Photochemistry of heterocycles maurizio d’auria - Quickly download the ebook to read anytime, anywhe

Page 1


https://ebookmass.com/product/photochemistry-of-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Raney Nickel-Assisted Synthesis of Heterocycles Navjeet Kaur

https://ebookmass.com/product/raney-nickel-assisted-synthesis-ofheterocycles-navjeet-kaur/

ebookmass.com

The Palgrave Handbook of FinTech and Blockchain Maurizio Pompella

https://ebookmass.com/product/the-palgrave-handbook-of-fintech-andblockchain-maurizio-pompella/

ebookmass.com

Transition-Metal-Catalyzed C-H Functionalization of Heterocycles Punniyamurthy T.

https://ebookmass.com/product/transition-metal-catalyzed-c-hfunctionalization-of-heterocycles-punniyamurthy-t/

ebookmass.com

The Architecture Student’s Handbook of Professional Practice 15th Edition – Ebook PDF Version

https://ebookmass.com/product/the-architecture-students-handbook-ofprofessional-practice-15th-edition-ebook-pdf-version/

ebookmass.com

The Double Life of Katharine Clark Katharine Gregorio

https://ebookmass.com/product/the-double-life-of-katharine-clarkkatharine-gregorio-2/

ebookmass.com

Direct Social Work Practice: Theory and Skills eBook

https://ebookmass.com/product/direct-social-work-practice-theory-andskills-ebook/

ebookmass.com

A Dash of Christmas Samantha Chase

https://ebookmass.com/product/a-dash-of-christmas-samantha-chase-3/

ebookmass.com

Electronic Packaging Science and Technology King-Ning Tu

https://ebookmass.com/product/electronic-packaging-science-andtechnology-king-ning-tu/

ebookmass.com

Household Gods: The Religious Lives of the Adams Family Sara Georgini

https://ebookmass.com/product/household-gods-the-religious-lives-ofthe-adams-family-sara-georgini/

ebookmass.com

https://ebookmass.com/product/the-texas-job-reavis-z-wortham/

ebookmass.com

PHOTOCHEMISTRYOFHETEROCYCLES

Thispageintentionallyleftblank

PHOTOCHEMISTRYOF HETEROCYCLES

MAURIZIO D’AURIA

UniversityofBasilicata,Potenza,Italy

AMBRA GUARNACCIO

InstituteofStructureofMatter(ISM)attheCNR-ISM,TitoScalo,Italy

ROCCO RACIOPPI

UniversityofBasilicata,Potenza,Italy

SONIA STOIA

ITT"16Agosto1860",CorletoPerticara,Potenza,Italy

LUCIA EMANUELE

DepartmentofArtandRestoration,UniversityofDubrovnik,Dubrovnik,Croatia

Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchas theCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions . ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenoted herein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changes inresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods, compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/or damagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-823745-8

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: GabrielaD.Capille

EditorialProjectManager: AndreaR.Dulberger

ProductionProjectManager: OmerMukthar

CoverDesigner: MarkRogers

TypesetbyMPSLimited,Chennai,India

1.Photochemicalsynthesisofheterocyclic compounds1

1.1Introduction3

1.2Azetidines3

1.2.1SynthesisbyazaPaterno ` Buchireaction3

1.2.2Synthesisbyintramolecularclosureof N-formil-α-oxoamides4

1.2.3SynthesisbyNorris-Yangrearrangement4

1.2.4Reactionbetweenfullereneand formamidines5

1.2.5Synthesisbyciclizationofaminoketones6

1.3Aziridines6

1.3.1Synthesisbyrearrangementofpyridinium salts6

1.3.2Synthesisbyinsertionofnitreneinto doublebonds7

1.3.3Synthesisfromhomoallylpyrroles7

1.3.4Synthesisbyrearrangementoftriazolines8

1.3.5Synthesisofaziridinesbyvisible-light induceddecarboxylativecyclizationof N-arylglycinesanddiazocompounds8

1.3.6Photoinducedaziridinationofalkeneswith N-sulfonyliminoiodinane9

1.3.7Photochemicalaziridinationoffullerenes9

1.3.8Synthesisfromsugarderivativesand azides10

1.3.9Synthesisfromazidesbyphotocatalysis10

1.3.10Synthesisfromazidoformates11

1.4Diazepinesandbenzodiazepines11

1.4.1Synthesisfrom4-pyridylazides11 1.5Furans13

1.5.1Furansfrom α-bromo-β-dicarbonyl compoundsandalkynes13

1.5.2Benzofuransfrom2-chlorophenolsand alkynes13

1.5.3Dihydroandtetrahydrofuransfrom cyclopropanederivatives14

1.5.4Dihydrofuranfromphotodimerizationof β-carbonylketones15

1.5.5Tetrasubstitutedfuransfromsilylenolethers and α-bromodiketones15

1.5.6Synthesisof5H-furanonesfrom substitutedcyclobutenones16

1.5.7Photochemicalcatalyticalsynthesisof dihydrofuransfromvinylandaryl cyclopropanes16

1.5.8Tetrahydrofuransfromcyclobutanones andnitrilecompounds16

1.5.9Reactionofpropargylderivativeswith alkenes17

1.5.10Tetrahydrofuransfrom α,β-unsaturated ketones18

1.5.11 γ-Lactonesfromallylicalcoholsand α,β-unsaturatedketoester18

1.5.12Synthesisfromcinnamicacidandketones18

1.5.13Synthesisfrom α-chloroalkylketones andstyrenes19

1.5.14Synthesisbyisomerizationofalkenes20 1.6Imidazolesandderivatives20

1.6.1Synthesisofanimidazoleintermediated byHCN20

1.6.2Synthesisofdihydroimidazolesfrom pyridiniumsaltsandanalkene21

1.6.3Synthesisofanimidazolinoneby cyclizationofalinearcompound22

1.6.4Synthesisofpurinesbyirradiationof urea/acetylene22

1.6.5Onepotsynthesisfromaldehydes, α-aminonitrilesandisoxazoles23

1.6.6Reactionof N-(1-methylpyrimidin-2-one) pyridiniumchloride.Contractiontoan imidazolidinone23

1.7Synthesisofoxadiazoles24

1.7.11,2,4Oxadiazolesfrom2H-azirinesand nitrosoarenes24

1.7.2Photooxidationof N-acylhydrazonesto 1,3,4-oxadiazoles25

1.8Synthesisofoxazolesandrelatedsystems26

1.8.1Synthesisofoxazolesbyconversionof 1-acyltriazoles26

1.8.2Synthesisfrom α-bromoketonesand benzylamines26

1.8.3Threecomponentscondensationof silylenolethers,fluoroalkylhalidesand chiralaminoalcoholstoobtainoxazolidines27

1.8.4Oxazolidinonesfrompropargylicamines andCO2 28

1.8.5Conversionofbenzoilformamidesto oxazolidin4-ones29

1.8.6Synthesisofphosphoniumsubstituted oxazolesfromphosphonium-iodonium ylides30

1.8.7Synthesisfromazirinesandaldehydes30

1.9Oxetanes:thePaterno ` Bu¨chireaction31

1.9.1 Exo-oxetanesfromcarbonylcompounds withvinylenecarbonates31

1.9.2Photocycloadditionof N-acylenaminesto aldehydes32

1.9.3Oxetanesfromcarbonylcompoundsand 2,5dimethyl-4-isobutyl-oxazoles33

1.9.4Reactionof2,3-dihydrofuran34

1.9.5Reactionofasilylderivativeofcinnamyl alcohol35

1.9.6Reactionofgeraniolderivatives35

1.9.7Reactionwithisoxazolederivatives36

1.9.8Synthesisofanelusiveoxetaneby photoadditionofbenzophenoneto thiopheneinthepresenceofaLewis acid37

1.9.9Reactionof2-furylmethanolderivatives38

1.9.10Reactionofsilylenolethers39 1.10Piperidines40

1.10.1Iodinecatalyzedsp3-Hamination40

1.10.2Synthesisfrom2,6-diaminopimelicacidto piperidine-2,6-dicarboxylicacid42

1.10.3Aphotochemicalreactioninthesynthesis ofazasugarderivatives43

1.10.4Piperidinesfromring-contactionof N-chlorolactams43

1.10.5Synthesisof2-piperidinonecatalyzed fromahydrophobicanalogofvitamin B12 44

1.11Pyrazoles44

1.11.1Aromatizationof1,3,5trisubstituted pyrazolines44

1.11.2Photochemicalbrominationforpreparation ofmono,bisandfusedpyrazolederivatives45

1.11.3PyrazolesfromhydrazinesandMichael acceptors47

1.11.4Synthesisofpyrazolederivativesviaformal [4 1 1]annulationandaromatization48

1.11.5Reactionofhydrazonesand α-bromoketones49

1.11.6Onepotsynthesisofpyrazolesfrom alkynesandhydrazines51

1.11.7Sunlight-promoteddirectirradiationof N-centeredanion:thephotocatalyst-free synthesisofpyrazoles52

1.11.8Efficientphotooxidationofaryl(hetaryl) pyrazolinesbybenzoquinone53

1.11.9Synthesisofpyrazolesviaphotochemical ringopeningofpyridazine N-oxides54 1.12Pyridines55

1.12.1Pyridinesfromringclosureof acyloximes55

1.12.2Synthesisofnaphthylpyridinesfrom heptadynesandnitriles57

1.12.3Synthesisofsubstitutedpyridinefrom arylketoneandbenzylamines58

1.12.4Pyridinesfromtrimerizationoftwo alkenesandanitrile60 1.13Pyrimidines61

1.13.1Synthesisofbenzo-fusedpyrimidines4-onesfrom1,2,4oxadiazoles61

1.13.2Fluoroalkylatespyrimidinesfromsilyl enolethers,amidines,and fluoroalkylhalides63

1.13.3Threecomponentsynthesisfromactive methylenecompounds,perfluoroalkyl iodidesandguanidines66

1.13.4Synthesisofpyrimidonesfrom4-allyltetrazolones67 1.14Pyrroles69

1.14.1Dehydrogenativearomatizationand sulfonylationofpyrrolidines69

1.14.2Synthesisofnitrogenheterocycles generatedfrom α-silylsecondaryamines undervisiblelightirradiation71

1.14.3Synthesisofsubstitutedpyrrolesby dimerizationofacylazirines71

1.14.4Photochemicalisomerizationsof N-substituted2-halopyrroles:synthesesof N-substituted3-halopyrroles73

1.14.5Synthesisofpentacyclesincorporatinga pyrroleunit73

1.14.6Synthesisof1,3,4trisubstitutedpyrroles bycondensationofarylazidesand aldheydes76

1.15Pyrrolidines78

1.15.1Pyrrolydinonesfromsuitableamidesand aniridiumcatalyst78

1.15.2[3 1 2]Cycloadditionbetweena cyclopropylketoneandanimine79

1.15.3Synthesisofpyrrolidinesfromalkanes andnitrogenderivatives80

1.15.4Aroylchlorinationof1,6dienesto obtain2-pyrrolidinones82

1.15.5Synthesisofpyrrolidinonesfusedwitha cyclobutanering82 1.16Thiophenesandbenzothiophenes85

1.16.1Cyclizationof2-alkynylanilineswith disulfidetoaffordbenzothiophenes85

1.16.2Cyclizationofdiethynilsulfideto thiophene87 References87

2.Photoisomerizationofheterocycliccompounds91

2.1Photoisomerizationofpentaatomicheterocycles91

2.1.1Isomerizationoffuranderivatives91

2.1.2Isomerizationofpyrrole99

2.1.3Isomerizationofthiophene105

2.1.4Isomerizationofisoxazole108

2.1.5Isomerizationofoxazole114

2.1.6Isomerizationofpyrazole115

2.1.7Isomerizationofimidazole118

2.1.8Isomerizationofthiazoles118

2.1.9Isomerizationofisothiazoles124

2.1.10Isomerizationofoxadiazoles127

2.1.11Otherpentaatomicheterocycles133

2.2Photoisomerizationofhexatomicheterocycles133

2.2.1Isomerizationofpyridines133

2.2.2Isomerizationofdiazines144 References152

3.Photochemicalbehaviorof diheteroarylethenesandphotochromism161

3.1Photochemistryofolefins:Anoverview161

3.2Photoinducedpericyclicreactions:Stilbeneandits diheteroarylethenesderivatives174

3.2.1SomeapplicationsoftheMalloryreaction177

3.3The[2 1 2]photocycloadditionreactionson heteroarylethenes179

3.4Photochromismofdiheteroarylethenes183

3.4.1Abriefhistoricaloverviewandbasic reactionmechanism183

3.4.2Photochromism:Tuningwithethene bridges187

3.4.3Photochromism:Tuningwithfuntionalised heteroarylgroups192

3.4.4Photocyclizationreactionsandsolvent effect196

3.4.5Photochromisminchiral diheteroarylethenes198

3.4.6Ringclosureprocessesinducedbyvisible radiationandall-visiblephotochromism201

3.5Applicationsofphotochromicmoleculesof diheteroarylethenes:Switchesandoptical memories205

3.5.1Switches205

3.5.2Switchableelectricconduction206

3.5.3Switchablesupramolecularsystems208

3.5.4Switchableliquidcrystals210

3.5.5Switchablechemicalpropertiesand bioactivity211

3.5.6Opticalmemories212 References214

4.1.1Fromnaturaltoartificialphotoactive systems219

4.1.2Explanationofphotoactivitythroughthe comprehensionofthenatureoflight220

4.1.3Explanationofmolecularphotoactivity throughlight matterinteractionmodels220

4.1.4Themolecularskeletonofphotoactive moleculesdefinethebehavioroflight absorptionandemissioninmolecules222

4.2Mainclassesofheterocyclicphotoactive compounds:synthesisandphotochemical reactions224

4.2.1Three-memberedheterocycles224

4.2.2Four-memberedheterocycles232

4.2.3Five-memberedheterocycles239

4.2.4Six-memberedheterocycles266

4.3Applicationsandtechnologyofthemain classesofheterocyclicphotoactivecompounds268

4.3.1Heterocyclicconjugatedbackbonesfor efficientemergingorganicphotovoltaics268

4.3.2Lightstabilityofnon-fullereneacceptors: photo-oxidationandphotophysical degradations275

4.3.3Majorclassesofnon-fullereneacceptors: rylenediimides279

4.3.4Majorclassesofnon-fullereneacceptors: perylenediimidesmallmolecules279

4.3.5Majorclassesofnon-fullereneacceptors: fused-ringelectronacceptors280

4.3.6Polymersandsmall-moleculedonors281

4.3.7Nonlinearopticalmaterials282 References290

5.Photodegradationofdrugsandcrop protectionproducts297

5.1Introduction297

5.2Generalmechanismsofphotodegradationof drugs298

5.3Anti-inflammatory,analgesic,and immunosuppressantdrugs299

5.3.1Nonsteroidalanti-inflammatorydrugs299

5.3.2Pyrazoloneanalgesicandantipyreticdrugs300

5.3.3Immunosuppressantandanti-histamic drugs302

5.4Drugsactingonthecentralnervoussystem304

5.4.1Barbituricacidderivatives304

5.4.2Benzodiazepines306

5.4.3Thioxantheneandphenothiazine psychotherapeuticagents308

5.5Cardiovasculardrugs310

5.5.1Cardiacagents310

5.5.2Bloodpressure-regulatingdrugs310

4.Heterocyclic-basedphotoactivematerials219

4.1Overviewofphotoactivematerials219

5.5.3Adrenergics311

5.5.4Diuretics312

5.6Chemotherapeuticagents313

5.6.1Antibacterialdrugs313

5.6.2Antibacterialsandantivirals:aromatic derivatives315

5.6.3 β-Lactamantibiotics316

5.6.4Antiprotozoal,anti-amebic,antimycotic drugs317

5.6.5Antineoplasticdrugs317

5.6.6Furocoumarins318

5.7Generalmechanismsofphotodegradationofcrop protectionproducts319

5.7.1Azolefungicides320

5.7.2Dicarboximidefungicides321

5.7.3Imidazolinoneherbicides323

5.7.4Macrocycliclactoneinsecticide324

5.7.5N-Methylcarbamateinsecticides325

5.7.6Neonicotinoidinsecticides327

5.7.7Organophosphateinsecticides328

5.7.8Triazineherbicides329

5.7.9Triazinoneherbicides330

5.7.10Triazolopyrimidineherbicide332

5.7.11Unclassifiedpesticides334 References335 Index337

Preface

OleBuchardtservedastheeditorofavolumebearingthetitle PhotochemistryofHeterocyclicCompounds (J.Wiley&Sons,1976)in1976.Afterthisbook,nothinghasbeenpublishedinthisregard.Overthelast forty-sixyears,manythingshavechanged,especially heterocycliccompoundsandtheirphotochemical behavior.Forexample,thecurrentelectronicdevices useLEDswhereheterocycliccompoundsandtheir fluorescenceemissionareused.Thephotochromismof dietheroarylethenederivativeshasbeenstudiedin detail,andmanypossibleapplicationsinthefieldof informationstorageorsimplyforthepreparation ofphotochromiclensesarediscussed.Theconversion

ofsunlightintoelectricityismainlybasedonthe chemistryofheterocycliccompounds.Thestudyofthe photochemicalbehaviorofadrugismainlyderived fromthedifferentpossibilitiesofadministeringthe drug.Heterocycliccompoundsareusedinmanyagriculturalproducts,andtheirphotochemicaldecompositioncanhavesignificanteffectsontheenvironment.

Agapof46yearsissuchalongtimeperiodin termsofradicalchangeofperspectives.Hence,this bookisourhumblecontributiontoupdatetheexisting literatureonthistopic.

MaurizioD’Auria

Thispageintentionallyleftblank

Photochemicalsynthesisofheterocyclic compounds

OUTLINE

1.1Introduction3

1.2Azetidines3

1.2.1SynthesisbyazaPaterno ` Buchireaction3

1.2.2Synthesisbyintramolecularclosureof N-formil-α-oxoamides4

1.2.3SynthesisbyNorris-Yangrearrangement4

1.2.4Reactionbetweenfullereneand formamidines5

1.2.5Synthesisbyciclizationofaminoketones6

1.3Aziridines6

1.3.1Synthesisbyrearrangementofpyridinium salts6

1.3.2Synthesisbyinsertionofnitreneintodouble bonds7

1.3.3Synthesisfromhomoallylpyrroles7

1.3.4Synthesisbyrearrangementoftriazolines8

1.3.5Synthesisofaziridinesbyvisible-lightinduced decarboxylativecyclizationof N-arylglycines anddiazocompounds8

1.3.6Photoinducedaziridinationofalkeneswith N-sulfonyliminoiodinane9

1.3.7Photochemicalaziridinationoffullerenes9

1.3.8Synthesisfromsugarderivativesand azides10

1.3.9Synthesisfromazidesbyphotocatalysis10

1.3.10Synthesisfromazidoformates11

1.4Diazepinesandbenzodiazepines11

1.4.1Synthesisfrom4-pyridylazides11

1.5Furans13

1.5.1Furansfrom α-bromo-β -dicarbonyl compoundsandalkynes13

1.5.2Benzofuransfrom2-chlorophenolsand alkynes13

1.5.3Dihydroandtetrahydrofuransfrom cyclopropanederivatives14

1.5.4Dihydrofuranfromphotodimerizationof β -carbonylketones15

1.5.5Tetrasubstitutedfuransfromsilylenolethers and α-bromodiketones15

1.5.6Synthesisof5H-furanonesfromsubstituted cyclobutenones16

1.5.7Photochemicalcatalyticalsynthesisof dihydrofuransfromvinylandaryl cyclopropanes16

1.5.8Tetrahydrofuransfromcyclobutanonesand nitrilecompounds16

1.5.9Reactionofpropargylderivativeswith alkenes17

1.5.10Tetrahydrofuransfrom α,β -unsaturated ketones18

1.5.11 γ -Lactonesfromallylicalcoholsand α,β -unsaturatedketoester18

1.5.12Synthesisfromcinnamicacidandketones18

1.5.13Synthesisfrom α-chloroalkylketonesand styrenes19

1.5.14Synthesisbyisomerizationofalkenes20 1.6Imidazolesandderivatives20

1.6.1Synthesisofanimidazoleintermediatedby HCN20

1.6.2Synthesisofdihydroimidazolesfrompyridinium saltsandanalkene21

1.6.3Synthesisofanimidazolinonebycyclization ofalinearcompound22

1.6.4Synthesisofpurinesbyirradiationofurea/ acetylene22

1.6.5Onepotsynthesisfromaldehydes, α-aminonitrilesandisoxazoles23

1.6.6Reactionof N-(1-methylpyrimidin-2-one) pyridiniumchloride.Contractiontoan imidazolidinone23

1.7Synthesisofoxadiazoles24

1.7.11,2,4Oxadiazolesfrom2H-azirinesand nitrosoarenes24

1.7.2Photooxidationof N-acylhydrazonesto1,3,4oxadiazoles25

1.8Synthesisofoxazolesandrelatedsystems26

1.8.1Synthesisofoxazolesbyconversionof1-acyl triazoles26

1.8.2Synthesisfrom α-bromoketonesand benzylamines26

1.8.3Threecomponentscondensationof silylenolethers,fluoroalkylhalidesandchiral aminoalcoholstoobtainoxazolidines27

1.8.4Oxazolidinonesfrompropargylicaminesand CO2 28

1.8.5Conversionofbenzoilformamidestooxazolidin 4-ones29

1.8.6Synthesisofphosphoniumsubstitutedoxazoles fromphosphonium-iodoniumylides30

1.8.7Synthesisfromazirinesandaldehydes30

1.9Oxetanes:thePaterno ` Bu ¨ chireaction31

1.9.1 Exo-oxetanesfromcarbonylcompounds withvinylenecarbonates31

1.9.2Photocycloadditionof N-acylenaminesto aldehydes32

1.9.3Oxetanesfromcarbonylcompoundsand2,5 dimethyl-4-isobutyl-oxazoles33

1.9.4Reactionof2,3-dihydrofuran34

1.9.5Reactionofasilylderivativeofcinnamyl alcohol35

1.9.6Reactionofgeraniolderivatives35

1.9.7Reactionwithisoxazolederivatives36

1.9.8Synthesisofanelusiveoxetaneby photoadditionofbenzophenonetothiophene inthepresenceofaLewisacid37

1.9.9Reactionof2-furylmethanolderivatives38

1.9.10Reactionofsilylenolethers39

1.10Piperidines40

1.10.1Iodinecatalyzedsp3-Hamination40

1.10.2Synthesisfrom2,6-diaminopimelicacidto piperidine-2,6-dicarboxylicacid42

1.10.3Aphotochemicalreactioninthesynthesisof azasugarderivatives43

1.10.4Piperidinesfromring-contactionof Nchlorolactams43

1.10.5Synthesisof2-piperidinonecatalyzedfroma hydrophobicanalogofvitaminB12 44

1.11.1Aromatizationof1,3,5trisubstituted pyrazolines44

1.11.2Photochemicalbrominationforpreparationof mono,bisandfusedpyrazolederivatives45

1.11.3PyrazolesfromhydrazinesandMichael acceptors47

1.11.4Synthesisofpyrazolederivativesviaformal [4 1 1]annulationandaromatization48

1.11.5Reactionofhydrazonesand α-bromoketones49

1.11.6Onepotsynthesisofpyrazolesfromalkynes andhydrazines51

1.11.7Sunlight-promoteddirectirradiationof Ncenteredanion:thephotocatalyst-freesynthesis ofpyrazoles52

1.11.8Efficientphotooxidationofaryl(hetaryl) pyrazolinesbybenzoquinone53

1.11.9Synthesisofpyrazolesviaphotochemicalring openingofpyridazine N-oxides54

1.12Pyridines55

1.12.1Pyridinesfromringclosureofacyloximes55 1.12.2Synthesisofnaphthylpyridinesfrom heptadynesandnitriles57

1.12.3Synthesisofsubstitutedpyridinefromaryl ketoneandbenzylamines58

1.12.4Pyridinesfromtrimerizationoftwoalkenes andanitrile60

1.13Pyrimidines61

1.13.1Synthesisofbenzo-fusedpyrimidines-4-ones from1,2,4oxadiazoles61

1.13.2Fluoroalkylatespyrimidinesfromsilylenol ethers,amidines,andfluoroalkylhalides63

1.13.3Threecomponentsynthesisfromactive methylenecompounds,perfluoroalkyliodides andguanidines66

1.13.4Synthesisofpyrimidonesfrom4-allyltetrazolones67

1.14Pyrroles69

1.14.1Dehydrogenativearomatizationand sulfonylationofpyrrolidines69

1.14.2Synthesisofnitrogenheterocyclesgenerated from α-silylsecondaryaminesundervisible lightirradiation71

1.14.3Synthesisofsubstitutedpyrrolesbydimerization ofacylazirines71

1.14.4Photochemicalisomerizationsof N-substituted 2-halopyrroles:synthesesof N-substituted 3-halopyrroles73

1.14.5Synthesisofpentacyclesincorporatingapyrrole unit73

1.14.6Synthesisof1,3,4trisubstitutedpyrrolesby condensationofarylazidesandaldheydes76

1.15Pyrrolidines78

1.15.1Pyrrolydinonesfromsuitableamidesandan iridiumcatalyst78

1.15.2[3 1 2]Cycloadditionbetweena cyclopropylketoneandanimine79

1.15.3Synthesisofpyrrolidinesfromalkanesand nitrogenderivatives80

1.15.4Aroylchlorinationof1,6dienestoobtain 2-pyrrolidinones82

1.15.5Synthesisofpyrrolidinonesfusedwitha cyclobutanering82

1.16Thiophenesandbenzothiophenes85

1.16.1Cyclizationof2-alkynylanilineswithdisulfide toaffordbenzothiophenes85

1.16.2Cyclizationofdiethynilsulfideto thiophene87 References87

1.1Introduction

Heterocycliccompoundsareofenormousinterest,especiallyinpharmaceuticalchemistry.Infact,themajority ofcurrentdrugscontainsaheterocyclicring.Despitethegreatimportanceofthesecompounds,onlyfewmethodsexistforthesynthesisofheterocyclesusingphotochemicalmethodthoughphotochemicalreactionsareoften easytorealize,clean,andenvironmentallybenign.Amongthevariousmethodstobuildaheterocycle,cyclizationoflinearcompounds,[x 1 y]cyclizationandringclosurearethemajorones.Theresearchinthisfieldhas significantlyincreasedcomparedtothepast,todiscovernewmethodsandclarifythereactionmechanisms.

Theaimofthischapteristoexplorethephotochemicalsyntheticmethodsforthesynthesisofthemostcommonheterocycliccompounds.

1.2Azetidines

1.2.1SynthesisbyazaPaterno ` Buchireaction

TheazaPaterno ` Buchireactionisaphotochemicalreactionbetweenanalkeneandanimineoranoxime.Not muchinformationexistsintheliteratureaboutthisreaction.Beckeretal.developedamethodforanintramolecularazaPaterno ` Buchireactioninwhichinthesamemoleculesadoublebondandanoximearepresentto obtainabicyclicazetidine(Fig.1.1).1

Usually,thesereactionsaredifficult,becausethepreferredreactionisthe E/Z isomerizationofimineoroxime, andarelimitedtorigidsystemswithirradiationwithhighenergyUVradiation.Theuseofacatalyst(PF6)permitstousevisiblelightviaatripletenergytransfertothedoublebondofthealkene.Controlreactionsrevealed thatbothlightandphotocatalystwerenecessaryforthe[2 1 2]photocycloadditiontoproceed.

Othersubstrateswiththesamebasicstructurewereinvestigated.Ineverycase,thereactionprocedeswell withhighyield(upto98%)andexcellentdiastereoselectivity(20:1).Furthermore,itisindependentfromthe E/Z configurationoftheoxime.2

In2020,thesameresearchgrouppointeditsattentiontointermolecularazaPaterno ` Buchireactions.3 The firstdifficultyencounteredwasthattheexcitedalkenehasatooshortlifetimebeforereactingwithanoxime.So, thechoicewastoselectacyclicoximethatcannotgive E/Z isomerization(Fig.1.2).

FIGURE1.1 IntramolecularazaPaterno ` Buchireaction.
FIGURE1.2 Cyclicoxime.

ThecatalystofchoicewasalwaysPF6.Anexampleisgiveninthe Scheme1.1

SCHEME1.1 Azetidinefromcyclicoxime.

Manyazetidinesweresynthesizedinthisway,insomecaseswithexcellentregioanddiastereoselectivity.

1.2.2Synthesisbyintramolecularclosureof N-formil-α-oxoamides

Irradiationofabenzenesolutionof N-formyl-N-methylbenzoylformamidewithahighpressuremercurylamp gaveacyclizationproduct,3-hydroxy-1-methyl-3-phenylazetidine-2,4-dione.4 Whenother N-formyl-α-oxoamides wereirradiatedunderthesameconditions,thecorrespondingcyclicimideswereobtained(Scheme1.2).

Intramolecularclosureof N-formil-α-oxoamides.

Theformationofazetidineisrationalizedintermsofhydrogenabstractionbytheketonecarbonylfromthe formylgroupandsubsequentcyclizationoftheresulting1,4diradical(Fig.1.3).

1.2.3SynthesisbyNorris-Yangrearrangement

Anothersimplewaytoconstruct3-hydroxyazetidinesisdescribedbyBaxendaleetal.5 Asimpleacyclic2aminoketonefollowingphotochemicalexcitationinvolvingan - π*transitionwithformationofadiradicalthat abstractsaprotonfromoneoftheavailablesites(usuallythe δ-proton)leadingtoanewdiradicalwhichcancombinetoformthecyclicproduct(Scheme1.3).

Norris-Yangrearrangment.

Performingthereactioninbatch,oftenlongreactiontimesandverydiluteconditionsarenecessary.Sothe reactionwasperformedwithaflowreactorataspeedof1mL/min.Thispermitstoobtainconversionupto95% andisolatedyieldsof70%/80%.ConcerningtheusedwavelengthananalysisofUVspectrashowsthatthenπ*transitioncorrespondstoabout300nmsoasuitablefilterwasused.Aboutthechosensubstrate,theauthors findthebestresultswhennitrogenisderivatizedassulfonamide(Fig.1.4).

FIGURE1.3 Diradicalintermediateinthereactionof Scheme1.2

SCHEME1.2
SCHEME1.3

About30compoundsofthiskindwerepreparedandsubmittedtophotochemicalreaction.Theisolatedyields varyfrommoderatetoexcellent.ThelowestyieldswereobtainedwhenRwasanortochloroorbromophenyl. Maybe,itcanbeduetoalackofplanarityinthetransitionstatebetweenphenylandcarbonyl.

1.2.4Reactionbetweenfullereneandformamidines

Fullerene(C60)isaveryinterestingmolecule,nononlyforitsshape,butalsoforthepossibilitythatfuctionalizedfullerenescouldhavebiologicalactivity.6 Theauthorsreportnovelfullerenederivativeshavinganazetidinimineframeworkandcharacterizedtheproduct.Thereaction(Scheme1.4)wasperformedusing N,N0 -bis(2,2dialkylphenyl)formamidinesandawavelength . 400nm.

Thereactiondidnotproceedwhen 1a or 1b wasusedbecauseoftheirpoorsolubilityinthesolventthatwas used(toluene).Moreover,thereactiondidnotproceedintheabsenceofoxygen.

Inthisregard,thereactionmechanismcanbeproposedasshownin Scheme1.5.Initially,asingleelectron transferoccurredfromtheformationofastableC60anionradicalandanamidiniumcationradicalthroughan electrontransferfromaformamidine.Oncegenerated,theC60anionradicalreducesmolecularoxygentogeneratesuperoxideanionradical.C60andanamidiniumcationreacttogethertoformaprotonatedintermediate.The superoxideanionthendeprotonatedradical;theresultingO2H mustbeasufficientlypowerfuloxidanttoconverttheintermediateintoazetidinimine.

FIGURE1.4 Sulfonamideusedin Scheme1.3
SCHEME1.4 Reactionoffullerene.
SCHEME1.5 Mechanismofthereaction.

1.Photochemicalsynthesisofheterocycliccompounds

1.2.5Synthesisbyciclizationofaminoketones

Azetidinescanalsopreparedinopticallypureformstartingfromaminoketones.6 Afteraseriesofsynthetic steps,compoundAwaspreparedandsubmittedtoirradiationtoobtainanazetidinewithconfiguration 2R (Scheme1.6).

SCHEME1.6 Azetidinesfromaminoketones.

Forthesynthesisof 2S enantiomer,itwasstartedfromserine,thatwassubmittedtoaseriesofsyntheticsteps: inanalogousmatter,itispossibletoobtaintheenantiomeroftheazetidinecarboxylicacidwithconfiguration 2S (Scheme1.6).

1.3Aziridines

1.3.1Synthesisbyrearrangementofpyridiniumsalts

Aziridinecanbeobtainedbyrearrangementofpyridiniumsaltsalsoinadiastereoselectivemanner.7,8 An exampleisoutlinedbelow(Scheme1.7).

SCHEME1.7 Rearrangmentofpyridiniumsalts.

Iftheaziridineistreatedwithanucleofile,insomecasesitispossibletheopeningofaziridineringtoafforda cyclopentene(Scheme1.8).

SCHEME1.8 Openingofaziridinetocyclopentene.

Thereactionworkswellalsowithtetrahydroquinolines(Fig.1.5).

FIGURE1.5 Reactionoftetrahydroquinolines.

FIGURE1.6 Synthesisofaziridinesfromenolethers.

FIGURE1.7 Aziridinesfromhomoallylpyrroles.

Thereactionfurnishesalmostexclusivelyaziridinesinthecaseinwhichreactionisperformedinabasic medium.Thus,itallowstominimizetheringopeningtocyclopentene.

1.3.2Synthesisbyinsertionofnitreneintodoublebonds

When2-azido-1,3-thiazolereactswithadoublebond,atripletnitreneisformed,whichcaninsertinthedouble bondtoformanaziridine.9 Thereactionworksparticularlywithenolethers(Fig.1.6).

1.3.3Synthesisfromhomoallylpyrroles

In2016,Blackamandcoworkerssynthesizedasetofhomoallylpirroles,withtheaimtoobtainamethatesis reaction,asithappenedforpyrrolesalkylsubstitutedwithalongerchain.10 Withtheirgreatsurprisetheproductsobtainedwereaziridine.Inthefigurebelowisobtainedthegeneraloutcomeofreaction(Fig.1.7). Thereactionproceedswithgoodyields.TheonlyrequirementisthepresenceofanEWGgroupinposition2 ofpyrroles.Varyingthegradeofsubstitution,itispossibletoobtainverycomplexmoleculeswithquaternary centers.Aproposedmechanismisthefollowing:theexcitationofthegenericpyrrolesubstitutedwithanEWGat C2resultsinaninitial[2 1 2]cycloadditionacrosstheC2 C3bondtogiveacyclobutane.Thentheformationof abiradicalhappens,andthislatterundergoesC2 C5toaffordtheaziridine(Scheme1.9).

SCHEME1.9 Mechanismofthereaction.

Thereactionisscalable-up.Usingabatteryofflowreactors,itispossibletoobtainupto100gperdayof aziridine.

1.3.4Synthesisbyrearrangementoftriazolines

Usually,photochemicalreactionsareperformedinsolution.DeLoeraetal.triedinsteadtomakethereaction insolidphase.11 Thereactionstartsfromatriazolinetoobtain,afterlossofnitrogen,anaziridine.Thereaction canbefollowedmonitoringthedevelopmentofgaseousnitrogen.Themechanismofdenitrogenationoftriazolineisreportedinthe Scheme1.10.

SCHEME1.10 Mechanismofthereaction.

Thetriazolineswereobtainedby[1,1]dipolarcycloadditionbetweenmaleimideandsubstitutephenylazides, andthenirradiatedwithamediumpressureHglampwhitaquartzfilter(Scheme1.11and1.12).

SCHEME1.11 [1,1]dipolarcycloadditionbetweenmaleimideandsubstitutephenylazides.

SCHEME1.12 Obtainingoftheaziridine.

1.3.5Synthesisofaziridinesbyvisible-lightinduceddecarboxylativecyclizationof N-arylglycines anddiazocompounds

Theauthorsenvisionedthatthevisible-lightphotoredox-mediateddecarboxylationof N-arylglicinewould affordan α-aminoalkylradicalwhichcouldbefurtheroxidizedinthepresenceofoxygentogeneratedactive imine.12 TheattackofiminebydiazocompoundswouldleadtointermediateA.IntermediateAcontaininga negativeamineanionmightundergoan exo-tet cyclization,whichultimatelyformaziridineastheproduct (Fig.1.8).Thereactioniscompleteafter60minwithayieldof80%.

Aftervarioustentative,theauthorsfoundthebestconditionforthereaction:RoseBengalascatalyst,methanol,O2,r.tandblueLEDS.

FIGURE1.8 Reactionof N-arylglicine.

Synthesisofiminoiodinanes.

Synthesisofaziridines via imidoiodinanes.

1.3.6Photoinducedaziridinationofalkeneswith N-sulfonyliminoiodinane N-Sulfonyliminoiodinanesarepowerfulcatalystsforthephotoinducedaziridinationofalkenes.Theycaneasilysynthesizedfrom2-nitroiodobenzenediacetateandthecorrespondingsulfonamide(Fig.1.9).13 Inthesamewayweresynthesizediminoiodinane 3a-c (Scheme1.13).

SCHEME1.13 Synthesisofiminoiodinane.

Withthesereactantsinhand,theauthorstriedphotochemicalreactionat0 CwithLEDsat375nm(Fig.1.10). Thereactionofstyrene 4a with 3a gaveaziridine 5a in73%yield,whilethesamereactionwith 2a improved chemicalyieldupto98%.Otherexamplesarereportedin Scheme1.14.

SCHEME1.14 Otherexamples.

1.3.7Photochemicalaziridinationoffullerenes

Fullerenesareveryinterestingcompoundsfromachemistryofheterocyclespointofviewbecausetheyare abletoincorporateheteroatomsbyreactionsofcycloadditions.14,15 Inparticular,fullerenecanthermally

FIGURE1.9
FIGURE1.10

1.Photochemicalsynthesisofheterocycliccompounds

incorporatearylazidestogivetriazolineswhichinturncanphotochemicallyextrudenitrogentogiveaziridinofullerene(Scheme1.15).

SCHEME1.15 Synthesisofazidofullerenes.

Theaziridinationprocesswasnotdisturbedbytheintroductionofgroupsuchanalkyl,ester,ketone,andfluorine.

1.3.8Synthesisfromsugarderivativesandazides

Aminosugarsarecomponentofvarycompoundsofgreatimportanceinmedicine.Amongthese,daunosamineandristosaminearecomponentofafamilyofantibiotics(Fig.1.11).

Manysynthesesexistofthesecompounds,butonlyinonecaseanaziridineispresentinacrucialsynthetic step.16 Thesyntheticpassagesforthesynthesisofdaunosamineglicosideareshowedin Scheme1.16

SCHEME1.16 Synthesisofdaunosamine.

1.3.9Synthesisfromazidesbyphotocatalysis

Inaworkconcerningthesynthesisofpyrrolederivatives,certainparticularsubstrates,withadoublebond nearanazidegroup,canreacttogiveaziridines,attheconditionthatbeusedtheappropriatephotocatalyst[Ir (df(CF3)(ppy)2(dtbbpy)]PF6 (Scheme1.17).17

SCHEME1.17 Pyrrolederivativesfromazidogroup.

FIGURE1.11 Daunosamineandristosamine.

1.3.10Synthesisfromazidoformates

Aziridinescanalsobeobtainedbyazidoformates.Itinterestingtonotethatwhenthesubstituentin ortho positioninthephenylringisHoralkyltheproductsobtainedareamidoesters(Fig.1.12).18

Onthecontrary,whenthesubstituentisanallyl,thereactiontakesacompletelydifferentwaywithformation ofaziridines(Fig.1.13).Otherexamplesarereportedin Fig.1.14.

1.4Diazepinesandbenzodiazepines

1.4.1Synthesisfrom4-pyridylazides

Amongthethreeisomersofdiazepines,only1,2-and1,3-diazepinesarewellknownintheliterature.Thesynthesisoflesssubstituted6H-1,4-diazepinesfrom4-pyridylazidesbyirradiationinthepresenceofmethoxideion hasbeendescribed.Thestarting4-azidopyridineswerepreparedfromthecorresponding4-chloropyridinesby treatmentwithhydrazinehydratefollowedbydiazotization(Fig.1.15).19

FIGURE1.12 Reactionofazidoformates.

FIGURE1.13 Azidoformatehavinganallylgroup.

FIGURE1.14 Otherexamplesofthesynthesisofaziridinesthroughazidoformates.

FIGURE1.15 Diazotizationofpyridinederivatives.

FIGURE1.16 Synthesisof1,4-diazepines.

FIGURE1.17 Possibleintermediatesinthesynthesisof1,4-diazepines.

Irradiation(400W,highpressureHglamp;pyrexfilter)(Fig.1.16)oftheazidesresultedintheformationof thedesired6H-1,4-diazepinesin35% 70%yields,asthesoleringexpansionproducts. Unsymmetricalazidesmayringcloseineitheroftwodirectiontoaffordtwoisomericproducts.However,the authorsobservedtheformationofasoleproductasdepictedin Fig.1.17. Inthesameway,theauthorssynthesizedsome1H-2,4-benzodiazepines.20 Thesyntheticroutestothestarting 4-azidoquinolinesaredepictedinthe Scheme1.18

SCHEME1.18 Synthesisofthestarting azidoquinolines.

Irradiationoftheazides(9a-e)inmethanol-dioxanecontainingsodiummethoxidefor30 40minresultedin theformationofthedesired2,4-benzodiazepines(14a-e)in45% 70%yields,asthesolering-expansionproducts. Inthecaseofthe1-chloroisoquinoline(9e),thechlorineatomwasreplacedbymethoxideunderthepresentbasic reactionconditiontoaffordthesame1-methoxydiazepine(14d)asthatobtainedfrom 9d.Themechanismofformationofbenzodiazepinesisreportedin Scheme1.19.

SCHEME1.19 Mechanismofthereaction.

FIGURE1.18 Synthesisofdiazepinones.

Azidoterpyridinescanphotochemicallyconvertedindiazepinones(Fig.1.18).21 IfR1 isdifferentfromR2,both isomersofdiazepinoneswereobtained.

1.5Furans

1.5.1Furansfrom α-bromo-β-dicarbonylcompoundsandalkynes

Anunusualreactionpermitstoobtainfuransfrom α-bromo-β-dicarbonylsandalkynes.22 Thereactionoccurs withvisiblelightandacomplexofiridiumascatalyst,accordingtothe Scheme1.20

SCHEME1.20 Furansfrom α-bromo-β-dicarbonylsandalkynes.

ThereactionworkswellifR1 isanalkylwhile,ifitisanaryl,anaphtholisobtained.Anotherexampleis reportedin Scheme1.21.Theyieldsvaryfromgood(40% 50%)toexcellent(80% 90%).

SCHEME1.21 Anotherexample.

1.5.2Benzofuransfrom2-chlorophenolsandalkynes

2-Substitutedbenzofuransweresynthesizedbyaone-stepmetal-freephotochemicalreactionbetween2chlorophenolderivativesandterminalalkynesbytandemformationofanaryl CandaC Obondviaanaryl cationintermediate.23 Areasonablemechanismforthisreactionisdepictedin Scheme1.22

SCHEME1.22 Reactionof2-chlorophenolderivatives.

Thefirstpartofthisstudyaimedtoindividuatetheconditionforasuccessfulsynthesisbyusingthereaction of2-chlorophenolinpresenceof1-hexyneunderdifferentconditions.Thebestsolventrevealedtobe5:1MeCN/ waterinpresenceofacetonewhichactsasatripletsensitizer.Thisconsentstomaximizetheyields(42% 49%) andtominimizetheformationofthemainby-product(phenol).Theyieldofbenzofuransfurtherincreased whenstartingfrom4-t-butyl-2-chlorophenol.Furthermore,goodyields(upto85%)wereobtainedwhenoxygen basedsubstituent,suchamethoxyoranhydroxylgroup,wereintroduced.Finally,acceptableyieldswere obtainedalsobyusingtrimethylacetyleneinsteadof1-hexyne.

1.5.3Dihydroandtetrahydrofuransfromcyclopropanederivatives

Thephotochemistryofcyclopropaneinvolvesmainlythe cis-trans isomerization.Infewcases,with suitablesubstituents,aringexpansioncouldhappentocyclopentenesorfuranderivatives.24 Aseriesofderivativesstartingfromethylchrysantemateswassinthesized(Fig.1.19).

Whenthereactionistripletsensitizedwithbenzophenone,compound 16 givesonlyrecoveredmaterialanda cyclopentene.Thesamewasobservedwith 16b, 16c,and 16d,that,besidescyclopentene,affordsalsofuranderivatives 19 and 20 (Fig.1.20).

Oxime 16e doesnotreact,givingonlyamixtureofdiastereoisomers.Alcohol 16f givesamixtureofhighly polarcompoundswhichdoesnotwereidentified.Itwasalsotriedtomakethereactionwithoutsensitizer. 16a furnishesamixtureofstereoisomerofthestartingproductanda19%of2-furanone 21 (Fig.1.21).

Ketone 16d doesnotgivethecyclopentenederivativeobservedininthetriplet-sensitizedreactionbutproducesthetetrahydrofuran 20 (19%)alongwithstartingmaterial.

Derivativesofchrisanthemates.

Dihydroandtetrahydrofuransfromcyclopropanederivatives.

FIGURE1.21 2-Furanoneobtainedfrom 16a

FIGURE1.19
FIGURE1.20

FIGURE1.22 Dimerizationofacetylacetone.

FIGURE1.23 Amorecomplexexample.

1.5.4Dihydrofuranfromphotodimerizationof β-carbonylketones

Highlyfunctionalizedfuranscanbeobtainedbyaerobicoxidativedimerizativeannulationsof β-carbonyl ketones(Fig.1.22).25

Aplausiblemechanismofreactionshouldbethatreportedin Scheme1.23

SCHEME1.23 Mechanismofthereaction.

ThereactionoccursirradiatingthemixturewithblueLEDsunderoxygen,and,insomecases,excellentyields canbeobtainedadding4A ˚ molecularsieves.Anotherexampleofthisprocedureisreportedin Fig.1.23

1.5.5Tetrasubstitutedfuransfromsilylenolethersand α-bromodiketones

Thesameauthorsthatobtainedfuransfrom α-bromo-β-dicarbonylcompoundsandalkynesusedinsteadof alkynessilylenolethers(Scheme1.24).26

SCHEME1.24 Reactionwithsilylenolethers.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.