PetroleumIndustry Wastewater AdvancedandSustainableTreatmentMethods
Editedby
MuftahH.El-Naas GasProcessingCenter,QatarUniversity,Doha,Qatar
AditiBanerjee
KTHRoyalInstituteofTechnology,Stockholm,Sweden
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www. elsevier.com/permissions .
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-85884-7
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
EditorialProjectManager: SusanIkeda
ProductionProjectManager: PaulPrasadChandramohan
CoverDesigner: MatthewLimbert
TypesetbyMPSLimited,Chennai,India
1.Treatmentofpetroleumindustry wastewater:currentpracticesand perspectives1
MohamedH.Ibrahim,AditiBanerjeeand MuftahH.El-Naas
Introduction1
Electrochemicalmethods1
Membrane-basedmethods2
Biomaterial-basedmethods2
Biologicalmethods3
Lifecycleassessment4
Summaryandfutureperspectives4 References5
2.Chemistryofpetroleumwastewater7
FarhadQaderiandMaryamTaghizadeh
Introduction7
Petroleumwastewatercharacteristics9
Themethodsformeasuringthemain compoundsinpetroleumwastewater12
PHmeasurements12
Totalresidualchlorine12
Totalsuspendedsolids12
Oilandgrease13
Nitrate14
Biochemicaloxygendemand14
Chemicaloxygendemand15
Totalorganiccarbon15 References16
3.Concomitantdegradationof petroleumproductsandmicroplastics inindustrialwastewaterusing geneticallymodifiedmicroorganisms19
KriticaRani,PujaSingh,RiyaAgarwaland ArindamKushagra
Introduction19
Interactionofpetroluemhydrocarbonswith microorganisms21
Biodegradationofpetroleumhydrocarbons bymicroorganisms22
Aerobicdegradation22
Anaerobicdegradation23
Degradationusingbiosurfactants23
Degradationofhydrocarbonsbychemical oxidation25
Degradationusinggeneticallymodified organisms26
Degradationofcontaminantsthrough geneticallymodifiedsynthetic microorganisms27
Geobacter sp28
Ideonellasakaiensis201-F628 Vector29 Mechanism29
Fateoftheendproducts30
Conclusions30
Futureprospects31 References31
4.Constraintsandadvantagesof bacterialbioremediationofpetroleum wastewaterbypureandmixed culture35
VrutangShah,JhanviDesaiandMananShah
Introduction35
Petroleumwastewater36
Petroleumwastewatercharacteristics37
Pretreatmentprocessforbiological stabilization39
Physicaltreatment39
Chemicaltreatment40
Insitubiologicaltreatmentofpetroleum wastewater40
Bioremediation41
Anaerobicprocess41
Aerobicprocess42
Integratedbiologicalprocess43
Phytoremediation43
Commerciallyavailablebioremediationagents44
Advantagesanddisadvantagesofbiological process(usingbothpureormixedculture)44
Conclusions45
References46
5.Prospectsofgreentechnologyinthe managementofrefinerywastewater: applicationofbiofilms51
TaghreedAl-Khalid,RihamSurkattiand MuftahH.El-Naas
Introduction51
Pollutionproblem51
Overviewoftreatmentoptions52
Biotreatmentasagreentechnology53
Biotreatmentoptionsforrefinerywastewater53
Conventionalbiotreatmentwithfreeor suspendedbacterialcultureactivatedsludge process(ASP)54
Immobilization:whyneeded?55
Theroleofacclimatization57
Immobilized-biofilmapplication58
Biotreatmentbyfilmattachment(surface immobilization)58
Biotreatmentbycellentrapment62
Conclusions66
Acknowledgments66 References66
6.Algalbioremediationversus
conventionalwastewatertreatment71
FaresAlmomani,AbdullahOmarand AhmedM.D.Alketife
Introduction71
ConventionalWwtreatmenttechnologies72
AdvancedWwtreatmenttechnologies72
AlgalcultureforWwtreatmentsystems73
Algalgrowthsystems75
Bioaccumulationandbioassimilation78
Algaeharvesting82
Conclusions83 References84
7.Applicationofmicroalgaein wastewatertreatment:simultaneous nutrientremovalandcarbondioxide bio-fixationforbiofuelfeedstock production87
FaresAlmomani,AbdullahOmarand AhmedM.D.Alketife
Background87
Algaeandwastewatertreatment89
Wastewaterorigin89
Industrialwastewatertreatment89
WastewaterfromfoodIndustry89
Wastewaterfromagriculturalactivities92
Wastewaterfromtextileindustry93
Wastewaterfrompharmaceuticalindustries94
Algaeandenergyproduction95
Algaeandbiofuelproduction96 References98
8.Membrane-basedtreatmentof petroleumwastewater103
AbdelrahmanM.Awad,RemJalab, MustafaS.NasserandIbnelwaleedA.Hussein
Wastewaterinthepetroleumindustry103
Implementationofmembraneprocessesas advancedtreatmentmethods104
Performanceofmembraneprocessesforthe treatmentofpetroleumwastewater106
Treatmentwithpressure-drivenprocesses106
Treatmentwithosmosis-drivenprocesses109
Treatmentwiththermallydrivenprocesses112
Treatmentwithelectricallydrivenprocesses113
Existingchallengesandpotentialsof membrane-basedprocesses116
Sustainabilityconsiderationofmembrane processes118
Conclusions118
References119
9.Managementofpetroleum wastewater:comparativeevaluation ofmodernandtraditional techniques123
S.JoshiandS.Bhatia
Introduction123
Typesofwastegeneratedinoilrefineries123 Oiledmaterials123 Producedwaters124
Causeandeffectofoilwaste124 Methodsandrecommendationsfor sustainablemanagementofwastewater124
Physicalmethods125
Chemicalmethods130
Biologicaltreatmentofpetroleumeffluent134
Electrochemicaltreatmentofpetroleum effluent137
Combinationofphysical,chemical, biological,andelectricalmethods141 Conclusions141 References142
10.Nanocompositematerial-based catalyst,adsorbent,andmembranes forpetroleumwastewater treatment147
MuneerM.Ba-Abbad,EbrahimMahmoudi, AbdelbakiBenamorand AbdulWahabMohammad
Introduction147
Applicationofsorptionforpetroleum wastewatertreatment147
Nanocatalysis,andtheircompositeas adsorbents148
Methodsofnanocompositesynthesisas adsorbents149
Metalnanocomposites149
Ceramicnanocomposites149
Polymernanocomposites149
Carbon-basednanocomposite149
Organicandinorganic-basedcomposite adsorbents149
Applicationofgreenadsorbentsinpetroleum wastewatertreatment150
Cellulosicmaterials-basedgreenadsorbent151
In-depthmechanismofpollutantsadsorption inpetroleumwastewaterfield152
Applicationofmembranetechnologyfor petroleumwastewatertreatment153
Polymericmembranefabrication154
Modificationpolymericmembrane154
Conclusions157
References157
11.Treatmentofpetroleumwastewater usingsolarpower-based photocatalysis161
FarhadQaderiandSabaAbdolalian
Introduction161
Petroleumwastewater161
Petroleumwastewatercharacteristics162
Petroleumwastewatertreatmenttechnology163
Photocatalysis164
Fundamentalsandtreatmentmechanisms165
Bestphotocatalysts165
Nanotechnologyandphotocatalysis166
Factorsinfluencingphotocatalysis167
Limitations167
Conclusions168 References168
12.Electrochemicaltreatmentof petroleumwastewater:standalone andintegratedprocesses171
OmarKhalifa,FawziBanatandShadiW.Hasan
Introduction171
Electrochemicalprocessesfundamentals171
Electrochemicalprocessesinwatertreatment172
Electrooxidation174
Electrocoagulation175
Electroflotation176
Electrochemical-basedhybridandintegrated processes177
Electrochemical-basedadvancedoxidation processes178
Electrochemical-assistedmembrane processes178
Electro-biologicaltreatment179
Challengesandoutlook180 References181
13.Theviableroleofactivatedcarbon fortheeffectiveremediationof refineryandpetrochemical wastewaters185
K.L.TanandKengYuenFoo
Introduction185
Classification,uniquecharacteristics,and applications185
Preparationofactivatedcarbon187
Activatedcarbonfromrenewablefeedstocks andindustrialwaste190
Potentialrolesofactivatedcarbonforthe treatmentofrefineryandpetrochemical wastewaters190
Adsorbent190
Catalystandcatalystsupport191
Growthmedium192
Biochar—aderivativeofactivatedcarbon forthetreatmentofrefineryand petrochemicalwastewaters192
Recentadvancesintheactivated carbon-assistedhybridtreatment technology193
ACforprimarytreatment193
Activatedcarbonforsecondarytreatment193
Activatedcarbonfortertiarytreatment195
Regenerationandreusability198
Perspectiveandoutlook199
Conclusions200
References200
14.Life-cycleassessmentandcost-benefit analysisofpetroleumindustry wastewatertreatment205
YuhNienChowandKengYuenFoo
Introduction205
Anoverviewonlife-cycleassessment206
Life-cyclephases207
Goalandscopedefinition207
Life-cycleinventoryanalysis208
Life-cycleimpactassessmentand interpretation209
Life-cycleimpactassessmentofpetroleum wastewatertreatment210
Globalwarming210
Aquaticeutrophication210
Freshwaterandmarineecotoxicity210
Freshwaterconsumption211
Acidification,photooxidantformation, abioticdepletion,andparticulatematter pollution211
Energydemand212
Challengesandresearchgapsforlife-cycle assessmentofwatertreatmenttechnology212
Economicefficiencyanalysis212
Capitalexpenditure214
Operatingexpenditure214
Break-evenpointandpaybackperiod218 Concludingremarks219 References220
15.Sustainabilityofwastewater treatment223
NaimRashid,SnigdhendubalaPradhanand HamishR.Mackey Background223
Characteristics223
Impactonenvironmentalandhumanhealth224
Sustainability225
Treatmenttechnologies226
Physicochemicaltreatment226
Biologicaltreatment232
Sustainabilityofpetroleumindustry wastewatertreatment236
Existinglifecycleassessmentsforpetroleum industrywastewatertreatment237
Recoveryofvariousresourcesfrom petroleumindustrywastewater239 Water239
Organics,inorganics,andnutrients239 CO2 captureandemissionreduction241 Futureperspective241 Conclusions242 Acknowledgments242 References242
16.Circulareconomyinpetroleum industries:implementing WaterClosedLoopSystem249
Mohammad-HosseinSarrafzadeh
Industrialwaterandwastewater249
Waterandwastewaterinoiland gasindustries250 Principlesofcirculareconomy252 Waterclosed-loopsystem;theoriesand concept253
Casestudyinoilindustry255
Conclusionandrecommendations260 References261
Index263
Lifecycleassessment
Thelifecycletechniqueisamethodologyfortheeconomicandenvironmentalassessmentofproducts,services,orprocesses.Lifecycleassessment(LCA)andlifecyclecostanalysis(LCCA)areusedtoconductenvironmentalandeconomicevaluations.Boththesemethodologiesareusedtoevaluateandmeasuretheeffectivenessofeverystageof product,process,orservice(environmentallyandeconomically).LCCAandLCAwereoriginallyemployedduringthe late1900sinthefieldofwastewatertreatment.Sincethen,thenumberofpublicationsexaminingtheenvironmental andeconomicanalysesoftechnologies,facilities,andprocesseshasbeenexpandingduringthepasttwodecades. Severalapproachesandframeworkswereusedtoexaminetheenvironmentalandeconomicimplications.LCCAisa helpfultooltoestimatethelargereconomiceffectofthedesign,construction,andoperationaldecisions;nonetheless,it isnecessarytofullyexaminethevariousapproachesandframeworksusedinLCCAtofindbestpracticesandthelatest stateoftheart.
Thepetroleumrefiningprocessconsumesaconsiderableamountofwater.ThetypicalEuropeanrefineryutilizes 5.9m3 pertonoffeed(Barthe,Chaugny,Roudier,&Sancho,2010).Thewaterisusedfordifferentprocesses,such asdistillation,cracking,steamgeneration,andprocesscoolingpurposes.Thereforesubstantialamountsofwastewater aregenerated.Itisestimatedthatasinglerefinerythatconsumes400 1000m3 h 1 ofrawwatercangenerate 200 600m3 h 1 ofwastewaterthatneedstobetreatedordischarged(Nabzar,2011).Thegeneratedwaterconsistsofa complexmixtureofdifferentpollutantssuchasaromatichydrocarbons,emulsifiedoil,andgreaseaswellasinorganic substances,includingammonia,sulfides,andcyanides(TaghreedAl-Khalid&Muftah,2017).Asdiscussedearlierin thischapter,therearedifferenttreatmentmethodsthatcanbeusedtotreatthegeneratedwastewater.However,there arenumerousdriversthatarepushingthepetroleumrefiningindustryfromthetreatmentapproachtothereuseapproach suchasgovernmentregulationsandwaterscarcity.Theregulationscanbedifferentdependingontheregion;nonetheless,thereisageneraltrendofhavingmorestrictlegislationthatadvocatesforwaterreuse(Mun ˜ ozetal.,2020).In addition,thecountriesthathavethehighestoilproductionhappentobelocatedinwater-stressedregionswhichfurther necessitiestheneedforwaterreuse.Hence,selectingthemostappropriatetechnologyorcombinationoftechnologiesis paramounttosuccessfulwaterreuse.Thisrequiresacomprehensiveselectioncriterionthatcanassessthetechnicalperformanceandenvironmentalsustainabilityofthedesiredtechnology.Thelatterisoftendeterminedbythemeansof LCAthatcanprovideacompleteassessmentofthedirectandindirectpossibleenvironmentaleffectsofacertaintechnology.LCAexaminesthelifecycleoftheprocessinacomprehensiveway.Nonetheless,LCAworkintheareaofthe oilandgasindustryisconsideredtoberatherlimitedandscarce.
Vlasopoulos,Memon,Butler,andMurphy(2006) discussedtheenvironmentalimpactsof20oilywatertreatment technologiesthatcantreatthewatertobesuitableforreuseinotherindustriesorforagriculturalpurposes.Itisworth notingthatthestudymainlyfocusedonPWratherthanpetroleumrefinerywastewater.Moreover,Ronquimetal.optimizedtheperformanceofareverseosmosissystemtotreatandthenreusetherefinerywastewaterincoolingtowers. Nonetheless,thestudydidnotconsidertherawrefinerywastewaterbutratheralreadytreatedwaterthatcanbedischarged(Ronquim,Sakamoto,Mierzwa,Kulay,&Seckler,2020).Munozetal.carriedoutanLCAonwastewaterreuse inapetroleumrefineryinTurkey.Thestudyaimwastodetermineifrefinerywastewaterreuseinseveralutilitiesin theindustrysuchascoolingwatercanleadtooveralleconomicbenefitinadditiontotheenvironmentalone(Mun ˜ oz etal.,2020).
Summaryandfutureperspectives
Wastewatertreatmentprocessesandmethodologiesneedtobeinnovativetomaintainefficienttreatment.Combining varioustechnologieswillconsiderablyimprovetheperformanceofthetreatmentprocess.Whilecombiningdifferent technologiesmaybequiteproductive,morestudiesandrealfieldimplementationsareneededtoaddressthescaleand effectivenessoftheintegrationofmultipletechnologies.Mostoftherecentresearchonwastewatertreatmenthasbeen conductedatthelaboratoryscalewithalimitednumberofstudiesatthebenchorpilotscale.Inaddition,thevast majorityoftheresearchworkusedsimulatedwaterratherthanrealwastewater.Selectingacertaintreatmenttechnology mainlydependsonthecompositionandpropertiesofthewastewater.Forexample,ifthewastewatercontainshighly resistivecontaminants,abiologicaltreatmenttechniquewouldbemoresuitable.Thiscanbefollowedbyatertiary/polishingsteptoensurethecompleteremovalofthecontaminants.Thereareseveraltechniquesthatprovedtobeeffective forthetreatmentofhighlycontaminatedpetroleumwastewaterincludingelectrochemical,biological,andmembranebasedtechniques.Despitetheireffectivenessinthetreatmentprocess,theystillsufferfromdrawbacksthatmustbe addressedinfutureresearch.
ElectrochemicaltechniquesconsistofdifferenttechnologiessuchaselectrooxidationandEC.ECisconsidered tobethemostapplication-readytechnologyforthetreatmentofrefinerywastewater(Moussa,El-Naas,Nasser,&AlMarri,2017).Nonetheless,itcansufferfromseveraldisadvantagessuchaselectrodepassivation.Thiscanbemitigated bythefrequentcleaningofelectrodesorusingdifferentelectrodedesignsthatcanreducepassivation(Ibrahim, Moussa,El-Naas,&Nasser,2020).Combiningseveralelectrochemicaltreatmenttechniquesisthemostusedapproach intheliteraturetotreatrefinerywastewater.Membrane-basedtechnologieshavethepotentialtobethemostsuccessful technologyforrefinerywastewatertreatment.Membranesareversatileandcanbefabricatedwithspecificproperties thatcansuitdifferentcompositionsofwastewater.Nonetheless,membranefoulingisamajorchallengeforthetechnologytoovercome.Foulingcanbemitigatedbyusingcleaningchemicalsbutattheexpenseofoperatingcosts. Thereforetheresearchdirectionintheliteratureistomitigatemembranefoulingbymodifyingthemembranesurface. Cellulose-derivedmaterialsarealsoinvestigatedintheliteraturefortreatingpetroleumwastewater.Thisismainlydue totheirabilitytoformabondwiththeoilycontaminantswhichfacilitatestheirremoval.Biologicaltreatmenttechniqueshavebeenveryeffectiveindealingwithhighlycontaminatedpetroleumwastewaterandhavebeencharacterized bytheirsimplicity,lowoperatingandmaintenancecost,andabilitytodegradecomplexhydrocarbons.However,biotreatmentisoftenconsideredtobeslowandrelativelysensitivetooperatingconditions.LCAisratheranimportant toolinevaluatingthelong-termsustainabilityofthetreatmentprocess.Nonetheless,itsuseintheareaofpetroleum refinerywastewaterisoftenlimited.Hence,moreLCAisrequiredforbetterlong-termevaluationofspecifictreatment technology.
References
Ahmad,N.A.,Goh,P.S.,Karim,Z.A.,&Ismail,A.F.(2018).Thinfilmcompositemembraneforoilywastewatertreatment:Recentadvancesand challenges. Membranes, 8(4).Availablefrom https://doi.org/10.3390/membranes8040086.
Banerjee,A.,&Ghoshal,A.K.(2017).Biodegradationofanactualpetroleumwastewaterinapackedbedreactorbyanimmobilizedbiomassof Bacilluscereus. JournalofEnvironmentalChemicalEngineering, 5(2),1696 1702.Availablefrom https://doi.org/10.1016/j.jece.2017.03.008. Barthe,P.,Chaugny,M.,Roudier,S.,&Sancho.(2010). Bestavailabletechniques(BAT)referencedocumentfortherefiningofmineraloilandgas. IndustrialEmissionsDirective.Availablefrom https://doi.org/10.2791/010758.
Bhumibhamon,O.,Koprasertsak,A.,&Funthong,S.(2002).Biotreatmentofhighfatandoilwastewaterbylipaseproducingmicroorganisms. AgricultureandNaturalResources, 36(3),261 267.
Bratskaya,S.,Avramenko,V.,Schwarz,S.,&Philippova,I.(2006).Enhancedflocculationofoil-in-wateremulsionsbyhydrophobicallymodified chitosanderivatives. ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects, 275(1 3),168 176.Availablefrom https://doi.org/ 10.1016/j.colsurfa.2005.09.036.
DiCaprio,F.,Altimari,P.,&Pagnanelli,F.(2015).Integratedbiomassproductionandbiodegradationofolivemillwastewaterbycultivationof Scenedesmus sp. AlgalResearch, 9,306 311.Availablefrom https://doi.org/10.1016/j.algal.2015.04.007.
Dickhout,J.M.,Moreno,J.,Biesheuvel,P.M.,Boels,L.,Lammertink,R.G.H.,&deVos,W.M.(2017).Producedwatertreatmentbymembranes: Areviewfromacolloidalperspective. JournalofColloidandInterfaceScience, 487,523 534.Availablefrom https://doi.org/10.1016/j. jcis.2016.10.013.
El-Naas,M.H.,Alhaija,M.A.,&Al-Zuhair,S.(2014).Evaluationofathree-stepprocessforthetreatmentofpetroleumrefinerywastewater. Journal ofEnvironmentalChemicalEngineering, 2(1),56 62.Availablefrom https://doi.org/10.1016/j.jece.2013.11.024
El-Naas,M.H.,Al-Muhtaseb,S.A.,&Makhlouf,S.(2009).Biodegradationofphenolby Pseudomonasputida immobilizedinpolyvinylalcohol (PVA)gel. JournalofHazardousMaterials, 164(2 3),720 725.Availablefrom https://doi.org/10.1016/j.jhazmat.2008.08.059.
El-Naas,M.H.,Surkatti,R.,&Al-Zuhair,S.(2016).Petroleumrefinerywastewatertreatment:Apilotscalestudy. JournalofWaterProcess Engineering, 14,71 76.Availablefrom https://doi.org/10.1016/j.jwpe.2016.10.005.
Gao,N.,&Xu,Z.K.(2019).Ceramicmembraneswithmussel-inspiredandnanostructuredcoatingsforwater-in-oilemulsionsseparation. Separation andPurificationTechnology, 212,737 746.Availablefrom https://doi.org/10.1016/j.seppur.2018.11.084 Ibrahim,M.H.,Moussa,D.T.,El-Naas,M.H.,&Nasser,M.S.(2020).Aperforatedelectrodedesignforpassivationreductionduringtheelectrochemicaltreatmentofproducedwater. JournalofWaterProcessEngineering,33.Availablefrom https://doi.org/10.1016/j.jwpe.2019.101091 Jepsen,K.L.,Bram,M.V.,Pedersen,S.,&Yang,Z.(2018).Membranefoulingforproducedwatertreatment:Areviewstudyfromaprocesscontrol perspective. Water(Switzerland), 10(7).Availablefrom https://doi.org/10.3390/w10070847 Jou,C.J.G.,&Huang,G.C.(2003).Apilotstudyforoilrefinerywastewatertreatmentusingafixedfilmbioreactor. AdvancesinEnvironmental Research, 7(2),463 469.Availablefrom https://doi.org/10.1016/S1093-0191(02)00016-3 Li,B.,Sun,Y.L.,&Li,Y.Y.(2005).Pretreatmentofcokingwastewaterusinganaerobicsequencingbatchreactor(ASBR). JournalofZhejiang University:Science, 6(11),1115 1123.Availablefrom https://doi.org/10.1631/jzus.2005.B1115 Moussa,D.T.,El-Naas,M.H.,Nasser,M.,&Al-Marri,M.J.(2017).Acomprehensivereviewofelectrocoagulationforwatertreatment:Potentials andchallenges. JournalofEnvironmentalManagement, 186,24 41.Availablefrom https://doi.org/10.1016/j.jenvman.2016.10.032 Munoz,I.,Akturk,A.S.,Ayyıldız,O.,C¸a ˘ glar,O.,Meabe,E.,Contreras,S., ... Jime ´ nez-Banzo,A.(2020).LifecycleassessmentofwastewaterreclamationinapetroleumrefineryinTurkey. JournalofCleanerProduction, 268,121967.Availablefrom https://doi.org/10.1016/j.jclepro.2020.121967
Nabzar,L.(2011).Panorama2011:WaterinfuelproductionOilproductionandrefining;Panorama2011:L’eaudanslaproductiondecarburants. Productionpetroliereetraffinage.France.
Negi,H.,Verma,P.,&Singh,R.K.(2021).Acomprehensivereviewontheapplicationsoffunctionalizedchitosaninpetroleumindustry. CarbohydratePolymers, 266,118125.Availablefrom https://doi.org/10.1016/j.carbpol.2021.118125
Pitakpoolsil,W.,&Hunsom,M.(2014).Treatmentofbiodieselwastewaterbyadsorptionwithcommercialchitosanflakes:Parameteroptimization andprocesskinetics. JournalofEnvironmentalManagement, 133,284 292.Availablefrom https://doi.org/10.1016/j.jenvman.2013.12.019
Qiu,X.,Zhong,Q.,Li,M.,Bai,W.,&Li,B.(2007).Biodegradationof p-nitrophenolbymethylparathion-degrading Ochrobactrum sp.B2. InternationalBiodeteriorationandBiodegradation, 59(4),297 301.Availablefrom https://doi.org/10.1016/j.ibiod.2006.09.005
Raghukumar,C.,Vipparty,V.,David,J.J.,&Chandramohan,D.(2001).Degradationofcrudeoilbymarinecyanobacteria. AppliedMicrobiology andBiotechnology, 57(3),433 436.Availablefrom https://doi.org/10.1007/s002530100784
Rana,S.,Gupta,N.,&Rana,R.S.(2018).Removaloforganicpollutantwiththeuseofrotatingbiologicalcontactor. MaterialsToday:Proceedings, 5(Issue2),4218 4224.Availablefrom https://doi.org/10.1016/j.matpr.2017.11.685
Ronquim,F.M.,Sakamoto,H.M.,Mierzwa,J.C.,Kulay,L.,&Seckler,M.M.(2020).Eco-efficiencyanalysisofdesalinationbyprecipitationintegratedwithreverseosmosisforzeroliquiddischargeinoilrefineries. JournalofCleanerProduction, 250.Availablefrom https://doi.org/10.1016/ j.jclepro.2019.119547
Sanghamitra,P.,Mazumder,D.,&Mukherjee,S.(2020).Astudyonaerobicbiodegradationofoilandgreasecontainingwastewater. Journalofthe IndianChemicalSociety, 97(5),819 822.Availablefrom https://indianchemicalsociety.com/portal/uploads/journal/2020_05_17_Extended_ 1601005922.pdf
Sharma,N.K.,&Philip,L.(2016).Combinedbiologicalandphotocatalytictreatmentofrealcokeovenwastewater. ChemicalEngineeringJournal, 295,20 28.Availablefrom https://doi.org/10.1016/j.cej.2016.03.031 Sun,G.,Chen,X.,Li,Y.,Zheng,B.,Gong,Z.,Sun,J., Lin,W.(2008).Preparationof H-oleoyl-carboxymethyl-chitosanandthefunctionasa coagulationagentforresidualoilinaqueoussystem. FrontiersofMaterialsScienceinChina, 2(1),105 112.Availablefrom https://doi.org/ 10.1007/s11706-008-0019-3
Surkatti,R.,&El-Naas,M.H.(2014).Biologicaltreatmentofwastewatercontaminatedwithp-cresolusing Pseudomonasputida immobilizedinpolyvinylalcohol(PVA)gel. JournalofWaterProcessEngineering, 1,84 90.Availablefrom https://doi.org/10.1016/j.jwpe.2014.03.008
TaghreedAl-Khalid&MuftahH.El-Naas(2017).Organiccontaminantsinrefinerywastewater:Characterizationandnovelapproachesforbiotreatment,recentinsightsinPetroleumScienceandEngineering,MansoorZoveidavianpoor, IntechOpen,Availablefrom: https://doi.org/10.5772/intechopen.72206 https://www.intechopen.com/chapters/58096
Tanudjaja,H.J.,Hejase,C.A.,Tarabara,V.V.,Fane,A.G.,&Chew,J.W.(2019).Membrane-basedseparationforoilywastewater:Apracticalperspective. WaterResearch, 156,347 365.Availablefrom https://doi.org/10.1016/j.watres.2019.03.021
Trevino-Rese ´ ndez,J.,de,J.,Medel,A.,&Meas,Y.(2021).Electrochemicaltechnologiesfortreatingpetroleumindustrywastewater. CurrentOpinion inElectrochemistry, 27,100690.Availablefrom https://doi.org/10.1016/j.coelec.2021.100690
Tziotzios,G.,Teliou,M.,Kaltsouni,V.,Lyberatos,G.,&Vayenas,D.V.(2005).Biologicalphenolremovalusingsuspendedgrowthandpackedbed reactors. BiochemicalEngineeringJournal, 26(1),65 71.Availablefrom https://doi.org/10.1016/j.bej.2005.06.006
Vidal,R.R.L.,Desbrie ` res,J.,Borsali,R.,&Guibal,E.(2020).Oilremovalfromcrudeoil-in-salinewateremulsionsusingchitosanasbiosorbent. SeparationScienceandTechnology(Philadelphia), 55(5),835 847.Availablefrom https://doi.org/10.1080/01496395.2019.1575879
Vlasopoulos,N.,Memon,F.A.,Butler,D.,&Murphy,R.(2006).Lifecycleassessmentofwastewatertreatmenttechnologiestreatingpetroleumprocesswaters. ScienceoftheTotalEnvironment, 367(1),58 70.Availablefrom https://doi.org/10.1016/j.scitotenv.2006.03.007
Xu,Z.,Jiang,D.,Wei,Z.,Chen,J.,&Jing,J.(2018).Fabricationofsuperhydrophobicnano-aluminumfilmsonstainlesssteelmeshesbyelectrophoreticdepositionforoil-waterseparation. AppliedSurfaceScience, 427,253 261.Availablefrom https://doi.org/10.1016/j.apsusc.2017.08.189
Yamaguchi,T.,Ishida,M.,&Suzuki,T.(1999).Biodegradationofhydrocarbonsby Protothecazopfii inrotatingbiologicalcontactors. Process Biochemistry, 35(3 4),403 409.Availablefrom https://doi.org/10.1016/S0032-9592(99)00086-2
Zoubeik,M.,Ismail,M.,Salama,A.,&Henni,A.(2018).Newdevelopmentsinmembranetechnologiesusedinthetreatmentofproducedwater:A review. ArabianJournalforScienceandEngineering, 43(5),2093 2118.Availablefrom https://doi.org/10.1007/s13369-017-2690-0
Zuo,J.H.,Cheng,P.,Chen,X.F.,Yan,X.,Guo,Y.J.,&Lang,W.Z.(2018).Ultrahighfluxofpolydopamine-coatedPVDFmembranesquenchedin airviathermallyinducedphaseseparationforoil/wateremulsionseparation. SeparationandPurificationTechnology, 192,348 359.Available from https://doi.org/10.1016/j.seppur.2017.10.027
Chemistryofpetroleumwastewater
FarhadQaderiandMaryamTaghizadeh
CivilandEnvironmentalEngineering,FacultyofCivilEngineering,BabolNoshirvaniUniversityofTechnology,Babol,Iran
Introduction
Waterplaysanessentialroleinhumanlife.Theindustrialrevolutionandeconomicdevelopmenthaveledtopopulation growthandincreasedurbanization(Chen,2018;Li&Yu,2011;Zafra,Moreno-Montan ˜ o,Absalo ´ n,&Corte ´ s-Espinosa, 2015;Zhangetal.,2015).Thedevelopmentofcommunities,consumerism,andtheexpansionofurbanizationhasled toanalarmingrateinwaste/wastewaterproductionaroundtheworld,andthiswasteisdisposedofwithoutpropermanagementandtreatment(Chen,2018;Li&Yu,2011;Zafraetal.,2015;Zhangetal.,2015).Today,theoilindustryis themostimportantsourceofenergyproductionintheworld,butthisindustryisoneofthemaincausesofenvironmentalproblemsduetotheproductionoflargevolumesofwastewater.
ThewordPetroleumoriginatedfromtheLatinrootsPetra(rock)andoleum(oil)(Jafarinejad,2016).Petroleumis formedfromtheaccumulationofhydrocarbons.Hydrocarbonsaccumulatenaturally,thousandsoffeetbelowthesurfaceoftheEarth,fromthedecompositionoforganicmaterialslikeplantsandmarineanimalsthatdiedmillionsofyears ago.Itisanaturallyoccurringfluidfoundinrockformations.Inotherwords,vastquantitiesoftheremainsofdecomposedorganicmaterialssettledintoseaorlakebottomsandaremixedwithsedimentsburiedinlayersofclay,silt,and sand.Asfurtherlayerssettledintothebed,inthelowerregions,heatandpressurebegantorise.Thisprocesscauses theorganicmattertochange,firstintoawaxymaterial,whichisfoundinvariousoilshalesaroundtheworld,andthen withmoreheatintoliquidandgaseoushydrocarbons.Oilornaturalgasformationisrelatedtotheamountofpressure, thedegreeofheat,andthetypeofbiomass.ItisbelievedthatMoreheatisbelievedtoproducelighteroil,evenhigher heatorbiomassmadepredominantlyofplantmaterialproducedbynaturalgas.Thepetroleumindustrygeneratesa largeamountofoilywasteduetoupstreamanddownstreamoperations(Abdulredha,SitiAslina,&Luqman,2020;Li etal.,2014;Varjani,Kumar,&Rene,2019).Thisoilywastecanbedividedintoasolidorliquid.Theupstream processincludesextracting,transporting,andstoringcrudeoil,andthedownstreamprocessincludesrefiningcrudeoil (Al-Futaisi,Jamrah,Yaghi,&Taha,2007;Hu,Li,&Zeng,2013;Thakur,Srivastava,Mall,&Hiwarkar,2018).Based ontheamountofwaterinsolids,thiswasteiscategorizedintosimplesewagecrudeoilandsludge.
Crudeoilconsistsofapproximately10 14wt.%hydrogenand83 87wt.%carbon.Oxygen(0.05 1.5wt.%),sulfur (0.05 6wt.%),nitrogen(0.1 2wt.%),andmetalssuchasvanadium,nickel,iron,andcopper(nickelandvanadium , 1000ppm)aresomeimpuritiesfoundincrudeoil.Crudeoilisnotauniformmaterial,anditsexactmolecularandfractionalcompositionvarieswidelywiththeformationofoil,location,ageoftheoilfield,andthedepthoftheindividual well.Crudeoilsobtainedfromdifferentoilreservoirshavewidelydifferentcharacteristics.Manyoilreservoirscontain livebacteria.Somecrudeoilsareblack,heavy,andthickliketar,whileothersarebrownornearlyclearwithlowviscosityandlowspecificgravity.Usually,fourdifferenttypesofhydrocarbonmolecules(alkanesorparaffins(15% 60%), naphthenes,orcycloparaffins(30% 60%),aromaticsorbenzenemolecules(3% 30%),andasphaltics(remainder)) appearincrudeoil.Therelativepercentageofeachcomponent,whichvariesfromoiltooil,determinesthepropertiesof theoil.(Thakuretal.,2018).
Oilfieldwastewateriscomposedofproducedwater,useddrillingfluid,andwastewaterthatisproducedafterwashing thedrilling/extractionequipmentandstoragetanks(Bakke,Klungsøyr,&Sanni,2013;Ottaviano,Cai,&Murphy,2014). Oilandgasproductionisusuallyaccompaniedbytheproductionoflargequantitiesofwater.Theamountof producedwaterdependsontheextractiontechnology,thereservoircharacteristics,andtherateofoilextraction.In differentsites,Theratioofproducedwatertooilmayvaryfromto2to5.
PetroleumIndustryWastewater.DOI: https://doi.org/10.1016/B978-0-323-85884-7.00007-2 © 2022ElsevierInc.Allrightsreserved.
Petroleumrefineryeffluentsaregeneratedinoilrefineryprocessesthatconvertcrudeoilintonumerousrefinedproducts,suchasliquefiedpetroleumgas,fuels,lubricants,andpetrochemicalintermediates.Theseprocessesconsume about0.2m3 t 1 Lto25m3 t 1 Lofwater,whichhasdecreasedinEuropeanrefineriesduetowaterreuseandrecycling (Bartheetal.,2015).Theamountandcompositionoftherefinerywastewatervaryconsiderablydependingondifferent factorssuchasplantconfiguration,crudeoilcharacteristics,andprocessdesigns.Accordingtoastudy,regardlessof theconfiguration,themainwastewaterisgeneratedthroughanumberofprocessessuchasdistillation,hydrotreating, coolingsystem,anddesalting(Diya’Uddeen,Daud,&AbdulAziz,2011).Thewaterisusedorproduced?directlywith hydrocarboncompoundsindesalination,distillation,andcrackingorwashingandcleaningoperations,andleadsto increasingtheorganicload.Ontheotherhand,thebiggestpartofthewastewatereffluentiswaterusedforcoolingsystemsandboilers,whilethiseffluentisusuallylesspolluted.
Petroleumrefineriesprocessrawcrudeoilintothreecategoriesofproductsenumeratedasfollows:
1. Fuelproducts:Gasoline,distillatefueloil,jetfuels,residualfueloil,liquefiedpetroleumgases,refineryfuel,coke, andkerosene.
2. Nonfuelproducts:Asphaltandroadoil,lubricants,naphthasolvents,waxes,nonfuelcoke,andmiscellaneous products.
3. Petrochemicalsandpetrochemicalfeedstock:Naphtha,ethane,propane,butane,ethylene,propylene,butylene,and BTEXcompounds(benzene,toluene,ethylbenzene,andxylene).
Petroleumindustrywastewaterconsistsofoilimpurities,BODandCODarenotcontaminants,theyaremeasureof contamination.hightotalsolids,hydrocarbons,andotherwastesuchasoilysludge,heavymetals,volatileorganiccompounds,ammonia,wastecatalyst,hightotaldissolved,salts,nitrates,sulfides,oil,andgreasecontent,etc.(Jasmine& Mukherji,2015).Oilywastewaterisdividedintofourmajortypesofpetroleumhydrocarbons,namely,aliphatic,aromatic,asphaltenes,andcompoundscontainingoxygen,nitrogen,andsulfur(Honse,Ferreira,Mansur,Lucas,& Gonza ´ lez,2012;Thakuretal.,2018;Varjani&Upasani,2017).
Thesepetroleumcompoundsconsistofthreemainhydrocarbongroups,namely,paraffins(straight-chainn-alkanes fromC1toC40andbranchedisoalkanes),naphthenesorcycloparaffins(naphtheneringscontaintypically5or6carbon atoms,morecondenseddicyclonaphthenesC8andC9arepresentinadditiontomonocyclonaphthenes),andaromatics (havingthebenzeneringcomprisingalternatedoubleandsinglebondswithadjacentcarbonatoms,monocyclic,and polycyclicaromatics).InNaphthenicacids(NAs)(amixtureofalkyl-substitutedacyclic,monocyclic,andpolycyclic carboxylicacidswithanaliphaticchainof9to20carbonatoms),whichareknowntocausetoxiceffects,arealsodifficulttoremovefromrefinerywastewater(Wang,Ghimire,Xin,Janka,&Bakke,2017).Otherpollutantsfoundinwastewaterincludehydrogensulfide,ammonia,phenols,benzene,cyanidesandsuspendedsolidscontainingmetalsand inorganiccompounds(e.g.,halides,sulfates,phosphates,sulfides)(Bartheetal.,2015).
Thesepollutantsareeasilydispersedordissolvedinoilywastewater.Ingeneral,about80%ofpetroleumhydrocarbonsinoilywastewaterarearomaticandaliphaticcompounds.(Jasmine&Mukherji,2015;Pereraetal.,2012;Varjani &ChaithanyaSudha,2018;Ward,Singh,&VanHamme,2003).
Everyyear,inthepetroleum,transportation,andotherhigh-consumptionindustries,agriculture,andurbanmanagementproducelargevolumesofhydrocarbonwastewater.Thiswastewaterisverycomplexandvariesdependingonthe rawmaterialsandtechnologiesused.Theyreferstohydrocarbonwastewaterarethemainsourceoforganicpollutionof theenvironmentandcontaintoxic,mutagenic,andcarcinogenicsubstances.
Themetallurgicalindustryisanothermajorsourceofoilywastewater.Mostoftheoilywastecomesfrommetalformingoperationsormetal-working,suchascokequenching,steelrolling,solventextraction,andelectroplating(Wu, Jiang,He,&Song,2017).Oil-in-waterandwater-in-oilemulsionsofdifferentcompositions,rangingfromatraceofoil inwatertoatraceofwaterinoil,areusedascoolingandlubricatingagents.Theyalsoprovidecorrosionprotectionfor machinedpartsandmachiningtools.Suchspentoilywateremulsioncanbehighlyviscousandoftenseverelyhamper wastewatertreatmentplantcapabilities,thuscausingincreasedmaintenancecostsandenergyconsumption.Also,adistinctivefeatureofmetallurgicalprocesseffluentistheuseoflargeamountsoftoxicorganicmatterinextractionand electro-depositionprocesses.Thesetoxicsubstancesareusedasextractants,diluents,matrixmodifiers,flocculants, brighteningagents,acidfoginhibitors.
Emulsifiedoil,emulsifiers,degreasingagents,surfactants,solvents,suspe ndedsolids,metals,andacids/alkalines aretheprimarycomponentsofmetallurgicaloilywastewater(Wuetal.,2017).Thiswastewater,duetotheparageneticrelationoftheseelementswithra reearthmetals,containsradioactiv emetals,suchasthorium,radium,and uranium.
Advancesinthetransportationindustryhaveledtoaconsiderableincreaseintheuseofmotorfuelsandoilsthat arethemainsourcesofhydrocarbonpollutioninwastewater.Furthermore,thecarwash,enginewash,paintspraying workshop,orpetrolstationimportalargenumberofhydrocarbonwastestotheurbanwastewatersystem.
About10 50mgL 1 oftypicaldomesticwastewaterconsistsofoilandgrease(O&G).Intherawwaterresourcesof Europeanareas,morethan6000organiccompoundshavebeenidentifiedthathaveenteredtheseresourcesduetohuman activities.Whilesomeofthesearehighlypersistent,othersareeasilybiodegradable.Theseorganiccompoundsinclude aliphaticandaromatichydrocarbons,polyaromatichydrocarbons(PAHs),fattyacids,ketones,phthalateesters,plasticizers,andotherpolarcompounds.Solventextractableorganicsaredominatedbypetroleumhydrocarbons,whicharise frommotoroilleaks,degradedasphalt,andworntiresfromtheroads.Municipalwastewatercontainslargeamountsof toxicandnondegradableorganicpollutantssuchasPAHs,polychlorinatedbiphenyls(PCBs),di-(2-ethylhexyl)phthalate (DEHP),lineralkylbenzenesulphonates(LASs),nonylphenolethoxylates(NPEs),dioxins(PCDD),andfurans(PCDF). Also,advancesintechnologyhaveledtotheemergenceofmicropollutantssuchaspharmaceuticals,personalcarecompounds,flame-retardants,biocides,andpesticidesinmunicipalwastewater(Visser&AloisideLarderel,1997).
Petroleumwastewatercharacteristics
Wastewaterproducedinrefineriesincludessolubleandinsolublepollutants.Thetypesofpollutantsinpetroleumwastewatercanbeclassifiedasfollows(Visser&AloisideLarderel,1997):
● Totalhydrocarboncontent(THC);
● Totalpetroleumhydrocarbonindex(TPH-index);
● Biochemicaloxygendemand(BOD);
● Chemicaloxygendemand(COD);
● Totalorganiccarbon(TOC);
● Ammoniacalnitrogen;
● Totalnitrogen;
● Totalsuspendedsolids(TSS);
● Totalmetals;
● Cyanides;
● Fluoridesphenols;
● Phosphates;
● SpecialmetalssuchasCd,Ni,Hg,Pb,andvanadium;
● Benzene,Toluene,ethylbenzene,andxylene(BTEX);
● PH(acids,alkalis);
● Sulfides;
● Othermicropollutants.
Themainsourcesofwastewaterfromp etroleumindustryactivitiesareprod ucedwater,cutting,coolingwater, drillingfluids,welltreatmentchemicals,process,draina geandwash,spillandleakage ,domesticwastewater,and sewage.Thevolumesofwastewaterare minimalduringseismicoperations andoftenrelatetocampandvessel activities.
Theprimarydischargefromproductionoperationsisproducedwaterandthemajorwastewatereffluentsfrom exploratorydrillingaredrillingfluidsandcuttings.Thevolumesofproducedwaterdependonthetypeofproduction (gasandoil),geographical,thelifetimeofafield,field,andthelevelofactivity(Visser&AloisideLarderel,1997; Congress&OfficeofTechnologyAssessment,1992).Thecharacteristicsofeffluentfromdifferentsectionsofthe petroleumindustryprocessaresummarizedin Table2.1.
PetroleumindustrywastewatercontainsmanyaromaticorganiccompoundssuchasPAHsandphenolicsubstances. Thesesubstancesdecomposeinnaturewithdifficulty.Therefore,theseareaseriousthreattotheenvironment.Organic pollutantsinindustrialwastewaterhavecarcinogenicormutagenicpropertiesandtheUSEnvironmentalProtection Agency(EPA)hasconsideredthesecompoundsamongtheprioritypollutants.
Thesecontaminantsaccumulateinhumanandanimaltissues.Someofthesecompoundsaresolubleinwaterand havebeendetectedinconcentrationsrangingfromafewmilligramsperlitertoamaximumof7000mgL 1 inpetroleumwastewater(Waseemetal.,2019).
TABLE2.1 Thecharacteristicsofeffluentfromdifferentsectionsofthepetroleumindustryprocess.
MainsourcesEnvironmentallysignificantcomponents
Producedwater,Processwater,forexample,enginecooling water,brakecoolingwater,washwater,Ballastwater,Hydro-test fluids,Contaminatedrain/drainagewater,Drillingfluid, chemicalsSpentstimulationorfracturingfluids,Spent completionfluids,Wastelubricants,Water-based(includebrine), mudsandcuttings,Oil-basedmudsandcuttings,Mercury Dehydrationandsweeteningwastes,Domesticsewage
Hydrocarbons,inorganicsalts,heavymetals,solids,organics, sulfides,corrosioninhibitors,biocides,phenols,BOD,benzene, organo-halogens,PAHs,radioactivematerialInorganicsalts, heavymetals,solids,organics,BOD,sulfides,corrosioninhibitors, biocides,demulsifiers,waxinhibitors,detergents,hydrocarbons Hydrocarbons,phenols,PAHs,Solids,corrosioninhibitors, biocides,BOD,dyes,oxygenscavengersInorganicsalts,Heavy metalssolids,organics,BOD,sulfides,corrosioninhibitors,scale inhibitors,detergents,hydrocarbonsMetals,salts,organics,pH, surfactants,biocides,emulsifiers,viscosifiersInorganicacids (HCL,HF),hydrocarbons,methanol,corrosioninhibitors,oxygen scavengers,formationfluids,naturallyoccurringradioactive materials(NORM),gelingagentsHydrocarbons,corrosion inhibitors,inorganicsaltsOrganics,heavymetalsHighpH, inorganicsalts,hydrocarbons,solids/cutting,drillingfluid chemicals,heavymetalsHydrocarbons,solids/cutting,heavy metals,inorganicsalts,drillingfluidchemicalMercuryAmines, glycols,filtersludges,metalsulfides,H2S,metals,benzeneBOD, solids,detergents,coliformbacteria
FromPraveen,P.,&Loh,K.C.(2013).Simultaneousextractionandbiodegradationofphenolinahollowfibersupportedliquidmembranebioreactor. JournalofMembraneScience,430,242 251. https://doi.org/10.1016/j.memsci.2012.12.021
Diya’uddeen,B.H.,Daud,W.M.A.W.,&AbdulAziz,A.R.(2011).Treatmenttechnologiesforpetroleumrefineryeffluents:Areview. ProcessSafetyand EnvironmentalProtection 89(2):95 105.
Raza,W.,Lee,J.,Raza,N.,Luo,Y.,Kim,K.H.,&Yang.J.(2018).Removalofphenoliccompoundsfromindustrialwastewaterbasedonmembrane-based technologies.JournalofIndustrialandEngineeringChemistry(InPress. https://doi.org/10.1016/j.jiec.2018.11.024).
Underfavorableconditionsandthroughvariousreactionslikemethylationandchlorination,thesecompoundscan producetoxicanddangeroussubstancessuchascresolsandchlorophenols(Jasmine&Mukherji,2015;Pereraetal., 2012;Varjani&ChaithanyaSudha,2018;Wardetal.,2003).
Thus,globalconcernsaboutthedirectdischargeofpetroleum wastewaterwithoutremovingorreducingtoxicpollutants intotheenvironmentaregrowing.Forthisreason,industriesarerequiredtotreattheirwastewaterbeforedischargingitintothe ecosystem(Jasmine&Mukherji,2015;Pereraetal.,2012;Varjani&ChaithanyaSudha,2018;Wardetal.,2003).
Wastewaterfromthepetroleumindustrysuchasoilrefineries,petrochemicalproducts,andtransportationhavea largenumberoftoxicsubstances(Viggietal.,2015).Thesewastewaterscontainvarioustypesoforganicandinorganic pollutantssuchasphenol,sulfide,BTEX,hydrocarbon,andheavymetals(He&Jiang,2008;Usman,Faure,Hanna, Abdelmoula,&Ruby,2012;Varjani&Upasani,2017;Waseemetal.,2019).
Researchhasshownthatmostofthiswastewateriscomposedofaliphatichydrocarbonsandaromaticcompoundssuchas benzene,toluene,andethylbenzene. Table2.2 showsthedifferenttypesoforganiccompoundsinpetroleumwastewater.
Petroleumwastewatercontainscomplexcompoundsoforganicpollutantsandoftencontainsoilsandgreases,which clogpipesandcausecorrosionandunpleasantodors(Xu&Zhu,2004).Phenolicpollutantsarealsoaseriousthreatto theenvironmentduetotheirhighpersistenceintheenvironment(Abdelwahab,Amin,&El-Ashtoukhy,2009;Kavitha &Palanivelu,2004;Lathasree,Rao,Sivasankar,Sadasivam,&Rengaraj,2004;Pardeshi&Patil,2008;Yang,2008).
NAsinpetroleumwastewatercausetoxiceffectsandformalargevolumeofwastewater,andtheirremovalfrom petrochemicaleffluentsisacriticalchallenge(Wangetal.,2017).showedthatthepercentageofaromaticNAswas about2.1% 8.8%inarefinerywastewatertreatmentplant.
Thefollowinggeneralresultscanbeexpressedfromreportsmadebyvariousresearchersasshownin Table2.2
Basedonthestudies,awiderangeofpollutantswasidentifiedandalargedifferencewasseeninthecharacteristics ofwastewaterduetodifferencesinwastewatersource,crudeoilquality,andoperatingconditions.
Petroleumwastewatercompoundsaremainlysolubleintheformoforganicandinorganiccompounds,withorganic compoundsincludinghydrocarbons(PAH)andinorganiccompoundscontainingheavymetals.
Sourwaterstream(SWS)hasahighconcentrationofsulfideandcomplexchemicalcompositionssuchasoil,phenols,sulfides,mercaptans,ammonia,cyanides,andothermicropollutants(El-Naas,Alhaija,&Al-Zuhair,2014).
TABLE2.2 Differenttypesoforganiccompoundsinpetroleumwastewaterreportedbyvariousresearchers.
ParametersreferencespHCOD
Vendramel,Bassin,Dezotti,&Sant’ Anna(2015)
Aljuboury,Palaniandy,Aziz,&Feroz (2014)
Saber,Hasheminejad,Taebi,& Ghaffari(2014)
Gasim,Kutty,Hasnain-Isa,&Alemu (2013)
Hasan,AbdulAziz,&Daud(2012)
(2009)
AltasBuyukgungor(2008)7.19 9.22220
Dincer,Karakaya,Gunes,&Gunes (2008)
Zeng,Yang,Zhang,&Pu(2007)
(1998)
FromEl-Naas,M.H.,Alhaija,M.A.,&Al-Zuhair,S.(2014).Evaluationofathree-stepprocessforthetreatmentofpetroleumrefinerywastewater. JournalofEnvironmentalChemicalEngineering,2(1),56 62. https://doi.org/10.1016/j.jece.2013.11.024
Farajnezhad,H.,&Gharbani,P.(2012).Coagulationtreatmentofwastewaterinpetroleumindustryusingpolyaluminumchlorideandferricchloride InternationalJournalofResearchandReviewsinApplied Sciences,13,306 310.
Altas,L.,&Buyukgungor,H.(2008),Sulfideremovalinpetroleumrefinerywastewaterbychemicalprecipitation. JournalofHazardousMaterials,153,462 469.
TABLE2.3 Minimumstandarddischargelimitsforrefineryeffluents.
pHComposition(mgL 1)References
CODBODTDSSSTOCAmmoniaPhenolsSulfides 6 915030 30 1EnvironmentalHealthSafety Guidelines
FromIFC:Environmental,HealthandSafety(EHS)Guidelines,GeneralEHSGuidelines,April302009.
Variousenvironmentalprotectionagencieshavesetamaximumdischargelimittopreventtheentryoflarge amountsofhazardouspetroleumcompoundsintotheenvironmentasdescribedin Table2.3.Also,mostofthehydrocarbonsofundegradedpetroleumhydrocarbonsarefueladditivessuchasdichloroethane(DCE),dichloromethane (DCM),andt-butylmethylether(tBME),whicharecarcinogenic.
Themethodsformeasuringthemaincompoundsinpetroleumwastewater PHmeasurements
ThepHhasagreateffectonwastewatertreatment.Itaffectschlorinationandcoagulationefficiency.ThepHmeter includesaglasselectrode,apotentiometer,areferenceelectrode,andatemperaturecompensatingdevice.ModernpH metersuseasinglecompositeelectrodetomeasureandbuffersolutionsforcalibrationwithpH4,7,and10.ThepH metercandetectthesesetpointsautomaticallyincalibrationmode.Measurementsshouldbetakenimmediatelyafter collection,butifsamplesmustbestored,theyshouldbekeptat4 Candshouldbemeasurednolaterthan6haftercollection.IfpHvaluesvarywidely,standardizeeachsamplewithabuffersolutionhavingapHwithin1 2pHunitsof thesample(AmericanSocietyforTesting&MaterialsASTM,2018).
Totalresidualchlorine
Thechlorinationofthetreatedeffluentservesprimarilytodestroyordeactivatedisease-causingmicroorganisms. Chlorinationmayproduceadverseeffects.Potentiallycarcinogenicchloro-organiccompoundssuchaschloroformmay beformed.Tofulfilltheprimarypurposeofchlorinationandminimizeanyadverseeffects,propertestingprocedures mustbeused.Severalmethodsformeasurementoftotalresidualchlorineareavailable,includingiodometricmethods, amperometrictitrationmethods,and N,N-diethyl-phenylenediamine(DPD)methods.Thefollowingoperatingprocedure willdiscussaDPDColorimetricMethod.First,selectthevolumeofthesamplethatwillneednotmorethan20mL 0.01NNa2S2O3 andnotlessthan0.2mLareneededforthestarchiodideuntiltheendofthereaction.Usea500mL sampleforachlorinerangeof1to10mgL 1,iftheamountofchlorineisabove10mgL 1,useproportionatelyless sample.ThenreachpHbyaddingaceticacidtoabout3 4inaflask.Addabout1gKIestimatedonaspatula.Addthe sampletoitandmixitwithastirrerandperformthetitrationprocessawayfromdirectsunlight.Andthenfroma burette,add0.025Nor0.01NNa2S2O3 untiltheyellowcoloroftheliberatediodineisalmostdischarged.Add1mL starchsolutionandtitrateuntilthedisappearanceofthebluecolor(AmericanSocietyforTesting&MaterialsASTM, 2018).
Totalsuspendedsolids
TSSofawastewatersampleisdeterminedbypouringacarefullymeasuredvolumeofwastewaterthroughapreweighedfilterofspecifiedporesize,thenweighingthefilteragainafterthedryingprocessthatremovesallwateron thefilter.FiltersforTSSmeasurementsaretypicallycomposedofglassfibers.Thegaininweightisadryweightmeasureoftheparticulatespresentinthewatersampleexpressedinunitsderivedorcalculatedfromthevolumeofwater filtered(typicallymilligramsperliterormgL 1).
Ifthewastewatercontainsanappreciableamountofdissolvedsubstances(ascertainlywouldbethecasewhenmeasuringTSSinseawater),thesewilladdtotheweightofthefilterasitisdried.Therefore,itisnecessaryto“wash”the filterandsamplewithdeionizedwaterafterfilteringthesampleandbeforedryingthefilter.Failuretoaddthisstepisa fairlycommonmistakemadebyinexperiencedlaboratorytechniciansworkingwithseawatersamples,anditwill
completelyinvalidatetheresultsastheweightofsaltsleftonthefilterduringdryingcaneasilyexceedthatofthesuspendedparticulatematter.
Totalsuspendedsolids(TSSs)aremeasuredinlaboratoriesbyfilteringaknownvolumeofasample,dryingthefilterandcapturedsolids,thenweighingthefiltertodeterminetheweightofthecapturedsuspendedsolidsinthesample. TSSiscalculatedasfollows:
where Wfss istheweightoffilterwithsuspendedsolids, Wf istheweightofthefilter,and Vs isthevolumeofsample.
Theentireprocesstakesabout2hormoreanddoesnotlenditselftoinstantaneous,continuousmeasurements.See ASTMD5907,EPAMethod10.2,StandardMethods2540Dorsimilargravimetricmethodfordetailsofthelabmethod (“2540SOLIDS”,StandardMethodsfortheExaminationofWaterandWastewater,n.d;AmericanSocietyforTesting &MaterialsASTM,2018).TSSsamplescanbecollectedinplasticorglasscontainers.Sampleanalysisshouldbeperformedimmediatelyaftersampling;otherwise,itshouldbestoredoniceorintherefrigeratortoreducetheactivityof microorganisms,inwhichcasetheanalysisshouldbeperformedforamaximumof7days.
Oilandgrease
Thehighvolumeofoilandgreasegeneratedduringtheextractionofoilandgasisaseriouschallengeinthepetroleum industry.Thechemicalnature(toxicityandsolubility)ofthecontaminantsinthewastewaterisanotherchallenge.In petroleumwastewater,oilcanbeinthreeforms:free,dispersed,emulsion,orsoluble(Demirci,Erdogan,&Ozcimder, 1998;Zeng,Yang,Zhang,&Pu,2007).Inpetroleumwastewater,totaloilandgrease(TOG)havedifferentconcentrations(100 2000ppm).Inmonitoringoilpollutantsinpetroleumwastewater,twoissuesofmeasuringtheirconcentrationandanalyzingthechemicaltransformationsofpetroleumhydrocarbonsintheenvironmentshouldbeconsidered. Ingeneral,theTOGinpetroleumwastewatercanbemeasuredbygravimetryandinfraredspectroscopy(Karyakin& Galkin,1995;NationalEnvironmentalCouncil(CONAMA),1986;Vorontsov,Nikanorova,&Dorokhov,1998). Gravimetricmethods,suchasMethod413.1andStandardMethod5520BfromtheUSEPA,involveliquid liquid extraction(LLE)fromoilywatersamplesusing1,1,2-trichloro1,2,2-trifluoroethane(CFC-113),acompoundthat severelydepletesozoneintheatmosphere(Cirne,Boaventura,Guedes,&Lucas,2016).
Anewgravimetricmethod,Method1664,hasbeendevelopedbytheEPAspecificallytomeasureoilandgreasein oilwastewater.Inthismethod,hexaneisusedasanalternativeextractionsolvent.Thismethodislessexpensiveand lessharmfultotheenvironmentthantheLLEfordeterminingoilandgreaseinwastewatersamples.Inthismethod,the useofdifferentconcentrationsofsolventandextractionmethodssuchassolid-phaseextraction(SPE)isallowed.Inthe SPEmethod,fasteranalysisisdone,eventhoughotherstepsarenecessarytopreventthecloggingofSPEcartridges whenusedonaqueoussamplescontaininghighlevelsofparticles.Therefore,thesuccessfulapplicationofMethod 1664dependsonsatisfyingmanyqualitycontrolparameters,whicharehardtoachieve(Cirneetal.,2016).
ThemethodformeasurementofTOGbyinfraredspectrometrytypicallyusesaHoribaOCMA-350analyzer.Inthis method,hydrocarbonsinwastewaterareusedtomeasurecontamination(Gonzalez,Teixeira,&Lucas,2004).This instrumentoperatesonthetechniqueofenergyabsorptionintheinfraredspectrum,withawavelengthrangefrom3.4 to3.5 µm.Becauseinthisdevice,theamountofenergyabsorbedisrelatedtotheconcentrationofhydrocarbonspresent inthewastewatersamples,soitonlymeasuresC Hbonds.Becausewatercanabsorbenergyintherangeof 3.4 3.5 µm,wemustuseawater-insolublesolventtoextracthydrocarbonsandalsodoesnotabsorbenergywavelengthsinthisrange.
ResearchershavesuggestedtheS-316solvent(anoligomerbasedonpoly(trifluoroethylene)),whichhasthedisadvantageofbeingveryexpensive.Ofcourse,carbontetrachloridecanbeusedinsteadofS-316,whichischeaperbut verytoxic.Also,toachievereliableresults,thedevicemustbecalibrated.Therefore,acalibrationsolutionshouldbe preparedaccordingtothestandardformulaofthemanufacturerandthecalibrationrangeshouldbedefined(0 50or 0 200mgL 1).Therefore,itisimportanttoevaluateothermethodstodetermineTOGconcentration(Cirneetal., 2016).
Crudeoilcontainsawiderangeofcontaminants,sothereareseveralothermethodsformeasuringTOGinpetroleumwastewater,includingcolorimetry,spectrofluorimetry,gaschromatography(GC)combinedwithmassspectrometry,andhigh-performanceliquidchromatography(HPLC).Eachofthesemethodscandetectallorsomeofthe contaminantsinpetroleumwastewater(Minty,Ramsey,&Davies,2000).
GCisananalyticaltechniqueusedtoseparatethechemicalcomponentsofasamplemixtureandthendetectthem todeterminetheirpresenceorabsenceand/orhowmuchispresent.Thesechemicalcomponentsareusuallyorganic
moleculesorgases.Theseparationisbasedonthedifferencesinthespeedwithwhichthesecomponentsarecarriedin thefixedphasebytheflowofamobileliquidorgasphase.ThestationaryphaseinGCisthepartofthesystemwhere themobilephasewillflowanddistributethesolutesbetweenthephases.Thestationaryphaseplaysavitalrolein determiningtheselectivityandretentionofsolutesinamixture.Tomonitortheoutflowfromthecolumn,adetector canbeused.Wheneachchemicalcompoundleavesthecolumn,itisdetectedandrecognizedelectronically,andthe quantitycanalsobedetermined.Generally,thesubstancesareidentified(qualitatively)bytheorderinwhichthey emergefromthecolumnandbytheretentiontimeofthecolumn(Cirneetal.,2016).
Incolorimetryorvisiblespectrophotometry,asolutionisusedtomeasuretheabsorptionofelectromagneticradiationintheultraviolet(UV)-visibleregion.Basedonthis,usefulinformationcanbeobtainedregardingtheconcentration ofchemicalspeciesintheeffluentsample.
Thespectrophotometerisaninstrumentthatmeasurestheamountoflightthatasampleabsorbs.Thespectrophotometerworksbypassingalightbeamthroughasampletomeasurethelightintensityofasample.Photometersemploy afilter,togetherwithatransducer,toselectthewavelengthwithsuitableradiation.Spectrophotometershaveasignificantadvantagebecausethewavelengthcanbechangedcontinuously,makingitpossibletorecordanabsorptionspectrum.Inaddition,photometersareverysimple,robust,andcheap.ThespectrophotometersworkintheUV-visible region,whereasphotometersareusedinthevisibleregion.Photometersarewidelyusedasdetectorsforelectrophoresis, chromatography,immunoassays,orcontinuousflowanalysis(Aversa,Queiros,&Lucas,2014;Queiros,Clarisse,& Oliveira,2006).
Nitrate
Thehighestoxidationstateofnitrogenisnitrate.Itmayoccurinwastewaterduetotheoxidationoforganicnitrogento ammoniaandthentonitrateandthentonitrate.Nitrateatlevelsabove105mgL 1 asNcancauseanillness.Nitrogen isalsooneofthefertilizingessentialelementsofthegrowthofalgae.Amongtheexistingtechnologiesfornitrate removal,physicochemicaldenitrification,biologicalandchemicalreductionshavebeennoticeable.Sampleswithavolumeofatleast100mL,arecollectedinglassorplasticbottles.Samplesshouldbeanalyzedassoonaspossibleafter collection(within1h),butmaybestoredat4 Cforupto24h.Forstorage,upto7days,preservethesampleswith 2mLconcentratedsulfuricacidperliterandstorethemat4 C(Pereraetal.,2012).
Biochemicaloxygendemand
DeterminationofBODisextremelydifficultbecausetherearesomanyvariablefactorsthataffecttheoutcome.The BODdistilledwatermustbeaeratedandnoncontaminatedandthepHenvironmentmustbeacceptable(6.5 7.5).In theBODtest,severalimportantfactorssuchastemperature,theactivityofmicroorganisms,andtheconcentrationof wastematerialshouldbeconsidered.Microorganismsmustbealive,incubationtemperaturemustbeconstantandcontrolled,andwasteconcentrationmustbeacceptable.Wastewatersamplesmustbefreeoftoxicsubstances.Thestrength oftheeffluentsampleshouldbesuchastoreduceatleast2mgL 1 ofdissolvedoxygen,butatleast1mgL 1 should remaininthesample.Asaresult,theBODtestmustprovidetheidealconditionsforthegrowthofmicroorganismsso thatmicroorganismscaneffectivelyconsumedigestibleorganicmatter.IntheBODtest,microorganismsconsumeall organicmatter.InaBODbottle,theorganicmatterinthesampleisaddedtodilutewatercontainingnutrients,oxygen, andmicroorganisms,thenthesampleiskeptat20 Cfor5days.Initially,thenumberofmicroorganismsissmall,but duetotheexcellentenvironmentalgrowthconditions,theirpopulationincreasesrapidlyandtheyenterthelogarithmic reproductivestageandconsumeallorganicmatter.Duetotheneedformicroorganismstoconsumeoxygen,theamount ofoxygenconsumptionalsoincreases.IftheBODbottleisclosedtightly,thenthemicroorganismsuseonlytheoxygen insidethebottle.Therefore,withinafewdays,thegrowthofmicroorganismsentersthelogarithmicstageandwiththe digestionoforganicmatter,alargeamountofoxygenisconsumed.OnthefourthdayoftheBODtest,themicroorganismsenterastablegrowthphasebecausetheamountoforganicmatterislimited,andtheycanhardlymaintainthepopulationofmicroorganisms.Byreducingtheamountoforganicmatter,thepopulationofmicroorganismsdecreased,so therateofoxygenconsumptionalsodecreases.Atthisstage,byreducingtheorganicmatter,microorganismsenterthe endogenousstage.Theyusetheirinternalreservesandtheirpopulationisdeclined.TheBODtestexpressesthetotal amountoforganicmatterconsumedin5days.Completestabilizationofawastewatersamplerequires20dayssince mostoftheorganicmatterisconsumedinthefirst5days,sothelatterisdefinedasthestandardincubationperiod (Dinceretal.,2008;Pereraetal.,2012).
Chemicaloxygendemand
CODisanimportantwastewaterqualityparameterbecausesimilartoBOD,itprovidesanindextoassesstheeffectdischargedwastewaterwillhaveonthereceivingenvironment.HigherCODlevelsmeanagreateramountofoxidizable organicmaterialinthesample,whichwillreducedissolvedoxygen(DO)levels.AreductioninDOcanleadtoanaerobicconditions,whichisdeleterioustohigheraquaticlifeforms.CODisatestthatmeasurestheamountofoxygen requiredtochemicallyoxidizetheorganicmaterialandinorganicnutrients,suchasammoniaornitrateinthe wastewater.ItisoftenusedasanalternativetoBODduetotheshorterlengthoftestingtime.Themostimportantdisadvantagesofoxygentestingarethepresenceofhazardousandtoxicchemicals.CODtestingisoftenusedtomeasure contaminantsinwastewaterandwatersamples.Inmunicipalwastewater,theBODcontentofthesamplerepresents 50% 60%oftheCODcontent.Thepresenceoftoxicsubstancesorindustrialwastewatercanchangethisratio.Similar totheBODtest,thistestusesoxygentooxidizeorganicmatterintowaterandcarbondioxide,buttheCODtestuses chemicallyboundoxygeninthepotassiumdichromatecompound.Byusingdichromate,Cr31 ionsareproduced.The amountofCr31 ionsproduceddependsontheamountoforganicmatterinthewastewatersample.ThetraditionalCOD analysismethodisthewetchemistrymethod.Thisinvolves2-hdigestionathighheatunderacidicconditionsinwhich potassiumdichromateactsastheoxidantforanyorganicmaterialpresentinawastewatersample.Silversulfateispresentasthecatalystandmercuricsulfateactstocomplexoutanyinterferingchloride.Followingthedigestion,theextent ofoxidationismeasuredthroughindirectmeasurementofoxygendemandviaelectronsconsumedinthereductionof Cr61 toCr31.Thiscanbedonebytitrationorspectrophotometry.Collectthesamplesinglassbottles,ifpossible.The useofplasticcontainersispermissibleifitisknownthatnoorganiccontaminantsarepresentinthecontainers. Biologicallyactivesamplesshouldbetestedassoonaspossible.Samplescontainingsettleablematerialshouldbewell mixed,preferablyhomogenized,topermittheremovalofrepresentativealiquots.SamplesshouldbepreservedwithsulfuricacidtoapH , 2andmaintainedat4 Cuntilanalysis(Dinceretal.,2008).
PolyaromatichydrocarbondeterminationofPAHsintheliquidphaseisperformedusingthreecommonextractionmethods, suchasliquid liquidextraction,solid-phasemicroextraction,andsolid-phaseextraction.Inrecentyears,methodssuchas Headspacesolventmicroextraction,dispersiveliquid liquidmicroextraction,cloudpointextraction,havebeenused.
Varioussolventshavebeenusedinvariousstudiesfortheextractionofliquid liquidpolynucleararomatichydrocarbonsfrompetroleumwastewater.Thesesolventsincludehexane,dichloromethane,carbontetrachloride,andcyclohexane.Accordingtorecentstudies,hexanehasbeenidentifiedasthemostsuitablesolvent(Tony,Purcell,&Zhao, 2012).Hexane,ahighlyvolatilesubstance,haslowsolubilityinwater(13mgL21 at20C)andadensityof0.6548g mL21,anditiscompatiblewiththetechniqueofanalysis.
Theanalyticaltechniquesbasedonliquidorgaschromatographyareusedtodetermineanddetecttheamountof PAHs.PAHsaremuchmoresuitableforliquidchromatographybecausetheyhavelesssolubilityinwaterandtheirvolatilitydecreaseswithincreasingmolecularweight(Gocan&Cobzac,2006).
Totalorganiccarbon
ThereareseveralmethodstodetermineTOC.ThetwomaincomponentsrequiredtomeasureTOCaretoconvertthe organiccarbonintocarbondioxide(CO2)andthemeanstodetectCO2.Thethreeprimaryoxidationmethodsmost commonlyusedarechemicalagents,high-temperaturecombustion,andphotocatalytic.Allthreemethodshaveprovided acceptableresults.
Thechemicalagentmethodisknownasthepersulfateornondispersiveinfrared(NDIR)sensorprocess,whichcan beaccomplishedthrougheitherpersulfateoxidationwithUVlightandirradiationactivation,orthroughthealternative process,whichisknownasheatedpersulfateoxidation.
ThesecondmethodtodetermineTOCisknownasthehigh-temperaturecombustion(catalytic)process.ThisprocessmeasuresTOCbyheatingasampleinahigh-temperaturefurnacewithacobaltorplatinumcatalyst.
ThethirdmethodtodetermineTOCisphotocatalyticorUVlight.TheUVlightprocessoxidizesthecarboninto CO2 gas.TherearemultiplemanufacturersofTOCanalyzersusingallthreeofthesemeasurementmethods.Allthe productshavetheiradvantagesanddisadvantagesdependingonthespecificapplication,locationoftheinstrument,etc.
ATOCanalyzer,forexample,theoneshownbefore,utilizestheUVpersulfateoxidationmethod,whichdetects generatedCO2 usingitsNDIRdetectorforanalysis.ThismethodandtheanalyzerconformtostandardssetbyUS EPA,DIN,CE,ASTM,andNAMURregulations,aswellasISO.
TousethistypeofTOCanalyzer,thewatersamplefirstisacidifiedandthenspargedtoremoveinorganiccarbon. Theremainingliquidismixedwithsodiumpersulfateanddigestedbytwohigh-performancereactors.Theresulting
CO2 isthenstrippedfromtheliquidand,afterdrying,itsconcentrationismeasuredbytheNDIRanalyzer.Theanalyzer measuresTOCrangingfrom0 5to20,000mgL 1 (Aljuboury,Palaniandy,Aziz,&Feroz,2014).
References
“2540SOLIDS”,StandardMethodsfortheExaminationofWaterandWastewater.(n.d).Availablefrom https://doi.org/10.2105/SMWW.2882.030
Abdelwahab,O.,Amin,N.K.,&El-Ashtoukhy,E.S.Z.(2009).Electrochemicalremovalofphenolfromoilrefinerywastewater. Journalof HazardousMaterials, 163(2 3),711 716.Availablefrom https://doi.org/10.1016/j.jhazmat.2008.07.016
Abdulredha,M.M.,SitiAslina,H.,&Luqman,C.A.(2020).Overviewonpetroleumemulsions,formation,influenceanddemulsificationtreatment techniques. ArabianJournalofChemistry, 13(1),3403 3428.Availablefrom https://doi.org/10.1016/j.arabjc.2018.11.014.
Al-Futaisi,A.,Jamrah,A.,Yaghi,B.,&Taha,R.(2007).Assessmentofalternativemanagementtechniquesoftankbottompetroleumsludgein Oman. JournalofHazardousMaterials, 141(3),557 564.Availablefrom https://doi.org/10.1016/j.jhazmat.2006.07.023
Altas,L.,&Buyukgungor,H.(2008),Sulfideremovalinpetroleumrefinerywastewaterbychemicalprecipitation. JournalofHazardousMaterials, 153,462 469.
Aljuboury,D.D.A.,Palaniandy,P.,Aziz,A.,&Feroz,H.B.(2014).Organicpollutantsremovalfrompetroleumrefinerywastewaterwithnanotitania photo-catalystandsolarirradiationinSoharoilrefinery. JournalofInnovativeEngineering, 2(3),1 12.
AmericanSocietyforTestingandMaterials(ASTM),D5907-18,StandardTestMethodsforFilterableMatter(TotalDissolvedSolids)and NonfilterableMatter(TotalSuspendedSolids)inWater,ASTMInternational,WestConshohocken,PA,2018, www.astm.org Aversa,T.,Queiros,Y.,&Lucas,E.(2014).Synthesisandsulfonationofmacroporouspolymericresinsandtheirassessmentforremovalofoiland anilinefrom. Water.Polimeros, 24,45 51.Availablefrom http://dx.doi.org/10.4322/polimeros.2013.048.
Bakke,T.,Klungsøyr,J.,&Sanni,S.(2013).EnvironmentalimpactsofproducedwateranddrillingwastedischargesfromtheNorwegianoffshore petroleumindustry. MarineEnvironmentalResearch, 92,154 169.Availablefrom https://doi.org/10.1016/j.marenvres.2013.09.012.
Barthe,P.,Chaugny,M.,Roudier,S.,&Sancho,L.D.(2015). EUbestavailabletechniques(BAT):Referencedocumentfortherefiningofmineral oilandgas.Luxembourg.:PublicationsOfficeoftheEuropeanUnion. Chen,Y.C.(2018).Evaluatinggreenhousegasemissionsandenergyrecoveryfrommunicipalandindustrialsolidwasteusingwaste-to-energytechnology. JournalofCleanerProduction, 192,262 269.Availablefrom https://doi.org/10.1016/j.jclepro.2018.04.260.
Cirne,I.,Boaventura,J.,Guedes,Y.,&Lucas,E.(2016).Methodsfordeterminationofoilandgreasecontentsinwastewaterfromthepetroleum industry. ChemistryandChemicalTechnology, 10(4),437 444.Availablefrom https://doi.org/10.23939/chcht10.04.437.
Demirci,S.,Erdogan,B.,&Ozcimder,R.(1998).Wastewatertreatmentatthepetroleumrefinery,Kirikkale,Turkeyusingsomecoagulantsand Turkishclaysascoagulantaids. WaterResearch, 32(11),3495 3499.Availablefrom https://doi.org/10.1016/S0043-1354(98)00111-0.
Dincer,A.R.,Karakaya,N.,Gunes,E.,&Gunes,Y.(2008).RemovalofCODfromoilrecoveryindustrywastewaterbytheadvancedoxidationprocesses (AOP)basedonH2O2. GlobalNestJournal, 10(1),31 38.Availablefrom http://ast.gnest.org/Journal/Vol10_No1/31-38_479_DINCER_10-1.pdf.
Diya’Uddeen,B.H.,Daud,W.M.A.W.,&AbdulAziz,A.R.(2011).Treatmenttechnologiesforpetroleumrefineryeffluents:Areview. Process SafetyandEnvironmentalProtection, 89(2),95 105.Availablefrom https://doi.org/10.1016/j.psep.2010.11.003.
El-Naas,M.H.,Al-Zuhair,S.,&Alhaija,M.A.(2010).ReductionofCODinrefinerywastewaterthroughadsorptiononDate-Pitactivatedcarbon. JournalofHazardousMaterials, 173(1 3),750 757.
El-Naas,M.H.,Alhaija,M.A.,&Al-Zuhair,S.(2014).Evaluationofathree-stepprocessforthetreatmentofpetroleumrefinerywastewater. Journal ofEnvironmentalChemicalEngineering, 2(1),56 62.Availablefrom https://doi.org/10.1016/j.jece.2013.11.024.
Farajnezhad,H.,&Gharbani,P.(2012).Coagulationtreatmentofwastewaterinpetroleumindustryusingpolyaluminumchlorideandferricchloride. InternationalJournalofResearchandReviewsinAppliedSciences,13,306 310.
Gasim,H.A.,Kutty,S.R.M.,Hasnain-Isa,M.,&Alemu,L.T.(2013).Optimizationofanaerobictreatmentofpetroleumrefinerywastewaterusing artificialneuralnetworks. ResearchJournalofAppliedSciences,EngineeringandTechnology, 6(11),2077 2082. Gocan,S.,&Cobzac,S.(2006). Modernmethodoforganicsamples’processing.Cluj-Napoca,Romania:Risoprint. Gonzalez,G.,Teixeira,C.,&Lucas,E.(2004).Theuseofpolymersinthetreatmentofproducedoilywaters. JournalofAppliedPolymericScience, 94,1473 1479.
Hasan,D.U.B.,AbdulAziz,A.R.,&Daud,W.M.A.W.(2012).OxidativemineralisationofpetroleumrefineryeffluentusingFenton-likeprocess. ChemicalEngineeringResearchandDesign, 90(2),298 307. He,Y.,&Jiang,Z.W.(2008).Technologyreview:Treatingoilfieldwastewater. FiltrationandSeparation, 45(5),14 16.Availablefrom https://doi. org/10.1016/S0015-1882(08)70174-5
Honse,S.O.,Ferreira,S.R.,Mansur,C.R.E.,Lucas,E.F.,&Gonza ´ lez,G.(2012).Separationandcharacterizationofasphaltenicsubfractions. QuimicaNova, 35(10),1991 1994.Availablefrom https://doi.org/10.1590/S0100-40422012001000019
Hu,G.,Li,J.,&Zeng,G.(2013).Recentdevelopmentinthetreatmentofoilysludgefrompetroleumindustry:Areview. JournalofHazardous Materials, 261,470 490.Availablefrom https://doi.org/10.1016/j.jhazmat.2013.07.069
Jafarinejad,S.(2016).Controlandtreatmentofsulfurcompoundsspeciallysulfuroxides(SOx)emissionsfromthepetroleumindustry:Areview. ChemInternational, 2(4),242 253.
Jasmine,J.,&Mukherji,S.(2015).Characterizationofoilysludgefromarefineryandbiodegradabilityassessmentusingvarioushydrocarbondegradingstrainsandreconstitutedconsortia. JournalofEnvironmentalManagement, 149,118 125.Availablefrom https://doi.org/10.1016/j. jenvman.2014.10.007
Karyakin,A.V.,&Galkin,A.V.(1995).Fluorescenceofwater-solublecomponentsofoilsandpetroleumproductsformingtheoilpollutionof waters. JournalofAnalyticalChemistry(Transl.ofZh.Anal.Khim.), 50,1078 1080. Kavitha,V.,&Palanivelu,K.(2004).TheroleofferrousioninFentonandphoto-Fentonprocessesforthedegradationofphenol. Chemosphere, 55 (9),1235 1243.Availablefrom https://doi.org/10.1016/j.chemosphere.2003.12.022
Lathasree,S.,Rao,A.N.,Sivasankar,B.,Sadasivam,V.,&Rengaraj,K.(2004).Heterogeneousphotocatalyticmineralisationofphenolsinaqueous solutions. JournalofMolecularCatalysisA:Chemical, 223(1 2),101 105.Availablefrom https://doi.org/10.1016/j.molcata.2003.08.032
Li,W.W.,&Yu,H.Q.(2011).Fromwastewatertobioenergyandbiochemicalsviatwo-stagebioconversionprocesses:Afutureparadigm. BiotechnologyAdvances, 29(6),972 982.Availablefrom https://doi.org/10.1016/j.biotechadv.2011.08.012
Li,X.,Cao,X.,Wu,G.,Temple,T.,Coulon,F.,&Sui,H.(2014).Ozonationofdiesel-fuelcontaminatedsandandtheimplicationsforremediation end-points. Chemosphere, 109,71 76.Availablefrom https://doi.org/10.1016/j.chemosphere.2014.03.005
Minty,B.,Ramsey,E.,&Davies,I.(2000).Developmentofanautomatedmethodfordeterminingoilinwaterbydirectaqueoussupercriticalfluid extractioncoupledon-linewithinfraredspectroscopy. Analyst, 125,2356 2363. NationalEnvironmentalCouncil(CONAMA).(1986). (ConselhoNacionaldoMeioAmbiente)—Resolutionnumber, Vol.20
Ottaviano,J.G.,Cai,J.,&Murphy,R.S.(2014).Assessingthedecontaminationefficiencyofathree-componentflocculatingsysteminthetreatment ofoilfield-producedwater. WaterResearch, 52,122 130.Availablefrom https://doi.org/10.1016/j.watres.2014.01.004
Pardeshi,S.K.,&Patil,A.B.(2008).Asimplerouteforphotocatalyticdegradationofphenolinaqueouszincoxidesuspensionusingsolarenergy. SolarEnergy, 82(8),700 705.Availablefrom https://doi.org/10.1016/j.solener.2008.02.007
Perera,F.P.,Tang,D.,Wang,S.,Vishnevetsky,J.,Zhang,B.,Diaz,D., Rauh,V.(2012).Prenatalpolycyclicaromatichydrocarbon(PAH)exposureandchildbehavioratage6 7years. EnvironmentalHealthPerspectives, 120(6),921 926.Availablefrom https://doi.org/10.1289/ ehp.1104315
Queiros,Y.,Clarisse,M.,Oliveira,R.,etal.(2006).Oilywatertreatmentusingpolymericmaterial:Use,saturationandregeneration. Polimeros, 16, 224 229.
Raza,W.,Lee,J.,Raza,N.,Luo,Y.,Kim,K.H.,&Yang.J.(2018).Removalofphenoliccompoundsfromindustrialwastewaterbasedonmembrane-basedtechnologies.JournalofIndustrialandEngineeringChemistry.(InPress. https://doi.org/10.1016/j.jiec.2018.11.024).
Saber,A.,Hasheminejad,H.,Taebi,A.,&Ghaffari,G.(2014).OptimizationofFenton-basedtreatmentofpetroleumrefinerywastewaterwithscrap ironusingresponsesurfacemethodology. AppliedWaterScience, 4,283 290.
Thakur,C.,Srivastava,V.C.,Mall,I.D.,&Hiwarkar,A.D.(2018).Mechanisticstudyandmulti-responseoptimizationoftheelectrochemicaltreatmentofpetroleumrefinerywastewater. Clean-Soil,Air,Water, 46(3).Availablefrom https://doi.org/10.1002/clen.201700624
Tony,M.A.,Purcell,P.J.,&Zhao,Y.(2012).Oilrefinerywastewatertreatmentusingphysicochemical,FentonandPhoto-Fentonoxidationprocesses. JournalofEnvironmentalScienceandHealth-PartAToxic/HazardousSubstancesandEnvironmentalEngineering, 47(3),435 440. Availablefrom https://doi.org/10.1080/10934529.2012.646136
U.S.Congress,OfficeofTechnologyAssessment,(1992).ManagingIndustrialSolidWastesfromManufacturing,Mining,OilandGasProduction, andUtilityCoalCombustion-BackgroundPaper,OTA-BP-O-82(Washington,DC:U.S.GovernmentPrintingOffice,February1992).
Usman,M.,Faure,P.,Hanna,K.,Abdelmoula,M.,&Ruby,C.(2012).Applicationofmagnetitecatalyzedchemicaloxidation(Fenton-likeandpersulfate)fortheremediationofoilhydrocarboncontamination. Fuel, 96,270 276.Availablefrom https://doi.org/10.1016/j.fuel.2012.01.017
Varjani,S.J.,&ChaithanyaSudha,M.(2018).Treatmenttechnologiesforemergingorganiccontaminantsremovalfromwastewater.InS.Bhattacharya,A. Gupta,&A.Pandey(Eds.), WaterRemediation (pp.91 115).Springer.Availablefrom https://doi.org/10.1007/978-981-10-7551-3_6
Varjani,S.J.,&Upasani,V.N.(2017).Anewlookonfactorsaffectingmicrobialdegradationofpetroleumhydrocarbonpollutants. International BiodeteriorationandBiodegradation, 120,71 83.Availablefrom https://doi.org/10.1016/j.ibiod.2017.02.006
Varjani,S.,Kumar,G.,&Rene,E.R.(2019).Developmentsinbiocharapplicationforpesticideremediation:Currentknowledgeandfutureresearch directions. JournalofEnvironmentalManagement, 232,505 513.Availablefrom https://doi.org/10.1016/j.jenvman.2018.11.043
Vendramel,S.,Bassin,J.P.,Dezotti,M.,&Sant’Anna,G.L.,Jr(2015).Treatmentofpetroleumrefinerywastewatercontainingheavilypolluting substancesinanaerobicsubmergedfixedbedreactor. EnvironTechnol, 36,2052 2205.Availablefrom https://doi.org/10.1080/ 09593330.2015.1019933
Viggi,C.C.,Presta,E.,Bellagamba,M.,Kaciulis,S.,Balijepalli,S.K.,Zanaroli,G.,&Aulenta,F.(2015).TheOilSpillSnorkel:aninnovativebioelectrochemicalapproachtoacceleratehydrocarbonsbiodegradationinmarinesediments. FrontMicrobiol, 6(881),1 11.Availablefrom https:// doi.org/10.3389/fmicb.2015.00881
Visser,J.P.,&AloisideLarderel,J.(1997). EnvironmentalManagementinOilandGasExplorationandProduction,anOverviewofIssuesand ManagementApproaches.JointE&PForum.
Vorontsov,A.,Nikanorova,M.,Dorokhov,A.,etal.(1998).Assaymethodsformonitoringthecontaminantsofnaturalwatersbypetroleumproducts. JournalofOpticalTechnology, 65,335 340.
Wang,S.,Ghimire,N.,Xin,G.,Janka,E.,&Bakke,R.(2017).Efficienthighstrengthpetrochemicalwastewatertreatmentinahybridverticalanaerobicbiofilm(HyVAB)reactor:Apilotstudy. WaterPracticeandTechnology, 12(3),501 513.Availablefrom https://doi.org/10.2166/ wpt.2017.051
Ward,O.,Singh,A.,&VanHamme,J.(2003).Acceleratedbiodegradationofpetroleumhydrocarbonwaste. JournalofIndustrialMicrobiologyand Biotechnology, 30(5),260 270.Availablefrom https://doi.org/10.1007/s10295-003-0042-4
Waseem,R.,Jechan,L.,Nadeem,R.,Yiwei,L.,Ki-Hyun,K.,&Jianhua,Y.(2019).Removalofphenoliccompoundsfromindustrialwastewater basedonmembrane-basedtechnologies. JournalofIndustrialandEngineeringChemistry,1 18.Availablefrom https://doi.org/10.1016/j. jiec.2018.11.024