Phase diagrams and thermodynamic modeling of solutions pelton - The special ebook edition is availab

Page 1


Phasediagramsandthermodynamicmodelingof solutionsPelton

https://ebookmass.com/product/phase-diagrams-andthermodynamic-modeling-of-solutions-pelton/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Mixed-Phase Clouds Observations and Modeling Constantin Andronache

https://ebookmass.com/product/mixed-phase-clouds-observations-andmodeling-constantin-andronache/

ebookmass.com

Thermodynamic Analysis and Optimization of Geothermal Power Plants Can Ozgur Colpan

https://ebookmass.com/product/thermodynamic-analysis-and-optimizationof-geothermal-power-plants-can-ozgur-colpan/

ebookmass.com

The Thermodynamics of Phase and Reaction Equilibria 2nd Edition Ismail Tosun

https://ebookmass.com/product/the-thermodynamics-of-phase-andreaction-equilibria-2nd-edition-ismail-tosun/

ebookmass.com

Lock (Hell's Handlers MC Florida Chapter Book 5) Lilly Atlas

https://ebookmass.com/product/lock-hells-handlers-mc-florida-chapterbook-5-lilly-atlas/

ebookmass.com

A Murder of Crows: Mafia University #1 Evelyn Flood

https://ebookmass.com/product/a-murder-of-crows-mafiauniversity-1-evelyn-flood-2/

ebookmass.com

Too Young To Fall In Love (Burgers and Brew Crüe Book 7)

Lacey Black

https://ebookmass.com/product/too-young-to-fall-in-love-burgers-andbrew-crue-book-7-lacey-black/

ebookmass.com

How Big Things Get Done: The Surprising Factors Behind Every Successful Project, from Home Renovations to Space

Exploration Bent Flyvbjerg

https://ebookmass.com/product/how-big-things-get-done-the-surprisingfactors-behind-every-successful-project-from-home-renovations-tospace-exploration-bent-flyvbjerg-2/ ebookmass.com

Interventions

et thérapies brèves Yves Doutrelugne [Doutrelugne

https://ebookmass.com/product/interventions-et-therapies-breves-yvesdoutrelugne-doutrelugne/

ebookmass.com

A Political History of the International Union of Socialist Youth 1907–1917 Patrizia Dogliani

https://ebookmass.com/product/a-political-history-of-theinternational-union-of-socialist-youth-1907-1917-patrizia-dogliani/

ebookmass.com

https://ebookmass.com/product/biology-today-and-tomorrow-withphysiology-6th-edition-cecie-starr/

ebookmass.com

PHASEDIAGRAMSAND THERMODYNAMIC MODELINGOF SOLUTIONS

PHASEDIAGRAMSAND THERMODYNAMIC MODELINGOF SOLUTIONS

ARTHURD.PELTON

Dep’tChemicalEngineering,CentredeRechercheen CalculThermochimique,EcolePolytechniquedeMontreal

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

# 2019ElsevierInc.Allrightsreserved.

Covercredit:A.D.Pelton,“ThermodynamicsandPhaseDiagrams”in“PhysicalMetallurgy 5thedition”,D.E.LaughlinandK.Hono(eds.),Elsevier,pp.203-303(2014)

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN978-0-12-801494-3

ForinformationonallElsevierpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionEditor: KostasKI.Marinakis

EditorialProjectManager: CarlyDemetre

ProductionProjectManager: OmerMukthar

CoverDesigner: GregHarris

TypesetbySPiGlobal,India

Dedication

ACKNOWLEDGMENTS

Thisbookistheresultofover40yearsofinvaluablecollaborationanddiscussionswithalonglistofstudentsandcolleagues. Itwouldhavebeenimpossibletowritethisbookwithoutthe FactSagesoftwareanddatabases.

IhavecollaboratedwithChrisBalefor45yearsandwith GunnarErikssonfor40yearsonthedevelopmentofFactSage. Iowethemanimmensedebtofgratitude.

IamparticularlyindebtedtomymentorMiltonBlanderforhis inspirationanddeepinsightsintothemysteriesofthethermodynamicsofsolutions.

SpecialthanksareduetoEvgueniaSokolenkoforherskillful andessentialassistanceinpreparingthefiguresandformatting thetextandequations.

Finally,IwishtoacknowledgetheNaturalSciencesand EngineeringResearchCouncilofCanadaforfinancialassistance overmanyyears.

INTRODUCTION

Anunderstandingofphasediagramsisfundamentaland essentialtothestudyofmaterialsscience,andanunderstanding ofthermodynamicsisfundamentaltoanunderstandingofphase diagrams.Aknowledgeoftheequilibriumstateofasystemunder agivensetofconditionsisthestartingpointinthedescriptionof manyphenomenaandprocesses.

ThethemeofPartIofthisbookistherelationshipbetween phasediagramsandthermodynamics.Tounderstandphasediagramsproperly,ithasalwaysbeennecessarytounderstandtheir thermodynamicbasis.However,inrecentyears,therelationship betweenthermodynamicsandphasediagramshastakenona newandimportantpracticaldimension.Withthedevelopment oflargeevaluateddatabasesofthethermodynamicproperties ofthousandsofcompoundandsolutionsandofsoftwaretocalculatetheconditionsforchemicalequilibrium(byminimizingthe Gibbsenergy),itispossibletorapidlycalculateandplotdesired phasediagramsectionsofmulticomponentsystems.Mostof thephasediagramsshowninthisbookwerecalculatedthermodynamicallywiththeFactSagesoftwareanddatabases(seeFactSageinthelistofwebsites).

Severallargeintegratedthermodynamicdatabasecomputing systemshavebeendevelopedinrecentyears.(Seelistofwebsites.)Thedatabasesofthesesystemshavebeenpreparedby thefollowingprocedure.Foreverycompoundandsolutionphase ofasystem,anappropriatemodelisfirstdevelopedgivingthe thermodynamicpropertiesasfunctionsoftemperature T,pressure P,andcomposition.Next,allavailablethermodynamicand phaseequilibriumdatafromtheliteraturefortheentiresystem aresimultaneouslyoptimizedtoobtainonesetofcriticallyevaluated,self-consistentparametersofthemodelsforallphasesin two-component;three-component;and,ifdataareavailable, higher-ordersubsystems.Finally,themodelsareusedtoestimate thepropertiesofmulticomponentsolutionsfromthedatabasesof parametersofthelower-ordersubsystems.TheGibbsenergyminimizationsoftwarethenaccessesthedatabasesand,forgivensets ofconditions( T, P,composition ),calculatesthecompositions andamountsofallphasesatequilibrium.Bycalculatingtheequilibriumstateas T,composition, P,etc.arevariedsystematically, thesoftwaregeneratesthephasediagram.

ThethemeofPartIIismodelsthatarecurrentlyusedtorepresentthethermodynamicpropertiesofasolutionasfunctions of T, P,andcomposition.Thesemodelsrelatethethermodynamic propertiestotheatomicormolecularstructureofthesolution. Techniquesofdataevaluationandoptimizationarealsooutlined.However,athoroughdiscussionofthesetechniquesis beyondthescopeofthepresentwork.

ListofWebsites

FactSage,Montreal, www.factsage.com NPL-MTDATA, www.npl.co.uk Pandat, www.computherm.com

SGTE,ScientificGroupThermodataEurope, www.sgte.org Thermocalc,Stockholm, www.thermocalc.com

INTRODUCTION

Aphasediagramisagraphicrepresentationofthevaluesofthe thermodynamicvariableswhenequilibriumisestablishedamong thephasesofasystem.Materialsscientistsaremostfamiliarwith phasediagramsthatinvolvetemperature, T,andcompositionas variables.Examplesare T-compositionphasediagramsforbinary systemssuchas Fig.1.1 fortheFe-Mosystem,isothermalphase diagramsectionsofternarysystemssuchas Fig.1.2 forthe Zn-Mg-Alsystem,andisoplethal(constantcomposition)sections ofternaryandhigher-ordersystemssuchas Figs.1.3Aand 1.4.

However,manyusefulphasediagramscanbedrawnthat involvevariablesotherthan T andcomposition.Thediagramin Fig.1.5 showsthephasespresentatequilibriumintheFe-Ni-O2 systemat1200°Castheequilibriumoxygenpartialpressure (i.e.,chemicalpotential)isvaried.The x-axisofthisdiagramis theoverallmolarmetalratiointhesystem.Thephasediagram in Fig.1.6 showstheequilibriumphasespresentwhenanequimolarFe-Cralloyisequilibratedat925°Cwithagasphaseofvarying O2 andS2 partialpressures.Forsystemsathighpressure, P-T phasediagramssuchasthediagramfortheone-component Al2SiO5 systemin Fig.1.7Ashowthefieldsofstabilityofthevariousallotropes.Whenthepressurein Fig.1.7Aisreplacedbythe volumeofthesystemas y-axis,the“corresponding” V-T phase diagramof Fig.1.7Bresults.Theenthalpyofthesystemcanalso beavariableinaphasediagram.Inthephasediagramin Fig.1.3B, the y-axisof Fig.1.3Ahasbeenreplacedbythemolarenthalpydifference(hT h25)betweenthesystemat25°Candatemperature T.Thisistheheatthatmustbesuppliedorremovedtoheatorcool thesystemadiabaticallybetween25°Cand T

Thephasediagramsshownin Figs.1.1–1.7 areonlyasmall samplingofthemanypossibletypesofphasediagramsections. Thesediagramsandseveralotherusefultypesofphasediagrams willbediscussedinPartI.Althoughthesediagramsappeartohave verydifferentgeometries,itwillbeshownthatactuallytheyall obeyexactlythesamegeometricrules.

PhaseDiagramsandThermodynamicModelingofSolutions. https://doi.org/10.1016/B978-0-12-801494-3.00001-4

1

Fig.1.1 Temperature-compositionphasediagramat P ¼ 1baroftheFe-Mosystem (Pelton,2014).

Fig.1.2 Isothermalphasediagramsectionat25°Cand P ¼ 1baroftheZn-Mg-Al system(Pelton,2014).

Chapter2 providesareviewofthefundamentalsofthermodynamicsasrequiredfortheinterpretationandcalculationofphase diagramsofalltypes.In Chapter3,theGibbsphaseruleisdevelopedinageneralformsuitablefortheunderstandingofphase diagramsinvolvingawiderangeofvariablesincludingchemical potentials,enthalpy,andvolume. Chapter4 providesareviewof

(Gamma + Phi + Tau)

(Liquid + Tau)

+ Phi + MgZn hcp + MgZn

+ Gamma + MgZn

(fcc + Laves + Mg2Zn11 (fcc + Mg 2Zn11 + hcp)

Fig.1.3 Isoplethalphasediagramsectionat XZn ¼ 0.1and P ¼ 1barofthe Zn-Mg-Alsystem.(A)Temperatureversuscomposition;(B)enthalpyversus composition(Pelton,2014).

thethermodynamicsofsolutions. Chapter5 beginswithadiscussionofthethermodynamicoriginofbinary T-compositionphase diagrams,presentedintheclassicalmannerinvolvingcommon tangentstocurvesofGibbsenergy. Chapter5 continueswitha thoroughdiscussionofallfeaturesof T-compositionphasediagramsofbinarysystemswithparticularstressontherelationship betweenthephasediagramandthethermodynamicpropertiesof thephases.Asimilardiscussionof T-compositionphasediagrams ofternarysystemsisgivenin Chapter6.Isothermalandisoplethal sectionsandpolythermalliquidusandsolidusprojectionsare discussed.

(mnprth) (eactuj) (gvaonqsui) (dobrsk) (fvcbpql)

bcc + fcc + MC fcc + MC bcc + M23C6 bcc + MC + M23C6 fcc + M7C3 fcc + M23C6

+ MC + M7C3 bcc + MC + M7C3 + M23C6 bcc +MC+M

Fig.1.4 PhasediagramsectionoftheFe-Cr-V-Csystemat850°C,0.3wt%C,and P ¼ 1bar(SGTE).

Spinel + Fe2O3

Spinel

+ Monoxide

Spinel + Monoxide

+ fcc

+ fcc

Fig.1.5 PhasediagramoftheFe-Ni-O2 systemat1200°Cshowingequilibrium oxygenpressureversusoverallmetalratio(Pelton,2014).

In Chapter7,thegeometryofgeneralphasediagramsections isdevelopedindepth.Inthischapter,thefollowingarepresented: thegeneralrulesofconstructionofphasediagramsections,the properchoiceofaxisvariablesandconstantsrequiredtogivea single-valuedphasediagramsectionwitheachpointofthediagramrepresentingauniqueequilibriumstate,andageneral bcc + MC

Pyrrhotite + FeCr2S4

Pyrrhotite + fcc

Pyrrhotite + bcc

fcc + M2O3

bcc

bcc + M2O3

925∞C, Molar ratio Cr/(Fe+Cr) = 0.5 log10p(O2) (bar)

Spinel fcc + Spinel

Fig.1.6 PhasediagramoftheFe-Cr-S2-O2 systemat925°CshowingequilibriumS2 andO2 partialpressuresatconstant molarratioCr/(Cr+Fe) ¼ 0.5(Pelton,2014).

Triple point

Fig.1.7 (A) P-T and(B) V-T phasediagramsofAl2SiO5 (Pelton,2014).

Kyanite
Sillimanite
Andalusite
Sillimanite + Kyanite
Andalusite + Sillimanite
Sillimanite
Andalusite Kyanite
Andalusite

algorithmforcalculatingallsuchphasediagramsections thermodynamically.

Chapter8 beginswithadiscussionofthecourseofequilibrium solidificationofbinary,ternary,andmulticomponentsystemsand includesaclassificationofinvariantreactions.Next,nonequilibriumScheil-Gulliversolidificationisdiscussedinwhichsolids, onceprecipitated,ceasetoreactwiththeliquidorwitheachother. Scheil-Gulliverconstituentdiagramsareintroducedfromwhich onecanvisualizethecourseofScheil-Gullivercoolingastemperatureandcompositionarevaried.Thecalculationandtheoryof thesediagramsarediscussed.

Chapter9 treatsparaequilibriuminwhich,duringcooling,rapidlydiffusingelementsreachequilibriumbutmoreslowlydiffusingelementsremainessentiallyimmobile.Paraequilibriumphase diagramsareintroduced,andtheapplicationofthePhaseRuleto thesediagramsisdeveloped.

Chapter10 providesanintroductiontophasediagramswith second-orderphasetransitionsandtoferromagneticandorder/ disordertransitions.

In Chapter11,phasediagramsforsystemsinvolvinganaqueousphaseincludingevaporationdiagrams,classicalEh-pHdiagrams(whicharenottruephasediagrams),andtrueaqueous phasediagramsarediscussed.

Finally, Chapter12 providesasurveyofphasediagramcompilationsandtextsontherelationshipbetweenthermodynamics andphasediagrams.

References

Pelton,A.D.,2014.In:Laughlin,D.E.,Hono,K.(Eds.),(Chapter3).PhysicalMetallurgy.fifthed.Elsevier,NewYork.

ListofWebsites

SGTE,ScientificGroupThermodataEurope, www.sgte.org.

THERMODYNAMICS FUNDAMENTALS

CHAPTEROUTLINE

2.1TheFirstandSecondLawsofThermodynamics 10

2.1.1Nomenclature 10

2.1.2TheFirstLaw 10

2.1.3TheSecondLaw 11

2.1.4TheFundamentalEquationofThermodynamics 12

2.2Enthalpy 13

2.2.1“Absolute”Enthalpy 16

2.2.2StandardEnthalpyofFormation 16

2.3GibbsEnergy 16

2.4EquilibriumandChemicalReactions 18

2.4.1EquilibriaInvolvingaGaseousPhase 18

2.4.2ANoteonNonidealGases 20

2.4.3PredominanceDiagrams 22

2.5MeasuringGibbsEnergy,EnthalpyandEntropy 25

2.5.1MeasuringGibbsEnergyChange 25

2.5.2MeasuringEnthalpyChange 26

2.5.3MeasuringEntropy—TheThirdLawofThermodynamics 26

2.6GibbsEnergyofaPureCompoundasaFunctionof Temperature 27

2.7AuxiliaryFunctions 28

2.8TheChemicalPotential 29

2.9SomeOtherUsefulThermodynamicEquations 30

2.9.1TheGibbs-DuhemEquation 30

2.9.2GeneralAuxiliaryFunctions 31 References 31 ListofWebsites 31

Thischapterisintendedtoprovideareviewofthefundamentalsofthermodynamicsasrequiredfortheinterpretation andcalculationofphasediagra ms.Itisnotintendedtobean PhaseDiagramsandThermodynamicModelingofSolutions. https://doi.org/10.1016/B978-0-12-801494-3.00002-6

2

introductorytreatiseonthesubject.Thedevelopmentofthe thermodynamicsofphasediagramswillbecontinuedinthe succeedingchapters.

2.1TheFirstandSecondLawsof

Thermodynamics

Ifthethermodynamic system underconsiderationispermitted toexchangebothenergyandmasswthits surroundings,thesystemissaidtobe open.Ifenergybutnotmassmaybeexchanged, thesystemissaidtobe closed.Thestateofasystemisdefinedby intensiveproperties,suchastemperatureandpressure,whichare independentofthemassofthesystem,andby extensiveproperties,suchasvolumeandinternalenergy,whichvarydirectlyasthe massofthesystem.

2.1.1Nomenclature

Extensivethermodynamicpropertieswillberepresentedby uppercasesymbols.Forexample, G ¼ GibbsenergyinJ.Molar propertieswillberepresentedbylowercasesymbols.Forexample, g ¼ G/n ¼ molarGibbsenergyinJmol 1 where n isthetotalnumberofmolesinthesystem.

2.1.2TheFirstLaw

The internalenergy ofasystem, U,isthetotalthermaland chemicalbondenergystoredinthesystem.Itisanextensivestate property.

Consideraclosedsystemundergoingachangeofstatethat involvesanexchangeofheat,dQ,andwork,dW,withitssurroundings.Sinceenergymustbeconserved,

ThisistheFirstLaw.Theconventionisadoptedwherebyenergy passingfromthesurroundingstothesystemispositive. ThesubscriptondUn indicatesthatthesystemisclosed(constant numberofmoles.)

ItmustbestressedthatdQ anddW arenotchangesinstate properties.Forasystempassingfromagiveninitialstatetoa givenfinalstate,dUn isindependentoftheprocesspathsinceit isthechangeofastateproperty;however,dQ anddW are,ingeneral,path-dependent.

2.1.3TheSecondLaw

ForarigorousandcompletedevelopmentoftheSecondLaw, thereaderisreferredtostandardtextsonthermodynamics.The entropy ofasystem, S,isanextensivestatepropertythatisgiven byBoltzmann’sequationas

S ¼ kB ln t (2.2)

where kB isBoltzmann’sconstantand t isthe multiplicity ofthe system.Somewhatloosely, t isthenumberofpossibleequivalent microstatesinamacrostate,thatis,thenumberofquantumstates ofthesystemthatareaccessibleundertheapplicableconditions ofenergy,volume,etc.Forexample,forasystemthatcanbe describedbyasetofsingle-particleenergylevels, t isthenumber ofwaysofdistributingtheparticlesovertheenergylevels,keeping thetotalinternalenergyconstant.Atlowtemperatures,mostof theparticleswillbeinornearthegroundstate.Hence, t and S will besmall.Asthetemperatureandhence U increase,moreenergy levelsbecomeoccupied.Consequently, t and S increase.Forsolutions,anadditionalcontributionto t arisesfromthenumberof differentpossiblewaysofdistributingtheatomsormolecules overthelatticeorquasi-latticesites(see Section4.6).Againsomewhatloosely, S canbesaidtobeameasureofthedisorderofa system.

Duringanyspontaneousprocess,thetotalentropyoftheuniversewillincreaseforthesimplereasonthatdisorderismore probablethanorder.Thatis,foranyspontaneousprocess,

dStotal ¼ dS +dSsurr ðÞ 0(2.3)

wheredS anddSsurr aretheentropychangesofthesystemandsurroundings,respectively.Theexistenceofastateproperty S that satisfiesEq. (2.3) istheessenceoftheSecondLaw.

Eq. (2.3) isanecessaryconditionforaprocesstooccur.However,evenifEq. (2.3) issatisfied,theprocessmaynotactuallybe observediftherearekineticbarrierstoitsoccurrence.Thatis,the SecondLawsaysnothingabouttherateofaprocessthatcanvary fromextremelyrapidtoinfinitelyslow.

Itshouldbenotedthattheentropychangeofthesystem,dS, canbenegativeforaspontaneousprocessaslongasthesum (dS +dSsurr)ispositive.Forexample,duringthesolidificationof aliquid,theentropychangeofthesystemisnegativeingoing fromtheliquidtothemoreorderedsolidstate.Nevertheless,aliquidbelowitsmeltingpointwillfreezespontaneouslybecausethe entropychangeofthesurroundingsissufficientlypositivedueto thetransferofheatfromthesystemtothesurroundings.Itshould

alsobestressedthatinpassingfromagiveninitialstatetoagiven finalstate,theentropychangeofthesystemdS isindependent oftheprocesspathsinceitisthechangeofastateproperty. However,dSsurr ispath-dependent.

2.1.4TheFundamentalEquationof Thermodynamics

Consideranopensystematequilibriumwithitssurroundings andatinternalequilibrium.Thatis,nospontaneousirreversible processesaretakingplace.Supposethatachangeofstateoccurs inwhich S, V (volume),and ni (numberofmolesofcomponent i in thesystem)changebydS,dV,anddni.Suchachangeofstate occurringatequilibriumiscalleda reversible process,andthecorrespondingheatandworktermsaredQrev anddWrev.Wemaythen write

μi isthe chemicalpotential ofcomponent i whichwillbediscussed in Section2.8.

Theabsolutetemperatureisgivenas

Weexpectthattemperatureshouldbedefinedsuchthatheat flowsspontaneouslyfromhightolow T.Toshowthat T as givenbyEq. (2.6) is,infact,suchathermalpotential,consider twoclosedsystems,isolatedfromtheirsurroundingsbutinthermalcontactwitheachother,exchangingonlyheatatconstant volume.Letthetemperaturesofthesystemsbe T1 and T2,and let T1 > T2.Supposethatheatflowsfromsystem1tosystem2, thendU2 ¼ dU1 > 0.Therefore,fromEq. (2.6),

Thatis,theflowofheatfromhightolowtemperatureresultsinan increaseintotalentropy,andhence,fromtheSecondLaw,itis spontaneous.

ThesecondterminEq. (2.4) is( PdV ),theworkofreversible expansion.FromEq. (2.6),thefirstterminEq. (2.4) isequalto TdS, andthisisthenthereversibleheat:

Thatis,intheparticularcaseofaprocessthatoccursreversibly, (dQrev/T )ispath-independentsinceitisequaltothechangeof astatepropertydS.Eq. (2.8) isactuallythedefinitionofentropy changeintheclassicaldevelopmentoftheSecondLaw.

Eq. (2.4) maynowbewrittenas

Eq. (2.9),whichresultsfromcombiningthefirstandsecondlaws,is calledthe fundamentalequationofthermodynamics.Wehave assumedthattheonlyworktermisthereversibleworkofexpansion (sometimescalled“PVwork”).Ingeneral,inthisbook,thiswillbethe case.Ifothertypesofworkoccur,thennon-PVterms,dWrev(non-PV), mustbeaddedtoEq. (2.6).Forexample,iftheprocessisoccurring inagalvaniccell,thendWrev(non-PV) isthereversibleelectricwork intheexternalcircuit.Eq. (2.9) canthusbewrittenmoregenerallyas

U ¼ T dS P dV + Xμ

2.2Enthalpy

Enthalpy, H,isanextensivestatepropertydefinedas H ¼ U + PV (2.11)

Consideraclosedsystemundergoingachangeofstatethatmay involveirreversibleprocesses(suchaschemicalreactions). Althoughtheoverallprocessmaybeirreversible,weshallassume thatanyworkofexpansionisapproximatelyreversible(i.e.,the externalandinternalpressuresareequal)andthatthereisno workotherthantheworkofexpansion.Then,fromEq. (2.1), dUn ¼ dQ P dV (2.12)

FromEqs. (2.11),(2.12),itfollowsthat dHn ¼ dQ + V dP (2.13)

Furthermore,ifthepressureremainsconstantthroughoutthe process,then dHp ¼ dQp (2.14)

IntegratingbothsidesofEq. (2.14) gives ΔHp ¼ Qp (2.15)

Thatis,theenthalpychangeofaclosedsysteminpassingfroman initialtoafinalstateatconstantpressureisequaltotheheat

exchangedwiththesurroundings.Hence,foraprocessoccurring atconstantpressure,theheatispath-independentsinceitisequal tothechangeofastateproperty.Thisisanimportantresult.Asan example,supposethattheinitialstateofasystemconsistsof 1.0molofCand1.0molofO2 at298.15Kat1.0barpressureand thatthefinalstateis1.0molofCO2 atthesametemperature andpressure.Theenthalpychangeofthisreactionis.

(wherethesuperscripton ΔH298.15 o indicatesthe standardstate reactioninvolvingpuresolidgraphiteandCO2 andO2 at1.0bar pressure).Hence,anexothermicheatof 393.52kJwillbe observed,independentofthereactionpath,providedonlythat thepressureremainsconstantthroughouttheprocess.For instance,duringthecombustionreaction,thereactantsandproductsmayattainhighandunknowntemperatures.However,once theCO2 producthascooledbackto298.15K,thetotalheatthat hasbeenexchangedwiththesurroundingswillbe 393.52kJ independentoftheintermediatetemperatures.

In Fig.2.1,thestandardmolarenthalpyofFeisshownasa functionoftemperature.The y-axis,(hT o h298.15 o ),istheheat requiredtoheat1.0molofFefrom298.15Ktoatemperature T atconstantpressure.Asusual,thesuperscripts“o”indicatethe standardstate ofpureFe.Theslopeofthecurveisthemolarheat capacityatconstantpressure:

Fig.2.1 StandardmolarenthalpyofFe(FactSage).

C+O2 ¼ CO2 ΔH o 298:15 ¼ 393 52kJ(2.16)

Heatcapacitiesareoftenrepresentedasfunctionsoftemperature bythesemiempiricalequation:

where a, b,and c areconstantsand T isinkelvins.Empiricalterms withotherpowers Ti areoftenalsoused.

FromEq. (2.17),weobtainthefollowingexpressionfortheheat requiredtoheat1.0molofasubstancefromatemperature T1 toa temperature T2 atconstant P (assumingnophasechangesinthe interval):

Theenthalpycurvecanbemeasuredbythetechniqueofdrop calorimetry,ortheheatcapacitycanbemeasureddirectly byadiabaticcalorimetry.

Thestandardequilibriumtemperatureoffusion(melting) ofFeis1811Kasshownin Fig.2.1.Thefusionreactionisa first-orderphasechange sinceitoccursatconstanttemperature. Thestandardmolarenthalpyoffusion Δhf o is13.807kJmol 1 asshownin Fig.2.1 .Itcanalsobeseenin Fig.2.1 thatFe undergoestwootherfirst-orderphasechanges,thefirstfrom α (bcc)to γ (fcc)Feat T α!γ o ¼ 1184.8Kandthesecondfrom γ to δ (bcc)at1667.5K.Theenthalpychangesare,respectively, 1.013and0.826kJmol 1.TheCurietemperature, Tcurie ¼ 1045K, whichisalsoshownin Fig.2.1,willbediscussedinChapter10. Hence,forexample,theenthalpychangeuponheating1.0mol ofpureFefrom298.15Ktoatemperature T abovethemelting pointisgivenas

where cP α , cP γ , cP δ ,and cPliq arethemolarheatcapacitiesofthe individualphases,eachexpressedbyanequationsimilarto Eq. (2.18).InthecaseofFeandothermagneticmaterials,additionaltermsmustbeaddedto cP α aswillbediscussedin Chapter10.

2.2.1“Absolute”Enthalpy

Nonaturalzeroexistsfortheenthalpybecausethereisnosimplenaturalzerofortheinternalenergy(seeEq. (2.11)).However, byconvention,the“absolute”enthalpyofapureelementinits stablestateat P ¼ 1.0barand T ¼ 298.15Kisoftensettozero. Hence,underthisconvention,the y-axisof Fig.2.1 couldbe labeledsimplyas hT o .

2.2.2StandardEnthalpyofFormation

The standardmolarenthalpyofformation ofacompoundis definedastheenthalpyofformationof1.0molofthepurecompoundinitsstablestatefromthepureelementsintheirstable statesat P ¼ 1.0baratconstanttemperature.So,forexample, ΔH298.15 o ofthereactioninEq. (2.16) isthestandardenthalpyof formationofCO2 at298.15K.

Undertheconventionthatthestandardenthalpiesofthe elementsarezeroat298.15K(Section2.2.1),itthenfollowsthat the“absolute”standardenthalpyofacompoundat298.15Kis equaltoitsstandardenthalpyofformationfromtheelements. Thatis, hCO2(298.15) o ¼ 393.52kJmol 1 .

2.3GibbsEnergy

TheGibbsenergy(alsocalledtheGibbsfreeenergyorsimply thefreeenergy), G,isdefinedas

Asin Section2.2,weconsideraclosedsystemandassumethatthe onlyworktermistheworkofexpansionandthatthisisreversible. FromEqs. (2.13),(2.21),

Consequently,foraprocessoccurringatconstant T and P ina closedsystem,

Considerthecasewherethe“surroundings”aresimplyaheatreservoiratatemperatureequaltothetemperature T ofthesystem. Thatis,noirreversibleprocessesoccurinthesurroundingswhich receiveonlyareversibletransferofheat( dQ)atconstanttemperature.Therefore,fromEq. (2.8),

SubstitutingintoEq. (2.23) andusingEq. (2.3) yields

dGT,P,n ¼ TdS surr T dS ¼ T dStotal 0(2.25)

Eq. (2.25) maybeconsideredtobeaspecialformoftheSecond Lawforaprocessoccurringinaclosedsystematconstant T and P.FromEq. (2.25),suchaprocesswillbespontaneousifdG isnegative.

Forourpurposesinthisbook,Eq. (2.25) isthemostusefulform ofthesecondlaw.

AnobjectionmightberaisedthatEq. (2.25) appliesonlywhen thesurroundingsareatthesametemperature T asthesystem. However,ifthesurroundingsareatadifferenttemperature,we simplypostulateahypotheticalheatreservoirthatisatthesame temperatureasthesystemandthatliesbetweenthesystemand surroundings,andweconsidertheirreversibletransferofheat betweenthereservoirandtherealsurroundingsasasecond separateprocess.

SubstitutingEqs. (2.8),(2.24) intoEq. (2.25) gives

GT,P,n

InEq. (2.26),dQ istheheatoftheactualprocess,whiledQrev isthe heatthatwouldbeobservedweretheprocessoccurringreversibly.Iftheactualprocessisreversible,thatis,ifthesystemisat equilibrium,thendQ ¼ dQrev,anddG ¼ 0.

Asanexample,considerthefusionofFein Fig.2.1.At Tf o ¼ 1811K,solidandliquidareinequilibrium.Thatis,atthis temperature,meltingisareversibleprocess.Therefore,at1811K,

g o f ¼ dho f Tds o f ¼ 0(2.27)

where,again,thesuperscriptsindicatethestandardstateofpure Feat P ¼ 1.0bar.

Therefore,themolarentropyoffusionat1811Kisgivenby

s o f ¼ Δho f =T when T ¼ T o f (2.28)

Similarequationsapplytootherfirst-orderphasechanges.For example,forthe α ➔ γ transitionofFein Fig.2.1,

when

¼ 1184:8K(2.29)

Eq. (2.28) appliesonlyattheequilibriummeltingpoint.Attemperaturesbelowandabovethistemperature,theliquidandsolid arenotinequilibrium.Abovethemeltingpoint, Δgf o < 0,andmeltingisaspontaneousprocess(liquidismorestablethansolid). Belowthemeltingpoint, Δgf o > 0,andthereverseprocess (solidification)isspontaneous.Asthetemperaturedeviates

progressivelyfurtherfromtheequilibriummeltingpoint,the magnitudeof Δgf o,whichisthemagnitudeofthedrivingforce, increases.Weshallreturntothissubjectin Section5.1.

2.4EquilibriumandChemicalReactions

Considerfirstthequestionofwhethersilicafibersinanaluminummatrixat500°Cwillreacttoformmullite,Al6Si2O13:

Ifthereactionproceedswiththeformationof dξ molesofmullite, thenfromthestoichiometryofthereaction,dnSi ¼ (9/2)dξ, dnAl ¼ 6dξ,anddnSiO2 ¼ 13/2dξ.Sincethefoursubstances areessentiallyimmiscibleat500°C,theirGibbsenergiesareequal totheirstandardmolarGibbsenergies, gio (alsoknownasthestandardchemicalpotentials μi o asdefinedin Section2.8),thestandardstateofasolidorliquidcompoundbeingthepure compoundat P ¼ 1.0bar.TheGibbsenergyofthesystemthenvariesas

where ΔGo iscalledthestandardGibbsenergychangeofthereactionEq. (2.30) at500 °C.Since ΔG° < 0,thereactionwillproceed spontaneouslysoastominimize G.Equilibriumwillneverbe attained,andthereactionwillproceedtocompletion.

2.4.1EquilibriaInvolvingaGaseousPhase

An idealgas mixtureisonethatobeysthe idealgasequationof state:

where n isthetotalnumberofmoles.Further,thepartialpressure ofeachgaseousspeciesintheidealmixtureisgivenby

where n ¼ P ni and P ¼ P pi (Dalton’slaw foridealgases). R isthe idealgasconstant.The standardstate ofanidealgaseouscompoundisthepurecompoundatapressureof1.0bar.(See Section2.4.2 forthecaseofnonidealgases.)Itcaneasilybeshown thatthepartialmolarGibbsenergy gi (alsocalledthechemical potential μi asdefinedin Section2.8)ofaspeciesinanideal

(2.34)

gasmixtureisgivenintermsofitsstandardmolarGibbsenergy gi o (alsocalledthestandardchemicalpotential μi o)by gi ¼ g o i + RT ln pi

ThefinalterminEq. (2.34) ispurelyentropic.Asagasexpandsat constanttemperature,itsentropyincreases.

ConsideragaseousmixtureofH2,S2,andH2Swithpartialpressures pH2, pS2,and pH2S.Thegasescanreactaccordingto 2H2 +S2 ¼ 2H2 S (2.35)

Ifthereaction(Eq. 2.35)proceedstotherightwiththeformation of2dξ molesofH2S,thentheGibbsenergyofthesystemvariesas

ΔG,whichistheGibbsenergychangeofthereactioninEq. (2.35), isthusafunctionofthepartialpressures.If ΔG < 0,thenthereactionwillproceedtotherightsoastominimize G.Inaclosedsystem,asthereactioncontinueswiththeproductionofH2S, pH2S willincrease,while pH2 and pS2 willdecrease.Asaresult, ΔG will becomeprogressivelylessnegative.Eventually,anequilibrium statewillbereachedwhendG/dξ ¼ ΔG ¼ 0.

Fortheequilibriumstate,therefore,

where K,the equilibriumconstant ofthereaction,istheone uniquevalueoftheratio( pH2S 2 pH2 2pS21)forwhichthesystemwill beinequilibriumatthetemperature T.Iftheinitialpartialpressuresaresuchthat ΔG > 0,thenthereactioninEq. (2.35) willproceedtotheleftinordertominimize G untiltheequilibrium conditionofEq. (2.37) isattained.

Asafurtherexample,considerthepossibleprecipitationof graphitefromagaseousmixtureofCOandCO2.Thereactionis 2CO ¼ C+CO2 (2.38)

Proceedingasabove,wecanwrite

dG =dξ ¼ gC + gCO2 2gCO ¼

g o C + g o CO2 2g o CO + RT ln pCO2 p 2 CO ¼

ΔG o + RT ln pCO2 p 2 CO ¼ ΔG ¼ RT ln K + RT ln pCO2 p 2 CO (2.39)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.