.Mroz,G.P.Tegos,H.Gali,T.Wharton,T.Sarna,M.R.Hamblin,Photodynamictherapywithfullerenes, Photochem.Photobiol.Sci.6(2007)1139 1149.

[67]B.Zhao,P.J.Bilski,Y.-Y.He,L.Feng,C.F.Chignell,Photo-inducedreactiveoxygenspeciesgenerationby differentwater-solublefullerenes(C60)andtheircytotoxicityinhumankeratinocytes,Photochem.Photobiol. 84(2008)1215 1223.

[68]S.K.Choi,M.Verma,J.Silpe,R.E.Moody,K.Tang,J.J.Hanson,J.R.BakerJr.,Aphotochemicalapproachfor controlleddrugreleaseintargeteddrugdelivery,Bioorg.Med.Chem.20(2012)1281 1290.

[69]R.Reinhard,B.F.Schmidt,Nitrobenzyl-basedphotosensitivephosphoramidemustards:synthesisandphotochemicalpropertiesofpotentialprodrugsforcancertherapy,J.Org.Chem.63(1998)2434 2441.

[70]L.Niu,K.R.Gee,K.Schaper,G.P.Hess,Synthesisandphotochemicalpropertiesofakainateprecursorand activationofkainateandAMPAreceptorchannelsonamicrosecondtimescale,Biochemistry35(1996) 2030 2036.

[71]L.Peng,M.Goeldner,Synthesisandcharacterizationofphotolabilecholineprecursorsasreversibleinhibitors ofcholinesterases:releaseofcholineinthemicrosecondtimerange,J.Org.Chem.61(1996)185 191.

[72]A.Momotake,N.Lindegger,E.Niggli,R.J.Barsotti,G.C.R.Ellis-Davies,Thenitrodibenzofuranchromophore:a newcaginggroupforultra-efficientphotolysisinlivingcells,Nat.Methods3(2006)35 40.

[73]F.M.Rossi,M.Margulis,C.-M.Tang,J.P.Y.Kao,N-Nmoc-l-glutamate,anewcagedglutamatewithhigh chemicalstabilityandlowpre-photolysisactivity,J.Biol.Chem.272(1997)32933 32939.

[74]F.M.Rossi,J.P.Y.Kao,Nmoc-DBHQ,anewcagedmoleculeformodulatingsarcoplasmic/endoplasmicreticulumCa2þ ATPaseactivitywithlight flashes,J.Biol.Chem.272(1997)3266 3271.

[75]S.Kantevari,S.Passlick,H.-B.Kwon,M.T.Richers,B.L.Sabatini,G.C.R.Ellis-Davies,Developmentofanionicallydecoratedcagedneurotransmitters:invitrocomparisonof7-nitroindolinyl-and2-(p-phenyl-onitrophenyl)propyl-basedphotochemicalprobes,ChemBioChem17(2016)953 961.

[76]R.Johnsson,J.G.Lackey,J.J.Bogojeski,M.J.Damha,Newlightlabilelinkerforsolidphasesynthesisof 20 -O-acetalesteroligonucleotidesandapplicationstosiRNAprodrugdevelopment,Bioorg.Med.Chem.Lett. 21(2011)3721 3725.

[77]W.Lin,D.Peng,B.Wang,L.Long,C.Guo,J.Yuan,Amodelforlight-triggeredporphyrinanticancerprodrugs basedonan o-nitrobenzylphotolabilegroup,Eur.J.Org.Chem.2008(2008)793 796.

[78]M.Noguchi,M.Skwarczynski,H.Prakash,S.Hirota,T.Kimura,Y.Hayashi,Y.Kiso,Developmentofnovel water-solublephotocleavableprotectivegroupanditsapplicationfordesignofphotoresponsivepaclitaxelprodrugs,Bioorg.Med.Chem.16(2008)5389 5397.

[79]X.Hu,J.Tian,T.Liu,G.Zhang,S.Liu,Photo-triggeredreleaseofcagedcamptothecinprodrugsfromdually responsiveshellcross-linkedmicelles,Macromolecules46(2013)6243 6256.

[80]F.Huang,W.-C.Liao,Y.S.Sohn,R.Nechushtai,C.-H.Lu,I.Willner,Light-responsiveandpH-responsiveDNA microcapsulesforcontrolledreleaseofloads,J.Am.Chem.Soc.138(2016)8936 8945.

[81]D.J.Sauers,M.K.Temburni,J.B.Biggins,L.M.Ceo,D.S.Galileo,J.T.Koh,Light-activatedgeneexpression directssegregationofCo-culturedcellsinvitro,ACSChem.Biol.5(2010)313 320.

[82]S.S.Agasti,A.Chompoosor,C.-C.You,P.Ghosh,C.K.Kim,V.M.Rotello,Photoregulatedreleaseofcaged anticancerdrugsfromgoldnanoparticles,J.Am.Chem.Soc.131(2009)5728 5729.

[83]I.Pavlovic,D.T.Thakor,J.R.Vargas,C.J.McKinlay,S.Hauke,P.Anstaett,R.C.Camuña,L.Bigler,G.Gasser, C.Schultz,P.A.Wender,H.J.Jessen,CellulardeliveryandphotochemicalreleaseofacagedinositolpyrophosphateinducesPH-domaintranslocationincellulo,Nat.Commun.7(2016)10622.

[84]S.K.Choi,T.P.Thomas,M.-H.Li,A.Desai,A.Kotlyar,J.R.Baker,Photochemicalreleaseofmethotrexatefrom folatereceptor-targetingPAMAMdendrimernanoconjugate,Photochem.Photobiol.Sci.11(2012)653 660.

[85]M.A.Inlay,V.Choe,S.Bharathi,N.B.Fernhoff,J.R.Baker,I.L.Weissman,S.K.Choi,Synthesisofaphotocaged tamoxifenforlight-dependentactivationofCre-ERrecombinase-drivengenemodification,Chem.Commun.49 (2013)4971 4973.

[86]K.H.Link,Y.Shi,J.T.Koh,Lightactivatedrecombination,J.Am.Chem.Soc.127(2005)13088 13089.

[87]P.T.Wong,S.Tang,J.Cannon,J.Mukherjee,D.Isham,K.Gam,M.Payne,S.A.Yanik,J.R.Baker,S.K.Choi, Athioacetalphotocagedesignedfordualrelease:applicationinthequantitationoftherapeuticreleasebysynchronousreporterdecaging,ChemBioChem18(2017)126 135.

[88]B.R.Sarode,K.Kover,P.Y.Tong,C.Zhang,S.H.Friedman,Lightcontrolofinsulinreleaseandbloodglucose usinganinjectablephotoactivateddepot,Mol.Pharm.13(2016)3835 3841.

[89]Q.Lin,Q.Huang,C.Li,C.Bao,Z.Liu,F.Li,L.Zhu,Anticancerdrugreleasefromamesoporoussilicabased nanophotocageregulatedbyeitheraone-ortwo-photonprocess,J.Am.Chem.Soc.132(2010)10645 10647.

[90]T.Furuta,S.S.H.Wang,J.L.Dantzker,T.M.Dore,W.J.Bybee,E.M.Callaway,W.Denk,R.Y.Tsien,Brominated 7-hydroxycoumarin-4-ylmethyls:photolabileprotectinggroupswithbiologicallyusefulcross-sectionsfortwo photonphotolysis,Proc.Natl.Acad.Sci.U.S.A.96(1999)1193 1200.

[91]X.Li,L.Xing,K.Zheng,P.Wei,L.Du,M.Shen,X.Shi,Formationofgoldnanostar-coatedhollowmesoporous silicafortumormultimodalityimagingandphotothermaltherapy,ACSAppl.Mater.Interfaces9(2017) 5817 5827.

[92]M.Skwarczynski,M.Noguchi,S.Hirota,Y.Sohma,T.Kimura,Y.Hayashi,Y.Kiso,Developmentof firstphotoresponsiveprodrugofpaclitaxel,Bioorg.Med.Chem.Lett.16(2006)4492 4496.

[93]R.R.Nani,A.P.Gorka,T.Nagaya,T.Yamamoto,J.Ivanic,H.Kobayashi,M.J.Schnermann,Invivoactivation ofduocarmycin antibodyconjugatesbynear-infraredlight,ACSCent.Sci.3(2017)329 337.

[94]P.T.Wong,E.W.Roberts,S.Tang,J.Mukherjee,J.Cannon,A.J.Nip,K.Corbin,M.F.Krummel,S.K.Choi, Controlofanunusualphoto-claisenrearrangementincoumarincagedtamoxifenthroughanextendedspacer, ACSChem.Biol.12(2017)1001 1010.

[95]L.Liang,Y.Lu,R.Zhang,A.Care,T.A.Ortega,S.M.Deyev,Y.Qian,A.V.Zvyagin,Deep-penetratingphotodynamictherapywithKillerRedmediatedbyupconversionnanoparticles,ActaBiomater.51(2017)461 470.

[96]M.K.Gnanasammandhan,N.M.Idris,A.Bansal,K.Huang,Y.Zhang,Near-IRphotoactivationusingmesoporoussilica-coatedNaYF4:Yb,Er/Tmupconversionnanoparticles,Nat.Protoc.11(2016)688 713.

[97]L.Zhao,J.Peng,Q.Huang,C.Li,M.Chen,Y.Sun,Q.Lin,L.Zhu,F.Li,Near-infraredphotoregulateddrug releaseinlivingtumortissueviayolk-shellupconversionnanocages,Adv.Funct.Mater.24(2014)363 371.

[98]Y.Yang,Q.Shao,R.Deng,C.Wang,X.Teng,K.Cheng,Z.Cheng,L.Huang,Z.Liu,X.Liu,B.Xing,Invitro andinvivouncagingandbioluminescenceimagingbyusingphotocagedupconversionnanoparticles,Angew. Chem.Int.Ed.51(2012)3125 3129.

[99]M.K.G.Jayakumar,N.M.Idris,Y.Zhang,Remoteactivationofbiomoleculesindeeptissuesusingnearinfrared-to-UVupconversionnanotransducers,Proc.Natl.Acad.Sci.U.S.A.109(2012)8483 8488.

[100]C.Alvarez-Lorenzo,L.Bromberg,A.Concheiro,Light-sensitiveintelligentdrugdeliverysystems,Photochem. Photobiol.85(2009)848 860.

[101]R.Tong,D.S.Kohane,Sheddinglightonnanomedicine,WileyInterdiscip.Rev.4(2012)638 662.

[102]R.R.Anderson,J.A.Parrish,Theopticsofhumanskin,J.Investig.Dermatol.77(1981)13 19.

[103]D.K.Sinha,P.Neveu,N.Gagey,I.Aujard,T.L.Saux,C.Rampon,C.Gauron,K.Kawakami,C.Leucht,L.BallyCuif,M.Volovitch,D.Bensimon,L.Jullien,S.Vriz,PhotoactivationoftheCreERT2recombinaseforconditionalsite-specificrecombinationwithhighspatiotemporalresolution,Zebrafish7(2010)199 204.

[104]Y.Tanaka,K.Matsuo,S.Yuzuriha,H.Yan,J.Nakayama,Non-thermalcytocidaleffectofinfraredirradiation onculturedcancercellsusingspecializeddevice,CancerSci.101(2010)1396 1402.

[105]J.V.Frangioni,Invivonear-infrared fluorescenceimaging,Curr.Opin.Chem.Biol.7(2003)626 634.

[106]A.P.Gorka,R.R.Nani,J.Zhu,S.Mackem,M.J.Schnermann,Anear-IRuncagingstrategybasedoncyanine photochemistry,J.Am.Chem.Soc.136(2014)14153 14159.

[107]B.delRosal,I.Villa,D.Jaque,F.Sanz-Rodríguez,Invivoautofluorescenceinthebiologicalwindows:therole ofpigmentation,J.Biophot.9(2016)1059 1067.

[108]A.Shrestha,A.Kishen,Polycationicchitosan-conjugatedphotosensitizerforantibacterialphotodynamictherapy,Photochem.Photobiol.88(2012)577 583.

[109]N.Nishiyama,Y.Morimoto,W.-D.Jang,K.Kataoka,Designanddevelopmentofdendrimerphotosensitizerincorporatedpolymericmicellesforenhancedphotodynamictherapy,Adv.DrugDeliv.Rev.61(2009) 327 338.

[110]G.Mayer,A.Heckel,Biologicallyactivemoleculeswithalightswitch,Angew.Chem.Int.Ed.45(2006) 4900 4921.

[111]T.Dvir,M.R.Banghart,B.P.Timko,R.Langer,D.S.Kohane,Photo-Targetednanoparticles,NanoLett.10(2010) 250 254.

[112]G.Han,C.-C.You,B.-j.Kim,R.S.Turingan,N.S.Forbes,C.T.Martin,V.M.Rotello,Light-regulatedreleaseof DNAanditsdeliverytonucleibymeansofphotolabilegoldnanoparticles,Angew.Chem.Int.Ed.45(2006) 3165 3169.

[113]M.J.Hansen,W.A.Velema,M.M.Lerch,W.Szymanski,B.L.Feringa,Wavelength-selectivecleavageofphotoprotectinggroups:strategiesandapplicationsindynamicsystems,Chem.Soc.Rev.44(2015)3358 3377.

[114]G.Dormán,G.D.Prestwich,Usingphotolabileligandsindrugdiscoveryanddevelopment,TrendsBiotechnol. 18(2000)64 77.

[115]M.Goard,G.Aakalu,O.D.Fedoryak,C.Quinonez,J.StJulien,S.J.Poteet,E.M.Schuman,T.M.Dore,Lightmediatedinhibitionofproteinsynthesis,Chem.Biol.12(2005)685 693.

[116]P.Neveu,I.Aujard,C.Benbrahim,T.LeSaux,J.-F.Allemand,S.Vriz,D.Bensimon,L.Jullien,Acagedretinoic acidforone-andtwo-photonexcitationinzebrafishembryos,Angew.Chem.Int.Ed.47(2008)3744 3746.

[117]I.Aujard,C.Benbrahim,M.Gouget,O.Ruel,J.-B.Baudin,P.Neveu,L.Jullien,o-Nitrobenzylphotolabileprotectinggroupswithred-shiftedabsorption:synthesesanduncagingcross-sectionsforone-andtwo-photon excitation,Chem.EurJ.12(2006)6865 6879.

[118]Y.Venkatesh,S.Nandi,M.Shee,B.Saha,A.Anoop,N.D.P.Singh,Bis-acetylcarbazole:aphotoremovableprotectinggroupforsequentialreleaseoftwodifferentfunctionalgroupsanditsapplicationintherapeuticrelease, Eur.J.Org.Chem.2017(2017)6121 6130.

[119]Y.Venkatesh,Y.Rajesh,S.Karthik,A.C.Chetan,M.Mandal,A.Jana,N.D.P.Singh,Photocagingofsingleand dual(similarordifferent)carboxylicandaminoacidsbyacetylcarbazoleanditsapplicationasdualdrug deliveryincancertherapy,J.Org.Chem.81(2016)11168 11175.

[120]Y.M.Li,J.Shi,R.Cai,X.Chen,Z.F.Luo,Q.X.Guo,Newquinoline-basedcaginggroupssynthesizedforphotoregulationofaptameractivity,J.Photochem.Photobiol.A211(2010)129 134.

[121]H.Du,M.K.Boyd,The9-xanthenylmethylgroup:anovelphotocleavableprotectinggroupforamines, TetrahedronLett.42(2001)6645 6647.

[122]A.Paul,R.Mengji,O.A.Chandy,S.Nandi,M.Bera,A.Jana,A.Anoop,N.D.P.Singh,ESIPT-induced fluorescento-hydroxycinnamate:aself-monitoringphototriggerforpromptimage-guideduncagingofalcohols,Org. Biomol.Chem.15(2017)8544 8552.

[123]K.R.Gee,L.W.Kueper,J.Barnes,G.Dudley,R.S.Givens,Desylestersofaminoacidneurotransmitters.Phototriggersforbiologicallyactiveneurotransmitters,J.Org.Chem.61(1996)1228 1233.

[124]D.S.Esen,N.Arsu,J.P.DaSilva,S.Jockusch,N.J.Turro,Benzointypephotoinitiatorforfreeradicalpolymerization,J.Polym.Sci.PartA51(2013)1865 1871.

[125]N.Qvit,G.Monderer-Rothkoff,A.Ido,D.E.Shalev,O.Amster-Choder,C.Gilon,Developmentofbifunctional photoactivatablebenzophenoneprobesandtheirapplicationtoglycosidesubstrates,Pept.Sci.90(2008) 526 536.

[126]N.Kotzur,B.Briand,M.Beyermann,V.Hagen,Wavelength-selectivephotoactivatableprotectinggroupsfor thiols,J.Am.Chem.Soc.131(2009)16927 16931.

[127]A.Rodrigues-Correia,X.M.M.Weyel,A.Heckel,Fourlevelsofwavelength-selectiveuncagingforoligonucleotides,Org.Lett.15(2013)5500 5503.

[128]T.Narumi,K.Miyata,A.Nii,K.Sato,N.Mase,T.Furuta,7-Hydroxy-N-methylquinoliniumchromophore:a photolabileprotectinggroupforblue-lightuncaging,Org.Lett.20(2018)4178 4182.

[129]H.Chen,L.Shao,Q.Li,J.Wang,Goldnanorodsandtheirplasmonicproperties,Chem.Soc.Rev.42(2013) 2679 2724.

[130]Y.Zhou,Y.Hu,W.Sun,S.Lu,C.Cai,C.Peng,J.Yu,R.Popovtzer,M.Shen,X.Shi,Radiotherapy-sensitized tumorphotothermalablationusing g-polyglutamicacidnanogelsloadedwithpolypyrrole,Biomacromolecules 19(2018)2034 2042.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.