Petroleum industry wastewater : advanced and sustainable treatment methods 1st edition muftah h. el-

Page 1


https://ebookmass.com/product/petroleum-industry-wastewater-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Advanced water treatment electrochemical methods Sillanpää

https://ebookmass.com/product/advanced-water-treatmentelectrochemical-methods-sillanpaa/ ebookmass.com

Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development Vineet Kumar

https://ebookmass.com/product/integrated-environmental-technologiesfor-wastewater-treatment-and-sustainable-development-vineet-kumar/

ebookmass.com

Valorization of Microalgal Biomass and Wastewater Treatment Suhaib A. Bandh

https://ebookmass.com/product/valorization-of-microalgal-biomass-andwastewater-treatment-suhaib-a-bandh/

ebookmass.com

The Palgrave Handbook of Violence in Film and Media Steve Choe

https://ebookmass.com/product/the-palgrave-handbook-of-violence-infilm-and-media-steve-choe/

ebookmass.com

The Climate Book: The Facts and the Solutions Greta Thunberg

https://ebookmass.com/product/the-climate-book-the-facts-and-thesolutions-greta-thunberg/

ebookmass.com

Primer of Diagnostic Imaging: Expert Consult - Online and Print 6th Edition Mukesh Mgh Harisinghani Md

https://ebookmass.com/product/primer-of-diagnostic-imaging-expertconsult-online-and-print-6th-edition-mukesh-mgh-harisinghani-md/

ebookmass.com

Sams Teach Yourself HTML, CSS, and JavaScript All in One 1st Edition Julie C. Meloni

https://ebookmass.com/product/sams-teach-yourself-html-css-andjavascript-all-in-one-1st-edition-julie-c-meloni/

ebookmass.com

Pastoral Care for the Incarcerated: Hope Deferred, Humanity Diminished? David Kirk Beedon

https://ebookmass.com/product/pastoral-care-for-the-incarcerated-hopedeferred-humanity-diminished-david-kirk-beedon/

ebookmass.com

True Wolf Paige Tyler

https://ebookmass.com/product/true-wolf-paige-tyler-2/

ebookmass.com

Finance: Applications and Theory (Mcgraw hill / Irwin

Series in Finance, Insurance and Real Estate) 4th Edition, (Ebook PDF)

https://ebookmass.com/product/finance-applications-and-theory-mcgrawhill-irwin-series-in-finance-insurance-and-real-estate-4th-editionebook-pdf/ ebookmass.com

PetroleumIndustry Wastewater AdvancedandSustainableTreatmentMethods

MuftahH.El-Naas GasProcessingCenter,QatarUniversity,Doha,Qatar

AditiBanerjee

KTHRoyalInstituteofTechnology,Stockholm,Sweden

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www. elsevier.com/permissions .

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-85884-7

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

EditorialProjectManager: SusanIkeda

ProductionProjectManager: PaulPrasadChandramohan

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

1.Treatmentofpetroleumindustry wastewater:currentpracticesand perspectives1

MohamedH.Ibrahim,AditiBanerjeeand MuftahH.El-Naas

Introduction1

Electrochemicalmethods1

Membrane-basedmethods2

Biomaterial-basedmethods2

Biologicalmethods3

Lifecycleassessment4

Summaryandfutureperspectives4 References5

2.Chemistryofpetroleumwastewater7

FarhadQaderiandMaryamTaghizadeh

Introduction7

Petroleumwastewatercharacteristics9

Themethodsformeasuringthemain compoundsinpetroleumwastewater12

PHmeasurements12

Totalresidualchlorine12

Totalsuspendedsolids12

Oilandgrease13

Nitrate14

Biochemicaloxygendemand14

Chemicaloxygendemand15

Totalorganiccarbon15 References16

3.Concomitantdegradationof petroleumproductsandmicroplastics inindustrialwastewaterusing geneticallymodifiedmicroorganisms19

KriticaRani,PujaSingh,RiyaAgarwaland ArindamKushagra

Introduction19

Interactionofpetroluemhydrocarbonswith microorganisms21

Biodegradationofpetroleumhydrocarbons bymicroorganisms22

Aerobicdegradation22

Anaerobicdegradation23

Degradationusingbiosurfactants23

Degradationofhydrocarbonsbychemical oxidation25

Degradationusinggeneticallymodified organisms26

Degradationofcontaminantsthrough geneticallymodifiedsynthetic microorganisms27

Geobacter sp28

Ideonellasakaiensis201-F628 Vector29 Mechanism29

Fateoftheendproducts30

Conclusions30

Futureprospects31 References31

4.Constraintsandadvantagesof bacterialbioremediationofpetroleum wastewaterbypureandmixed culture35

VrutangShah,JhanviDesaiandMananShah

Introduction35

Petroleumwastewater36

Petroleumwastewatercharacteristics37

Pretreatmentprocessforbiological stabilization39

Physicaltreatment39

Chemicaltreatment40

Insitubiologicaltreatmentofpetroleum wastewater40

Bioremediation41

Anaerobicprocess41

Aerobicprocess42

Integratedbiologicalprocess43

Phytoremediation43

Commerciallyavailablebioremediationagents44

Advantagesanddisadvantagesofbiological process(usingbothpureormixedculture)44

Conclusions45

References46

5.Prospectsofgreentechnologyinthe managementofrefinerywastewater: applicationofbiofilms51

TaghreedAl-Khalid,RihamSurkattiand MuftahH.El-Naas

Introduction51

Pollutionproblem51

Overviewoftreatmentoptions52

Biotreatmentasagreentechnology53

Biotreatmentoptionsforrefinerywastewater53

Conventionalbiotreatmentwithfreeor suspendedbacterialcultureactivatedsludge process(ASP)54

Immobilization:whyneeded?55

Theroleofacclimatization57

Immobilized-biofilmapplication58

Biotreatmentbyfilmattachment(surface immobilization)58

Biotreatmentbycellentrapment62

Conclusions66

Acknowledgments66 References66

6.Algalbioremediationversus

conventionalwastewatertreatment71

FaresAlmomani,AbdullahOmarand AhmedM.D.Alketife

Introduction71

ConventionalWwtreatmenttechnologies72

AdvancedWwtreatmenttechnologies72

AlgalcultureforWwtreatmentsystems73

Algalgrowthsystems75

Bioaccumulationandbioassimilation78

Algaeharvesting82

Conclusions83 References84

7.Applicationofmicroalgaein wastewatertreatment:simultaneous nutrientremovalandcarbondioxide bio-fixationforbiofuelfeedstock production87

FaresAlmomani,AbdullahOmarand AhmedM.D.Alketife

Background87

Algaeandwastewatertreatment89

Wastewaterorigin89

Industrialwastewatertreatment89

WastewaterfromfoodIndustry89

Wastewaterfromagriculturalactivities92

Wastewaterfromtextileindustry93

Wastewaterfrompharmaceuticalindustries94

Algaeandenergyproduction95

Algaeandbiofuelproduction96 References98

8.Membrane-basedtreatmentof petroleumwastewater103

AbdelrahmanM.Awad,RemJalab, MustafaS.NasserandIbnelwaleedA.Hussein

Wastewaterinthepetroleumindustry103

Implementationofmembraneprocessesas advancedtreatmentmethods104

Performanceofmembraneprocessesforthe treatmentofpetroleumwastewater106

Treatmentwithpressure-drivenprocesses106

Treatmentwithosmosis-drivenprocesses109

Treatmentwiththermallydrivenprocesses112

Treatmentwithelectricallydrivenprocesses113

Existingchallengesandpotentialsof membrane-basedprocesses116

Sustainabilityconsiderationofmembrane processes118

Conclusions118

References119

9.Managementofpetroleum wastewater:comparativeevaluation ofmodernandtraditional techniques123

S.JoshiandS.Bhatia

Introduction123

Typesofwastegeneratedinoilrefineries123 Oiledmaterials123 Producedwaters124

Causeandeffectofoilwaste124 Methodsandrecommendationsfor sustainablemanagementofwastewater124

Physicalmethods125

Chemicalmethods130

Biologicaltreatmentofpetroleumeffluent134

Electrochemicaltreatmentofpetroleum effluent137

Combinationofphysical,chemical, biological,andelectricalmethods141 Conclusions141 References142

10.Nanocompositematerial-based catalyst,adsorbent,andmembranes forpetroleumwastewater treatment147

MuneerM.Ba-Abbad,EbrahimMahmoudi, AbdelbakiBenamorand AbdulWahabMohammad

Introduction147

Applicationofsorptionforpetroleum wastewatertreatment147

Nanocatalysis,andtheircompositeas adsorbents148

Methodsofnanocompositesynthesisas adsorbents149

Metalnanocomposites149

Ceramicnanocomposites149

Polymernanocomposites149

Carbon-basednanocomposite149

Organicandinorganic-basedcomposite adsorbents149

Applicationofgreenadsorbentsinpetroleum wastewatertreatment150

Cellulosicmaterials-basedgreenadsorbent151

In-depthmechanismofpollutantsadsorption inpetroleumwastewaterfield152

Applicationofmembranetechnologyfor petroleumwastewatertreatment153

Polymericmembranefabrication154

Modificationpolymericmembrane154

Conclusions157

References157

11.Treatmentofpetroleumwastewater usingsolarpower-based photocatalysis161

FarhadQaderiandSabaAbdolalian

Introduction161

Petroleumwastewater161

Petroleumwastewatercharacteristics162

Petroleumwastewatertreatmenttechnology163

Photocatalysis164

Fundamentalsandtreatmentmechanisms165

Bestphotocatalysts165

Nanotechnologyandphotocatalysis166

Factorsinfluencingphotocatalysis167

Limitations167

Conclusions168 References168

12.Electrochemicaltreatmentof petroleumwastewater:standalone andintegratedprocesses171

OmarKhalifa,FawziBanatandShadiW.Hasan

Introduction171

Electrochemicalprocessesfundamentals171

Electrochemicalprocessesinwatertreatment172

Electrooxidation174

Electrocoagulation175

Electroflotation176

Electrochemical-basedhybridandintegrated processes177

Electrochemical-basedadvancedoxidation processes178

Electrochemical-assistedmembrane processes178

Electro-biologicaltreatment179

Challengesandoutlook180 References181

13.Theviableroleofactivatedcarbon fortheeffectiveremediationof refineryandpetrochemical wastewaters185

K.L.TanandKengYuenFoo

Introduction185

Classification,uniquecharacteristics,and applications185

Preparationofactivatedcarbon187

Activatedcarbonfromrenewablefeedstocks andindustrialwaste190

Potentialrolesofactivatedcarbonforthe treatmentofrefineryandpetrochemical wastewaters190

Adsorbent190

Catalystandcatalystsupport191

Growthmedium192

Biochar—aderivativeofactivatedcarbon forthetreatmentofrefineryand petrochemicalwastewaters192

Recentadvancesintheactivated carbon-assistedhybridtreatment technology193

ACforprimarytreatment193

Activatedcarbonforsecondarytreatment193

Activatedcarbonfortertiarytreatment195

Regenerationandreusability198

Perspectiveandoutlook199

Conclusions200

References200

14.Life-cycleassessmentandcost-benefit analysisofpetroleumindustry wastewatertreatment205

YuhNienChowandKengYuenFoo

Introduction205

Anoverviewonlife-cycleassessment206

Life-cyclephases207

Goalandscopedefinition207

Life-cycleinventoryanalysis208

Life-cycleimpactassessmentand interpretation209

Life-cycleimpactassessmentofpetroleum wastewatertreatment210

Globalwarming210

Aquaticeutrophication210

Freshwaterandmarineecotoxicity210

Freshwaterconsumption211

Acidification,photooxidantformation, abioticdepletion,andparticulatematter pollution211

Energydemand212

Challengesandresearchgapsforlife-cycle assessmentofwatertreatmenttechnology212

Economicefficiencyanalysis212

Capitalexpenditure214

Operatingexpenditure214

Break-evenpointandpaybackperiod218 Concludingremarks219 References220

15.Sustainabilityofwastewater treatment223

NaimRashid,SnigdhendubalaPradhanand HamishR.Mackey Background223

Characteristics223

Impactonenvironmentalandhumanhealth224

Sustainability225

Treatmenttechnologies226

Physicochemicaltreatment226

Biologicaltreatment232

Sustainabilityofpetroleumindustry wastewatertreatment236

Existinglifecycleassessmentsforpetroleum industrywastewatertreatment237

Recoveryofvariousresourcesfrom petroleumindustrywastewater239 Water239

Organics,inorganics,andnutrients239 CO2 captureandemissionreduction241 Futureperspective241 Conclusions242 Acknowledgments242 References242

16.Circulareconomyinpetroleum industries:implementing WaterClosedLoopSystem249

Mohammad-HosseinSarrafzadeh

Industrialwaterandwastewater249

Waterandwastewaterinoiland gasindustries250 Principlesofcirculareconomy252 Waterclosed-loopsystem;theoriesand concept253

Casestudyinoilindustry255

Conclusionandrecommendations260 References261

Index263

Listofcontributors

SabaAbdolalian CivilandEnvironmentalEngineering, FacultyofCivilEngineering,BabolNoshirvani UniversityofTechnology,Babol,Iran

RiyaAgarwal AmityInstituteofBiotechnology,Amity UniversityKolkata,Kolkata,India

AhmedM.D.Alketife DepartmentofChemical Engineering,QatarUniversity,Doha,Qatar;Faculty ofEngineering,UniversityofThi-Qar,Nasiriyah,Iraq

TaghreedAl-Khalid DepartmentofChemicaland PetroleumEngineering,CollegeofEngineering,UAE University,Al-Ain,UnitedArabEmirates

FaresAlmomani DepartmentofChemicalEngineering, QatarUniversity,Doha,Qatar

AbdelrahmanM.Awad GasProcessingCenter,Qatar University,Doha,Qatar

MuneerM.Ba-Abbad GasProcessingCenter,College ofEngineering,QatarUniversity,Doha,Qatar

FawziBanat CenterforMembranesandAdvanced WaterTechnology(CMAT),DepartmentofChemical Engineering,KhalifaUniversityofScienceand Technology,SANCampus,AbuDhabi,UnitedArab Emirates

AditiBanerjee KTHRoyalInstituteofTechnology, Stockholm,Sweden

AbdelbakiBenamor GasProcessingCenter,Collegeof Engineering,QatarUniversity,Doha,Qatar

S.Bhatia DepartmentofChemistry,IsabellaThoburnP. G.College,Lucknow,UttarPradesh,India

YuhNienChow RiverEngineeringandUrbanDrainage ResearchCenter(REDAC),EngineeringCampus, UniversitiSainsMalaysia,Penang,Malaysia

JhanviDesai SchoolofPetroleumTechnology,Pandit DeendayalEnergyUniversity,Gandhinagar,India

MuftahH.El-Naas GasProcessingCenter,Qatar University,Doha,Qatar

KengYuenFoo RiverEngineeringandUrbanDrainage ResearchCenter(REDAC),EngineeringCampus, UniversitiSainsMalaysia,Penang,Malaysia

ShadiW.Hasan CenterforMembranesandAdvanced WaterTechnology(CMAT),DepartmentofChemical Engineering,KhalifaUniversityofScienceand Technology,SANCampus,AbuDhabi,UnitedArab Emirates

IbnelwaleedA.Hussein GasProcessingCenter,Qatar University,Doha,Qatar

MohamedH.Ibrahim GasProcessingCenter,Qatar University,Doha,Qatar

RemJalab GasProcessingCenter,QatarUniversity, Doha,Qatar

S.Joshi DepartmentofChemistry,IsabellaThoburnP.G. College,Lucknow,UttarPradesh,India

OmarKhalifa CenterforMembranesandAdvanced WaterTechnology(CMAT),DepartmentofChemical Engineering,KhalifaUniversityofScienceand Technology,SANCampus,AbuDhabi,UnitedArab Emirates

ArindamKushagra AmityInstituteofNanotechnology, AmityUniversityKolkata,Kolkata,India

HamishR.Mackey DivisionofSustainable Development,CollegeofScienceandEngineering, HamadBinKhalifaUniversity,QatarFoundation, Doha,Qatar

EbrahimMahmoudi DepartmentofChemicaland ProcessEngineering,FacultyofEngineeringandBuilt Environment,UniversitiKebangsaanMalaysia,Bangi, Selangor,Malaysia

AbdulWahabMohammad DepartmentofChemical andProcessEngineering,FacultyofEngineeringand BuiltEnvironment,UniversitiKebangsaanMalaysia, Bangi,Selangor,Malaysia

MustafaS.Nasser GasProcessingCenter,Qatar University,Doha,Qatar

AbdullahOmar DepartmentofChemicalEngineering, QatarUniversity,Doha,Qatar

SnigdhendubalaPradhan DivisionofSustainable Development,CollegeofScienceandEngineering, HamadBinKhalifaUniversity,QatarFoundation, Doha,Qatar

FarhadQaderi CivilandEnvironmentalEngineering, FacultyofCivilEngineering,BabolNoshirvani UniversityofTechnology,Babol,Iran

KriticaRani AmityInstituteofBiotechnology,Amity UniversityKolkata,Kolkata,India

NaimRashid DivisionofSustainableDevelopment, CollegeofScienceandEngineering,Hamad BinKhalifaUniversity,QatarFoundation,Doha, Qatar

Mohammad-HosseinSarrafzadeh UNESCOChairon WaterReuse,SchoolofChemicalEngineering, CollegeofEngineering,UniversityofTehran,Tehran, Iran

MananShah DepartmentofChemicalEngineering, SchoolofTechnology,PanditDeendayalEnergy University,Gandhinagar,India

VrutangShah SchoolofPetroleumTechnology,Pandit DeendayalEnergyUniversity,Gandhinagar,India

PujaSingh AmityInstituteofBiotechnology,Amity UniversityKolkata,Kolkata,India

RihamSurkatti GasProcessingCenter,Collegeof Engineering,QatarUniversity,Doha,Qatar

MaryamTaghizadeh CivilandEnvironmental Engineering,FacultyofCivilEngineering,Babol NoshirvaniUniversityofTechnology,Babol,Iran

K.L.Tan RiverEngineeringandUrbanDrainage ResearchCenter(REDAC),UniversitiSainsMalaysia, NibongTebal,Malaysia x Listofcontributors

Chapter1

Treatmentofpetroleumindustry wastewater:currentpracticesand perspectives

Introduction

Oilandgasindustriesareevolvingtomeettheever-growingenergydemandthatwillleadtomorecrudeoilextraction intheforeseeablefuture.Over50,000oilandgasfieldsareestablishedacrosstheglobewhichcandamagethesurroundingandextendedenvironments.Generally,oilandgasextractionoperationsarecarriedoutusingextractionplatformswheretheextractedoilisaccompaniedbywaterthatiscalledproducedwater(PW).PWconsistsofdifferent chemicalssuchaspolyaromatichydrocarbons,phenols,benzene,toluene,ethylbenzene,andheavymetals.Thesepollutantscanhaveadetrimentaleffectontheenvironment;nonetheless,theindustrycontinuestogeneratebillionsofgallonsofwastewaterannually.Inaddition,thesechemicalscanleadtotheaccumulationofpetroleumhydrocarbonsand othercontaminantsindifferentnaturalhabitats.Typicalwastewatertreatmentofoilywastewaterinvolvesseveralphysicaltreatmentsteps,suchasoilandwaterseparators,dissolvedorinducedairflotationsystems.Secondarytreatmentis representedinbiologicalprocesses,suchasactivatedsludgesystems,oxidationlagoons,ortricklingfilters.Thebiologicaltreatmentisfollowedbyatertiarytreatmentwhichisconsideredtobeapolishingstepthatusuallyutilizesactivated carbonorsandfiltersinadditiontodifferentfiltrationtechnologiesandotheradvancedtreatmenttechniquessuchas electrodialysis(Trevin ˜ o-Rese ´ ndez,de,Medel,&Meas,2021).Inthischapter,differentmethodsfortreatingpetroleum wastewaterarediscussed.Moredetailsaboutthesetechnologiesareprovidedinthenextchapters.

Electrochemicalmethods

Severalelectrochemicaltechniquesarediscussedintheliteraturetotreatpetroleumwastewaterincludingelectrocoagulation(EC),electrooxidation,andelectro-fenton.ECisanelectrochemicaltechniquethathasbeenappliedonbench andpilotscaletoremoveawiderangeofpollutantsinpetroleumwastewater.Thetechniqueutilizessacrificialelectrodesthatareusuallymadeofaluminumorironwhichgothroughelectrodissolutiontocreateflocsofmetalhydroxides. Thegeneratedhydroxidesleadtotheeffectiveseparationoftheoilcontaminantsinthewaterduetoseveralmechanisms,suchaschargeneutralization,entrapment,andadsorption.Thesearefollowedbytheprecipitationorflotationof thegeneratedflocswhichfacilitatestheseparationoftheoilfromwater(Trevin ˜ o-Rese ´ ndezetal.,2021).Moreover,the generatedhydroxidescanpromotetheremovalofothercontaminantssuchasheavymetalsthroughadsorptionorprecipitationthroughadsorptionwhichcanleadtoanoveralldecreaseinthetotaldissolvedsolidsinthewastewater.The performanceoftheECprocesscanbemeasuredthroughseveralparameterssuchaschemicalandbiologicaloxygen demand(CODandBOD),totalpetroleumhydrocarbons,andtotalorganiccarbons.Thechangeintheseparameters mainlyrepresentstheefficiencyofacertainprocessinremovingpollutants.Nonetheless,measuringthecontentofphenols,benzene,toluene,andxylenecouldgiveabetterinsightintotheremovalofvariouschemicalorganicpollutants fromthewastewater.ItisalsoworthnotingthattheECmechanismthatleadstotheremovalofsuspendedsolidsalso contributestotheremovaloforganicandinorganicpollutantsduringtheprocess.

PetroleumIndustryWastewater.DOI: https://doi.org/10.1016/B978-0-323-85884-7.00015-1 © 2022ElsevierInc.Allrightsreserved.

MostoftheECworkintheliteraturefocusonfindingafeasiblesolutionforthePWgeneratedthroughthefracking processthatwillenabletherecyclingofthevastquantitiesofPWduringtheextractionprocess.Thevastmajorityof thesestudieshavebeencarriedoutonalab-scalewithfewstudiesthatevaluatedthetechnologyatapilotscale.The technologyreadinesslevelofECtotreatpetroleumwastewaterisestimatedtobeintherangeof5 6.Hence,extra effortsarerequiredtoincreasetheapplicabilityofthetechnologythroughtheimplementationofmoreprototypesand pilot-scaleunits.ThiswilldefinitelyleadtoanincreaseintheviabilityofECcomparedtothecurrentlyusedtechnologies.El-Naasetal.designedathree-steppilotplantwithacapacityof1m3 ofwastewaterperhour.Thepilotwasevaluatedforthetreatmentofhighlycontaminatedrefinerywastewater(El-Naas,Alhaija,&Al-Zuhair,2014).Thetargetof thestudywastodecreasethecontractionofthepollutantsinthewastewaterinaccordancewiththeUAE’sdischarge limits(COD:150mgL 1 andphenols:0.1mgL 1).Thethree-stepprocessconsistedofanECreactor,abiomassreactor,andanactivatedcarbonadsorptioncolumn.Thepilotplantwasoperatedcontinuouslyfor24h,anditreacheda completeCODandphenolremovalafter8honly.Inaddition,thereportedresultswereinlinewiththelaboratoryscale resultreportedinadifferentstudy.Overall,theECprocessisconsideredtobethemostapplication-readyapproachfor thetreatmentofseveraltypesofpetroleumwastewater.Itisrecommendedthatmoreattentionispaidtotheutilization ofotherelectrochemicaltechnologiesandassesstheirperformanceunderrealfieldconditionsandlargerscales(pilot scale).Althoughthereisnouniversalelectrochemicaltechnologyforthetreatmentofhighlycontaminatedwastewater fromthepetroleumindustry,couplingelectrochemicaltechnologywithothertreatmentoptions(physicochemicaland biological)mayprovetobeeffectiveandmoreworkisneededinthisdirection(Trevino-Rese ´ ndezetal.,2021).

Membrane-basedmethods

Recently,membrane-basedtechnologyhasemergedasapromisingalternativeforthetreatmentofwastewater (Tanudjaja,Hejase,Tarabara,Fane,&Chew,2019).Withtheirrapidgrowthanddevelopment,membrane-basedtechnologiesareexpectedtobecometheleadingtechnologyforthetreatmentofoilywastewater.Membranesareprimarily classifiedasorganic(polymeric)andinorganic(ceramic,metal,glass,etc.)dependingonthebasematerialsusedfor theirproduction(Gao&Xu,2019).Thepossibilityofusingawiderangeofmaterialsformembranessynthesisprovides furtheroptionsfortheircustomizationdependingontherequiredapplicationandprocessconditions.Thesefeaturesrendertheapplicationofmembrane-basedtechnologytobemorecompetitivecomparedtotheotheravailableoilywastewatertreatmenttechnologies(Xu,Jiang,Wei,Chen,&Jing,2018).

Membranefoulingisoneofthemajorchallengesfortheimplementationofmembrane-basedtechnology.Fouling canleadtolossofperformanceofthemembranesovertimeanditsremedyrequirestheuseofchemicalsforcleaning whichinturncomplicatesitsoperationandultimatelyincreasesitsoperatingandcapitalcost(Jepsen,Bram,Pedersen, &Yang,2018).Organicmembranesaresusceptibletofoulingduringthetreatmentofoilywastewaterowingtothe hydrophobicnatureofthepolymerspresentwithinthemembranesthatreadilyinteractwiththeoilmolecules(Zuo etal.,2018).Thereforestudiesarenowfocusedonconvertingthesurfaceoftheorganicmembraneshydrophilicto counterthisinteraction(Jepsenetal.,2018).

Severalreviewstudieshavebeenconductedonthetreatmentofoilywastewaterfocusingonthetechnological improvementsofmembrane-basedtechnologies. Dickhoutetal.(2017) reviewedfromacolloidperspectiveemphasizingtheoperatingparametersandmodificationsonmembranesurfacewettingforthetreatmentofPWusingmembranes.Theperformanceanddevelopmentsofthin-filmcompositemembranesforthetreatmentofoilwastewaterwere reviewedby Ahmad,Goh,Karim,andIsmail(2018).Moreover,thedifferentoperatingmodes,modules,andeconomics ofmembraneswerereviewedintheworkof Tanudjajaetal.(2019).Additionalstudieshavebeenconductedaddressing theadvancementsinmaterialsforpolymericandceramicmembranesaswellasonsurfacemodificationforthetreatmentofoilywastewater(Zoubeik,Ismail,Salama,&Henni,2018).However,torationalizetheapproachforresearch anddevelopmentofmembranesforoilywastewatertreatment,furtherstudiesneedtobeconductedonthemembrane materialsemphasizingmembranesurfacechemistry,membranesurfacepatterning,andhydrodynamics.

Biomaterial-basedmethods

Therearenumerousstudieswherecelluloseanditsderivativesareappliedinthepetroleumindustry.Thiscanbedone throughcellulose-derivedmaterialssuchaschitin.Chitinisthesecondmostusedbiodegradablebiopolymerinthe globewhichisextractedfromcrustaceansandsomearthropods.Chitosanisaderivativeofchitinthatissynthesized throughalkalinehydrolysistreatmentusing40% 50%NaOH(Negi,Verma,&Singh,2021). Sunetal.(2008) utilized amodifiedchitosan-basedpolymericsurfactantfortheremovalofoilfromwastewater.Thechitosanwaschemically

modifiedusingcarboxymethylwhichachievedanoilremovalefficiencyof99%atapHofapproximately7.Itisworth notingthatthechemicalcompositionofchitosanconsistsofaminefunctionalgroupsthatcanreadilyformabondwith theoilresiduesinthewastewater.Theauthorsreportedthatincreasingthetemperatureabove50 Ccandestroythe formedbondsandrecordedanoptimumoperatingtemperaturebetween40 Cand50 C.Similarly, Bratskaya, Avramenko,Schwarz,andPhilippova(2006) utilizedmodifiedchitosanintheapplicationofremovingdieselfrom wastewater.Chitosanwasutilizedtosynthesizeanadsorbentintheformofflakestotreatoilywatergeneratedfromthe biodieselindustry(Pitakpoolsil&Hunsom,2014).Thestudyreportedthatincreasingthedosageoftheadsorbentledto anincreaseintheremovalpercentage.Inaddition,atadoseof3.5gofadsorbent,theremovalreached95.8%ofoil andgrease,93.6%ofBOD,and97.6%ofCOD.Inadifferentstudy,chitosaninapowderformwassynthesizedto removeoilfromsalinewater(Vidal,Desbrie ` res,Borsali,&Guibal,2020).Thestudyreportedaremovalefficiencyof 95%wasachievedandtheefficiencyincreasesatlowerconcentrationsofthepollutants.

Biologicalmethods

Biologicaltreatmentmethodshaveprovedtobeveryeffectiveintheareaofwastewatertreatment.Comparedtoother treatmentmethods,biologicaltreatmentisenvironment-friendly,inexpensive,andcanleadtothecompleteconversion ofcomplexorganicpollutants.Biologicaltreatmenthasbeenwidelyappliedtoremoveorganics,metals,oil,andgrease fromwastewaterusingseveralmicroorganismsincludingbacteria,microalgae,fungus,andyeasts(DiCaprio,Altimari, &Pagnanelli,2015;Li,Sun,&Li,2005;Qiu,Zhong,Li,Bai,&Li,2007).Thesemicroorganismshavetheabilityto degradeseveralcomponentsunderaerobic,anaerobic,andanoxicconditions(Sharma&Philip,2016).

Biotreatmentsystemsareoftenclassifiedintothreecategories:suspendedgrowth,attachedgrowth,andhybrid.In suspendedgrowth,microorganismsaresuspendedinaliquidmediumunderaerobicoranaerobicconditions,whereas attachedgrowthisformedbygranulationofactivatedsludgeorattachmentofthebiomassasbiofilms(Tziotzios, Teliou,Kaltsouni,Lyberatos,&Vayenas,2005).Thistechniquecanresultinahighconcentrationofbiomasswithin thebiotreatmentsystemandisoftenusedinseveralbioreactors,suchasgranularsludgereactors,packedbedreactors, fluidizedbedbioreactors,spoutedbedbioreactors,rotatingbiologicalcontactors,andbiologicalactivatedfilters (Banerjee&Ghoshal,2017;El-Naas,Surkatti,&Al-Zuhair,2016;Rana,Gupta,&Rana,2018).Theattached-growth approachcreatesasurfacethatisnecessaryforthedevelopmentofabiofilmstructurethatcanachievehigherbiomass concentrationandallowthemicroorganismstoremaininthereactorforalongresidencetimeleadingtobetterbiodegradationperformance(Tziotziosetal.,2005).Hybridsystemsinvolvethecombinationofbothsuspended-andattachedgrowthsystems.Forexample,thismayincludethecombinationofactivatedsludgewithbiofiltersandsubmerged membranebioreactors(Sharma&Philip,2016).Refinerywastewaterusingbiologicaltreatmentmethodshasbeen investigatedbyanumberofresearchers. Yamaguchi,Ishida,andSuzuki(1999) reporteda65%removaloforganicpollutantsinpetroleumwastewaterusing Protothecazopfii inarotatingbiologicalreactor. Sanghamitra,Mazumder,and Mukherjee(2020) reportedaremovalpercentagebetween54.6and80ofoilfromsyntheticoilywastewaterbyutilizing aerobicbatchreactor.Inaddition,theauthorsreportedacompletereductioninBOD,COD,andoilandgreasecontent inthewastewater. Raghukumar,Vipparty,David,andChandramohan(2001) reportedanoverallremovalofcrudeoil inwastewaterintherangeof45% 55%using Oscillatoriasalina, Aphanocapsa sp.,and Plectonematerebrans gatheredfromalocalmarineenvironment.Moreover,itwasreportedthatusingenzymesinbiologicaltreatmentproved tobeeffectiveinremovingtheoilfromwastewater(Bhumibhamon,Koprasertsak,&Funthong,2002).Thebiological treatmentofrefinerywastewaterusingimmobilizedbacterialcellsinpolyvinylalcoholgelwasalsoinvestigated. ElNaas,Al-Muhtaseb,andMakhlouf(2009) reportedanefficientdegradationofphenolusingimmobilized Pseudomonas putida inspoutedbedbioreactor.Theauthorsreportedthatcompleteremovalofphenolwasachievedinlessthan5h. Moreover,thesamebiologicaltreatment,utilizingthesamebiomass,wasalsotestedfortheremovalofcresolsfrom syntheticwastewaterinbatchandcontinuousmodes.Theresultsindicatedthat P.putida hadhighpotentialforthebiodegradationof p-cresolatconcentrationsupto200mgL 1 incontinuousmodeachievingmorethan85%removalefficiency(Surkatti&El-Naas,2014).Inaddition,thebiologicaltreatmentwastestedinthepilotscaleforthetreatmentof realrefinerywastewaterby El-Naasetal.(2016).Thetreatmentprocesswascombinedwithotherpre-andposttreatmentprocesses.Resultsshowedthatthebioreactorachievedcompleteremovalofphenoland o-cresolswithin8hof operation,andboth m-and p-cresolshadsignificantremoval.Thebiologicaltreatmentofrefinerywastewaterwasalso investigatedonapilotscaleofafixed-filmbioreactorsystem.Thereactorwasoperatedusingimmobilizedbiomassin polyurethanefoam(Jou&Huang,2003).Thesystemshowedhighperformanceintheremovaloforganicpollutants fromrefinerywastewaterusingan8-hhydraulicretentiontimeandachieved85% 90%CODreductionandcomplete phenolreduction.

Lifecycleassessment

Thelifecycletechniqueisamethodologyfortheeconomicandenvironmentalassessmentofproducts,services,orprocesses.Lifecycleassessment(LCA)andlifecyclecostanalysis(LCCA)areusedtoconductenvironmentalandeconomicevaluations.Boththesemethodologiesareusedtoevaluateandmeasuretheeffectivenessofeverystageof product,process,orservice(environmentallyandeconomically).LCCAandLCAwereoriginallyemployedduringthe late1900sinthefieldofwastewatertreatment.Sincethen,thenumberofpublicationsexaminingtheenvironmental andeconomicanalysesoftechnologies,facilities,andprocesseshasbeenexpandingduringthepasttwodecades. Severalapproachesandframeworkswereusedtoexaminetheenvironmentalandeconomicimplications.LCCAisa helpfultooltoestimatethelargereconomiceffectofthedesign,construction,andoperationaldecisions;nonetheless,it isnecessarytofullyexaminethevariousapproachesandframeworksusedinLCCAtofindbestpracticesandthelatest stateoftheart.

Thepetroleumrefiningprocessconsumesaconsiderableamountofwater.ThetypicalEuropeanrefineryutilizes 5.9m3 pertonoffeed(Barthe,Chaugny,Roudier,&Sancho,2010).Thewaterisusedfordifferentprocesses,such asdistillation,cracking,steamgeneration,andprocesscoolingpurposes.Thereforesubstantialamountsofwastewater aregenerated.Itisestimatedthatasinglerefinerythatconsumes400 1000m3 h 1 ofrawwatercangenerate 200 600m3 h 1 ofwastewaterthatneedstobetreatedordischarged(Nabzar,2011).Thegeneratedwaterconsistsofa complexmixtureofdifferentpollutantssuchasaromatichydrocarbons,emulsifiedoil,andgreaseaswellasinorganic substances,includingammonia,sulfides,andcyanides(TaghreedAl-Khalid&Muftah,2017).Asdiscussedearlierin thischapter,therearedifferenttreatmentmethodsthatcanbeusedtotreatthegeneratedwastewater.However,there arenumerousdriversthatarepushingthepetroleumrefiningindustryfromthetreatmentapproachtothereuseapproach suchasgovernmentregulationsandwaterscarcity.Theregulationscanbedifferentdependingontheregion;nonetheless,thereisageneraltrendofhavingmorestrictlegislationthatadvocatesforwaterreuse(Mun ˜ ozetal.,2020).In addition,thecountriesthathavethehighestoilproductionhappentobelocatedinwater-stressedregionswhichfurther necessitiestheneedforwaterreuse.Hence,selectingthemostappropriatetechnologyorcombinationoftechnologiesis paramounttosuccessfulwaterreuse.Thisrequiresacomprehensiveselectioncriterionthatcanassessthetechnicalperformanceandenvironmentalsustainabilityofthedesiredtechnology.Thelatterisoftendeterminedbythemeansof LCAthatcanprovideacompleteassessmentofthedirectandindirectpossibleenvironmentaleffectsofacertaintechnology.LCAexaminesthelifecycleoftheprocessinacomprehensiveway.Nonetheless,LCAworkintheareaofthe oilandgasindustryisconsideredtoberatherlimitedandscarce.

Vlasopoulos,Memon,Butler,andMurphy(2006) discussedtheenvironmentalimpactsof20oilywatertreatment technologiesthatcantreatthewatertobesuitableforreuseinotherindustriesorforagriculturalpurposes.Itisworth notingthatthestudymainlyfocusedonPWratherthanpetroleumrefinerywastewater.Moreover,Ronquimetal.optimizedtheperformanceofareverseosmosissystemtotreatandthenreusetherefinerywastewaterincoolingtowers. Nonetheless,thestudydidnotconsidertherawrefinerywastewaterbutratheralreadytreatedwaterthatcanbedischarged(Ronquim,Sakamoto,Mierzwa,Kulay,&Seckler,2020).Munozetal.carriedoutanLCAonwastewaterreuse inapetroleumrefineryinTurkey.Thestudyaimwastodetermineifrefinerywastewaterreuseinseveralutilitiesin theindustrysuchascoolingwatercanleadtooveralleconomicbenefitinadditiontotheenvironmentalone(Mun ˜ oz etal.,2020).

Summaryandfutureperspectives

Wastewatertreatmentprocessesandmethodologiesneedtobeinnovativetomaintainefficienttreatment.Combining varioustechnologieswillconsiderablyimprovetheperformanceofthetreatmentprocess.Whilecombiningdifferent technologiesmaybequiteproductive,morestudiesandrealfieldimplementationsareneededtoaddressthescaleand effectivenessoftheintegrationofmultipletechnologies.Mostoftherecentresearchonwastewatertreatmenthasbeen conductedatthelaboratoryscalewithalimitednumberofstudiesatthebenchorpilotscale.Inaddition,thevast majorityoftheresearchworkusedsimulatedwaterratherthanrealwastewater.Selectingacertaintreatmenttechnology mainlydependsonthecompositionandpropertiesofthewastewater.Forexample,ifthewastewatercontainshighly resistivecontaminants,abiologicaltreatmenttechniquewouldbemoresuitable.Thiscanbefollowedbyatertiary/polishingsteptoensurethecompleteremovalofthecontaminants.Thereareseveraltechniquesthatprovedtobeeffective forthetreatmentofhighlycontaminatedpetroleumwastewaterincludingelectrochemical,biological,andmembranebasedtechniques.Despitetheireffectivenessinthetreatmentprocess,theystillsufferfromdrawbacksthatmustbe addressedinfutureresearch.

ElectrochemicaltechniquesconsistofdifferenttechnologiessuchaselectrooxidationandEC.ECisconsidered tobethemostapplication-readytechnologyforthetreatmentofrefinerywastewater(Moussa,El-Naas,Nasser,&AlMarri,2017).Nonetheless,itcansufferfromseveraldisadvantagessuchaselectrodepassivation.Thiscanbemitigated bythefrequentcleaningofelectrodesorusingdifferentelectrodedesignsthatcanreducepassivation(Ibrahim, Moussa,El-Naas,&Nasser,2020).Combiningseveralelectrochemicaltreatmenttechniquesisthemostusedapproach intheliteraturetotreatrefinerywastewater.Membrane-basedtechnologieshavethepotentialtobethemostsuccessful technologyforrefinerywastewatertreatment.Membranesareversatileandcanbefabricatedwithspecificproperties thatcansuitdifferentcompositionsofwastewater.Nonetheless,membranefoulingisamajorchallengeforthetechnologytoovercome.Foulingcanbemitigatedbyusingcleaningchemicalsbutattheexpenseofoperatingcosts. Thereforetheresearchdirectionintheliteratureistomitigatemembranefoulingbymodifyingthemembranesurface. Cellulose-derivedmaterialsarealsoinvestigatedintheliteraturefortreatingpetroleumwastewater.Thisismainlydue totheirabilitytoformabondwiththeoilycontaminantswhichfacilitatestheirremoval.Biologicaltreatmenttechniqueshavebeenveryeffectiveindealingwithhighlycontaminatedpetroleumwastewaterandhavebeencharacterized bytheirsimplicity,lowoperatingandmaintenancecost,andabilitytodegradecomplexhydrocarbons.However,biotreatmentisoftenconsideredtobeslowandrelativelysensitivetooperatingconditions.LCAisratheranimportant toolinevaluatingthelong-termsustainabilityofthetreatmentprocess.Nonetheless,itsuseintheareaofpetroleum refinerywastewaterisoftenlimited.Hence,moreLCAisrequiredforbetterlong-termevaluationofspecifictreatment technology.

References

Ahmad,N.A.,Goh,P.S.,Karim,Z.A.,&Ismail,A.F.(2018).Thinfilmcompositemembraneforoilywastewatertreatment:Recentadvancesand challenges. Membranes, 8(4).Availablefrom https://doi.org/10.3390/membranes8040086.

Banerjee,A.,&Ghoshal,A.K.(2017).Biodegradationofanactualpetroleumwastewaterinapackedbedreactorbyanimmobilizedbiomassof Bacilluscereus. JournalofEnvironmentalChemicalEngineering, 5(2),1696 1702.Availablefrom https://doi.org/10.1016/j.jece.2017.03.008. Barthe,P.,Chaugny,M.,Roudier,S.,&Sancho.(2010). Bestavailabletechniques(BAT)referencedocumentfortherefiningofmineraloilandgas. IndustrialEmissionsDirective.Availablefrom https://doi.org/10.2791/010758.

Bhumibhamon,O.,Koprasertsak,A.,&Funthong,S.(2002).Biotreatmentofhighfatandoilwastewaterbylipaseproducingmicroorganisms. AgricultureandNaturalResources, 36(3),261 267.

Bratskaya,S.,Avramenko,V.,Schwarz,S.,&Philippova,I.(2006).Enhancedflocculationofoil-in-wateremulsionsbyhydrophobicallymodified chitosanderivatives. ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects, 275(1 3),168 176.Availablefrom https://doi.org/ 10.1016/j.colsurfa.2005.09.036.

DiCaprio,F.,Altimari,P.,&Pagnanelli,F.(2015).Integratedbiomassproductionandbiodegradationofolivemillwastewaterbycultivationof Scenedesmus sp. AlgalResearch, 9,306 311.Availablefrom https://doi.org/10.1016/j.algal.2015.04.007.

Dickhout,J.M.,Moreno,J.,Biesheuvel,P.M.,Boels,L.,Lammertink,R.G.H.,&deVos,W.M.(2017).Producedwatertreatmentbymembranes: Areviewfromacolloidalperspective. JournalofColloidandInterfaceScience, 487,523 534.Availablefrom https://doi.org/10.1016/j. jcis.2016.10.013.

El-Naas,M.H.,Alhaija,M.A.,&Al-Zuhair,S.(2014).Evaluationofathree-stepprocessforthetreatmentofpetroleumrefinerywastewater. Journal ofEnvironmentalChemicalEngineering, 2(1),56 62.Availablefrom https://doi.org/10.1016/j.jece.2013.11.024

El-Naas,M.H.,Al-Muhtaseb,S.A.,&Makhlouf,S.(2009).Biodegradationofphenolby Pseudomonasputida immobilizedinpolyvinylalcohol (PVA)gel. JournalofHazardousMaterials, 164(2 3),720 725.Availablefrom https://doi.org/10.1016/j.jhazmat.2008.08.059.

El-Naas,M.H.,Surkatti,R.,&Al-Zuhair,S.(2016).Petroleumrefinerywastewatertreatment:Apilotscalestudy. JournalofWaterProcess Engineering, 14,71 76.Availablefrom https://doi.org/10.1016/j.jwpe.2016.10.005.

Gao,N.,&Xu,Z.K.(2019).Ceramicmembraneswithmussel-inspiredandnanostructuredcoatingsforwater-in-oilemulsionsseparation. Separation andPurificationTechnology, 212,737 746.Availablefrom https://doi.org/10.1016/j.seppur.2018.11.084 Ibrahim,M.H.,Moussa,D.T.,El-Naas,M.H.,&Nasser,M.S.(2020).Aperforatedelectrodedesignforpassivationreductionduringtheelectrochemicaltreatmentofproducedwater. JournalofWaterProcessEngineering,33.Availablefrom https://doi.org/10.1016/j.jwpe.2019.101091 Jepsen,K.L.,Bram,M.V.,Pedersen,S.,&Yang,Z.(2018).Membranefoulingforproducedwatertreatment:Areviewstudyfromaprocesscontrol perspective. Water(Switzerland), 10(7).Availablefrom https://doi.org/10.3390/w10070847 Jou,C.J.G.,&Huang,G.C.(2003).Apilotstudyforoilrefinerywastewatertreatmentusingafixedfilmbioreactor. AdvancesinEnvironmental Research, 7(2),463 469.Availablefrom https://doi.org/10.1016/S1093-0191(02)00016-3 Li,B.,Sun,Y.L.,&Li,Y.Y.(2005).Pretreatmentofcokingwastewaterusinganaerobicsequencingbatchreactor(ASBR). JournalofZhejiang University:Science, 6(11),1115 1123.Availablefrom https://doi.org/10.1631/jzus.2005.B1115 Moussa,D.T.,El-Naas,M.H.,Nasser,M.,&Al-Marri,M.J.(2017).Acomprehensivereviewofelectrocoagulationforwatertreatment:Potentials andchallenges. JournalofEnvironmentalManagement, 186,24 41.Availablefrom https://doi.org/10.1016/j.jenvman.2016.10.032 Munoz,I.,Akturk,A.S.,Ayyıldız,O.,C¸a ˘ glar,O.,Meabe,E.,Contreras,S., ... Jime ´ nez-Banzo,A.(2020).LifecycleassessmentofwastewaterreclamationinapetroleumrefineryinTurkey. JournalofCleanerProduction, 268,121967.Availablefrom https://doi.org/10.1016/j.jclepro.2020.121967

Nabzar,L.(2011).Panorama2011:WaterinfuelproductionOilproductionandrefining;Panorama2011:L’eaudanslaproductiondecarburants. Productionpetroliereetraffinage.France.

Negi,H.,Verma,P.,&Singh,R.K.(2021).Acomprehensivereviewontheapplicationsoffunctionalizedchitosaninpetroleumindustry. CarbohydratePolymers, 266,118125.Availablefrom https://doi.org/10.1016/j.carbpol.2021.118125

Pitakpoolsil,W.,&Hunsom,M.(2014).Treatmentofbiodieselwastewaterbyadsorptionwithcommercialchitosanflakes:Parameteroptimization andprocesskinetics. JournalofEnvironmentalManagement, 133,284 292.Availablefrom https://doi.org/10.1016/j.jenvman.2013.12.019

Qiu,X.,Zhong,Q.,Li,M.,Bai,W.,&Li,B.(2007).Biodegradationof p-nitrophenolbymethylparathion-degrading Ochrobactrum sp.B2. InternationalBiodeteriorationandBiodegradation, 59(4),297 301.Availablefrom https://doi.org/10.1016/j.ibiod.2006.09.005

Raghukumar,C.,Vipparty,V.,David,J.J.,&Chandramohan,D.(2001).Degradationofcrudeoilbymarinecyanobacteria. AppliedMicrobiology andBiotechnology, 57(3),433 436.Availablefrom https://doi.org/10.1007/s002530100784

Rana,S.,Gupta,N.,&Rana,R.S.(2018).Removaloforganicpollutantwiththeuseofrotatingbiologicalcontactor. MaterialsToday:Proceedings, 5(Issue2),4218 4224.Availablefrom https://doi.org/10.1016/j.matpr.2017.11.685

Ronquim,F.M.,Sakamoto,H.M.,Mierzwa,J.C.,Kulay,L.,&Seckler,M.M.(2020).Eco-efficiencyanalysisofdesalinationbyprecipitationintegratedwithreverseosmosisforzeroliquiddischargeinoilrefineries. JournalofCleanerProduction, 250.Availablefrom https://doi.org/10.1016/ j.jclepro.2019.119547

Sanghamitra,P.,Mazumder,D.,&Mukherjee,S.(2020).Astudyonaerobicbiodegradationofoilandgreasecontainingwastewater. Journalofthe IndianChemicalSociety, 97(5),819 822.Availablefrom https://indianchemicalsociety.com/portal/uploads/journal/2020_05_17_Extended_ 1601005922.pdf

Sharma,N.K.,&Philip,L.(2016).Combinedbiologicalandphotocatalytictreatmentofrealcokeovenwastewater. ChemicalEngineeringJournal, 295,20 28.Availablefrom https://doi.org/10.1016/j.cej.2016.03.031 Sun,G.,Chen,X.,Li,Y.,Zheng,B.,Gong,Z.,Sun,J., Lin,W.(2008).Preparationof H-oleoyl-carboxymethyl-chitosanandthefunctionasa coagulationagentforresidualoilinaqueoussystem. FrontiersofMaterialsScienceinChina, 2(1),105 112.Availablefrom https://doi.org/ 10.1007/s11706-008-0019-3

Surkatti,R.,&El-Naas,M.H.(2014).Biologicaltreatmentofwastewatercontaminatedwithp-cresolusing Pseudomonasputida immobilizedinpolyvinylalcohol(PVA)gel. JournalofWaterProcessEngineering, 1,84 90.Availablefrom https://doi.org/10.1016/j.jwpe.2014.03.008

TaghreedAl-Khalid&MuftahH.El-Naas(2017).Organiccontaminantsinrefinerywastewater:Characterizationandnovelapproachesforbiotreatment,recentinsightsinPetroleumScienceandEngineering,MansoorZoveidavianpoor, IntechOpen,Availablefrom: https://doi.org/10.5772/intechopen.72206 https://www.intechopen.com/chapters/58096

Tanudjaja,H.J.,Hejase,C.A.,Tarabara,V.V.,Fane,A.G.,&Chew,J.W.(2019).Membrane-basedseparationforoilywastewater:Apracticalperspective. WaterResearch, 156,347 365.Availablefrom https://doi.org/10.1016/j.watres.2019.03.021

Trevino-Rese ´ ndez,J.,de,J.,Medel,A.,&Meas,Y.(2021).Electrochemicaltechnologiesfortreatingpetroleumindustrywastewater. CurrentOpinion inElectrochemistry, 27,100690.Availablefrom https://doi.org/10.1016/j.coelec.2021.100690

Tziotzios,G.,Teliou,M.,Kaltsouni,V.,Lyberatos,G.,&Vayenas,D.V.(2005).Biologicalphenolremovalusingsuspendedgrowthandpackedbed reactors. BiochemicalEngineeringJournal, 26(1),65 71.Availablefrom https://doi.org/10.1016/j.bej.2005.06.006

Vidal,R.R.L.,Desbrie ` res,J.,Borsali,R.,&Guibal,E.(2020).Oilremovalfromcrudeoil-in-salinewateremulsionsusingchitosanasbiosorbent. SeparationScienceandTechnology(Philadelphia), 55(5),835 847.Availablefrom https://doi.org/10.1080/01496395.2019.1575879

Vlasopoulos,N.,Memon,F.A.,Butler,D.,&Murphy,R.(2006).Lifecycleassessmentofwastewatertreatmenttechnologiestreatingpetroleumprocesswaters. ScienceoftheTotalEnvironment, 367(1),58 70.Availablefrom https://doi.org/10.1016/j.scitotenv.2006.03.007

Xu,Z.,Jiang,D.,Wei,Z.,Chen,J.,&Jing,J.(2018).Fabricationofsuperhydrophobicnano-aluminumfilmsonstainlesssteelmeshesbyelectrophoreticdepositionforoil-waterseparation. AppliedSurfaceScience, 427,253 261.Availablefrom https://doi.org/10.1016/j.apsusc.2017.08.189

Yamaguchi,T.,Ishida,M.,&Suzuki,T.(1999).Biodegradationofhydrocarbonsby Protothecazopfii inrotatingbiologicalcontactors. Process Biochemistry, 35(3 4),403 409.Availablefrom https://doi.org/10.1016/S0032-9592(99)00086-2

Zoubeik,M.,Ismail,M.,Salama,A.,&Henni,A.(2018).Newdevelopmentsinmembranetechnologiesusedinthetreatmentofproducedwater:A review. ArabianJournalforScienceandEngineering, 43(5),2093 2118.Availablefrom https://doi.org/10.1007/s13369-017-2690-0

Zuo,J.H.,Cheng,P.,Chen,X.F.,Yan,X.,Guo,Y.J.,&Lang,W.Z.(2018).Ultrahighfluxofpolydopamine-coatedPVDFmembranesquenchedin airviathermallyinducedphaseseparationforoil/wateremulsionseparation. SeparationandPurificationTechnology, 192,348 359.Available from https://doi.org/10.1016/j.seppur.2017.10.027

Chapter2

Chemistryofpetroleumwastewater

FarhadQaderiandMaryamTaghizadeh

CivilandEnvironmentalEngineering,FacultyofCivilEngineering,BabolNoshirvaniUniversityofTechnology,Babol,Iran

Introduction

Waterplaysanessentialroleinhumanlife.Theindustrialrevolutionandeconomicdevelopmenthaveledtopopulation growthandincreasedurbanization(Chen,2018;Li&Yu,2011;Zafra,Moreno-Montan ˜ o,Absalo ´ n,&Corte ´ s-Espinosa, 2015;Zhangetal.,2015).Thedevelopmentofcommunities,consumerism,andtheexpansionofurbanizationhasled toanalarmingrateinwaste/wastewaterproductionaroundtheworld,andthiswasteisdisposedofwithoutpropermanagementandtreatment(Chen,2018;Li&Yu,2011;Zafraetal.,2015;Zhangetal.,2015).Today,theoilindustryis themostimportantsourceofenergyproductionintheworld,butthisindustryisoneofthemaincausesofenvironmentalproblemsduetotheproductionoflargevolumesofwastewater.

ThewordPetroleumoriginatedfromtheLatinrootsPetra(rock)andoleum(oil)(Jafarinejad,2016).Petroleumis formedfromtheaccumulationofhydrocarbons.Hydrocarbonsaccumulatenaturally,thousandsoffeetbelowthesurfaceoftheEarth,fromthedecompositionoforganicmaterialslikeplantsandmarineanimalsthatdiedmillionsofyears ago.Itisanaturallyoccurringfluidfoundinrockformations.Inotherwords,vastquantitiesoftheremainsofdecomposedorganicmaterialssettledintoseaorlakebottomsandaremixedwithsedimentsburiedinlayersofclay,silt,and sand.Asfurtherlayerssettledintothebed,inthelowerregions,heatandpressurebegantorise.Thisprocesscauses theorganicmattertochange,firstintoawaxymaterial,whichisfoundinvariousoilshalesaroundtheworld,andthen withmoreheatintoliquidandgaseoushydrocarbons.Oilornaturalgasformationisrelatedtotheamountofpressure, thedegreeofheat,andthetypeofbiomass.ItisbelievedthatMoreheatisbelievedtoproducelighteroil,evenhigher heatorbiomassmadepredominantlyofplantmaterialproducedbynaturalgas.Thepetroleumindustrygeneratesa largeamountofoilywasteduetoupstreamanddownstreamoperations(Abdulredha,SitiAslina,&Luqman,2020;Li etal.,2014;Varjani,Kumar,&Rene,2019).Thisoilywastecanbedividedintoasolidorliquid.Theupstream processincludesextracting,transporting,andstoringcrudeoil,andthedownstreamprocessincludesrefiningcrudeoil (Al-Futaisi,Jamrah,Yaghi,&Taha,2007;Hu,Li,&Zeng,2013;Thakur,Srivastava,Mall,&Hiwarkar,2018).Based ontheamountofwaterinsolids,thiswasteiscategorizedintosimplesewagecrudeoilandsludge.

Crudeoilconsistsofapproximately10 14wt.%hydrogenand83 87wt.%carbon.Oxygen(0.05 1.5wt.%),sulfur (0.05 6wt.%),nitrogen(0.1 2wt.%),andmetalssuchasvanadium,nickel,iron,andcopper(nickelandvanadium , 1000ppm)aresomeimpuritiesfoundincrudeoil.Crudeoilisnotauniformmaterial,anditsexactmolecularandfractionalcompositionvarieswidelywiththeformationofoil,location,ageoftheoilfield,andthedepthoftheindividual well.Crudeoilsobtainedfromdifferentoilreservoirshavewidelydifferentcharacteristics.Manyoilreservoirscontain livebacteria.Somecrudeoilsareblack,heavy,andthickliketar,whileothersarebrownornearlyclearwithlowviscosityandlowspecificgravity.Usually,fourdifferenttypesofhydrocarbonmolecules(alkanesorparaffins(15% 60%), naphthenes,orcycloparaffins(30% 60%),aromaticsorbenzenemolecules(3% 30%),andasphaltics(remainder)) appearincrudeoil.Therelativepercentageofeachcomponent,whichvariesfromoiltooil,determinesthepropertiesof theoil.(Thakuretal.,2018).

Oilfieldwastewateriscomposedofproducedwater,useddrillingfluid,andwastewaterthatisproducedafterwashing thedrilling/extractionequipmentandstoragetanks(Bakke,Klungsøyr,&Sanni,2013;Ottaviano,Cai,&Murphy,2014). Oilandgasproductionisusuallyaccompaniedbytheproductionoflargequantitiesofwater.Theamountof producedwaterdependsontheextractiontechnology,thereservoircharacteristics,andtherateofoilextraction.In differentsites,Theratioofproducedwatertooilmayvaryfromto2to5.

PetroleumIndustryWastewater.DOI: https://doi.org/10.1016/B978-0-323-85884-7.00007-2 © 2022ElsevierInc.Allrightsreserved.

Petroleumrefineryeffluentsaregeneratedinoilrefineryprocessesthatconvertcrudeoilintonumerousrefinedproducts,suchasliquefiedpetroleumgas,fuels,lubricants,andpetrochemicalintermediates.Theseprocessesconsume about0.2m3 t 1 Lto25m3 t 1 Lofwater,whichhasdecreasedinEuropeanrefineriesduetowaterreuseandrecycling (Bartheetal.,2015).Theamountandcompositionoftherefinerywastewatervaryconsiderablydependingondifferent factorssuchasplantconfiguration,crudeoilcharacteristics,andprocessdesigns.Accordingtoastudy,regardlessof theconfiguration,themainwastewaterisgeneratedthroughanumberofprocessessuchasdistillation,hydrotreating, coolingsystem,anddesalting(Diya’Uddeen,Daud,&AbdulAziz,2011).Thewaterisusedorproduced?directlywith hydrocarboncompoundsindesalination,distillation,andcrackingorwashingandcleaningoperations,andleadsto increasingtheorganicload.Ontheotherhand,thebiggestpartofthewastewatereffluentiswaterusedforcoolingsystemsandboilers,whilethiseffluentisusuallylesspolluted.

Petroleumrefineriesprocessrawcrudeoilintothreecategoriesofproductsenumeratedasfollows:

1. Fuelproducts:Gasoline,distillatefueloil,jetfuels,residualfueloil,liquefiedpetroleumgases,refineryfuel,coke, andkerosene.

2. Nonfuelproducts:Asphaltandroadoil,lubricants,naphthasolvents,waxes,nonfuelcoke,andmiscellaneous products.

3. Petrochemicalsandpetrochemicalfeedstock:Naphtha,ethane,propane,butane,ethylene,propylene,butylene,and BTEXcompounds(benzene,toluene,ethylbenzene,andxylene).

Petroleumindustrywastewaterconsistsofoilimpurities,BODandCODarenotcontaminants,theyaremeasureof contamination.hightotalsolids,hydrocarbons,andotherwastesuchasoilysludge,heavymetals,volatileorganiccompounds,ammonia,wastecatalyst,hightotaldissolved,salts,nitrates,sulfides,oil,andgreasecontent,etc.(Jasmine& Mukherji,2015).Oilywastewaterisdividedintofourmajortypesofpetroleumhydrocarbons,namely,aliphatic,aromatic,asphaltenes,andcompoundscontainingoxygen,nitrogen,andsulfur(Honse,Ferreira,Mansur,Lucas,& Gonza ´ lez,2012;Thakuretal.,2018;Varjani&Upasani,2017).

Thesepetroleumcompoundsconsistofthreemainhydrocarbongroups,namely,paraffins(straight-chainn-alkanes fromC1toC40andbranchedisoalkanes),naphthenesorcycloparaffins(naphtheneringscontaintypically5or6carbon atoms,morecondenseddicyclonaphthenesC8andC9arepresentinadditiontomonocyclonaphthenes),andaromatics (havingthebenzeneringcomprisingalternatedoubleandsinglebondswithadjacentcarbonatoms,monocyclic,and polycyclicaromatics).InNaphthenicacids(NAs)(amixtureofalkyl-substitutedacyclic,monocyclic,andpolycyclic carboxylicacidswithanaliphaticchainof9to20carbonatoms),whichareknowntocausetoxiceffects,arealsodifficulttoremovefromrefinerywastewater(Wang,Ghimire,Xin,Janka,&Bakke,2017).Otherpollutantsfoundinwastewaterincludehydrogensulfide,ammonia,phenols,benzene,cyanidesandsuspendedsolidscontainingmetalsand inorganiccompounds(e.g.,halides,sulfates,phosphates,sulfides)(Bartheetal.,2015).

Thesepollutantsareeasilydispersedordissolvedinoilywastewater.Ingeneral,about80%ofpetroleumhydrocarbonsinoilywastewaterarearomaticandaliphaticcompounds.(Jasmine&Mukherji,2015;Pereraetal.,2012;Varjani &ChaithanyaSudha,2018;Ward,Singh,&VanHamme,2003).

Everyyear,inthepetroleum,transportation,andotherhigh-consumptionindustries,agriculture,andurbanmanagementproducelargevolumesofhydrocarbonwastewater.Thiswastewaterisverycomplexandvariesdependingonthe rawmaterialsandtechnologiesused.Theyreferstohydrocarbonwastewaterarethemainsourceoforganicpollutionof theenvironmentandcontaintoxic,mutagenic,andcarcinogenicsubstances.

Themetallurgicalindustryisanothermajorsourceofoilywastewater.Mostoftheoilywastecomesfrommetalformingoperationsormetal-working,suchascokequenching,steelrolling,solventextraction,andelectroplating(Wu, Jiang,He,&Song,2017).Oil-in-waterandwater-in-oilemulsionsofdifferentcompositions,rangingfromatraceofoil inwatertoatraceofwaterinoil,areusedascoolingandlubricatingagents.Theyalsoprovidecorrosionprotectionfor machinedpartsandmachiningtools.Suchspentoilywateremulsioncanbehighlyviscousandoftenseverelyhamper wastewatertreatmentplantcapabilities,thuscausingincreasedmaintenancecostsandenergyconsumption.Also,adistinctivefeatureofmetallurgicalprocesseffluentistheuseoflargeamountsoftoxicorganicmatterinextractionand electro-depositionprocesses.Thesetoxicsubstancesareusedasextractants,diluents,matrixmodifiers,flocculants, brighteningagents,acidfoginhibitors.

Emulsifiedoil,emulsifiers,degreasingagents,surfactants,solvents,suspe ndedsolids,metals,andacids/alkalines aretheprimarycomponentsofmetallurgicaloilywastewater(Wuetal.,2017).Thiswastewater,duetotheparageneticrelationoftheseelementswithra reearthmetals,containsradioactiv emetals,suchasthorium,radium,and uranium.

Advancesinthetransportationindustryhaveledtoaconsiderableincreaseintheuseofmotorfuelsandoilsthat arethemainsourcesofhydrocarbonpollutioninwastewater.Furthermore,thecarwash,enginewash,paintspraying workshop,orpetrolstationimportalargenumberofhydrocarbonwastestotheurbanwastewatersystem.

About10 50mgL 1 oftypicaldomesticwastewaterconsistsofoilandgrease(O&G).Intherawwaterresourcesof Europeanareas,morethan6000organiccompoundshavebeenidentifiedthathaveenteredtheseresourcesduetohuman activities.Whilesomeofthesearehighlypersistent,othersareeasilybiodegradable.Theseorganiccompoundsinclude aliphaticandaromatichydrocarbons,polyaromatichydrocarbons(PAHs),fattyacids,ketones,phthalateesters,plasticizers,andotherpolarcompounds.Solventextractableorganicsaredominatedbypetroleumhydrocarbons,whicharise frommotoroilleaks,degradedasphalt,andworntiresfromtheroads.Municipalwastewatercontainslargeamountsof toxicandnondegradableorganicpollutantssuchasPAHs,polychlorinatedbiphenyls(PCBs),di-(2-ethylhexyl)phthalate (DEHP),lineralkylbenzenesulphonates(LASs),nonylphenolethoxylates(NPEs),dioxins(PCDD),andfurans(PCDF). Also,advancesintechnologyhaveledtotheemergenceofmicropollutantssuchaspharmaceuticals,personalcarecompounds,flame-retardants,biocides,andpesticidesinmunicipalwastewater(Visser&AloisideLarderel,1997).

Petroleumwastewatercharacteristics

Wastewaterproducedinrefineriesincludessolubleandinsolublepollutants.Thetypesofpollutantsinpetroleumwastewatercanbeclassifiedasfollows(Visser&AloisideLarderel,1997):

● Totalhydrocarboncontent(THC);

● Totalpetroleumhydrocarbonindex(TPH-index);

● Biochemicaloxygendemand(BOD);

● Chemicaloxygendemand(COD);

● Totalorganiccarbon(TOC);

● Ammoniacalnitrogen;

● Totalnitrogen;

● Totalsuspendedsolids(TSS);

● Totalmetals;

● Cyanides;

● Fluoridesphenols;

● Phosphates;

● SpecialmetalssuchasCd,Ni,Hg,Pb,andvanadium;

● Benzene,Toluene,ethylbenzene,andxylene(BTEX);

● PH(acids,alkalis);

● Sulfides;

● Othermicropollutants.

Themainsourcesofwastewaterfromp etroleumindustryactivitiesareprod ucedwater,cutting,coolingwater, drillingfluids,welltreatmentchemicals,process,draina geandwash,spillandleakage ,domesticwastewater,and sewage.Thevolumesofwastewaterare minimalduringseismicoperations andoftenrelatetocampandvessel activities.

Theprimarydischargefromproductionoperationsisproducedwaterandthemajorwastewatereffluentsfrom exploratorydrillingaredrillingfluidsandcuttings.Thevolumesofproducedwaterdependonthetypeofproduction (gasandoil),geographical,thelifetimeofafield,field,andthelevelofactivity(Visser&AloisideLarderel,1997; Congress&OfficeofTechnologyAssessment,1992).Thecharacteristicsofeffluentfromdifferentsectionsofthe petroleumindustryprocessaresummarizedin Table2.1.

PetroleumindustrywastewatercontainsmanyaromaticorganiccompoundssuchasPAHsandphenolicsubstances. Thesesubstancesdecomposeinnaturewithdifficulty.Therefore,theseareaseriousthreattotheenvironment.Organic pollutantsinindustrialwastewaterhavecarcinogenicormutagenicpropertiesandtheUSEnvironmentalProtection Agency(EPA)hasconsideredthesecompoundsamongtheprioritypollutants.

Thesecontaminantsaccumulateinhumanandanimaltissues.Someofthesecompoundsaresolubleinwaterand havebeendetectedinconcentrationsrangingfromafewmilligramsperlitertoamaximumof7000mgL 1 inpetroleumwastewater(Waseemetal.,2019).

TABLE2.1 Thecharacteristicsofeffluentfromdifferentsectionsofthepetroleumindustryprocess.

MainsourcesEnvironmentallysignificantcomponents

Producedwater,Processwater,forexample,enginecooling water,brakecoolingwater,washwater,Ballastwater,Hydro-test fluids,Contaminatedrain/drainagewater,Drillingfluid, chemicalsSpentstimulationorfracturingfluids,Spent completionfluids,Wastelubricants,Water-based(includebrine), mudsandcuttings,Oil-basedmudsandcuttings,Mercury Dehydrationandsweeteningwastes,Domesticsewage

Hydrocarbons,inorganicsalts,heavymetals,solids,organics, sulfides,corrosioninhibitors,biocides,phenols,BOD,benzene, organo-halogens,PAHs,radioactivematerialInorganicsalts, heavymetals,solids,organics,BOD,sulfides,corrosioninhibitors, biocides,demulsifiers,waxinhibitors,detergents,hydrocarbons Hydrocarbons,phenols,PAHs,Solids,corrosioninhibitors, biocides,BOD,dyes,oxygenscavengersInorganicsalts,Heavy metalssolids,organics,BOD,sulfides,corrosioninhibitors,scale inhibitors,detergents,hydrocarbonsMetals,salts,organics,pH, surfactants,biocides,emulsifiers,viscosifiersInorganicacids (HCL,HF),hydrocarbons,methanol,corrosioninhibitors,oxygen scavengers,formationfluids,naturallyoccurringradioactive materials(NORM),gelingagentsHydrocarbons,corrosion inhibitors,inorganicsaltsOrganics,heavymetalsHighpH, inorganicsalts,hydrocarbons,solids/cutting,drillingfluid chemicals,heavymetalsHydrocarbons,solids/cutting,heavy metals,inorganicsalts,drillingfluidchemicalMercuryAmines, glycols,filtersludges,metalsulfides,H2S,metals,benzeneBOD, solids,detergents,coliformbacteria

FromPraveen,P.,&Loh,K.C.(2013).Simultaneousextractionandbiodegradationofphenolinahollowfibersupportedliquidmembranebioreactor. JournalofMembraneScience,430,242 251. https://doi.org/10.1016/j.memsci.2012.12.021

Diya’uddeen,B.H.,Daud,W.M.A.W.,&AbdulAziz,A.R.(2011).Treatmenttechnologiesforpetroleumrefineryeffluents:Areview. ProcessSafetyand EnvironmentalProtection 89(2):95 105.

Raza,W.,Lee,J.,Raza,N.,Luo,Y.,Kim,K.H.,&Yang.J.(2018).Removalofphenoliccompoundsfromindustrialwastewaterbasedonmembrane-based technologies.JournalofIndustrialandEngineeringChemistry(InPress. https://doi.org/10.1016/j.jiec.2018.11.024).

Underfavorableconditionsandthroughvariousreactionslikemethylationandchlorination,thesecompoundscan producetoxicanddangeroussubstancessuchascresolsandchlorophenols(Jasmine&Mukherji,2015;Pereraetal., 2012;Varjani&ChaithanyaSudha,2018;Wardetal.,2003).

Thus,globalconcernsaboutthedirectdischargeofpetroleum wastewaterwithoutremovingorreducingtoxicpollutants intotheenvironmentaregrowing.Forthisreason,industriesarerequiredtotreattheirwastewaterbeforedischargingitintothe ecosystem(Jasmine&Mukherji,2015;Pereraetal.,2012;Varjani&ChaithanyaSudha,2018;Wardetal.,2003).

Wastewaterfromthepetroleumindustrysuchasoilrefineries,petrochemicalproducts,andtransportationhavea largenumberoftoxicsubstances(Viggietal.,2015).Thesewastewaterscontainvarioustypesoforganicandinorganic pollutantssuchasphenol,sulfide,BTEX,hydrocarbon,andheavymetals(He&Jiang,2008;Usman,Faure,Hanna, Abdelmoula,&Ruby,2012;Varjani&Upasani,2017;Waseemetal.,2019).

Researchhasshownthatmostofthiswastewateriscomposedofaliphatichydrocarbonsandaromaticcompoundssuchas benzene,toluene,andethylbenzene. Table2.2 showsthedifferenttypesoforganiccompoundsinpetroleumwastewater.

Petroleumwastewatercontainscomplexcompoundsoforganicpollutantsandoftencontainsoilsandgreases,which clogpipesandcausecorrosionandunpleasantodors(Xu&Zhu,2004).Phenolicpollutantsarealsoaseriousthreatto theenvironmentduetotheirhighpersistenceintheenvironment(Abdelwahab,Amin,&El-Ashtoukhy,2009;Kavitha &Palanivelu,2004;Lathasree,Rao,Sivasankar,Sadasivam,&Rengaraj,2004;Pardeshi&Patil,2008;Yang,2008).

NAsinpetroleumwastewatercausetoxiceffectsandformalargevolumeofwastewater,andtheirremovalfrom petrochemicaleffluentsisacriticalchallenge(Wangetal.,2017).showedthatthepercentageofaromaticNAswas about2.1% 8.8%inarefinerywastewatertreatmentplant.

Thefollowinggeneralresultscanbeexpressedfromreportsmadebyvariousresearchersasshownin Table2.2

Basedonthestudies,awiderangeofpollutantswasidentifiedandalargedifferencewasseeninthecharacteristics ofwastewaterduetodifferencesinwastewatersource,crudeoilquality,andoperatingconditions.

Petroleumwastewatercompoundsaremainlysolubleintheformoforganicandinorganiccompounds,withorganic compoundsincludinghydrocarbons(PAH)andinorganiccompoundscontainingheavymetals.

Sourwaterstream(SWS)hasahighconcentrationofsulfideandcomplexchemicalcompositionssuchasoil,phenols,sulfides,mercaptans,ammonia,cyanides,andothermicropollutants(El-Naas,Alhaija,&Al-Zuhair,2014).

TABLE2.2 Differenttypesoforganiccompoundsinpetroleumwastewaterreportedbyvariousresearchers.

ParametersreferencespHCOD

Vendramel,Bassin,Dezotti,&Sant’ Anna(2015)

Aljuboury,Palaniandy,Aziz,&Feroz (2014)

Saber,Hasheminejad,Taebi,& Ghaffari(2014)

Gasim,Kutty,Hasnain-Isa,&Alemu (2013)

Hasan,AbdulAziz,&Daud(2012)

(2009)

AltasBuyukgungor(2008)7.19 9.22220

Dincer,Karakaya,Gunes,&Gunes (2008)

Zeng,Yang,Zhang,&Pu(2007)

(1998)

FromEl-Naas,M.H.,Alhaija,M.A.,&Al-Zuhair,S.(2014).Evaluationofathree-stepprocessforthetreatmentofpetroleumrefinerywastewater. JournalofEnvironmentalChemicalEngineering,2(1),56 62. https://doi.org/10.1016/j.jece.2013.11.024

Farajnezhad,H.,&Gharbani,P.(2012).Coagulationtreatmentofwastewaterinpetroleumindustryusingpolyaluminumchlorideandferricchloride InternationalJournalofResearchandReviewsinApplied Sciences,13,306 310.

Altas,L.,&Buyukgungor,H.(2008),Sulfideremovalinpetroleumrefinerywastewaterbychemicalprecipitation. JournalofHazardousMaterials,153,462 469.

TABLE2.3 Minimumstandarddischargelimitsforrefineryeffluents.

pHComposition(mgL 1)References

CODBODTDSSSTOCAmmoniaPhenolsSulfides 6 915030 30 1EnvironmentalHealthSafety Guidelines

FromIFC:Environmental,HealthandSafety(EHS)Guidelines,GeneralEHSGuidelines,April302009.

Variousenvironmentalprotectionagencieshavesetamaximumdischargelimittopreventtheentryoflarge amountsofhazardouspetroleumcompoundsintotheenvironmentasdescribedin Table2.3.Also,mostofthehydrocarbonsofundegradedpetroleumhydrocarbonsarefueladditivessuchasdichloroethane(DCE),dichloromethane (DCM),andt-butylmethylether(tBME),whicharecarcinogenic.

Themethodsformeasuringthemaincompoundsinpetroleumwastewater PHmeasurements

ThepHhasagreateffectonwastewatertreatment.Itaffectschlorinationandcoagulationefficiency.ThepHmeter includesaglasselectrode,apotentiometer,areferenceelectrode,andatemperaturecompensatingdevice.ModernpH metersuseasinglecompositeelectrodetomeasureandbuffersolutionsforcalibrationwithpH4,7,and10.ThepH metercandetectthesesetpointsautomaticallyincalibrationmode.Measurementsshouldbetakenimmediatelyafter collection,butifsamplesmustbestored,theyshouldbekeptat4 Candshouldbemeasurednolaterthan6haftercollection.IfpHvaluesvarywidely,standardizeeachsamplewithabuffersolutionhavingapHwithin1 2pHunitsof thesample(AmericanSocietyforTesting&MaterialsASTM,2018).

Totalresidualchlorine

Thechlorinationofthetreatedeffluentservesprimarilytodestroyordeactivatedisease-causingmicroorganisms. Chlorinationmayproduceadverseeffects.Potentiallycarcinogenicchloro-organiccompoundssuchaschloroformmay beformed.Tofulfilltheprimarypurposeofchlorinationandminimizeanyadverseeffects,propertestingprocedures mustbeused.Severalmethodsformeasurementoftotalresidualchlorineareavailable,includingiodometricmethods, amperometrictitrationmethods,and N,N-diethyl-phenylenediamine(DPD)methods.Thefollowingoperatingprocedure willdiscussaDPDColorimetricMethod.First,selectthevolumeofthesamplethatwillneednotmorethan20mL 0.01NNa2S2O3 andnotlessthan0.2mLareneededforthestarchiodideuntiltheendofthereaction.Usea500mL sampleforachlorinerangeof1to10mgL 1,iftheamountofchlorineisabove10mgL 1,useproportionatelyless sample.ThenreachpHbyaddingaceticacidtoabout3 4inaflask.Addabout1gKIestimatedonaspatula.Addthe sampletoitandmixitwithastirrerandperformthetitrationprocessawayfromdirectsunlight.Andthenfroma burette,add0.025Nor0.01NNa2S2O3 untiltheyellowcoloroftheliberatediodineisalmostdischarged.Add1mL starchsolutionandtitrateuntilthedisappearanceofthebluecolor(AmericanSocietyforTesting&MaterialsASTM, 2018).

Totalsuspendedsolids

TSSofawastewatersampleisdeterminedbypouringacarefullymeasuredvolumeofwastewaterthroughapreweighedfilterofspecifiedporesize,thenweighingthefilteragainafterthedryingprocessthatremovesallwateron thefilter.FiltersforTSSmeasurementsaretypicallycomposedofglassfibers.Thegaininweightisadryweightmeasureoftheparticulatespresentinthewatersampleexpressedinunitsderivedorcalculatedfromthevolumeofwater filtered(typicallymilligramsperliterormgL 1).

Ifthewastewatercontainsanappreciableamountofdissolvedsubstances(ascertainlywouldbethecasewhenmeasuringTSSinseawater),thesewilladdtotheweightofthefilterasitisdried.Therefore,itisnecessaryto“wash”the filterandsamplewithdeionizedwaterafterfilteringthesampleandbeforedryingthefilter.Failuretoaddthisstepisa fairlycommonmistakemadebyinexperiencedlaboratorytechniciansworkingwithseawatersamples,anditwill

completelyinvalidatetheresultsastheweightofsaltsleftonthefilterduringdryingcaneasilyexceedthatofthesuspendedparticulatematter.

Totalsuspendedsolids(TSSs)aremeasuredinlaboratoriesbyfilteringaknownvolumeofasample,dryingthefilterandcapturedsolids,thenweighingthefiltertodeterminetheweightofthecapturedsuspendedsolidsinthesample. TSSiscalculatedasfollows:

where Wfss istheweightoffilterwithsuspendedsolids, Wf istheweightofthefilter,and Vs isthevolumeofsample.

Theentireprocesstakesabout2hormoreanddoesnotlenditselftoinstantaneous,continuousmeasurements.See ASTMD5907,EPAMethod10.2,StandardMethods2540Dorsimilargravimetricmethodfordetailsofthelabmethod (“2540SOLIDS”,StandardMethodsfortheExaminationofWaterandWastewater,n.d;AmericanSocietyforTesting &MaterialsASTM,2018).TSSsamplescanbecollectedinplasticorglasscontainers.Sampleanalysisshouldbeperformedimmediatelyaftersampling;otherwise,itshouldbestoredoniceorintherefrigeratortoreducetheactivityof microorganisms,inwhichcasetheanalysisshouldbeperformedforamaximumof7days.

Oilandgrease

Thehighvolumeofoilandgreasegeneratedduringtheextractionofoilandgasisaseriouschallengeinthepetroleum industry.Thechemicalnature(toxicityandsolubility)ofthecontaminantsinthewastewaterisanotherchallenge.In petroleumwastewater,oilcanbeinthreeforms:free,dispersed,emulsion,orsoluble(Demirci,Erdogan,&Ozcimder, 1998;Zeng,Yang,Zhang,&Pu,2007).Inpetroleumwastewater,totaloilandgrease(TOG)havedifferentconcentrations(100 2000ppm).Inmonitoringoilpollutantsinpetroleumwastewater,twoissuesofmeasuringtheirconcentrationandanalyzingthechemicaltransformationsofpetroleumhydrocarbonsintheenvironmentshouldbeconsidered. Ingeneral,theTOGinpetroleumwastewatercanbemeasuredbygravimetryandinfraredspectroscopy(Karyakin& Galkin,1995;NationalEnvironmentalCouncil(CONAMA),1986;Vorontsov,Nikanorova,&Dorokhov,1998). Gravimetricmethods,suchasMethod413.1andStandardMethod5520BfromtheUSEPA,involveliquid liquid extraction(LLE)fromoilywatersamplesusing1,1,2-trichloro1,2,2-trifluoroethane(CFC-113),acompoundthat severelydepletesozoneintheatmosphere(Cirne,Boaventura,Guedes,&Lucas,2016).

Anewgravimetricmethod,Method1664,hasbeendevelopedbytheEPAspecificallytomeasureoilandgreasein oilwastewater.Inthismethod,hexaneisusedasanalternativeextractionsolvent.Thismethodislessexpensiveand lessharmfultotheenvironmentthantheLLEfordeterminingoilandgreaseinwastewatersamples.Inthismethod,the useofdifferentconcentrationsofsolventandextractionmethodssuchassolid-phaseextraction(SPE)isallowed.Inthe SPEmethod,fasteranalysisisdone,eventhoughotherstepsarenecessarytopreventthecloggingofSPEcartridges whenusedonaqueoussamplescontaininghighlevelsofparticles.Therefore,thesuccessfulapplicationofMethod 1664dependsonsatisfyingmanyqualitycontrolparameters,whicharehardtoachieve(Cirneetal.,2016).

ThemethodformeasurementofTOGbyinfraredspectrometrytypicallyusesaHoribaOCMA-350analyzer.Inthis method,hydrocarbonsinwastewaterareusedtomeasurecontamination(Gonzalez,Teixeira,&Lucas,2004).This instrumentoperatesonthetechniqueofenergyabsorptionintheinfraredspectrum,withawavelengthrangefrom3.4 to3.5 µm.Becauseinthisdevice,theamountofenergyabsorbedisrelatedtotheconcentrationofhydrocarbonspresent inthewastewatersamples,soitonlymeasuresC Hbonds.Becausewatercanabsorbenergyintherangeof 3.4 3.5 µm,wemustuseawater-insolublesolventtoextracthydrocarbonsandalsodoesnotabsorbenergywavelengthsinthisrange.

ResearchershavesuggestedtheS-316solvent(anoligomerbasedonpoly(trifluoroethylene)),whichhasthedisadvantageofbeingveryexpensive.Ofcourse,carbontetrachloridecanbeusedinsteadofS-316,whichischeaperbut verytoxic.Also,toachievereliableresults,thedevicemustbecalibrated.Therefore,acalibrationsolutionshouldbe preparedaccordingtothestandardformulaofthemanufacturerandthecalibrationrangeshouldbedefined(0 50or 0 200mgL 1).Therefore,itisimportanttoevaluateothermethodstodetermineTOGconcentration(Cirneetal., 2016).

Crudeoilcontainsawiderangeofcontaminants,sothereareseveralothermethodsformeasuringTOGinpetroleumwastewater,includingcolorimetry,spectrofluorimetry,gaschromatography(GC)combinedwithmassspectrometry,andhigh-performanceliquidchromatography(HPLC).Eachofthesemethodscandetectallorsomeofthe contaminantsinpetroleumwastewater(Minty,Ramsey,&Davies,2000).

GCisananalyticaltechniqueusedtoseparatethechemicalcomponentsofasamplemixtureandthendetectthem todeterminetheirpresenceorabsenceand/orhowmuchispresent.Thesechemicalcomponentsareusuallyorganic

moleculesorgases.Theseparationisbasedonthedifferencesinthespeedwithwhichthesecomponentsarecarriedin thefixedphasebytheflowofamobileliquidorgasphase.ThestationaryphaseinGCisthepartofthesystemwhere themobilephasewillflowanddistributethesolutesbetweenthephases.Thestationaryphaseplaysavitalrolein determiningtheselectivityandretentionofsolutesinamixture.Tomonitortheoutflowfromthecolumn,adetector canbeused.Wheneachchemicalcompoundleavesthecolumn,itisdetectedandrecognizedelectronically,andthe quantitycanalsobedetermined.Generally,thesubstancesareidentified(qualitatively)bytheorderinwhichthey emergefromthecolumnandbytheretentiontimeofthecolumn(Cirneetal.,2016).

Incolorimetryorvisiblespectrophotometry,asolutionisusedtomeasuretheabsorptionofelectromagneticradiationintheultraviolet(UV)-visibleregion.Basedonthis,usefulinformationcanbeobtainedregardingtheconcentration ofchemicalspeciesintheeffluentsample.

Thespectrophotometerisaninstrumentthatmeasurestheamountoflightthatasampleabsorbs.Thespectrophotometerworksbypassingalightbeamthroughasampletomeasurethelightintensityofasample.Photometersemploy afilter,togetherwithatransducer,toselectthewavelengthwithsuitableradiation.Spectrophotometershaveasignificantadvantagebecausethewavelengthcanbechangedcontinuously,makingitpossibletorecordanabsorptionspectrum.Inaddition,photometersareverysimple,robust,andcheap.ThespectrophotometersworkintheUV-visible region,whereasphotometersareusedinthevisibleregion.Photometersarewidelyusedasdetectorsforelectrophoresis, chromatography,immunoassays,orcontinuousflowanalysis(Aversa,Queiros,&Lucas,2014;Queiros,Clarisse,& Oliveira,2006).

Nitrate

Thehighestoxidationstateofnitrogenisnitrate.Itmayoccurinwastewaterduetotheoxidationoforganicnitrogento ammoniaandthentonitrateandthentonitrate.Nitrateatlevelsabove105mgL 1 asNcancauseanillness.Nitrogen isalsooneofthefertilizingessentialelementsofthegrowthofalgae.Amongtheexistingtechnologiesfornitrate removal,physicochemicaldenitrification,biologicalandchemicalreductionshavebeennoticeable.Sampleswithavolumeofatleast100mL,arecollectedinglassorplasticbottles.Samplesshouldbeanalyzedassoonaspossibleafter collection(within1h),butmaybestoredat4 Cforupto24h.Forstorage,upto7days,preservethesampleswith 2mLconcentratedsulfuricacidperliterandstorethemat4 C(Pereraetal.,2012).

Biochemicaloxygendemand

DeterminationofBODisextremelydifficultbecausetherearesomanyvariablefactorsthataffecttheoutcome.The BODdistilledwatermustbeaeratedandnoncontaminatedandthepHenvironmentmustbeacceptable(6.5 7.5).In theBODtest,severalimportantfactorssuchastemperature,theactivityofmicroorganisms,andtheconcentrationof wastematerialshouldbeconsidered.Microorganismsmustbealive,incubationtemperaturemustbeconstantandcontrolled,andwasteconcentrationmustbeacceptable.Wastewatersamplesmustbefreeoftoxicsubstances.Thestrength oftheeffluentsampleshouldbesuchastoreduceatleast2mgL 1 ofdissolvedoxygen,butatleast1mgL 1 should remaininthesample.Asaresult,theBODtestmustprovidetheidealconditionsforthegrowthofmicroorganismsso thatmicroorganismscaneffectivelyconsumedigestibleorganicmatter.IntheBODtest,microorganismsconsumeall organicmatter.InaBODbottle,theorganicmatterinthesampleisaddedtodilutewatercontainingnutrients,oxygen, andmicroorganisms,thenthesampleiskeptat20 Cfor5days.Initially,thenumberofmicroorganismsissmall,but duetotheexcellentenvironmentalgrowthconditions,theirpopulationincreasesrapidlyandtheyenterthelogarithmic reproductivestageandconsumeallorganicmatter.Duetotheneedformicroorganismstoconsumeoxygen,theamount ofoxygenconsumptionalsoincreases.IftheBODbottleisclosedtightly,thenthemicroorganismsuseonlytheoxygen insidethebottle.Therefore,withinafewdays,thegrowthofmicroorganismsentersthelogarithmicstageandwiththe digestionoforganicmatter,alargeamountofoxygenisconsumed.OnthefourthdayoftheBODtest,themicroorganismsenterastablegrowthphasebecausetheamountoforganicmatterislimited,andtheycanhardlymaintainthepopulationofmicroorganisms.Byreducingtheamountoforganicmatter,thepopulationofmicroorganismsdecreased,so therateofoxygenconsumptionalsodecreases.Atthisstage,byreducingtheorganicmatter,microorganismsenterthe endogenousstage.Theyusetheirinternalreservesandtheirpopulationisdeclined.TheBODtestexpressesthetotal amountoforganicmatterconsumedin5days.Completestabilizationofawastewatersamplerequires20dayssince mostoftheorganicmatterisconsumedinthefirst5days,sothelatterisdefinedasthestandardincubationperiod (Dinceretal.,2008;Pereraetal.,2012).

Chemicaloxygendemand

CODisanimportantwastewaterqualityparameterbecausesimilartoBOD,itprovidesanindextoassesstheeffectdischargedwastewaterwillhaveonthereceivingenvironment.HigherCODlevelsmeanagreateramountofoxidizable organicmaterialinthesample,whichwillreducedissolvedoxygen(DO)levels.AreductioninDOcanleadtoanaerobicconditions,whichisdeleterioustohigheraquaticlifeforms.CODisatestthatmeasurestheamountofoxygen requiredtochemicallyoxidizetheorganicmaterialandinorganicnutrients,suchasammoniaornitrateinthe wastewater.ItisoftenusedasanalternativetoBODduetotheshorterlengthoftestingtime.Themostimportantdisadvantagesofoxygentestingarethepresenceofhazardousandtoxicchemicals.CODtestingisoftenusedtomeasure contaminantsinwastewaterandwatersamples.Inmunicipalwastewater,theBODcontentofthesamplerepresents 50% 60%oftheCODcontent.Thepresenceoftoxicsubstancesorindustrialwastewatercanchangethisratio.Similar totheBODtest,thistestusesoxygentooxidizeorganicmatterintowaterandcarbondioxide,buttheCODtestuses chemicallyboundoxygeninthepotassiumdichromatecompound.Byusingdichromate,Cr31 ionsareproduced.The amountofCr31 ionsproduceddependsontheamountoforganicmatterinthewastewatersample.ThetraditionalCOD analysismethodisthewetchemistrymethod.Thisinvolves2-hdigestionathighheatunderacidicconditionsinwhich potassiumdichromateactsastheoxidantforanyorganicmaterialpresentinawastewatersample.Silversulfateispresentasthecatalystandmercuricsulfateactstocomplexoutanyinterferingchloride.Followingthedigestion,theextent ofoxidationismeasuredthroughindirectmeasurementofoxygendemandviaelectronsconsumedinthereductionof Cr61 toCr31.Thiscanbedonebytitrationorspectrophotometry.Collectthesamplesinglassbottles,ifpossible.The useofplasticcontainersispermissibleifitisknownthatnoorganiccontaminantsarepresentinthecontainers. Biologicallyactivesamplesshouldbetestedassoonaspossible.Samplescontainingsettleablematerialshouldbewell mixed,preferablyhomogenized,topermittheremovalofrepresentativealiquots.SamplesshouldbepreservedwithsulfuricacidtoapH , 2andmaintainedat4 Cuntilanalysis(Dinceretal.,2008).

PolyaromatichydrocarbondeterminationofPAHsintheliquidphaseisperformedusingthreecommonextractionmethods, suchasliquid liquidextraction,solid-phasemicroextraction,andsolid-phaseextraction.Inrecentyears,methodssuchas Headspacesolventmicroextraction,dispersiveliquid liquidmicroextraction,cloudpointextraction,havebeenused.

Varioussolventshavebeenusedinvariousstudiesfortheextractionofliquid liquidpolynucleararomatichydrocarbonsfrompetroleumwastewater.Thesesolventsincludehexane,dichloromethane,carbontetrachloride,andcyclohexane.Accordingtorecentstudies,hexanehasbeenidentifiedasthemostsuitablesolvent(Tony,Purcell,&Zhao, 2012).Hexane,ahighlyvolatilesubstance,haslowsolubilityinwater(13mgL21 at20C)andadensityof0.6548g mL21,anditiscompatiblewiththetechniqueofanalysis.

Theanalyticaltechniquesbasedonliquidorgaschromatographyareusedtodetermineanddetecttheamountof PAHs.PAHsaremuchmoresuitableforliquidchromatographybecausetheyhavelesssolubilityinwaterandtheirvolatilitydecreaseswithincreasingmolecularweight(Gocan&Cobzac,2006).

Totalorganiccarbon

ThereareseveralmethodstodetermineTOC.ThetwomaincomponentsrequiredtomeasureTOCaretoconvertthe organiccarbonintocarbondioxide(CO2)andthemeanstodetectCO2.Thethreeprimaryoxidationmethodsmost commonlyusedarechemicalagents,high-temperaturecombustion,andphotocatalytic.Allthreemethodshaveprovided acceptableresults.

Thechemicalagentmethodisknownasthepersulfateornondispersiveinfrared(NDIR)sensorprocess,whichcan beaccomplishedthrougheitherpersulfateoxidationwithUVlightandirradiationactivation,orthroughthealternative process,whichisknownasheatedpersulfateoxidation.

ThesecondmethodtodetermineTOCisknownasthehigh-temperaturecombustion(catalytic)process.ThisprocessmeasuresTOCbyheatingasampleinahigh-temperaturefurnacewithacobaltorplatinumcatalyst.

ThethirdmethodtodetermineTOCisphotocatalyticorUVlight.TheUVlightprocessoxidizesthecarboninto CO2 gas.TherearemultiplemanufacturersofTOCanalyzersusingallthreeofthesemeasurementmethods.Allthe productshavetheiradvantagesanddisadvantagesdependingonthespecificapplication,locationoftheinstrument,etc.

ATOCanalyzer,forexample,theoneshownbefore,utilizestheUVpersulfateoxidationmethod,whichdetects generatedCO2 usingitsNDIRdetectorforanalysis.ThismethodandtheanalyzerconformtostandardssetbyUS EPA,DIN,CE,ASTM,andNAMURregulations,aswellasISO.

TousethistypeofTOCanalyzer,thewatersamplefirstisacidifiedandthenspargedtoremoveinorganiccarbon. Theremainingliquidismixedwithsodiumpersulfateanddigestedbytwohigh-performancereactors.Theresulting

CO2 isthenstrippedfromtheliquidand,afterdrying,itsconcentrationismeasuredbytheNDIRanalyzer.Theanalyzer measuresTOCrangingfrom0 5to20,000mgL 1 (Aljuboury,Palaniandy,Aziz,&Feroz,2014).

References

“2540SOLIDS”,StandardMethodsfortheExaminationofWaterandWastewater.(n.d).Availablefrom https://doi.org/10.2105/SMWW.2882.030

Abdelwahab,O.,Amin,N.K.,&El-Ashtoukhy,E.S.Z.(2009).Electrochemicalremovalofphenolfromoilrefinerywastewater. Journalof HazardousMaterials, 163(2 3),711 716.Availablefrom https://doi.org/10.1016/j.jhazmat.2008.07.016

Abdulredha,M.M.,SitiAslina,H.,&Luqman,C.A.(2020).Overviewonpetroleumemulsions,formation,influenceanddemulsificationtreatment techniques. ArabianJournalofChemistry, 13(1),3403 3428.Availablefrom https://doi.org/10.1016/j.arabjc.2018.11.014.

Al-Futaisi,A.,Jamrah,A.,Yaghi,B.,&Taha,R.(2007).Assessmentofalternativemanagementtechniquesoftankbottompetroleumsludgein Oman. JournalofHazardousMaterials, 141(3),557 564.Availablefrom https://doi.org/10.1016/j.jhazmat.2006.07.023

Altas,L.,&Buyukgungor,H.(2008),Sulfideremovalinpetroleumrefinerywastewaterbychemicalprecipitation. JournalofHazardousMaterials, 153,462 469.

Aljuboury,D.D.A.,Palaniandy,P.,Aziz,A.,&Feroz,H.B.(2014).Organicpollutantsremovalfrompetroleumrefinerywastewaterwithnanotitania photo-catalystandsolarirradiationinSoharoilrefinery. JournalofInnovativeEngineering, 2(3),1 12.

AmericanSocietyforTestingandMaterials(ASTM),D5907-18,StandardTestMethodsforFilterableMatter(TotalDissolvedSolids)and NonfilterableMatter(TotalSuspendedSolids)inWater,ASTMInternational,WestConshohocken,PA,2018, www.astm.org Aversa,T.,Queiros,Y.,&Lucas,E.(2014).Synthesisandsulfonationofmacroporouspolymericresinsandtheirassessmentforremovalofoiland anilinefrom. Water.Polimeros, 24,45 51.Availablefrom http://dx.doi.org/10.4322/polimeros.2013.048.

Bakke,T.,Klungsøyr,J.,&Sanni,S.(2013).EnvironmentalimpactsofproducedwateranddrillingwastedischargesfromtheNorwegianoffshore petroleumindustry. MarineEnvironmentalResearch, 92,154 169.Availablefrom https://doi.org/10.1016/j.marenvres.2013.09.012.

Barthe,P.,Chaugny,M.,Roudier,S.,&Sancho,L.D.(2015). EUbestavailabletechniques(BAT):Referencedocumentfortherefiningofmineral oilandgas.Luxembourg.:PublicationsOfficeoftheEuropeanUnion. Chen,Y.C.(2018).Evaluatinggreenhousegasemissionsandenergyrecoveryfrommunicipalandindustrialsolidwasteusingwaste-to-energytechnology. JournalofCleanerProduction, 192,262 269.Availablefrom https://doi.org/10.1016/j.jclepro.2018.04.260.

Cirne,I.,Boaventura,J.,Guedes,Y.,&Lucas,E.(2016).Methodsfordeterminationofoilandgreasecontentsinwastewaterfromthepetroleum industry. ChemistryandChemicalTechnology, 10(4),437 444.Availablefrom https://doi.org/10.23939/chcht10.04.437.

Demirci,S.,Erdogan,B.,&Ozcimder,R.(1998).Wastewatertreatmentatthepetroleumrefinery,Kirikkale,Turkeyusingsomecoagulantsand Turkishclaysascoagulantaids. WaterResearch, 32(11),3495 3499.Availablefrom https://doi.org/10.1016/S0043-1354(98)00111-0.

Dincer,A.R.,Karakaya,N.,Gunes,E.,&Gunes,Y.(2008).RemovalofCODfromoilrecoveryindustrywastewaterbytheadvancedoxidationprocesses (AOP)basedonH2O2. GlobalNestJournal, 10(1),31 38.Availablefrom http://ast.gnest.org/Journal/Vol10_No1/31-38_479_DINCER_10-1.pdf.

Diya’Uddeen,B.H.,Daud,W.M.A.W.,&AbdulAziz,A.R.(2011).Treatmenttechnologiesforpetroleumrefineryeffluents:Areview. Process SafetyandEnvironmentalProtection, 89(2),95 105.Availablefrom https://doi.org/10.1016/j.psep.2010.11.003.

El-Naas,M.H.,Al-Zuhair,S.,&Alhaija,M.A.(2010).ReductionofCODinrefinerywastewaterthroughadsorptiononDate-Pitactivatedcarbon. JournalofHazardousMaterials, 173(1 3),750 757.

El-Naas,M.H.,Alhaija,M.A.,&Al-Zuhair,S.(2014).Evaluationofathree-stepprocessforthetreatmentofpetroleumrefinerywastewater. Journal ofEnvironmentalChemicalEngineering, 2(1),56 62.Availablefrom https://doi.org/10.1016/j.jece.2013.11.024.

Farajnezhad,H.,&Gharbani,P.(2012).Coagulationtreatmentofwastewaterinpetroleumindustryusingpolyaluminumchlorideandferricchloride. InternationalJournalofResearchandReviewsinAppliedSciences,13,306 310.

Gasim,H.A.,Kutty,S.R.M.,Hasnain-Isa,M.,&Alemu,L.T.(2013).Optimizationofanaerobictreatmentofpetroleumrefinerywastewaterusing artificialneuralnetworks. ResearchJournalofAppliedSciences,EngineeringandTechnology, 6(11),2077 2082. Gocan,S.,&Cobzac,S.(2006). Modernmethodoforganicsamples’processing.Cluj-Napoca,Romania:Risoprint. Gonzalez,G.,Teixeira,C.,&Lucas,E.(2004).Theuseofpolymersinthetreatmentofproducedoilywaters. JournalofAppliedPolymericScience, 94,1473 1479.

Hasan,D.U.B.,AbdulAziz,A.R.,&Daud,W.M.A.W.(2012).OxidativemineralisationofpetroleumrefineryeffluentusingFenton-likeprocess. ChemicalEngineeringResearchandDesign, 90(2),298 307. He,Y.,&Jiang,Z.W.(2008).Technologyreview:Treatingoilfieldwastewater. FiltrationandSeparation, 45(5),14 16.Availablefrom https://doi. org/10.1016/S0015-1882(08)70174-5

Honse,S.O.,Ferreira,S.R.,Mansur,C.R.E.,Lucas,E.F.,&Gonza ´ lez,G.(2012).Separationandcharacterizationofasphaltenicsubfractions. QuimicaNova, 35(10),1991 1994.Availablefrom https://doi.org/10.1590/S0100-40422012001000019

Hu,G.,Li,J.,&Zeng,G.(2013).Recentdevelopmentinthetreatmentofoilysludgefrompetroleumindustry:Areview. JournalofHazardous Materials, 261,470 490.Availablefrom https://doi.org/10.1016/j.jhazmat.2013.07.069

Jafarinejad,S.(2016).Controlandtreatmentofsulfurcompoundsspeciallysulfuroxides(SOx)emissionsfromthepetroleumindustry:Areview. ChemInternational, 2(4),242 253.

Jasmine,J.,&Mukherji,S.(2015).Characterizationofoilysludgefromarefineryandbiodegradabilityassessmentusingvarioushydrocarbondegradingstrainsandreconstitutedconsortia. JournalofEnvironmentalManagement, 149,118 125.Availablefrom https://doi.org/10.1016/j. jenvman.2014.10.007

Karyakin,A.V.,&Galkin,A.V.(1995).Fluorescenceofwater-solublecomponentsofoilsandpetroleumproductsformingtheoilpollutionof waters. JournalofAnalyticalChemistry(Transl.ofZh.Anal.Khim.), 50,1078 1080. Kavitha,V.,&Palanivelu,K.(2004).TheroleofferrousioninFentonandphoto-Fentonprocessesforthedegradationofphenol. Chemosphere, 55 (9),1235 1243.Availablefrom https://doi.org/10.1016/j.chemosphere.2003.12.022

Lathasree,S.,Rao,A.N.,Sivasankar,B.,Sadasivam,V.,&Rengaraj,K.(2004).Heterogeneousphotocatalyticmineralisationofphenolsinaqueous solutions. JournalofMolecularCatalysisA:Chemical, 223(1 2),101 105.Availablefrom https://doi.org/10.1016/j.molcata.2003.08.032

Li,W.W.,&Yu,H.Q.(2011).Fromwastewatertobioenergyandbiochemicalsviatwo-stagebioconversionprocesses:Afutureparadigm. BiotechnologyAdvances, 29(6),972 982.Availablefrom https://doi.org/10.1016/j.biotechadv.2011.08.012

Li,X.,Cao,X.,Wu,G.,Temple,T.,Coulon,F.,&Sui,H.(2014).Ozonationofdiesel-fuelcontaminatedsandandtheimplicationsforremediation end-points. Chemosphere, 109,71 76.Availablefrom https://doi.org/10.1016/j.chemosphere.2014.03.005

Minty,B.,Ramsey,E.,&Davies,I.(2000).Developmentofanautomatedmethodfordeterminingoilinwaterbydirectaqueoussupercriticalfluid extractioncoupledon-linewithinfraredspectroscopy. Analyst, 125,2356 2363. NationalEnvironmentalCouncil(CONAMA).(1986). (ConselhoNacionaldoMeioAmbiente)—Resolutionnumber, Vol.20

Ottaviano,J.G.,Cai,J.,&Murphy,R.S.(2014).Assessingthedecontaminationefficiencyofathree-componentflocculatingsysteminthetreatment ofoilfield-producedwater. WaterResearch, 52,122 130.Availablefrom https://doi.org/10.1016/j.watres.2014.01.004

Pardeshi,S.K.,&Patil,A.B.(2008).Asimplerouteforphotocatalyticdegradationofphenolinaqueouszincoxidesuspensionusingsolarenergy. SolarEnergy, 82(8),700 705.Availablefrom https://doi.org/10.1016/j.solener.2008.02.007

Perera,F.P.,Tang,D.,Wang,S.,Vishnevetsky,J.,Zhang,B.,Diaz,D., Rauh,V.(2012).Prenatalpolycyclicaromatichydrocarbon(PAH)exposureandchildbehavioratage6 7years. EnvironmentalHealthPerspectives, 120(6),921 926.Availablefrom https://doi.org/10.1289/ ehp.1104315

Queiros,Y.,Clarisse,M.,Oliveira,R.,etal.(2006).Oilywatertreatmentusingpolymericmaterial:Use,saturationandregeneration. Polimeros, 16, 224 229.

Raza,W.,Lee,J.,Raza,N.,Luo,Y.,Kim,K.H.,&Yang.J.(2018).Removalofphenoliccompoundsfromindustrialwastewaterbasedonmembrane-basedtechnologies.JournalofIndustrialandEngineeringChemistry.(InPress. https://doi.org/10.1016/j.jiec.2018.11.024).

Saber,A.,Hasheminejad,H.,Taebi,A.,&Ghaffari,G.(2014).OptimizationofFenton-basedtreatmentofpetroleumrefinerywastewaterwithscrap ironusingresponsesurfacemethodology. AppliedWaterScience, 4,283 290.

Thakur,C.,Srivastava,V.C.,Mall,I.D.,&Hiwarkar,A.D.(2018).Mechanisticstudyandmulti-responseoptimizationoftheelectrochemicaltreatmentofpetroleumrefinerywastewater. Clean-Soil,Air,Water, 46(3).Availablefrom https://doi.org/10.1002/clen.201700624

Tony,M.A.,Purcell,P.J.,&Zhao,Y.(2012).Oilrefinerywastewatertreatmentusingphysicochemical,FentonandPhoto-Fentonoxidationprocesses. JournalofEnvironmentalScienceandHealth-PartAToxic/HazardousSubstancesandEnvironmentalEngineering, 47(3),435 440. Availablefrom https://doi.org/10.1080/10934529.2012.646136

U.S.Congress,OfficeofTechnologyAssessment,(1992).ManagingIndustrialSolidWastesfromManufacturing,Mining,OilandGasProduction, andUtilityCoalCombustion-BackgroundPaper,OTA-BP-O-82(Washington,DC:U.S.GovernmentPrintingOffice,February1992).

Usman,M.,Faure,P.,Hanna,K.,Abdelmoula,M.,&Ruby,C.(2012).Applicationofmagnetitecatalyzedchemicaloxidation(Fenton-likeandpersulfate)fortheremediationofoilhydrocarboncontamination. Fuel, 96,270 276.Availablefrom https://doi.org/10.1016/j.fuel.2012.01.017

Varjani,S.J.,&ChaithanyaSudha,M.(2018).Treatmenttechnologiesforemergingorganiccontaminantsremovalfromwastewater.InS.Bhattacharya,A. Gupta,&A.Pandey(Eds.), WaterRemediation (pp.91 115).Springer.Availablefrom https://doi.org/10.1007/978-981-10-7551-3_6

Varjani,S.J.,&Upasani,V.N.(2017).Anewlookonfactorsaffectingmicrobialdegradationofpetroleumhydrocarbonpollutants. International BiodeteriorationandBiodegradation, 120,71 83.Availablefrom https://doi.org/10.1016/j.ibiod.2017.02.006

Varjani,S.,Kumar,G.,&Rene,E.R.(2019).Developmentsinbiocharapplicationforpesticideremediation:Currentknowledgeandfutureresearch directions. JournalofEnvironmentalManagement, 232,505 513.Availablefrom https://doi.org/10.1016/j.jenvman.2018.11.043

Vendramel,S.,Bassin,J.P.,Dezotti,M.,&Sant’Anna,G.L.,Jr(2015).Treatmentofpetroleumrefinerywastewatercontainingheavilypolluting substancesinanaerobicsubmergedfixedbedreactor. EnvironTechnol, 36,2052 2205.Availablefrom https://doi.org/10.1080/ 09593330.2015.1019933

Viggi,C.C.,Presta,E.,Bellagamba,M.,Kaciulis,S.,Balijepalli,S.K.,Zanaroli,G.,&Aulenta,F.(2015).TheOilSpillSnorkel:aninnovativebioelectrochemicalapproachtoacceleratehydrocarbonsbiodegradationinmarinesediments. FrontMicrobiol, 6(881),1 11.Availablefrom https:// doi.org/10.3389/fmicb.2015.00881

Visser,J.P.,&AloisideLarderel,J.(1997). EnvironmentalManagementinOilandGasExplorationandProduction,anOverviewofIssuesand ManagementApproaches.JointE&PForum.

Vorontsov,A.,Nikanorova,M.,Dorokhov,A.,etal.(1998).Assaymethodsformonitoringthecontaminantsofnaturalwatersbypetroleumproducts. JournalofOpticalTechnology, 65,335 340.

Wang,S.,Ghimire,N.,Xin,G.,Janka,E.,&Bakke,R.(2017).Efficienthighstrengthpetrochemicalwastewatertreatmentinahybridverticalanaerobicbiofilm(HyVAB)reactor:Apilotstudy. WaterPracticeandTechnology, 12(3),501 513.Availablefrom https://doi.org/10.2166/ wpt.2017.051

Ward,O.,Singh,A.,&VanHamme,J.(2003).Acceleratedbiodegradationofpetroleumhydrocarbonwaste. JournalofIndustrialMicrobiologyand Biotechnology, 30(5),260 270.Availablefrom https://doi.org/10.1007/s10295-003-0042-4

Waseem,R.,Jechan,L.,Nadeem,R.,Yiwei,L.,Ki-Hyun,K.,&Jianhua,Y.(2019).Removalofphenoliccompoundsfromindustrialwastewater basedonmembrane-basedtechnologies. JournalofIndustrialandEngineeringChemistry,1 18.Availablefrom https://doi.org/10.1016/j. jiec.2018.11.024

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Petroleum industry wastewater : advanced and sustainable treatment methods 1st edition muftah h. el- by Education Libraries - Issuu