Philosophy and model theory tim button - Download the ebook with all fully detailed chapters

Page 1


https://ebookmass.com/product/philosophy-and-model-theorytim-button/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Model Predictive Control: Theory, Computation, and Design, 2nd Edition Rawlings James B.

https://ebookmass.com/product/model-predictive-control-theorycomputation-and-design-2nd-edition-rawlings-james-b/

ebookmass.com

Philosophy of Film Without Theory Craig Fox

https://ebookmass.com/product/philosophy-of-film-without-theory-craigfox/

ebookmass.com

Gender Issues and Philosophy Education: History – Theory –Practice Markus Tiedemann

https://ebookmass.com/product/gender-issues-and-philosophy-educationhistory-theory-practice-markus-tiedemann/

ebookmass.com

The Only EKG Book You’ll Ever Need Eighth Edition – Ebook PDF Version

https://ebookmass.com/product/the-only-ekg-book-youll-ever-needeighth-edition-ebook-pdf-version/

ebookmass.com

Treasures - Gr 3 Unit 4-6 Mcgraw-Hill [Mcgraw-Hill]

https://ebookmass.com/product/treasures-gr-3-unit-4-6-mcgraw-hillmcgraw-hill/

ebookmass.com

(eBook PDF) Marketing: An Introduction 14th Edition

https://ebookmass.com/product/ebook-pdf-marketing-anintroduction-14th-edition/

ebookmass.com

James M. Buchanan: A Theorist of Political Economy and Social Philosophy 1st ed. Edition Richard E. Wagner

https://ebookmass.com/product/james-m-buchanan-a-theorist-ofpolitical-economy-and-social-philosophy-1st-ed-edition-richard-ewagner/

ebookmass.com

Playhouse: A Novel Richard Bausch

https://ebookmass.com/product/playhouse-a-novel-richard-bausch/

ebookmass.com

A Kiss of Embers: An Enemies to Lovers Fantasy Romance (Sunlight and Shadows Book 4) Sydney Winward

https://ebookmass.com/product/a-kiss-of-embers-an-enemies-to-loversfantasy-romance-sunlight-and-shadows-book-4-sydney-winward/

ebookmass.com

Brain, Beauty, and Art: Essays Bringing Neuroaesthetics into Focus Anjan Chatterjee (Editor)

https://ebookmass.com/product/brain-beauty-and-art-essays-bringingneuroaesthetics-into-focus-anjan-chatterjee-editor/

ebookmass.com

PhilosophyandModelTheory

Philosophyand ModelTheory

TimButtonandSeanWalsh withahistoricalappendixbyWilfridHodges

Great Clarendon Street, Oxford, ox2 6dp, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Tim Button and Sean Walsh 2018 © Historical Appendix D Wilfrid Hodges

The moral rights of the authors have been asserted

First Edition published in 2018

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data

Data available

Library of Congress Control Number: 2017959066

ISBN: 978–0–19–879039–6 (hbk.)

978–0–19–879040–2 (pbk.)

Printed and bound by CPI Group (UK) Ltd, Croydon, cr0 4yy

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

Preface

Philosophyandmodeltheoryfrequentlymeetoneanother.Thisbookaimstounderstandtheirinteractions.

Modeltheoryisusedinevery‘theoretical’branchofanalyticphilosophy:inphilosophyofmathematics;inphilosophyofscience;inphilosophyoflanguage;in philosophicallogic;andinmetaphysics.Butthesewide-rangingappealstomodel theoryhavecreatedahighlyfragmentedliterature.Ontheonehand,manyphilosophicallysignificantresultsarefoundonlyinmathematicstextbooks:theseare aimedsquarelyatmathematicians;theytypicallypresupposethatthereaderhasa seriousbackgroundinmathematics;andlittleclueisgivenastotheirphilosophical significance.Ontheotherhand,thephilosophicalapplicationsoftheseresultsare scatteredacrossdisconnectedpocketsofpapers.

Thefirstaimofourbook,then,istoconsiderthe philosophicalusesofmodeltheory.Westateandprovethebestversionsofresultsforphilosophicalpurposes.We thenprobetheirphilosophicalsignificance.Andweshowhowsimilardialectical situationsariserepeatedlyacrossfragmenteddebatesindifferentareas.

Thesecondaimofourbook,though,istoconsiderthephilosophyofmodeltheory. Modeltheoryitselfisrarelytakenasthesubjectmatterofphilosophising(contrast thiswiththephilosophyofbiology,orthephilosophyofsettheory).Butmodel theoryisabeautifulpartofpuremathematics,andworthyofphilosophicalstudy initsownright.

Bothaimsgiverisetochallenges.Ontheonehand:thephilosophicalusesof modeltheoryarescatteredacrossadisunifiedliterature.Andontheotherhand: thereisscarcelyanyliteratureonthephilosophyofmodeltheory.

Allofwhichistosay: philosophyandmodeltheoryisn’treally‘athing’yet.This bookaimstostartcarvingoutsuchathing.Wewanttocharttherock-faceand traceitsdialecticalcontours.Butwepresentthisbook,notasafinalwordonwhat philosophicallyinclinedmodeltheoristsandmodel-theoreticallyinclinedphilosophersshoulddo,butasaninvitationtojoinin.

So.Thisisnotabookinwhichasingleaxeisground,pagebypage,intoan increasinglysharpblade.Nofundamentallineofargument—archingfromChapter 1throughtoChapter17—servesasthespineofthebook.Whatknitsthechapters togetherintoasinglebookisnotasinglethesis,butasequenceofoverlapping, criss-crossingthemes.

Topicselection

Preciselybecausephilosophyandmodeltheoryisn’tyet‘athing’,wehavehadto makesomedifficultdecisionsaboutwhattopicstodiscuss.

Ontheonehand,weaimedtopicktopicswhichshouldbeoffairlymainstream philosophicalconcern.So,whenitcomestothephilosophical uses ofmodeltheory,wehavelargelyconsideredtopicsconcerning reference, realism,and doxology (atermweintroduceinChapter6).But,evenwhenwehaveconsideredquestions whichfallsquarelywithininthephilosophy of modeltheory,thequestionsthat wehavefocussedonareclearlyinstancesof‘bigquestions’.Welookatquestions of sameness oftheories/structure(Chapter5);oftaking diverseperspectives onthe sameconcept(inChapter14);ofhowtodraw boundaries oflogic(inChapter16); andof classification ofmathematicalobjects(Chapter17).

Ontheotherhand,wealsowantedtogiveyouadecentbangforyourbuck.We figuredthatifyouweregoingtohavetowrestlewithsomenewphilosophicalidea ormodel-theoreticresult,thenyoushouldgettoseeitputtodecentuse.(Thisexplainswhy,forexample,thePush-ThroughConstruction,thejust-moretheorymanoeuvre,supervaluationalsemantics,andtheideasofmoderationandmodelism, occursoofteninthisbook.)Conversely,wehavehadtosetasidedebates—no matterhowinteresting—whichwouldhavetakentoolongtosetup.

Allofwhichistosay:thisbookisnotcomprehensive.Notevenclose. AlthoughweconsidermodelsofsettheoryinChapters8and11,wescarcely scratchthesurface.AlthoughwediscussinfinitarylogicsinChapters15–16,weonly usetheminfairlylimitedways.1 WhilstwementionTennenbaum’sTheoremin Chapter7,thatisascloseaswegettocomputablemodeltheory.Wedevoteonly onebriefsectiontoo-minimality,namely§4.10.AndalthoughweconsiderquantifiersinChapter16andfrequentlytouchonissuesconcerninglogicalconsequence, weneveraddressthelattertopicheadon.2

Thegraveenormity,though,isthatwehavebarelyscratchedthesurfaceofmodel theoryitself.Asthetableofcontentsreveals,thevastmajorityofthebookconsiders modeltheoryasitexistedbeforeMorley’sCategoricityTheorem.

Partiallycorrectingforthis,WilfridHodges’wonderfulhistoricalessayappears asPartDofthisbook.Wilfrid’sessaytreatsMorley’sTheoremasapivot-pointfor thesubjectofmodeltheory.Helooksbackcriticallytothehistory,touncoverthe notionsatworkinMorley’sTheoremanditsproof,andhelooksforwardtothe richesthathavefollowedfromit.WehavebothlearnedsomuchfromWilfrid’s ModelTheory, 3 andwearedelightedtoincludehis‘shorthistory’here.

1 Wedonot,forexample,considertheconnectionbetweeninfinitarylogicsandsupervenience,as Glanzberg(2001)andBader(2011)do.

2 Forthat,wewouldpointthereadertoBlanchette(2001)andShapiro(2005a).

3 Hodges(1993).

Still,concerningallthosetopicswhichwehaveomitted:weintendnoslight againstthem.Butthereisonlysomuchonebookcando,andthisbookisalready much(much)longerthanweoriginallyplanned.Wearesincereinourearlierclaim, thatthisbookisnotofferedasafinalword,butasaninvitationtotakepart.

Structuringthebook

Havingselectedourtopics,weneededtoarrangethemintoabook.Atthispoint, werealisedthatthesetopicshavenonaturallinearordering.

Assuch,wehavetriedtostrikeabalancebetweenthreeaimsthatdidnotalways pointinthesamedirection:toorderby philosophicaltheme,toorderbyincreasing philosophicalsophistication,andtoorderbyincreasing mathematicalsophistication. Thebook’sfinalstructureofrepresentsourbestcompromisebetweenthesethree aims.Itisdividedintothreemainparts: Referenceandrealism, Categoricity,and Indiscernibilityandclassification

Eachparthasanintroduction,andthosewhowanttodipinandoutofparticular topics,ratherthanreadingcover-to-cover,shouldreadthethreepart-introductions aftertheyhavefinishedreadingthispreface.Thepart-introductionsprovidethematicoverviewsofeachchapter,andtheyalsocontaindiagramswhichdepictthe dependenciesbetweeneachsectionofthebook.Incombinationwiththetableof contents,thesediagramswillallowreaderstotakeshortcutstotheirfavouritedestinations,withouthavingtostoptosmelleveryrosealongtheway.

Presuppositionsandproofs

Sofaraspossible,thebookassumesonlythatyouhavecompleteda101-levellogic course,andsohavesomefamiliaritywithfirst-orderlogic.

Inevitably,therearesomeexceptionstothis:wewereforcedtoassumesome familiaritywithanalysiswhendiscussinginfinitesimalsinChapter4,andequally somefamiliaritywithtopologywhendiscussingStonespacesinChapter14.Wedo notproveGödel’sincompletenessresults,althoughwedostateversionsofthemin §5.a.Abookcanonlybesoself-contained.

Byandlarge,though,thisbook is self-contained.Whenweinvokeamodeltheoreticnotion,wealmostalwaysdefinethenotionformallyinthetext.When itcomestoproofs,wefollowtheserulesofthumb.

Themaintext includesbothbriefproofs,andalsothoseproofswhichwewanted todiscussdirectly.

The appendices includeproofswhichwewantedtoincludeinthebook,but whichweretoolongtofeatureinthemaintext.Theseinclude:proofsconcerningelementarytopicswhichourreadersshouldcometounderstand(atleastone

day);proofswhicharedifficulttoaccessintheexistingliterature;proofsofcertain folk-loreresults;andproofsofnewresults.

Butthe bookomits allproofswhicharebothreadilyaccessedandtoolongtobe self-contained.Insuchcases,wesimplyprovidereaderswithcitations.

Thequickmoralforreaderstoextractisthis.Ifyouencounteraproofinthemain textofachapter,youshouldfollowitthrough.Butwewouldaddanoteforreaderswhoseprimarybackgroundisinphilosophy.Ifyoureallywanttounderstanda mathematicalconcept,youneedtoseeitinaction.Readtheappendices!

Acknowledgements

Thebookarosefromaseminarseriesonphilosophyandmodeltheorythatweran inBirkbeckinAutumn2011.Weturnedtheseminarintoapaper,butitwasvastly toolong.Ananonymousrefereefor PhilosophiaMathematica suggestedthepaper mightformthebasisforabook.Soitdid.

Wehavepresentedtopicsfromthisbookseveraltimes.Itwouldnotbethe bookitis,withoutthefeedback,questionsandcommentswehavereceived.So weowethanksto:ananonymousrefereefor PhilosophiaMathematica,andJames StuddforOUP;andtoSarahActon,GeorgeAnegg,AndrewArana,BahramAssadian,JohnBaldwin,KyleBanick,NeilBarton,TimothyBays,AnnaBellomo,Liam Bright,ChloédeCanson,AdamCaulton,CatrinCampbell-Moore,JohnCorcoran,RadinDardashti,WalterDean,NataljaDeng,WilliamDemopoulos,Michael Detlefsen,FionaDoherty,CianDorr,StephenDuxbury,SeanEbels-Duggan,Sam Eklund,HartryField,BrandenFitelson,VeraFlocke,SalvatoreFlorio,PeterFritz, MichaelGabbay,HaimGaifman,J.EthanGalebach,MarcusGiaquinto,PeterGibson,TamaravonGlehn,OwenGriffiths,EmmylouHaffner,BobHale,Jeremy Heis,WillHendy,SimonHewitt,KateHodesdon,WilfridHodges,LucaIncurvati,DouglasJesseph,NicholasJones,PeterKoellner,BrianKing,EleanorKnox,JohannesKorbmacher,ArnoldKoslow,Hans-ChristophKotzsch,GregLauro,Sarah Lawsky,ØysteinLinnebo,YangLiu,PenMaddy,KateManion,TonyMartin,GuillaumeMassas,VannMcGee,TobyMeadows,RichardMendelsohn,Christopher Mitsch,StellaMoon,AdrianMoore,J.BrianPitts,JonathanNassim,FredrikNyseth,SaraParhizgari,CharlesParsons,JonathanPayne,GrahamPriest,Michael Potter,HilaryPutnam,PaulaQuinon,DavidRabouin,ErichReck,SamRoberts, MarcusRossberg,J.Schatz,GilSagi,BernhardSalow,ChrisScambler,Thomas Schindler,DanaScott,StewartShapiro,GilaSher,LukasSkiba,JönneSpeck,SebastianSpeitel,WillStafford,TrevorTeitel,RobertTrueman,JoukoVäänänen,Kai Wehmeier,J.RobertG.Williams,JohnWigglesworth,HughWoodin,JackWoods, CrispinWright,WesleyWrigley,andKinoZhao.

WeowesomespecialdebtstopeopleinvolvedintheoriginalBirkbeckseminar.

First,theseminarwasheldundertheauspicesoftheDepartmentofPhilosophyat BirkbeckandØysteinLinnebo’sEuropeanResearchCouncil-fundedproject‘Plurals,Predicates,andParadox’,andweareverygratefultoallthepeoplefromthe projectandthedepartmentforparticipatingandhelpingtomaketheseminarpossible.Second,wewereluckytohaveseveralgreatexternalspeakersvisittheseminar,whomwewouldespeciallyliketothank.Thespeakerswere:TimothyBays, WalterDean,VolkerHalbach,LeonHorsten,RichardKaye,JeffKetland,Angus Macintyre,PaulaQuinon,PeterSmith,andJ.RobertG.Williams.Third,manyof theexternaltalkswerehostedbytheInstituteofPhilosophy,andwewishtothank BarryC.SmithandShahrarAliforalltheirsupportandhelpinthisconnection.

AmoredistantyetimportantdebtisowedtoDenisBonnay,BriceHalimi,and Jean-MichelSalanskis,whoorganisedalovelyeventinParisinJune2010called‘PhilosophyandModelTheory.’Thateventgotsomeofusfirstthinkingabout‘PhilosophyandModelTheory’asaunifiedtopic.

Wearealsogratefultovariouseditorsandpublishersforallowingustoreusepreviouslypublishedmaterial.Chapter5drawsheavilyonWalsh2014,andthecopyrightisheldbytheAssociationforSymbolicLogicandisbeingusedwiththeir permission.Chapters7–11drawheavilyupononButtonandWalsh2016,published by PhilosophiaMathematica.Finally,§13.7drawsfromButton2016b,publishedby Analysis,and§15.1drawsfromButton2017,publishedbythe NotreDameJournalof FormalLogic.

Finally,though,awordfromus,asindividuals.

FromTim. IwanttooffermydeepthankstotheLeverhulmeTrust:theirfunding,intheformofaPhilipLeverhulmePrize(plp–2014–140),enabledmetotake theresearchleavenecessaryforthisbook.ButImostlywanttothanktwoveryspecialpeople.WithoutSean,thisbookcouldnotbe.AndwithoutmyBen,Icould notbe.

FromSean. IwanttothanktheKurtGödelSociety,whosefunding,intheform ofaKurtGödelResearchPrizeFellowship,helpedusputontheoriginalBirkbeck seminar.IalsowanttothankTimforbeingamodelco-authorandamodelfriend. Finally,IwanttothankKariforhercompleteloveandsupport.

3.6TheNewman-conservation-objection................60

3.7Observationvocabularyversusobservableobjects.........63

3.8TheNewman-cardinality-objection.................64

3.9Mixed-predicatesagain:thecaseofcausation............66

3.10Naturalpropertiesandjustmoretheory...............67

3.aNewmanandelementaryextensions.................69

3.bConservationinfirst-ordertheories.................72

4Compactness,infinitesimals,andthereals 75

4.1TheCompactnessTheorem.....................75

4.2Infinitesimals..............................77

4.3Notationalconventions........................79

4.4Differentials,derivatives,andtheuseofinfinitesimals.......79

4.5Theordersofinfinitesmallness....................81

4.6Non-standardanalysiswithavaluation...............84

4.7Instrumentalismandconservation..................88

4.8Historicalfidelity............................91

4.9Axiomatisingnon-standardanalysis.................93

4.10Axiomatisingthereals.........................97

4.aGödel’sCompletenessTheorem...................99

4.bAmodel-theoreticproofofCompactness..............103

4.cThevaluationfunctionof§4.6....................104

5Samenessofstructureandtheory 107

5.1Definitionalequivalence........................107

5.2Samenessofstructureandanteremstructuralism.........108

5.3Interpretability.............................110

5.4Biinterpretability............................113

5.5Fromstructurestotheories......................114

5.6Interpretabilityandthetransferoftruth...............119

5.7Interpretabilityandarithmeticalequivalence............123

5.8Interpretabilityandtransferofproof.................126

5.9Conclusion...............................129

5.aArithmetisationofsyntaxandincompleteness...........130

5.bDefinitionalequivalenceinsecond-orderlogic...........132

6Modelismandmathematicaldoxology 143

6.1Towardsmodelism...........................143

6.2Objects-modelism...........................144

6.3Doxology,objectualversion......................145

6.4Concepts-modelism..........................146

6.5Doxology,conceptualversion.....................148

7Categoricityandthenaturalnumbers 151

7.1Moderatemodelism..........................151

7.2AspirationstoCategoricity......................153

7.3Categoricitywithinfirst-ordermodeltheory............153

7.4Dedekind’sCategoricityTheorem..................154

7.5Metatheoryoffullsecond-orderlogic................155

7.6Attitudestowardsfullsecond-orderlogic..............156

7.7Moderatemodelismandfullsecond-orderlogic..........158

7.8Clarifications..............................160

7.9Moderationandcompactness.....................161

7.10Weakerlogicswhichdelivercategoricity...............162

7.11Applicationtospecifickindsofmoderatemodelism........164

7.12Twosimpleproblemsformodelists.................167

7.aProofoftheLöwenheim–SkolemTheorem.............167

8Categoricityandthesets 171

8.1Transitivemodelsandinaccessibles.................171

8.2Modelsoffirst-ordersettheory....................173

8.3Zermelo’sQuasi-CategoricityTheorem...............178

8.4Attitudestowardsfullsecond-orderlogic:redux..........179

8.5Axiomatisingtheiterativeprocess..................182

8.6Isaacsonandincompletestructure..................184

8.aZermeloQuasi-Categoricity.....................186

8.bElementaryScott–Potterfoundations................192

8.cScott–PotterQuasi-Categoricity...................197

9Transcendentalargumentsagainstmodel-theoreticalscepticism 203

9.1Model-theoreticalscepticism.....................203

9.2Mooreanversustranscendentalarguments.............206

9.3TheMetaresourcesTranscendentalArgument...........206

9.4TheDisquotationalTranscendentalArgument...........210

9.5Ineffablescepticalconcerns......................214

9.aApplication:the(non-)absolutenessoftruth............217 10Internalcategoricityandthenaturalnumbers 223

10.1Metamathematicswithoutsemantics................224

10.2Theinternalcategoricityofarithmetic................227

10.3Limitsonwhatinternalcategoricitycouldshow..........229

10.4Theintoleranceofarithmetic.....................232

10.5Acanonicaltheory...........................232

10.6Thealgebraic/univocaldistinction.................233

10.7Situatinginternalisminthelandscape................236

10.8Moderateinternalists.........................237

10.aConnectiontoParsons........................239

10.bProofsofinternalcategoricityandintolerance...........242

10.cPredicativeComprehension......................246

11Internalcategoricityandthesets 251

11.1InternalisingScott–Pottersettheory.................251

11.2Quasi-intoleranceforpuresettheory................253

11.3Thestatusofthecontinuumhypothesis...............255

11.4Totalinternalcategoricityforpuresettheory............256

11.5Totalintoleranceforpuresettheory.................257

11.6Internalismandindefiniteextensibility...............258

11.aConnectiontoMcGee.........................260

11.bConnectiontoMartin.........................262

11.cInternalquasi-categoricityforSP...................263

11.dTotalinternalcategoricityforCSP..................266

11.eInternalquasi-categoricityofordinals................268

12Internalcategoricityandtruth 271

12.1Thepromiseoftruth-internalism...................271

12.2Truthoperators.............................273

12.3Internalismaboutmodeltheoryandinternalrealism........276

12.4Truthinhigher-orderlogic......................282

12.5Twogeneralissuesfortruth-internalism...............284

12.aSatisfactioninhigher-orderlogic...................285

13Boolean-valuedstructures 295

13.1Semantic-underdeterminationviaPush-Through..........295

13.2ThetheoryofBooleanalgebras....................296

13.3Boolean-valuedmodels........................298

13.4Semantic-underdeterminationviafilters...............301

13.5Semanticism..............................304

13.6Bilateralism...............................307

13.7Open-ended-inferentialism......................311

13.8Internal-inferentialism.........................314

13.9Suszko’sThesis.............................316

13.aBoolean-valuedstructureswithfilters................321

13.bFullsecond-orderBoolean-valuedstructures............323

13.cUltrafilters,ultraproducts,Łoś,andcompactness..........326

13.dTheBoolean-non-categoricityofCBA................328

13.eProofsconcerningbilateralism....................330

14TypesandStonespaces

14.7Propositionsandpossibleworlds...................350

14.aTopologicalbackground........................354

14.bBivalent-calculiandbivalent-universes................356

15Indiscernibility

15.1Notionsofindiscernibility......................359 15.2Singlingoutindiscernibles......................366 15.3Theidentityofindiscernibles.....................370 15.4Two-indiscerniblesininfinitarylogics................376

15.5 n-indiscernibles,order,andstability.................380 15.aChartingthegradesofdiscernibility.................384

16Quantifiers

16.1Generalisedquantifiers........................387

16.2Clarifyingthequestionoflogicality.................389

16.3TarskiandSher.............................389

16.4TarskiandKlein’sErlangenProgramme...............390 16.5ThePrincipleofNon-Discrimination................392 16.6ThePrincipleofClosure.......................399

16.7McGee’ssqueezingargument.....................407

16.8Mathematicalcontent.........................408

17.1Thenatureofclassification......................413

A Referenceandrealism

IntroductiontoPartA

ThetwocentralthemesofPartAare reference and realism

Hereisanoldphilosophicalchestnut: Howdowe(evenmanageto)representthe world? Ourmostsophisticatedrepresentationsoftheworldareperhapslinguistic. Soaspecialised—butstillenormouslybroad—versionofthisquestionis: Howdo words(evenmanageto)representthings?

Entermodeltheory.Oneofthemostbasicideasinmodeltheoryisthatastructureassignsinterpretationstobitsofvocabulary,andinsuchawaythatwecanmake excellentsenseoftheideathatthestructuremakeseachsentence(inthatvocabulary)eithertrueorfalse.Squintslightly,andmodeltheoryseemstobeprovidingus withaperfectlyprecise,formalwaytounderstandcertainaspectsoflinguisticrepresentation.Itisnosurpriseatall,then,thatalmostanyphilosophicaldiscussion oflinguisticrepresentation,orreference,ortruth,endsupinvokingnotionswhich arerecognisablymodel-theoretic.

InChapter1,weintroducethebuildingblocksofmodeltheory:thenotionsof signature,structure,andsatisfaction.Whilstthebaretechnicalbonesshouldbe familiartoanyonewhohascovereda101-levelcourseinmathematicallogic,we alsodiscussthephilosophicalquestion: Howshouldwebestunderstandquantifiers andvariables? Hereweseethatphilosophicalissuesariseattheveryoutsetofour model-theoreticinvestigations.Wealsointroducesecond-orderlogicanditsvarioussemantics.Whilesecond-orderlogicislesscommonlyemployedincontemporarymodeltheory,itisemployedfrequentlyinphilosophyofmodeltheory,and understandingthedifferencesbetweenitsvarioussemanticswillbeimportantin manysubsequentchapters.

InChapter2,weexaminevariousconcernsaboutthedeterminacyofreference andso,perhaps,thedeterminacyofourrepresentations.HereweencounterfamousargumentsfromBenacerrafandPutnam,whichweexplicateusingtheformalPush-ThroughConstruction.Sinceisomorphicstructuresareelementarily equivalent—thatis,theymakeexactlythesamesentencestrueandfalse—this threatenstheconclusionthatitisradicallyindeterminate,whichofmanyisomorphicstructuresaccuratelycaptureshowlanguagerepresentstheworld.

Now,onemightthinkthatthereferenceofourword‘cat’isconstrainedbythe causallinksbetweencatsandourusesofthatword.Fairenough.Butthereareno causallinksbetweenmathematicalobjectsandmathematicalwords.So,oncertain conceptionsofwhathumansarelike,wewillbeunabletoanswerthequestion: Howdowe(evenmanageto)refertoanyparticularmathematicalentity? Thatis,we willhavetoacceptthatwe donot refertoparticularmathematicalentities.

Whilstdiscussingtheseissues,weintroducePutnam’sfamous just-more-theory manoeuvre.Itisimportanttodothisbothclearlyandearly,sincemanyversionsof thisdialecticalmoveoccurinthephilosophicalliteratureonmodeltheory.Indeed, theyoccurespeciallyfrequentlyinPartBofthisbook.

Now,philosophershaveoftenlinkedthetopicofreferencetothetopicofrealism.Onewaytodrawtheconnectionisasfollows:Ifreferenceisradicallyindeterminate,thenmyword‘cabbage’andmyword‘cat’failtopickoutanythingdeterminately.SowhenIsaysomethinglike‘thereisacabbageandthereisacat’,I have atbest managedtosaythatthereareatleasttwodistinctobjects.Thatseems tofallfarshortofexpressinganyrealcommitmenttocatsandcabbagesthemselves.1 Inshort,radicalreferentialindeterminacythreatenstoundercutcertainkindsof realismaltogether.Butonlycertainkinds:wecloseChapter2bysuggestingthat someversionsofmathematicalplatonismcanlivewiththefactthatmathematical languageisradicallyreferentiallyindeterminatebyembracingasupervaluational semantics.

Concernsaboutreferentialindeterminacyalsofeatureindiscussionsaboutrealismwithinthephilosophyofscience.InChapter3,weexamineaparticularversion ofscientificrealismthatarisesbyconsideringRamseysentences.Roughly,these aresentenceswhereallthe‘theoreticalvocabulary’hasbeen‘existentiallyquantifiedaway’.Ramseysentencesseempromising,sincetheyseemtoincurakindof existentialcommitmenttotheoreticalentities,whichischaracteristicofrealism, whilstmakingroomforacertainlevelreferentialindeterminacy.WelookattherelationbetweenNewman’sobjectionandthePush-ThroughConstructionofChapter2,andbetweenRamseysentencesandvariousmodel-theoreticnotionsofconservation.Ultimately,bycombiningthePush-ThroughConstructionwiththese notionsofconservation,wearguethatthedialecticsurroundingNewman’sobjectionshouldtrackthedialecticofChapter2,surroundingPutnam’spermutationargumentinthephilosophyofmathematics.

ThenotionsofconservationweintroduceinChapter3arecrucialtoAbraham Robinson’sattempttousemodeltheorytosalvageLeibniz’snotionofan‘infinitesimal’.Infinitesimalsarequantitieswhoseabsolutevalueissmallerthanthatofany givenpositiverealnumber.Theywereanimportantpartofthehistoricalcalculus; theyfellfromgracewiththeriseof ε–δ notation;buttheyweregivenanewlease oflifewithinmodeltheoryviaRobinson’snon-standardanalysis.Thisisthetopic ofChapter4.Hereweintroducetheideaof compactness toprovethattheuseof infinitesimalsisconsistent.

RobinsonbelievedthatthisvindicatedtheviabilityoftheLeibnizianapproach tothecalculus.Againstthis,BoshasquestionedwhetherRobinson’snon-standard analysisisgenuinelyfaithfultoLeibniz’smathematicalpractice.InChapter4,we

1 Cf.Putnam(1977:491)andButton(2013:59–60).

offeranoveldefenceofRobinson.BybuildingvaluationsintoRobinson’smodel theory,weprovenewresultswhichallowustoapproximatemorecloselywhatwe knowabouttheLeibnizianconceptionofthestructureoftheinfinitesimals.Indeed,weshowthatRobinson’snon-standardanalysiscanrehabilitatevarioushistoricalmethodsforreasoningwithandaboutinfinitesimalsthathavefallenfarfrom fashion.

Thequestionremains,ofwhetherweshould believe ininfinitesimals.Leibnizhimselfwastemptedtotreathisinfinitesimalsas‘convenientfictions’;Robinsonexplicitlyregardedhisinfinitesimalsinthesameway;andtheirmethodofintroductioninmodeltheoryallowsforperhapsthecleanestpossibleversionofa fictionalist-cum-instrumentalistattitudetowards‘troublesome’entities.Indeed, wecanprovethatreasoning asif thereareinfinitesimalswillonlygenerateresults thatonecouldhaveobtained without thatassumption.Onecanhaveanti-realism, then,withaclearconscience.

InChapter5,wetakeastepbackfromthesespecificapplicationsofmodeltheory,todiscussamoremethodologicalquestionaboutthephilosophicalapplication ofmodeltheory: underwhatcircumstancesshouldwecalltwostructures‘thesame’? Thisquestioncanbeposedwithinmathematics,whereitsanswerwilldependupon thesimilaritiesanddifferencesthatmatterforthemathematicalpurposesathand. Butthequestioncanalsobegivenametaphysicalgloss.Inparticular,considera philosopherwhothinks(forexample)that:(a)thereisa single,abstract,entity whichis‘thenaturalnumberstructure’,andthat(b)thereisa single,abstractentitywhichis‘thestructureoftheintegers’;butthat(c)thesetwoentitiesaredistinct.Thenthisphilosophermustprovideanaccountofidentityanddistinctness between‘structures’,soconstrued;andweshowjusthowhardthisis.

Notionsofsamenessofstructurealsoinducenotionsofsamenessoftheory.Aftersurveyingawidevarietyofformalnotionsofsamenessofstructureandtheory, wediscussthreeambitiousclaimsconcerningwhatsamenessoftheorypreserves, namely:truth;arithmeticalprovability;andproof.Weconcludethatmorephilosophicallyambitiousversionsofthesepreservation-thesesgenerallyfail.

Thismeta-issueofsamenessofstructureandtheoryisagoodplacetoendPart A,though,bothbecause(a)thediscussionisenhancedbythespecificexamples ofstructuresandtheoriesdiscussedearlierinthetext,andbecause(b)questions aboutsamenessofstructureandtheoryinformanumberofthediscussionsand debateswhichwetreatinlaterPartsofthebook.

ReaderswhoonlywanttodipintoparticulartopicsofPartAcanconsultthe followingHassediagramofdependenciesbetweenthesectionsofPartA,whilst referringtothetableofcontents.Asection y dependsuponasection x iffthereis apathleadingdownwardsfrom x to y.So,areaderwhowantstogetstraighttothe discussionoffictionalismaboutinfinitesimalswillwanttoleapstraightto§4.7;but

theyshouldknowthatthissectionassumesapriorunderstandingof§§2.1,4.1,4.2, andmuch(butnotall)ofChapter1.(Weomitpurelytechnicalappendicesfrom thisdiagram.)

5.3 5.4 5.5 5.6 5.7 5.8 5.2

Logicsandlanguages

Modeltheorybeginsbyconsideringtherelationshipbetweenlanguagesandstructures.Thischapteroutlinesthemostbasicaspectsofthatrelationship.

Onepurposeofthechapterwillthereforebeimmediatelyclear:wewanttolay downsomefairlydry,technicalpreliminaries.Readerswithsomefamiliaritywith mathematicallogicshouldfeelfreetoskimthroughthesetechnicalities,asthereare nogreatsurprisesinstore.

Beforetheskimmingcommences,though,weshouldflagasecondpurposeof thischapter.Thereareatleastthreeratherdifferentapproachestothesemantics forformallanguages.Inastraightforwardsense,theseapproachesaretechnically equivalent.Mostbookssimplychooseoneofthemwithoutcomment.We,however,laydownallthreeapproachesanddiscusstheircomparativestrengthsand weaknesses.Doingthishighlightsthattherearephilosophicaldiscussionstobehad fromtheget-go.Moreover,byconsideringwhatisinvariantbetweenthedifferent approaches,wecanbetterdistinguishbetweenthemerelyidiosyncraticfeaturesof aparticularapproach,andthethingswhichreallymatter.

Onelastpoint,beforewegetgoing:traditiondemandsthatweissueacaveat. SinceTarskiandQuine,philosophershavebeencarefultoemphasisetheimportantdistinctionbetween using and mentioning words.Inphilosophicaltexts,that distinctionistypicallyflaggedwithvariouskindsofquotationmarks.Butwithin modeltheory,contextalmostalwaysdisambiguatesbetweenuseandmention. Moreover,includingtoomuchpunctuationmakesforuglytext.Withthisinmind, wefollowmodel-theoreticpracticeandavoidusingquotationmarksexceptwhen theywillbeespeciallyhelpful.

1.1Signaturesandstructures

Westartwiththeideathatformallanguagescanhaveprimitivevocabularies:

Definition1.1: A signature, L ,isasetofsymbols,ofthreebasickinds:constantsymbols,relationsymbols,andfunctionsymbols.Eachrelationsymbolandfunctionsymbol hasanassociatednumberof places (anaturalnumber),sothatonemayspeakofan n-placerelationorfunctionsymbol.

Throughoutthisbook,weusescriptfontsforsignatures.Constantsymbolsshould bethoughtofas names forentities,andwetendtouse c1, c2,etc.Relationsymbols, whicharealsoknownaspredicates,shouldbethoughtofaspickingout properties or relations.Atwo-placerelation,suchas xissmallerthany,mustbeassociated withatwo-placerelationsymbol.Wetendtouse R1,R2,etc.forrelationsymbols. Functionsymbolsshouldbethoughtofaspickingoutfunctionsand,again,they needanassociatednumberofplaces:thefunctionof multiplicationonthenatural numbers takestwonaturalnumbersasinputsandoutputsasinglenaturalnumber, sowemustassociatethatfunctionwithatwo-placefunctionsymbol.Wetendto use f1, f2,etc.forfunctionsymbols.

Theexamplesjustgiven—beingsmallerthan,and multiplicationonthenatural numbers—suggestthatwewilluseourformalvocabularytomakedeterminate claimsaboutcertainobjects,suchaspeopleornumbers.Tomakethisprecise, weintroducethenotionofan L -structure;thatis,astructurewhosesignatureis L .An L -structure, M,isanunderlyingdomain, M,togetherwithanassignment of L ’sconstantsymbolstoelementsof M,of L ’srelationsymbolstorelations onM,andof L ’sfunctionsymbolstofunctionsoverM.Wealwaysusecalligraphic fonts M,N,…forstructures,and M,N,…fortheirunderlyingdomains.Where s isany L -symbol,wesaythat sM istheobject,relationorfunction(asappropriate) assignedto s inthestructure M.Thisinformalexplanationofan L -structureis alwaysgivenaset-theoreticimplementation,leadingtothefollowingdefinition:

Definition1.2: An L -structure,M,consistsof:

• anon-emptyset,M,whichistheunderlyingdomainofM,

• anobjectcM ∈ Mforeachconstantsymbolcfrom L ,

• arelationRM ⊆ Mn foreachn-placerelationsymbolRfrom L ,and

• afunctionfM : Mn → Mforeachn-placefunctionsymbolffrom L .

Asisusualinsettheory, Mn isjustthesetof n-tuplesover M,i.e.:1

Mn ={(a1,…,an) : a1 ∈ M and…and an ∈ M}

Likewise,weimplementafunction g : Mn → M intermsofitssettheoreticgraph.Thatis, g willbeasubsetof Mn+1 suchthatif (x1,…,xn,y) and (x1,…,xn,z)areelementsof g theny = zandsuchthatforevery(x1,…,xn)in Mn thereis y in M suchthat (x1,…,xn,y) isin g.Butwecontinuetothinkaboutfunctionsinthenormalway,asmapssending n-tuplesofthedomain, Mn,toelements oftheco-domain, M,sotendtowrite (x1,…,xn,y)∈ g justas g(x1,…,xn)= y.

1 Thefulldefinitionof Xn isbyrecursion: X1 = X and Xn+1 = Xn × X,where A × B = {(a,b) : a ∈ A and b ∈ B}.Likewise,werecursivelydefineordered n-tuplesintermsoforderedpairsbysettinge.g. (a,b,c)=((a,b),c).

Giventheset-theoreticbackground, L -structuresareindividuated extensionally:theyareidenticalifftheyhaveexactlythesameunderlyingdomainandmake exactlythesameassignments.So,where M,N are L -structures, M = N iffboth M = N and sM = sN forall s from L .Toobtaindifferentstructures,then,wecan eitherchangethedomain,changetheinterpretationofsomesymbol(s),orboth. Structuresare,then,individuatedratherfinely,andindeedwewillseeinChapters 2and5thatthisindividuationistoofineformanypurposes.Butfornow,wecan simplyobservethattherearemany, many differentstructures,inthesenseofDefinition1.2.

1.2First-orderlogic:afirstlook

Weknowwhat(L -)structuresare.Tomovetotheideaofamodel,weneedtothink ofastructureasmakingcertainsentencestrueorfalse.Sowemustbuilduptothe notionofasentence.Westartwiththeirsyntax.

Syntaxforfirst-orderlogic

Initially,werestrictourattentionto first-ordersentences.Thesearethesentenceswe obtainbyaddingabasicstarter-packoflogicalsymbolstoasignature(inthesense ofDefinition1.1).Theselogicalsymbolsare:

• variables: u,v,w,x,y,z,withnumericalsubscriptsasnecessary

• theidentitysign: =

• aone-placesententialconnective: ¬

• two-placesententialconnectives: ∧, ∨

• quantifiers: ∃, ∀

• brackets: (, )

Wenowofferarecursivedefinitionofthesyntaxofourlanguage:2

Definition1.3: Thefollowing,andnothingelse,arefirst-order L -terms:

• anyvariable,andanyconstantsymbolcfrom L

2 Apedanticcommentisinorder.Thesymbols‘t1’and‘t2’arenotbeingusedhereasexpressionsin theobjectlanguage(i.e.first-orderlogicwithsignature L ).Rather,theyarebeingusedasexpressionsof themetalanguage,withinwhichwedescribethesyntaxoffirst-order L -termsand L -formulas.Similarly, thesymbol‘x’,asitoccursinthelastclauseofDefinition1.3,isnotbeingusedasanexpressionoftheobject language,butinthemetalanguage.Sothefinalclauseinthisdefinitionshouldbereadassayingsomething likethis. Foranyvariableandanyformula φ whichdoesnotalreadycontainaconcatenationofaquantifier followedbythatvariable,thefollowingconcatenationisaformula:aquantifier,followedbythatvariable, followedby φ.(Thereasonforthisclauseistoguaranteethate.g. ∃v∀vF(v) isnotaformula.)Wecould flagthismoreexplicitly,byusingadifferentfontformetalinguisticvariables(forexample).However,as withflaggingquotation,wethinktheadditionalprecisionisnotworththeugliness.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Philosophy and model theory tim button - Download the ebook with all fully detailed chapters by Education Libraries - Issuu