Philosophyand ModelTheory
TimButtonandSeanWalsh withahistoricalappendixbyWilfridHodges
Great Clarendon Street, Oxford, ox2 6dp, United Kingdom
Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries
© Tim Button and Sean Walsh 2018 © Historical Appendix D Wilfrid Hodges
The moral rights of the authors have been asserted
First Edition published in 2018
Impression: 1
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above
You must not circulate this work in any other form and you must impose this same condition on any acquirer
Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America
British Library Cataloguing in Publication Data
Data available
Library of Congress Control Number: 2017959066
ISBN: 978–0–19–879039–6 (hbk.)
978–0–19–879040–2 (pbk.)
Printed and bound by CPI Group (UK) Ltd, Croydon, cr0 4yy
Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.
Preface
Philosophyandmodeltheoryfrequentlymeetoneanother.Thisbookaimstounderstandtheirinteractions.
Modeltheoryisusedinevery‘theoretical’branchofanalyticphilosophy:inphilosophyofmathematics;inphilosophyofscience;inphilosophyoflanguage;in philosophicallogic;andinmetaphysics.Butthesewide-rangingappealstomodel theoryhavecreatedahighlyfragmentedliterature.Ontheonehand,manyphilosophicallysignificantresultsarefoundonlyinmathematicstextbooks:theseare aimedsquarelyatmathematicians;theytypicallypresupposethatthereaderhasa seriousbackgroundinmathematics;andlittleclueisgivenastotheirphilosophical significance.Ontheotherhand,thephilosophicalapplicationsoftheseresultsare scatteredacrossdisconnectedpocketsofpapers.
Thefirstaimofourbook,then,istoconsiderthe philosophicalusesofmodeltheory.Westateandprovethebestversionsofresultsforphilosophicalpurposes.We thenprobetheirphilosophicalsignificance.Andweshowhowsimilardialectical situationsariserepeatedlyacrossfragmenteddebatesindifferentareas.
Thesecondaimofourbook,though,istoconsiderthephilosophyofmodeltheory. Modeltheoryitselfisrarelytakenasthesubjectmatterofphilosophising(contrast thiswiththephilosophyofbiology,orthephilosophyofsettheory).Butmodel theoryisabeautifulpartofpuremathematics,andworthyofphilosophicalstudy initsownright.
Bothaimsgiverisetochallenges.Ontheonehand:thephilosophicalusesof modeltheoryarescatteredacrossadisunifiedliterature.Andontheotherhand: thereisscarcelyanyliteratureonthephilosophyofmodeltheory.
Allofwhichistosay: philosophyandmodeltheoryisn’treally‘athing’yet.This bookaimstostartcarvingoutsuchathing.Wewanttocharttherock-faceand traceitsdialecticalcontours.Butwepresentthisbook,notasafinalwordonwhat philosophicallyinclinedmodeltheoristsandmodel-theoreticallyinclinedphilosophersshoulddo,butasaninvitationtojoinin.
So.Thisisnotabookinwhichasingleaxeisground,pagebypage,intoan increasinglysharpblade.Nofundamentallineofargument—archingfromChapter 1throughtoChapter17—servesasthespineofthebook.Whatknitsthechapters togetherintoasinglebookisnotasinglethesis,butasequenceofoverlapping, criss-crossingthemes.
Topicselection
Preciselybecausephilosophyandmodeltheoryisn’tyet‘athing’,wehavehadto makesomedifficultdecisionsaboutwhattopicstodiscuss.
Ontheonehand,weaimedtopicktopicswhichshouldbeoffairlymainstream philosophicalconcern.So,whenitcomestothephilosophical uses ofmodeltheory,wehavelargelyconsideredtopicsconcerning reference, realism,and doxology (atermweintroduceinChapter6).But,evenwhenwehaveconsideredquestions whichfallsquarelywithininthephilosophy of modeltheory,thequestionsthat wehavefocussedonareclearlyinstancesof‘bigquestions’.Welookatquestions of sameness oftheories/structure(Chapter5);oftaking diverseperspectives onthe sameconcept(inChapter14);ofhowtodraw boundaries oflogic(inChapter16); andof classification ofmathematicalobjects(Chapter17).
Ontheotherhand,wealsowantedtogiveyouadecentbangforyourbuck.We figuredthatifyouweregoingtohavetowrestlewithsomenewphilosophicalidea ormodel-theoreticresult,thenyoushouldgettoseeitputtodecentuse.(Thisexplainswhy,forexample,thePush-ThroughConstruction,thejust-moretheorymanoeuvre,supervaluationalsemantics,andtheideasofmoderationandmodelism, occursoofteninthisbook.)Conversely,wehavehadtosetasidedebates—no matterhowinteresting—whichwouldhavetakentoolongtosetup.
Allofwhichistosay:thisbookisnotcomprehensive.Notevenclose. AlthoughweconsidermodelsofsettheoryinChapters8and11,wescarcely scratchthesurface.AlthoughwediscussinfinitarylogicsinChapters15–16,weonly usetheminfairlylimitedways.1 WhilstwementionTennenbaum’sTheoremin Chapter7,thatisascloseaswegettocomputablemodeltheory.Wedevoteonly onebriefsectiontoo-minimality,namely§4.10.AndalthoughweconsiderquantifiersinChapter16andfrequentlytouchonissuesconcerninglogicalconsequence, weneveraddressthelattertopicheadon.2
Thegraveenormity,though,isthatwehavebarelyscratchedthesurfaceofmodel theoryitself.Asthetableofcontentsreveals,thevastmajorityofthebookconsiders modeltheoryasitexistedbeforeMorley’sCategoricityTheorem.
Partiallycorrectingforthis,WilfridHodges’wonderfulhistoricalessayappears asPartDofthisbook.Wilfrid’sessaytreatsMorley’sTheoremasapivot-pointfor thesubjectofmodeltheory.Helooksbackcriticallytothehistory,touncoverthe notionsatworkinMorley’sTheoremanditsproof,andhelooksforwardtothe richesthathavefollowedfromit.WehavebothlearnedsomuchfromWilfrid’s ModelTheory, 3 andwearedelightedtoincludehis‘shorthistory’here.
1 Wedonot,forexample,considertheconnectionbetweeninfinitarylogicsandsupervenience,as Glanzberg(2001)andBader(2011)do.
2 Forthat,wewouldpointthereadertoBlanchette(2001)andShapiro(2005a).
3 Hodges(1993).
Still,concerningallthosetopicswhichwehaveomitted:weintendnoslight againstthem.Butthereisonlysomuchonebookcando,andthisbookisalready much(much)longerthanweoriginallyplanned.Wearesincereinourearlierclaim, thatthisbookisnotofferedasafinalword,butasaninvitationtotakepart.
Structuringthebook
Havingselectedourtopics,weneededtoarrangethemintoabook.Atthispoint, werealisedthatthesetopicshavenonaturallinearordering.
Assuch,wehavetriedtostrikeabalancebetweenthreeaimsthatdidnotalways pointinthesamedirection:toorderby philosophicaltheme,toorderbyincreasing philosophicalsophistication,andtoorderbyincreasing mathematicalsophistication. Thebook’sfinalstructureofrepresentsourbestcompromisebetweenthesethree aims.Itisdividedintothreemainparts: Referenceandrealism, Categoricity,and Indiscernibilityandclassification
Eachparthasanintroduction,andthosewhowanttodipinandoutofparticular topics,ratherthanreadingcover-to-cover,shouldreadthethreepart-introductions aftertheyhavefinishedreadingthispreface.Thepart-introductionsprovidethematicoverviewsofeachchapter,andtheyalsocontaindiagramswhichdepictthe dependenciesbetweeneachsectionofthebook.Incombinationwiththetableof contents,thesediagramswillallowreaderstotakeshortcutstotheirfavouritedestinations,withouthavingtostoptosmelleveryrosealongtheway.
Presuppositionsandproofs
Sofaraspossible,thebookassumesonlythatyouhavecompleteda101-levellogic course,andsohavesomefamiliaritywithfirst-orderlogic.
Inevitably,therearesomeexceptionstothis:wewereforcedtoassumesome familiaritywithanalysiswhendiscussinginfinitesimalsinChapter4,andequally somefamiliaritywithtopologywhendiscussingStonespacesinChapter14.Wedo notproveGödel’sincompletenessresults,althoughwedostateversionsofthemin §5.a.Abookcanonlybesoself-contained.
Byandlarge,though,thisbook is self-contained.Whenweinvokeamodeltheoreticnotion,wealmostalwaysdefinethenotionformallyinthetext.When itcomestoproofs,wefollowtheserulesofthumb.
Themaintext includesbothbriefproofs,andalsothoseproofswhichwewanted todiscussdirectly.
The appendices includeproofswhichwewantedtoincludeinthebook,but whichweretoolongtofeatureinthemaintext.Theseinclude:proofsconcerningelementarytopicswhichourreadersshouldcometounderstand(atleastone
day);proofswhicharedifficulttoaccessintheexistingliterature;proofsofcertain folk-loreresults;andproofsofnewresults.
Butthe bookomits allproofswhicharebothreadilyaccessedandtoolongtobe self-contained.Insuchcases,wesimplyprovidereaderswithcitations.
Thequickmoralforreaderstoextractisthis.Ifyouencounteraproofinthemain textofachapter,youshouldfollowitthrough.Butwewouldaddanoteforreaderswhoseprimarybackgroundisinphilosophy.Ifyoureallywanttounderstanda mathematicalconcept,youneedtoseeitinaction.Readtheappendices!
Acknowledgements
Thebookarosefromaseminarseriesonphilosophyandmodeltheorythatweran inBirkbeckinAutumn2011.Weturnedtheseminarintoapaper,butitwasvastly toolong.Ananonymousrefereefor PhilosophiaMathematica suggestedthepaper mightformthebasisforabook.Soitdid.
Wehavepresentedtopicsfromthisbookseveraltimes.Itwouldnotbethe bookitis,withoutthefeedback,questionsandcommentswehavereceived.So weowethanksto:ananonymousrefereefor PhilosophiaMathematica,andJames StuddforOUP;andtoSarahActon,GeorgeAnegg,AndrewArana,BahramAssadian,JohnBaldwin,KyleBanick,NeilBarton,TimothyBays,AnnaBellomo,Liam Bright,ChloédeCanson,AdamCaulton,CatrinCampbell-Moore,JohnCorcoran,RadinDardashti,WalterDean,NataljaDeng,WilliamDemopoulos,Michael Detlefsen,FionaDoherty,CianDorr,StephenDuxbury,SeanEbels-Duggan,Sam Eklund,HartryField,BrandenFitelson,VeraFlocke,SalvatoreFlorio,PeterFritz, MichaelGabbay,HaimGaifman,J.EthanGalebach,MarcusGiaquinto,PeterGibson,TamaravonGlehn,OwenGriffiths,EmmylouHaffner,BobHale,Jeremy Heis,WillHendy,SimonHewitt,KateHodesdon,WilfridHodges,LucaIncurvati,DouglasJesseph,NicholasJones,PeterKoellner,BrianKing,EleanorKnox,JohannesKorbmacher,ArnoldKoslow,Hans-ChristophKotzsch,GregLauro,Sarah Lawsky,ØysteinLinnebo,YangLiu,PenMaddy,KateManion,TonyMartin,GuillaumeMassas,VannMcGee,TobyMeadows,RichardMendelsohn,Christopher Mitsch,StellaMoon,AdrianMoore,J.BrianPitts,JonathanNassim,FredrikNyseth,SaraParhizgari,CharlesParsons,JonathanPayne,GrahamPriest,Michael Potter,HilaryPutnam,PaulaQuinon,DavidRabouin,ErichReck,SamRoberts, MarcusRossberg,J.Schatz,GilSagi,BernhardSalow,ChrisScambler,Thomas Schindler,DanaScott,StewartShapiro,GilaSher,LukasSkiba,JönneSpeck,SebastianSpeitel,WillStafford,TrevorTeitel,RobertTrueman,JoukoVäänänen,Kai Wehmeier,J.RobertG.Williams,JohnWigglesworth,HughWoodin,JackWoods, CrispinWright,WesleyWrigley,andKinoZhao.
WeowesomespecialdebtstopeopleinvolvedintheoriginalBirkbeckseminar.
First,theseminarwasheldundertheauspicesoftheDepartmentofPhilosophyat BirkbeckandØysteinLinnebo’sEuropeanResearchCouncil-fundedproject‘Plurals,Predicates,andParadox’,andweareverygratefultoallthepeoplefromthe projectandthedepartmentforparticipatingandhelpingtomaketheseminarpossible.Second,wewereluckytohaveseveralgreatexternalspeakersvisittheseminar,whomwewouldespeciallyliketothank.Thespeakerswere:TimothyBays, WalterDean,VolkerHalbach,LeonHorsten,RichardKaye,JeffKetland,Angus Macintyre,PaulaQuinon,PeterSmith,andJ.RobertG.Williams.Third,manyof theexternaltalkswerehostedbytheInstituteofPhilosophy,andwewishtothank BarryC.SmithandShahrarAliforalltheirsupportandhelpinthisconnection.
AmoredistantyetimportantdebtisowedtoDenisBonnay,BriceHalimi,and Jean-MichelSalanskis,whoorganisedalovelyeventinParisinJune2010called‘PhilosophyandModelTheory.’Thateventgotsomeofusfirstthinkingabout‘PhilosophyandModelTheory’asaunifiedtopic.
Wearealsogratefultovariouseditorsandpublishersforallowingustoreusepreviouslypublishedmaterial.Chapter5drawsheavilyonWalsh2014,andthecopyrightisheldbytheAssociationforSymbolicLogicandisbeingusedwiththeir permission.Chapters7–11drawheavilyupononButtonandWalsh2016,published by PhilosophiaMathematica.Finally,§13.7drawsfromButton2016b,publishedby Analysis,and§15.1drawsfromButton2017,publishedbythe NotreDameJournalof FormalLogic.
Finally,though,awordfromus,asindividuals.
FromTim. IwanttooffermydeepthankstotheLeverhulmeTrust:theirfunding,intheformofaPhilipLeverhulmePrize(plp–2014–140),enabledmetotake theresearchleavenecessaryforthisbook.ButImostlywanttothanktwoveryspecialpeople.WithoutSean,thisbookcouldnotbe.AndwithoutmyBen,Icould notbe.
FromSean. IwanttothanktheKurtGödelSociety,whosefunding,intheform ofaKurtGödelResearchPrizeFellowship,helpedusputontheoriginalBirkbeck seminar.IalsowanttothankTimforbeingamodelco-authorandamodelfriend. Finally,IwanttothankKariforhercompleteloveandsupport.
3.6TheNewman-conservation-objection................60
3.7Observationvocabularyversusobservableobjects.........63
3.8TheNewman-cardinality-objection.................64
3.9Mixed-predicatesagain:thecaseofcausation............66
3.10Naturalpropertiesandjustmoretheory...............67
3.aNewmanandelementaryextensions.................69
3.bConservationinfirst-ordertheories.................72
4Compactness,infinitesimals,andthereals 75
4.1TheCompactnessTheorem.....................75
4.2Infinitesimals..............................77
4.3Notationalconventions........................79
4.4Differentials,derivatives,andtheuseofinfinitesimals.......79
4.5Theordersofinfinitesmallness....................81
4.6Non-standardanalysiswithavaluation...............84
4.7Instrumentalismandconservation..................88
4.8Historicalfidelity............................91
4.9Axiomatisingnon-standardanalysis.................93
4.10Axiomatisingthereals.........................97
4.aGödel’sCompletenessTheorem...................99
4.bAmodel-theoreticproofofCompactness..............103
4.cThevaluationfunctionof§4.6....................104
5Samenessofstructureandtheory 107
5.1Definitionalequivalence........................107
5.2Samenessofstructureandanteremstructuralism.........108
5.3Interpretability.............................110
5.4Biinterpretability............................113
5.5Fromstructurestotheories......................114
5.6Interpretabilityandthetransferoftruth...............119
5.7Interpretabilityandarithmeticalequivalence............123
5.8Interpretabilityandtransferofproof.................126
5.9Conclusion...............................129
5.aArithmetisationofsyntaxandincompleteness...........130
5.bDefinitionalequivalenceinsecond-orderlogic...........132
6Modelismandmathematicaldoxology 143
6.1Towardsmodelism...........................143
6.2Objects-modelism...........................144
6.3Doxology,objectualversion......................145
6.4Concepts-modelism..........................146
6.5Doxology,conceptualversion.....................148
7Categoricityandthenaturalnumbers 151
7.1Moderatemodelism..........................151
7.2AspirationstoCategoricity......................153
7.3Categoricitywithinfirst-ordermodeltheory............153
7.4Dedekind’sCategoricityTheorem..................154
7.5Metatheoryoffullsecond-orderlogic................155
7.6Attitudestowardsfullsecond-orderlogic..............156
7.7Moderatemodelismandfullsecond-orderlogic..........158
7.8Clarifications..............................160
7.9Moderationandcompactness.....................161
7.10Weakerlogicswhichdelivercategoricity...............162
7.11Applicationtospecifickindsofmoderatemodelism........164
7.12Twosimpleproblemsformodelists.................167
7.aProofoftheLöwenheim–SkolemTheorem.............167
8Categoricityandthesets 171
8.1Transitivemodelsandinaccessibles.................171
8.2Modelsoffirst-ordersettheory....................173
8.3Zermelo’sQuasi-CategoricityTheorem...............178
8.4Attitudestowardsfullsecond-orderlogic:redux..........179
8.5Axiomatisingtheiterativeprocess..................182
8.6Isaacsonandincompletestructure..................184
8.aZermeloQuasi-Categoricity.....................186
8.bElementaryScott–Potterfoundations................192
8.cScott–PotterQuasi-Categoricity...................197
9Transcendentalargumentsagainstmodel-theoreticalscepticism 203
9.1Model-theoreticalscepticism.....................203
9.2Mooreanversustranscendentalarguments.............206
9.3TheMetaresourcesTranscendentalArgument...........206
9.4TheDisquotationalTranscendentalArgument...........210
9.5Ineffablescepticalconcerns......................214
9.aApplication:the(non-)absolutenessoftruth............217 10Internalcategoricityandthenaturalnumbers 223
10.1Metamathematicswithoutsemantics................224
10.2Theinternalcategoricityofarithmetic................227
10.3Limitsonwhatinternalcategoricitycouldshow..........229
10.4Theintoleranceofarithmetic.....................232
10.5Acanonicaltheory...........................232
10.6Thealgebraic/univocaldistinction.................233
10.7Situatinginternalisminthelandscape................236
10.8Moderateinternalists.........................237
10.aConnectiontoParsons........................239
10.bProofsofinternalcategoricityandintolerance...........242
10.cPredicativeComprehension......................246
11Internalcategoricityandthesets 251
11.1InternalisingScott–Pottersettheory.................251
11.2Quasi-intoleranceforpuresettheory................253
11.3Thestatusofthecontinuumhypothesis...............255
11.4Totalinternalcategoricityforpuresettheory............256
11.5Totalintoleranceforpuresettheory.................257
11.6Internalismandindefiniteextensibility...............258
11.aConnectiontoMcGee.........................260
11.bConnectiontoMartin.........................262
11.cInternalquasi-categoricityforSP...................263
11.dTotalinternalcategoricityforCSP..................266
11.eInternalquasi-categoricityofordinals................268
12Internalcategoricityandtruth 271
12.1Thepromiseoftruth-internalism...................271
12.2Truthoperators.............................273
12.3Internalismaboutmodeltheoryandinternalrealism........276
12.4Truthinhigher-orderlogic......................282
12.5Twogeneralissuesfortruth-internalism...............284
12.aSatisfactioninhigher-orderlogic...................285
13Boolean-valuedstructures 295
13.1Semantic-underdeterminationviaPush-Through..........295
13.2ThetheoryofBooleanalgebras....................296
13.3Boolean-valuedmodels........................298
13.4Semantic-underdeterminationviafilters...............301
13.5Semanticism..............................304
13.6Bilateralism...............................307
13.7Open-ended-inferentialism......................311
13.8Internal-inferentialism.........................314
13.9Suszko’sThesis.............................316
13.aBoolean-valuedstructureswithfilters................321
13.bFullsecond-orderBoolean-valuedstructures............323
13.cUltrafilters,ultraproducts,Łoś,andcompactness..........326
13.dTheBoolean-non-categoricityofCBA................328
13.eProofsconcerningbilateralism....................330
14TypesandStonespaces
14.7Propositionsandpossibleworlds...................350
14.aTopologicalbackground........................354
14.bBivalent-calculiandbivalent-universes................356
15Indiscernibility
15.1Notionsofindiscernibility......................359 15.2Singlingoutindiscernibles......................366 15.3Theidentityofindiscernibles.....................370 15.4Two-indiscerniblesininfinitarylogics................376
15.5 n-indiscernibles,order,andstability.................380 15.aChartingthegradesofdiscernibility.................384
16Quantifiers
16.1Generalisedquantifiers........................387
16.2Clarifyingthequestionoflogicality.................389
16.3TarskiandSher.............................389
16.4TarskiandKlein’sErlangenProgramme...............390 16.5ThePrincipleofNon-Discrimination................392 16.6ThePrincipleofClosure.......................399
16.7McGee’ssqueezingargument.....................407
16.8Mathematicalcontent.........................408
17.1Thenatureofclassification......................413
IntroductiontoPartA
ThetwocentralthemesofPartAare reference and realism
Hereisanoldphilosophicalchestnut: Howdowe(evenmanageto)representthe world? Ourmostsophisticatedrepresentationsoftheworldareperhapslinguistic. Soaspecialised—butstillenormouslybroad—versionofthisquestionis: Howdo words(evenmanageto)representthings?
Entermodeltheory.Oneofthemostbasicideasinmodeltheoryisthatastructureassignsinterpretationstobitsofvocabulary,andinsuchawaythatwecanmake excellentsenseoftheideathatthestructuremakeseachsentence(inthatvocabulary)eithertrueorfalse.Squintslightly,andmodeltheoryseemstobeprovidingus withaperfectlyprecise,formalwaytounderstandcertainaspectsoflinguisticrepresentation.Itisnosurpriseatall,then,thatalmostanyphilosophicaldiscussion oflinguisticrepresentation,orreference,ortruth,endsupinvokingnotionswhich arerecognisablymodel-theoretic.
InChapter1,weintroducethebuildingblocksofmodeltheory:thenotionsof signature,structure,andsatisfaction.Whilstthebaretechnicalbonesshouldbe familiartoanyonewhohascovereda101-levelcourseinmathematicallogic,we alsodiscussthephilosophicalquestion: Howshouldwebestunderstandquantifiers andvariables? Hereweseethatphilosophicalissuesariseattheveryoutsetofour model-theoreticinvestigations.Wealsointroducesecond-orderlogicanditsvarioussemantics.Whilesecond-orderlogicislesscommonlyemployedincontemporarymodeltheory,itisemployedfrequentlyinphilosophyofmodeltheory,and understandingthedifferencesbetweenitsvarioussemanticswillbeimportantin manysubsequentchapters.
InChapter2,weexaminevariousconcernsaboutthedeterminacyofreference andso,perhaps,thedeterminacyofourrepresentations.HereweencounterfamousargumentsfromBenacerrafandPutnam,whichweexplicateusingtheformalPush-ThroughConstruction.Sinceisomorphicstructuresareelementarily equivalent—thatis,theymakeexactlythesamesentencestrueandfalse—this threatenstheconclusionthatitisradicallyindeterminate,whichofmanyisomorphicstructuresaccuratelycaptureshowlanguagerepresentstheworld.
Now,onemightthinkthatthereferenceofourword‘cat’isconstrainedbythe causallinksbetweencatsandourusesofthatword.Fairenough.Butthereareno causallinksbetweenmathematicalobjectsandmathematicalwords.So,oncertain conceptionsofwhathumansarelike,wewillbeunabletoanswerthequestion: Howdowe(evenmanageto)refertoanyparticularmathematicalentity? Thatis,we willhavetoacceptthatwe donot refertoparticularmathematicalentities.
Whilstdiscussingtheseissues,weintroducePutnam’sfamous just-more-theory manoeuvre.Itisimportanttodothisbothclearlyandearly,sincemanyversionsof thisdialecticalmoveoccurinthephilosophicalliteratureonmodeltheory.Indeed, theyoccurespeciallyfrequentlyinPartBofthisbook.
Now,philosophershaveoftenlinkedthetopicofreferencetothetopicofrealism.Onewaytodrawtheconnectionisasfollows:Ifreferenceisradicallyindeterminate,thenmyword‘cabbage’andmyword‘cat’failtopickoutanythingdeterminately.SowhenIsaysomethinglike‘thereisacabbageandthereisacat’,I have atbest managedtosaythatthereareatleasttwodistinctobjects.Thatseems tofallfarshortofexpressinganyrealcommitmenttocatsandcabbagesthemselves.1 Inshort,radicalreferentialindeterminacythreatenstoundercutcertainkindsof realismaltogether.Butonlycertainkinds:wecloseChapter2bysuggestingthat someversionsofmathematicalplatonismcanlivewiththefactthatmathematical languageisradicallyreferentiallyindeterminatebyembracingasupervaluational semantics.
Concernsaboutreferentialindeterminacyalsofeatureindiscussionsaboutrealismwithinthephilosophyofscience.InChapter3,weexamineaparticularversion ofscientificrealismthatarisesbyconsideringRamseysentences.Roughly,these aresentenceswhereallthe‘theoreticalvocabulary’hasbeen‘existentiallyquantifiedaway’.Ramseysentencesseempromising,sincetheyseemtoincurakindof existentialcommitmenttotheoreticalentities,whichischaracteristicofrealism, whilstmakingroomforacertainlevelreferentialindeterminacy.WelookattherelationbetweenNewman’sobjectionandthePush-ThroughConstructionofChapter2,andbetweenRamseysentencesandvariousmodel-theoreticnotionsofconservation.Ultimately,bycombiningthePush-ThroughConstructionwiththese notionsofconservation,wearguethatthedialecticsurroundingNewman’sobjectionshouldtrackthedialecticofChapter2,surroundingPutnam’spermutationargumentinthephilosophyofmathematics.
ThenotionsofconservationweintroduceinChapter3arecrucialtoAbraham Robinson’sattempttousemodeltheorytosalvageLeibniz’snotionofan‘infinitesimal’.Infinitesimalsarequantitieswhoseabsolutevalueissmallerthanthatofany givenpositiverealnumber.Theywereanimportantpartofthehistoricalcalculus; theyfellfromgracewiththeriseof ε–δ notation;buttheyweregivenanewlease oflifewithinmodeltheoryviaRobinson’snon-standardanalysis.Thisisthetopic ofChapter4.Hereweintroducetheideaof compactness toprovethattheuseof infinitesimalsisconsistent.
RobinsonbelievedthatthisvindicatedtheviabilityoftheLeibnizianapproach tothecalculus.Againstthis,BoshasquestionedwhetherRobinson’snon-standard analysisisgenuinelyfaithfultoLeibniz’smathematicalpractice.InChapter4,we
1 Cf.Putnam(1977:491)andButton(2013:59–60).
offeranoveldefenceofRobinson.BybuildingvaluationsintoRobinson’smodel theory,weprovenewresultswhichallowustoapproximatemorecloselywhatwe knowabouttheLeibnizianconceptionofthestructureoftheinfinitesimals.Indeed,weshowthatRobinson’snon-standardanalysiscanrehabilitatevarioushistoricalmethodsforreasoningwithandaboutinfinitesimalsthathavefallenfarfrom fashion.
Thequestionremains,ofwhetherweshould believe ininfinitesimals.Leibnizhimselfwastemptedtotreathisinfinitesimalsas‘convenientfictions’;Robinsonexplicitlyregardedhisinfinitesimalsinthesameway;andtheirmethodofintroductioninmodeltheoryallowsforperhapsthecleanestpossibleversionofa fictionalist-cum-instrumentalistattitudetowards‘troublesome’entities.Indeed, wecanprovethatreasoning asif thereareinfinitesimalswillonlygenerateresults thatonecouldhaveobtained without thatassumption.Onecanhaveanti-realism, then,withaclearconscience.
InChapter5,wetakeastepbackfromthesespecificapplicationsofmodeltheory,todiscussamoremethodologicalquestionaboutthephilosophicalapplication ofmodeltheory: underwhatcircumstancesshouldwecalltwostructures‘thesame’? Thisquestioncanbeposedwithinmathematics,whereitsanswerwilldependupon thesimilaritiesanddifferencesthatmatterforthemathematicalpurposesathand. Butthequestioncanalsobegivenametaphysicalgloss.Inparticular,considera philosopherwhothinks(forexample)that:(a)thereisa single,abstract,entity whichis‘thenaturalnumberstructure’,andthat(b)thereisa single,abstractentitywhichis‘thestructureoftheintegers’;butthat(c)thesetwoentitiesaredistinct.Thenthisphilosophermustprovideanaccountofidentityanddistinctness between‘structures’,soconstrued;andweshowjusthowhardthisis.
Notionsofsamenessofstructurealsoinducenotionsofsamenessoftheory.Aftersurveyingawidevarietyofformalnotionsofsamenessofstructureandtheory, wediscussthreeambitiousclaimsconcerningwhatsamenessoftheorypreserves, namely:truth;arithmeticalprovability;andproof.Weconcludethatmorephilosophicallyambitiousversionsofthesepreservation-thesesgenerallyfail.
Thismeta-issueofsamenessofstructureandtheoryisagoodplacetoendPart A,though,bothbecause(a)thediscussionisenhancedbythespecificexamples ofstructuresandtheoriesdiscussedearlierinthetext,andbecause(b)questions aboutsamenessofstructureandtheoryinformanumberofthediscussionsand debateswhichwetreatinlaterPartsofthebook.
ReaderswhoonlywanttodipintoparticulartopicsofPartAcanconsultthe followingHassediagramofdependenciesbetweenthesectionsofPartA,whilst referringtothetableofcontents.Asection y dependsuponasection x iffthereis apathleadingdownwardsfrom x to y.So,areaderwhowantstogetstraighttothe discussionoffictionalismaboutinfinitesimalswillwanttoleapstraightto§4.7;but
theyshouldknowthatthissectionassumesapriorunderstandingof§§2.1,4.1,4.2, andmuch(butnotall)ofChapter1.(Weomitpurelytechnicalappendicesfrom thisdiagram.)
5.3 5.4 5.5 5.6 5.7 5.8 5.2
Logicsandlanguages
Modeltheorybeginsbyconsideringtherelationshipbetweenlanguagesandstructures.Thischapteroutlinesthemostbasicaspectsofthatrelationship.
Onepurposeofthechapterwillthereforebeimmediatelyclear:wewanttolay downsomefairlydry,technicalpreliminaries.Readerswithsomefamiliaritywith mathematicallogicshouldfeelfreetoskimthroughthesetechnicalities,asthereare nogreatsurprisesinstore.
Beforetheskimmingcommences,though,weshouldflagasecondpurposeof thischapter.Thereareatleastthreeratherdifferentapproachestothesemantics forformallanguages.Inastraightforwardsense,theseapproachesaretechnically equivalent.Mostbookssimplychooseoneofthemwithoutcomment.We,however,laydownallthreeapproachesanddiscusstheircomparativestrengthsand weaknesses.Doingthishighlightsthattherearephilosophicaldiscussionstobehad fromtheget-go.Moreover,byconsideringwhatisinvariantbetweenthedifferent approaches,wecanbetterdistinguishbetweenthemerelyidiosyncraticfeaturesof aparticularapproach,andthethingswhichreallymatter.
Onelastpoint,beforewegetgoing:traditiondemandsthatweissueacaveat. SinceTarskiandQuine,philosophershavebeencarefultoemphasisetheimportantdistinctionbetween using and mentioning words.Inphilosophicaltexts,that distinctionistypicallyflaggedwithvariouskindsofquotationmarks.Butwithin modeltheory,contextalmostalwaysdisambiguatesbetweenuseandmention. Moreover,includingtoomuchpunctuationmakesforuglytext.Withthisinmind, wefollowmodel-theoreticpracticeandavoidusingquotationmarksexceptwhen theywillbeespeciallyhelpful.
1.1Signaturesandstructures
Westartwiththeideathatformallanguagescanhaveprimitivevocabularies:
Definition1.1: A signature, L ,isasetofsymbols,ofthreebasickinds:constantsymbols,relationsymbols,andfunctionsymbols.Eachrelationsymbolandfunctionsymbol hasanassociatednumberof places (anaturalnumber),sothatonemayspeakofan n-placerelationorfunctionsymbol.
Throughoutthisbook,weusescriptfontsforsignatures.Constantsymbolsshould bethoughtofas names forentities,andwetendtouse c1, c2,etc.Relationsymbols, whicharealsoknownaspredicates,shouldbethoughtofaspickingout properties or relations.Atwo-placerelation,suchas xissmallerthany,mustbeassociated withatwo-placerelationsymbol.Wetendtouse R1,R2,etc.forrelationsymbols. Functionsymbolsshouldbethoughtofaspickingoutfunctionsand,again,they needanassociatednumberofplaces:thefunctionof multiplicationonthenatural numbers takestwonaturalnumbersasinputsandoutputsasinglenaturalnumber, sowemustassociatethatfunctionwithatwo-placefunctionsymbol.Wetendto use f1, f2,etc.forfunctionsymbols.
Theexamplesjustgiven—beingsmallerthan,and multiplicationonthenatural numbers—suggestthatwewilluseourformalvocabularytomakedeterminate claimsaboutcertainobjects,suchaspeopleornumbers.Tomakethisprecise, weintroducethenotionofan L -structure;thatis,astructurewhosesignatureis L .An L -structure, M,isanunderlyingdomain, M,togetherwithanassignment of L ’sconstantsymbolstoelementsof M,of L ’srelationsymbolstorelations onM,andof L ’sfunctionsymbolstofunctionsoverM.Wealwaysusecalligraphic fonts M,N,…forstructures,and M,N,…fortheirunderlyingdomains.Where s isany L -symbol,wesaythat sM istheobject,relationorfunction(asappropriate) assignedto s inthestructure M.Thisinformalexplanationofan L -structureis alwaysgivenaset-theoreticimplementation,leadingtothefollowingdefinition:
Definition1.2: An L -structure,M,consistsof:
• anon-emptyset,M,whichistheunderlyingdomainofM,
• anobjectcM ∈ Mforeachconstantsymbolcfrom L ,
• arelationRM ⊆ Mn foreachn-placerelationsymbolRfrom L ,and
• afunctionfM : Mn → Mforeachn-placefunctionsymbolffrom L .
Asisusualinsettheory, Mn isjustthesetof n-tuplesover M,i.e.:1
Mn ={(a1,…,an) : a1 ∈ M and…and an ∈ M}
Likewise,weimplementafunction g : Mn → M intermsofitssettheoreticgraph.Thatis, g willbeasubsetof Mn+1 suchthatif (x1,…,xn,y) and (x1,…,xn,z)areelementsof g theny = zandsuchthatforevery(x1,…,xn)in Mn thereis y in M suchthat (x1,…,xn,y) isin g.Butwecontinuetothinkaboutfunctionsinthenormalway,asmapssending n-tuplesofthedomain, Mn,toelements oftheco-domain, M,sotendtowrite (x1,…,xn,y)∈ g justas g(x1,…,xn)= y.
1 Thefulldefinitionof Xn isbyrecursion: X1 = X and Xn+1 = Xn × X,where A × B = {(a,b) : a ∈ A and b ∈ B}.Likewise,werecursivelydefineordered n-tuplesintermsoforderedpairsbysettinge.g. (a,b,c)=((a,b),c).
Giventheset-theoreticbackground, L -structuresareindividuated extensionally:theyareidenticalifftheyhaveexactlythesameunderlyingdomainandmake exactlythesameassignments.So,where M,N are L -structures, M = N iffboth M = N and sM = sN forall s from L .Toobtaindifferentstructures,then,wecan eitherchangethedomain,changetheinterpretationofsomesymbol(s),orboth. Structuresare,then,individuatedratherfinely,andindeedwewillseeinChapters 2and5thatthisindividuationistoofineformanypurposes.Butfornow,wecan simplyobservethattherearemany, many differentstructures,inthesenseofDefinition1.2.
1.2First-orderlogic:afirstlook
Weknowwhat(L -)structuresare.Tomovetotheideaofamodel,weneedtothink ofastructureasmakingcertainsentencestrueorfalse.Sowemustbuilduptothe notionofasentence.Westartwiththeirsyntax.
Syntaxforfirst-orderlogic
Initially,werestrictourattentionto first-ordersentences.Thesearethesentenceswe obtainbyaddingabasicstarter-packoflogicalsymbolstoasignature(inthesense ofDefinition1.1).Theselogicalsymbolsare:
• variables: u,v,w,x,y,z,withnumericalsubscriptsasnecessary
• theidentitysign: =
• aone-placesententialconnective: ¬
• two-placesententialconnectives: ∧, ∨
• quantifiers: ∃, ∀
• brackets: (, )
Wenowofferarecursivedefinitionofthesyntaxofourlanguage:2
Definition1.3: Thefollowing,andnothingelse,arefirst-order L -terms:
• anyvariable,andanyconstantsymbolcfrom L
2 Apedanticcommentisinorder.Thesymbols‘t1’and‘t2’arenotbeingusedhereasexpressionsin theobjectlanguage(i.e.first-orderlogicwithsignature L ).Rather,theyarebeingusedasexpressionsof themetalanguage,withinwhichwedescribethesyntaxoffirst-order L -termsand L -formulas.Similarly, thesymbol‘x’,asitoccursinthelastclauseofDefinition1.3,isnotbeingusedasanexpressionoftheobject language,butinthemetalanguage.Sothefinalclauseinthisdefinitionshouldbereadassayingsomething likethis. Foranyvariableandanyformula φ whichdoesnotalreadycontainaconcatenationofaquantifier followedbythatvariable,thefollowingconcatenationisaformula:aquantifier,followedbythatvariable, followedby φ.(Thereasonforthisclauseistoguaranteethate.g. ∃v∀vF(v) isnotaformula.)Wecould flagthismoreexplicitly,byusingadifferentfontformetalinguisticvariables(forexample).However,as withflaggingquotation,wethinktheadditionalprecisionisnotworththeugliness.