Pericyclic chemistry. orbital mechanisms and stereochemistry mandal - The ebook version is available

Page 1


https://ebookmass.com/product/pericyclic-chemistry-orbital-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Stereochemistry and Organic Reactions Conformation, Configuration, Stereoelectronic Effects and Asymmetric Synthesis 1st Edition Dipak Kumar Mandal

https://ebookmass.com/product/stereochemistry-and-organic-reactionsconformation-configuration-stereoelectronic-effects-and-asymmetricsynthesis-1st-edition-dipak-kumar-mandal/ ebookmass.com

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 8th Edition Michael B. Smith

https://ebookmass.com/product/marchs-advanced-organic-chemistryreactions-mechanisms-and-structure-8th-edition-michael-b-smith/

ebookmass.com

Pericyclic reactions : a mechanistic and problem solving approach 1st Edition Kumar

https://ebookmass.com/product/pericyclic-reactions-a-mechanistic-andproblem-solving-approach-1st-edition-kumar/

ebookmass.com

Beavers: Ecology, Behaviour, Conservation, and Management

https://ebookmass.com/product/beavers-ecology-behaviour-conservationand-management-frank-rosell/

ebookmass.com

Individualism and the Rise of Egosystems. The Extinction Society Matteo Pietropaoli

https://ebookmass.com/product/individualism-and-the-rise-ofegosystems-the-extinction-society-matteo-pietropaoli/ ebookmass.com

Emerging trends in applications and infrastructures for computational biology, bioinformatics, and systems biology : systems and applications 1st Edition Arabnia

https://ebookmass.com/product/emerging-trends-in-applications-andinfrastructures-for-computational-biology-bioinformatics-and-systemsbiology-systems-and-applications-1st-edition-arabnia/ ebookmass.com

Tempting the Boss: An Age Gap/Bodyguard Romance (Golden Gate Billionaires Book 4) Cora North

https://ebookmass.com/product/tempting-the-boss-an-age-gap-bodyguardromance-golden-gate-billionaires-book-4-cora-north/

ebookmass.com

Capable Women, Incapable States: Negotiating Violence and Rights in India Poulami Roychowdhury

https://ebookmass.com/product/capable-women-incapable-statesnegotiating-violence-and-rights-in-india-poulami-roychowdhury/

ebookmass.com

Quick Start Guide to FFmpeg: Learn to Use the Open Source Multimedia-Processing Tool like a Pro 1st Edition V. Subhash

https://ebookmass.com/product/quick-start-guide-to-ffmpeg-learn-touse-the-open-source-multimedia-processing-tool-like-a-pro-1st-editionv-subhash/

ebookmass.com

Kidney Transplantation - Principles and Practice: Expert Consult - Online and Print 8th Edition Stuart J. Knechtle Md

https://ebookmass.com/product/kidney-transplantation-principles-andpractice-expert-consult-online-and-print-8th-edition-stuart-jknechtle-md/

ebookmass.com

PERICYCLIC CHEMISTRY

PERICYCLIC CHEMISTRY

OrbitalMechanismsand Stereochemistry

DIPAKK.MANDAL

FormerlyofPresidencyCollege/University Kolkata,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

© 2018ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-814958-4

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JohnFedor

AcquisitionEditor: EmilyMcCloskey

EditorialProjectManager: BillieJeanFernandez

ProductionProjectManager: PaulPrasadChandramohan

CoverDesigner: MarkRogers

TypesetbySPiGlobal,India

Dedicatedtothememoryofmyparents.

PREFACE

Itisabout50yearssincetheappearanceofthepioneeringworkof R.B.WoodwardandR.Hoffmannonthetheoryofconservationoforbital symmetryinconcertedreactions.Thewordpericyclicwasintroducedin1969 andtheapplicationoftheconceptoforbitalsymmetrytopericyclicreactions provedtobeamajorturningpointinunderstandingorganicreactionmechanisms.The1981NobelPrizeinChemistrywasawardedtoK.Fukuiand R.Hoffmannfordevelopingtheoriesofpericyclicreactions(Woodwarddied in1979attheageof62andcouldnotsharethisprize;however,hewonthe NobelPrizein1965forhisworkonorganicsynthesis).Pericyclicreactions havearemarkablequalityofbeingmanifold,extremelyelegant,andhighly useful;theyrevealstereochemicalintricaciesandidiosyncrasiesandremain asanintegralpartofchemistryteachingandresearch.

Pericyclicchemistryiscoveredineverygraduatecourseandinadvanced undergraduatecoursesinorganicchemistry.Ergo,thisbookisaddressed principallytoanaudienceofgraduateandadvancedundergraduatestudents. Thepurposeofwritingthisbookisentirelypedagogic,keepinginview thatourstudentscraveunderstanding,notfactualknowledgealone.The bookevolvesfromaseriesoflecturenotesandstudents’feedbackduring myteachingthiscoursetograduatestudentsformorethan20years.The mechanisticdescriptionsandthestereochemistryresultingfromorbital mechanismsareattheheartofthisbook;thesynthesisofspecifictarget moleculeshasbeengenerallygivenshortshrift.

Thebookcontainselevenchapters.Anintroductiontomolecularorbital theory(Chapter1)andrelevantstereochemicalconcepts(Chapter2)have beenprovidedasabackgroundaidtofollowthechaptersonpericyclic chemistry.Intheintroductorychapter(Chapter3),Ihaveintroducedall fourclassesofpericyclicreactionsinvolvingthreemechanisticapproaches linkedthroughorbitalpicturerepresentation.Thisunifyingandintegrated stylewouldhelpenhancethepedagogyofthistext.Thequalitativeperturbationmolecularorbitaltheoryhasbeenincorporatedasthemostaccessible andusefulapproachtounderstandingmanyaspectsofreactivityandselectivity.Threechapters(Chapters4–6)havebeendevotedtocycloadditions, themostversatileclass,onetoelectrocyclicreactions(Chapter7),twoto sigmatropicrearrangements(Chapters8and9),andonetogrouptransfer reactions(Chapter10).Aseparatechapter(Chapter11)isincludedto

illustratetheconstructionofcorrelationdiagramsinapractical, ‘how-to-do-it’manner.

Besidestheunifyingapproachofmechanisticdiscussion,themost importantdifferencebetweenthisbookandothersistheemphasisonstereochemistry,specificallyhowtodelineatethestereochemistryofproducts. Ihavefoundthatstudentsarenotoftenquitecomfortabletoworkstereochemistryforthemselves.Afterall,reactionstereochemistryisnoteasy! Studentsneedsomemorehelp.Toaddresstheirconcerns,Ihavealways beenlookingforinnovativeapproachestostereochemicalissues.Myefforts haveresultedinformulatingsimplestereochemicalrules/guidelines,someof whichhavebeenpublishedinthe JournalofChemicalEducation.Thesepublished(alsosomeunpublished)rules/mnemonicshavebeenusedextensively intherelevantchaptersasanaidtowritequicklyandcorrectlytheproduct stereochemistryinpericyclicreactions.

Usually,theproblemsetsaregivenattheendofchapterswithoutorwith answerkeys.OnepedagogicaldecisionIhavemadewithrespecttoproblem setsisthatmorethan130problemsareinsertedwithinthechapterswith detailedworkedsolutions,reinforcingthemainthemesinthetext.Itis hopedthatstudentscouldtesttheirlearningimmediatelywhilereading throughthechapters.Theseproblemsetsshouldbeconsideredanintegral partofthecourse.Alistofselectivereferencestoprimaryandreviewliteratureisincludedattheendofeachchapter.Thesereferences(about550) wouldenablethestudentsattheadvancedlevelstosupplementthematerials coveredinthechapters.

Theapproachpresentedinthisbookisdistinctandclass-tested.Ihope thisbookwillbeofvalueandinteresttothestudents,teachers,and researchersoforganicchemistry.Iencouragethereaderstocontactme (dm.pcchem@gmail.com)withcomments,corrections,andwithsuggestionsthatmightbeappropriateforfutureeditions.

Iwouldliketothankthereviewersforhelpfulsuggestions.Specialthanks areduetomyundergraduate,graduate,andresearchstudentsfortheirloving insistence,help,andencouragementinwritingthisbook.Iamgratefultothe editorialmembersEmilyM.McCloskeyandBillieJeanFernandez,productionmanager,andotherpeopleatElsevierfortheirexcellentsupportand cooperation.Finally,Ithankmyfamily,inparticularmydaughterSudipta, forhercontinuoussupportandmysonTirthaforhisactivehelpinreferencing.

CHAPTER1

MolecularOrbitals

Abasicandpictorialknowledgeofmolecularorbitals(MOs)isessentialfora mechanisticdescriptionofpericyclicreactions.Inthiscontext,asimplified andnonmathematicaldescriptionofMOtheory1–4 ispresentedinthischapter.WeshalldealwiththreekindsofMOs—σ, π and ω withmajoremphasis on π MOs,anddiscusstheirpropertieswithreferencetoorbitalsymmetry, energyandcoefficient.

1.1ATOMICORBITALS

Anatomicorbital(AO)isdescribedbyawavefunction ϕ,where ϕ2 denotes theprobabilityoffindinganelectronatanypointinathree-dimensional space.Thealgebraicsignof ϕ maybepositiveornegative,whichindicates thephaseoftheorbital(cf.thepeaksandtroughsofatransversewave).An orbitalcanhavenodeswhere ϕ ¼ 0.Onoppositesidesofanode, ϕ has oppositesigns.AnAOasagraphicaldescriptionof ϕ showslobeswith a+ora sign(theoppositesignsoftwolobesarealsoindicatedbyunshaded andshadedlobes).Ontheotherhand, ϕ2 isalwayspositivewhether ϕ is positiveornegative.Assuch,therepresentationofAOintermsof ϕ2 is madebydrawinglobeswithoutaphasesign.Thisdrawingreferstothe probabilitydistributionofAOs,andisindicatedinthistextassimplyorbital picture.

1.1.1s,pandHybridOrbitals

1sorbitalissphericallysymmetricalaboutthenucleusandhasasinglesignof ϕ.Itisrepresentedasacircle,beingonecross-sectionofthesphericalcontour.The2sorbitalisalsosphericallysymmetricalbutpossessesaspherical node.Thenodeisclosetothenucleusandhencetheinnersphereisnot importantforbondingoverlap.The2sorbitalisusuallydrawnasasingle circlewithasinglesignomittingtheinnersphere.

Unlikeansorbital,theporbitalsaredirectional,andorientedalongthe x-, y-and z-axis.Eachporbitalhastwolobeswithoppositesignsandone node(nodalplane).

PericyclicChemistry © 2018ElsevierInc. https://doi.org/10.1016/B978-0-12-814958-4.00001-5 Allrightsreserved.

CarbonhasfourAOs(2s,2px,2py and2pz)thatareavailableforbonding. Thoughthismodelofonesandthreeporbitalsisveryuseful,thereisan alternativemodeloffourAOsofcarbon,basedonPauling’sideaofhybridization.Thehybridizationinvolvesmixingof2sand2porbitalsinvarious proportionstoproduceanewsetofAOs.Mathematically,themixingis takentobethelinearcombinationofatomicorbitals(LCAOs).Such LCAOsonthe sameatom arecalledhybridorbitals.Thecombinationof 2swithone,twoorthreeporbitalscanbeusedindifferentwaystoproduce differentsetsofhybridorbitals,designatedasspn wherenmaybeawhole numberorafraction.Forexample,acombinationof2sandthree2porbitals canbeusedtogeneratefourequivalenthybridorbitalscalledsp3 hybrids. Eachsp3 hybridorbitalhastwolobeswithoppositesigns,butunlikeap orbital,thetwolobesofahybridorbitalhavedifferentsizes.

Theschematicrepresentationsofs,pandsp3 hybridorbitalsareshownin Fig.1.1.In Fig.1.1A,theorbitalsaredrawnasgraphicaldescriptionofwave function(ϕ)showingaphasesignwhile Fig.1.1Bshowstheorbitalpicture intermsof ϕ2 withnophasesign.

Fig.1.1 (A)Sketchofatomicorbitalsintermsof ϕ withaphasesign;(B)orbitalpicturein termsof ϕ2 withoutaphasesign.

Theunequalsizeoftwolobesofahybridorbital,saysp,arisesfrom themixingofsorbitalwithaporbitalonthesameatom(Fig.1.2).The twolobesofporbitalhavethesamesize,butoppositesigns(unshaded andshaded),andthesorbitalhasasinglesign(unshaded).Thecombinationgivesin-phase(samesign)mixingononesideofthenucleus andout-of-phase(differentsigns)mixingontheotherside,leadingto alargelobeontheleftsideandasmalllobeontherightsideofthehybrid orbital.

Fig.1.2 Unequalsizeoftwolobesofahybridorbital.

Table1.1 Energiesofsandpatomicorbitals

1.1.2AtomicOrbitalsofNitrogenandOxygen

Nitrogenandoxygenhavesimilarsetsofs,pandhybridorbitalsasforcarbon.However,theenergiesaredifferent.TherelativeenergiesofanAOon differentatomsfollowtheirpatternofelectronegativity.Anorbitalona moreelectronegativeatomwillhavelowerenergy(Table1.1).5

1.2MOLECULARORBITALS

AnMOisalsodescribedbyawavefunction ψ whichcanbeexpressedasan LCAOs.ThesetofAOschosenforthelinearcombinationiscalledthe basis set.ThetotalnumberofMOswillbeequaltothetotalnumberofAOscombined.ThecalculationofMOsusingallAOsofamoleculepresentsmassive computationalproblems.However,theessentialqualitativefeaturesof bondingcanbeunderstoodifthebasissetisrestrictedjusttothoseAOsthat areinvolvedinaparticulartypeofbonding.MOsaredesignatedbythesymbols σ, π and ω reflectingthetypeofbondingthatoccurs.

NowconsiderthelinearcombinationoftwoAOs ϕ1 and ϕ2 onatoms1 and2.(Notethatthelinearcombinationusesonlythefirstpowerofwave function;cf.equationofastraightline.)TwoMOs ψ 1and ψ 2 areproduced whichareexpressedas

where c1 and c2 arethemixingcoefficientswhichdenotetherelativecontributionsoftheAOs ϕ1 and ϕ2 toanMO.Thecoefficientsmaybepositive, negativeorevenzero.

ThegeometryofapproachofthetwoAOsleadstodifferenttypesof MOs.Thisisillustratedbelowtaking,forexample,theoverlapoftwop AOscentredontwoidenticalatoms(homonuclear),when c1 ¼ c2.

End-onapproach:End-onoverlapoftwoporbitalsgivestwoMOs(ψ 1 and ψ 2)thatarecylindricallysymmetricalabouttheinternuclearaxis(Fig.1.3).

Thesearecalled σ MOs.Here,‘+’combinationsignifiesin-phase(same sign)overlapwhen ψ 1 hasnonode.Incontrast,‘ ’combinationdenotes out-of-phase(oppositesign)overlapleadingtoanode(nodalplane)in ψ 2. TheMO ψ 1 haslowerenergythanpAOandiscalledbonding σ orbital (symbolized σ),while ψ 2 hashigherenergyandiscalledanantibonding σ orbital(σ*).

Fig.1.3 End-onoverlapoftwoporbitalstoproduce σ MOs.

Side-onapproach:Side-on(lateral)overlapoftwoporbitalsproducestwo MOs(ψ 1 and ψ 2)thatarenotcylindricallysymmetricalabouttheinternuclearaxis,andarecalled π MOs(Fig.1.4). ψ 1 haslowerenergywithnonode andisabondingMO(π),while ψ 2 withonenode(nodalplane)isofhigher energyandisanantibondingMO(π*).

Fig.1.4 Side-on(lateral)overlapoftwoporbitalstoproduce π MOs.

Orthogonalapproach:Fororthogonal(perpendicular)approachoftwop orbitals,bondingoverlapofthesamesigniscancelledbyanantibonding overlapoftheoppositesign(Fig.1.5).Thenetinteractionisthereforenonbonding. ψ 1 and ψ 2 havethesameenergyandareequivalenttoindividualp orbitals.ThesenonbondingMOsarecalled ω MOs.

Fig.1.5 Orthogonalapproachoftwoporbitalstoproduce ω MOs.

Itmaybementionedherethatbesidesnonbonding ω MOs,therearealso nonbonding π MOsthatcanariseinconjugated π systems(seelater).

1.2.1EnergyDiagram

Ingeneral,theinteractionoftwoAOsleadstoapairofbondingandantibondingMOs.Considertheformationof σ and σ* MOsforhydrogenmolecule.Fromquantummechanicalcalculation,theenergy(E )ofanelectron in σ and σ* orbitalisexpressedintermsofthreeintegrals(α, β and S)as

where α istheCoulombintegralwhichdenotestheenergyofanelectronin anisolatedAO; β istheresonanceintegralwhichrepresentstheenergyof interactionbetweentwoAOs;and S istheoverlapintegralwhichindicates theextentofoverlapoftheAOs.

NowwefocusonthenumeratoranddenominatortermsinEqs (1.1), (1.2) α and β arenegativequantities.Therefore,(α + β ) < α (indicatingloweringofenergyof σ)and(α β ) > α (raisingofenergyof σ*).Theoverlap integral S isafunctionofinternucleardistanceandthevalueof S rangesfrom 0to1.Fortwointeractingorbitals, S > 0.Hence,thedenominator(1+ S) > (1 S).Thus,theenergyincreaseassociatedwithantibonding σ* orbitalis slightlygreaterthantheenergydecreaseforbonding σ orbital.Theseresults arepresentedqualitativelyintheMOenergydiagram(Fig.1.6).

Fig.1.6 MOenergydiagramforatwo-orbitalinteraction. x and y indicate,respectively, theenergydecreaseforthebondingorbitalandenergyincreasefortheantibonding orbital.

For π and π* orbitals,asimilarpatternfollows;however,thevalueof S for π overlapismuchsmaller.Ifweassume S ¼ 0,weobtain

where α istheenergyofanelectroninanisolatedporbitaland β represents theenergyofinteractionbetweentwoadjacentporbitals.

1.2.1.1Remarks

TheaboveMOenergydiagramservesqualitativelyageneralpatternfora two-orbitalinteractionthatmayinvolveanyAOsorMOs.Itcanbeseen from Fig.1.6 thatifeachinteractingorbitaliscompletelyfilledproviding atotaloffourelectrons,bothbondingandantibondingorbitalswouldbe completelyfilled.Thenetinteractionwouldthusberepulsivebecause theincreaseinenergyintheantibondingcombinationisgreaterthanthe decreaseinenergyinabondingcombination.Thisrepulsivefilled orbital/filledorbitalinteractionistheunderlyingreasonforthestericstrain (repulsionbetweenclosed-shellmoleculesorgroups),andisincludedinthe firsttermoftheSalem–Klopmanequation(see Section4.1).

1.2.2C HandC C σ Bonds

AC Hbondisformedbytheinteractionofahybridorbital(say,sp3)of carbonwiththe1sorbitalofhydrogen.Thistwo-orbitalinteractionleadsto bonding σCH andantibonding σ* CH asshownin Fig.1.7A.Notethatthe energyofsp3C ( 16.1eV)issomewhatlowerthanthatof1sH ( 13.6eV).

AC C σ bondisformedbytheend-onoverlapoftwohybridorbitals,one fromeachcarbon. Fig.1.7Bshowstheformationofabonding σCC andan antibonding σ* CC fromtwosp3 hybridorbitals.(Notetheconventional MOsketcheswiththeAOsinsteadofthedelocalizedsketchesofMOs.) Thebonding σ MOhasnonodebetweenlobesofthesamesign,butantibonding σ* MOhasonenodebetweenlobesofoppositesign(shadedand unshaded).

Fig.1.7 BondingandantibondingMOsfor(A)C Hbondand(B)C Cbond.

Weshallseelaterthatthemoreimportantorbitalsinconnectionwith reactivityarethehighestoccupiedmolecularorbital(HOMO)andthelowestunoccupiedmolecularorbital(LUMO).Thesearecalledthefrontier MOs.Thus,forthe σ component(C HorC C),theHOMOis σ andtheLUMOis σ*

BesidesMOs,orbitalpicturerepresentation(withoutphasesign)ofa σ-componentisusedinthemechanisticanalysisofpericyclicreactions.

Fig.1.8 showstheorbitalpicturesofC HandC C σ components. The σ componentislabelledas σ2(2isthenumberofelectronsinthe component).

Fig.1.8 OrbitalpicturesofC HandC C σ components.

1.3H € UCKELMOLECULARORBITAL(HMO)THEORY FORACYCLICCONJUGATED π SYSTEMS

H € uckeltheory1,6 treatsa π systemindependentlyofthe σ framework(the π and σ orbitalsbeingorthogonaltoeachother).TheHMOtheoryassumes thefollowing:

(1) EachCoulombintegral(α)hasthesamevalue.

(2) Theresonanceintegral(β )issameforanytwoadjacentatomsbutzero fortwoatomsnotdirectlybonded.

(3) Theoverlapintegral(S)iszerofortheinteractionbetweentwo porbitals.

Itmightbesurprisingthat S isassumedtobezero,whilethewholeconcept ofchemicalbondingisbasedontheoverlapoforbitals(!).Infact,overlapis notreallyneglectedbecauseitisimplicitlyincludedinotherparameterssuch as β whichisroughlyproportionalto S.Theassumptionthat S ¼ 0greatly simplifiesthecalculation.

The π MOwavefunction(ψ j)isdescribedbyalinearcombinationofp AOs(ϕr)as

where n isthetotalnumberofporbitalsinvolvedand j ¼ 1,2,3,…,n.

Here,weshallconsiderthelinearconjugatedsystemsandobtaintheir π MOsandenergiesusingCoulsonequations7 asfollows:

1.3.1LinearConjugatedSystemWithEvenNumber ofpOrbitals

1.3.1.1Ethylene

Thesimplestsystemisethyleneinwhichtwoporbitals(n ¼ 2)areconjugatedtoeachotherinforminga π bond.AccordingtoEq. (1.3),the MOwavefunctionsare

ThecoefficientsareevaluatedusingEq. (1.4).Thus c11 ¼

0.707.Similarly,

¼

c22 ¼ 0.707.Substitutingthesevalues, weobtain

(Notethatthesignsofcoefficientsarearisingfromthecalculationusing Eq. 1.4.)

Thewavefunctions(π MOs)cannowbesketchedas

Therelativemagnitudesofthecoefficientsareusuallyindicatedbytherelativesizesofthelobes.Herethetwocoefficientshavethesamesizeforboth ψ 1 and ψ 2.For ψ 1,thecoefficientshavethesamesignindicatingin-phase (bonding)overlap.For ψ 2,thecoefficientshaveoppositesignsindicating out-of-phase(antibonding)overlapwhichcreatesanode(nodalplane).

Theenergiesofthe π MOsareestimatedusingEq. (1.5) as

Fig.1.9 showstheMOenergydiagramwhere ψ 1 isabondingMO(π)as ithaslowerenergythantheenergyofporbital(α)and ψ 2 isanantibonding MO(π*)havinganenergyhigherthan α.

Fig.1.9 MOenergydiagramofethylene.

Thegroundstate π electronconfigurationofethyleneis π 2 π*0.Therefore, π isHOMOand π* isLUMO.Athermalpericyclicreactionisa groundstateprocesswhereasaphotochemicalreactionisafirstexcitedstate process.Onphotochemicalexcitationbyabsorptionoflight,oneelectronis promotedfrom π (HOMO)to π* (LUMO)withtheconservationofspin, andtheresultingexcitedstateisasingletwithsinglyoccupied π (formerly HOMO)andsinglyoccupied π* (formerlyLUMO)(Fig.1.10).

Fig.1.10 Frontierorbitalsinthegroundstateandintheexcitedstateofethylene.

Ausefulconvention8 istodesignatethesinglyoccupiedexcitedstate orbitalsofamoleculebyitsformergroundstateHOMO/LUMOlabels.This excitedstatefrontierorbitalconventionasshownin Fig.1.10 willbeused whiledealingwiththefrontierorbitalanalysisofphotochemicalreactions. (Analternativeexcitedstatenomenclaturethatspecifies π* asHOMOand π asNHOMO,nextlowerHOMO,willnotbeusedinthistext.)

Attheinstantofexcitation,thenucleiretaintheplanargroundstate geometry(Frank–Condonprinciple).The π bondorder[½ (no.ofbonding electrons no.ofantibondingelectrons)]intheexcitedstateiszero.The initialplanarexcitedstatethenquicklyrelaxestotheminimumenergy geometryinwhichthetwosp2 carbonsaretwistedbyabout90degrees whenthereisno π overlap(Fig.1.11).Thistwisted,excitedstate,sometimes calledthe pstate,permitsthepossibilityofreturningtoeither E or Z configurationofthegroundstatealkene.

Fig.1.11 Orbitalpicturesofthegroundstateandexcitedstateofethylene.

Weshallseelaterthatthephaserelationshipofterminalporbitalsin HOMO/LUMOisimportantinthemechanisticanalysisofpericyclicreactions.Thisphaserelationshipischaracterizedbyorbitalsymmetry. Fig.1.12 showstheorbitalsymmetriesofHOMOandLUMOofethylene.The HOMO(π)hasthesamephaseatthetwoendsandpossessesaplaneofsymmetry(symbolizedby m)sincealobe(labelled *)reflectstoalobeofthesame sign.Notethatthemirrorplane(m)bisectstheC Cbondandisperpendiculartotheplaneofthemolecule.Ontheotherhand,theLUMO(π*)has oppositephasesatthetwoendsandischaracterizedby C2 symmetryasthe C2 operationbringsalobe(labelled *)toapositionofalobewiththesame sign.Notethatthe C2 axisbisectstheC Cbondandislyingintheplaneof themolecule.

Fig.1.12 OrbitalsymmetriesofHOMOandLUMOofethylene.

1.3.1.2Butadiene

Thebasissetorbitalsofbutadiene(ϕ1–ϕ4)arefourporbitals(n ¼ 4).The wavefunctions(ψ 1–ψ 4)representingfour π MOsarewrittenas

UsingEq. (1.4),

othercoefficientsarecalculatedsimilarly.Weobtain

Thewavefunctions(π MOs)ofbutadienecanbesketchedin s-trans or s-cis conformation. Fig.1.13 showsthebutadiene π MOsinmorestable s-trans conformation.(Weshallseelaterthatitisthe s-cis formwhichis thereactivecomponentinmostpericyclicprocesses.)Therelativesizesof thelobesindicatequalitativelytherelativevaluesofthecoefficients.The numberofnodes(indicatedbydashedline)in ψ 1, ψ 2, ψ 3 and ψ 4 is0,1, 2and3,respectively.Thisindicatesthatanorbital ψ j has( j 1)nodes.

Fig.1.13 Sketchesof π MOsofbutadienein s-trans conformation.

Asthenumberofnodesincreases,theenergyoftheorbitalincreasesin theorder: ψ 1 < ψ 2 < ψ 3 < ψ 4.Inanotherfashion,ifwecountthenumberof bonding/antibondinginteractionsbetweentheadjacentporbitals,itisseen that ψ 1 withthreebondingoverlapsand ψ 2 withtwobondingandoneantibondinginteractionsbecomebondingMOswhereas ψ 3 withtwoantibondingandonebondinginteractionsand ψ 4 withthreeantibondinginteractions

becomeantibondingMOs.TheMOenergythereforeincreasesinthesame orderasshownabove.

Theenergiesofthe π MOscanhoweverbeestimatedusingEq. (1.5). Forexample, E1 ¼ α +2β cos π 5 ¼ α +1 618β .Theestimatedenergiesofall π MOsareshownintheMOenergydiagram(Fig.1.14).Notethatthemore positiveorlessnegative β valuesimplyadecreaseinenergy;lesspositiveor morenegative β valuesindicateanincreaseinenergy.

Fig.1.14 MOenergydiagramofbutadiene.

Thebonding/antibondingclassificationofthe π MOsisnowclearlyevident. ψ 1 and ψ 2 haveenergieslowerthantheenergy(α)ofaporbitalandare thereforebondingMOswhereas ψ 3 and ψ 4 areantibondingMOsastheir energiesarehigherthan α. (SincethedecreaseorincreaseinenergyofanMOisconsideredrelative totheenergyoftheAO, α canbearbitrarilyassumedtobezeroandtheMO energycanbeexpressedinonly β terms;howeverinthistextMOenergyis expressedinboth α and β terms,asobtainedfromtheenergyexpression.)

Thegroundstate π electronconfigurationofbutadieneis ψ 1 2 ψ 2 2.Thus, ψ 2 isHOMOand ψ 3 isLUMO.Inthefirstexcitedstate,oneelectronispromotedfrom ψ 2 (HOMO)to ψ 3 (LUMO).Asperthefrontierorbitalconventionusedinthistext(seep.10),thesinglyoccupied ψ 2 and ψ 3 also representHOMOandLUMOinthefirstexcitedstate.

TheHOMO/LUMOenergiesin s-trans and s-cis conformationsofbutadienearenotthesame.In s-cis conformation,theHOMOenergyisraised andtheLUMOenergyisloweredrelativetothoseinthe s-trans form (Fig.1.15).Unlikethe s-trans form,the s-cis conformationhasapossible interactionbetweenthetwoterminalporbitals.Anantibondinginteraction raisestheHOMOenergy,whileabondinginteractionlowerstheLUMO energyin s-cis conformation.

Fig.1.15 Relativeenergiesoffrontierorbitalsin s-trans and s-cis conformationsof butadiene.

Infrontierorbitalanalysis,thehigherenergyHOMOandlowerenergy LUMOwouldmakethe s-cis-butadienemorereactivethan s-transbutadieneinpericyclicreactions.Itmaybementionedherethatthelower HOMO/LUMOenergygapin s-cis conformationleadstoUVabsorptionat alongerwavelength(253nm)forahomoannulardienelockedin s-cis conformationcomparedwitha λmax of215nmforanacyclicoraheteroannular dieneexistingpredominantlyorexclusivelyin s-trans conformation.

Theorbitalsymmetryoffrontierorbitalsisimportantinthecontextof mechanismofpericyclicreactions. Fig.1.16 showsthattheHOMOhasthe oppositephaserelationshipatthetwoterminiandischaracterizedby C2 symmetrywhiletheLUMOwiththesamephaserelationshipatthetwo endsexhibits m symmetry.

Fig.1.16 Orbitalsymmetriesof ΗΟΜΟ andLUMOofbutadiene.

1.3.1.3Hexatriene

1,3,5-Hexatrieneisaconjugated π systemofsixporbitals(n ¼ 6).UsingEqs (1.3),(1.4),thewavefunctions(ψ 1 – ψ 6)forsix π MOsareobtainedasfollows:

Notethepatterninthesize(notsign)ofcoefficients:thefirstthreeand lastthreevaluesineachMOholdamirrorimagerelationship.Theenergies ofthe π MOsareestimatedusingEq. (1.5).Forinstance, E3 ¼ α +2β cos 3π 7 ¼ α +0 445β .Thesketchesofsix π MOs,theirnodal propertiesandenergiesareshownin Fig.1.17.Itisevidentthatthesix π MOsconstitutethreebondingandthreeantibondingMOs.

Inthegroundstate,the π electronconfigurationofhexatrieneis ψ 1 2 ψ 2 2 ψ 3 2 . Thus, ψ 3 isHOMOand ψ 4 isLUMO.Inthefirstexcitedstate, ψ 3 and ψ 4 alsorepresentHOMOandLUMOwheneachishalf-filled.(OnlyHOMO andLUMOarelabelledwithcoefficientvaluesinthefigure.)

MOenergydiagramandsketchesofthe π MOsof1,3,5-hexatriene.

Inpericyclicreactions,thetwoterminiofthehexatrienecomponent oughttobegenerallyclosetoeachother.Thisisachievedwhenthemiddle doublebondis Z andthemoleculeadopts s-cis conformation.Thesymmetry ofthefrontierorbitalsofhexatrieneisshownin Fig.1.18.TheHOMOhas m symmetrywhiletheLUMOischaracterizedby C2 symmetry.

Fig.1.18 Orbitalsymmetriesof ΗΟΜΟ andLUMOof1,3,5-hexatriene.

Fig.1.17

1.3.2LinearConjugatedSystemWithOddNumber ofpOrbitals

Wehaveseenthatthe π MOsofaconjugatedsystem(n ¼ even)comprise equalnumberofbondingandantibondingMOs.When n ¼ odd,theconjugated π systemisareactiveintermediate(carbocation,carbanionorcarbon radical)whenthe π MOswillcontainanonbondingMObesidesbonding andantibondingorbitalsasdescribedbelow.

1.3.2.1AllylSystem

Theallylsystem(cation,radicaloranion) representsaconjugated systemofthreeporbitals(n ¼ 3).Thewavefunctions(ψ 1–ψ 3)forthree π MOsare,accordingtoEq. (1.3),givenby

ThecoefficientsareevaluatedusingEq. (1.4).Forinstance, c21 ¼

¼ 0.Withthecalculatedvaluesof thecoefficients,thewavefunctionsare

In ψ 2,thecoefficientof ϕ2 iszerowhichindicatesthatthereisnocontributionof ϕ2 to ψ 2.Physically,thisimpliesthat ϕ2 isorthogonalto ϕ1 and ϕ3 in ψ 2.Theenergiesofthe π MOscanbeestimatedusingEq. (1.5).The sketchesoftheMOs,theirnodalpropertiesandtheestimatedenergiesare shownin Fig.1.19.Thenodalpropertiesindicatethat ψ j hasagain( j – 1) nodes,asobservedforthesystemwithevennumberofporbitals.Incase of ψ 2,anodepassesthroughthemiddlecarbonC-2.Theenergyof ψ 2 is α,whichissameastheenergyofaporbital,andhence ψ 2 isanonbonding MO.Itisseenthat ψ 1 isbondingand ψ 3 isantibonding.Thus,thethree π MOsofanallylsystemcompriseabonding,anonbondingandan antibondingMO.

Thefrontierorbitalsofanallylsystemdependonwhetheritisacation,a radicalorananion.Thenumberof π electronsinallylcation,radicaland anionis2,3and4,respectively.Thefrontierorbitalsaregivenbelow:

Fig.1.19 Thecoefficients,nodalpropertiesandenergiesofthe π MOsofanallylsystem.

ψ 1 2) Allylradical(ψ 1 2 ψ 2 1)Allylanion(ψ 1 2 ψ 2 2)

1

2

2

2 ψ 3

Thefrontierorbitalforanallylradicalis ψ 2 whichisasinglyoccupied molecularorbital(SOMO).Thesymmetrypropertiesofthe π MOsare shownin Fig.1.20

Fig.1.20 Orbitalsymmetriesof π MOsofanallylsystem.

Problem1.1

Derivethe π MOsofapentadienylsystemusingCoulsonequations.Sketch theMOsin s-cis conformationofthemoleculeshowingnode(s).Indicate thefrontierorbitalsforcation,anionandradicalspecieswithsymmetry.

Answer

Thepentadienylsystem(cation,radicaloranion)is The π MOs(ψ 1 – ψ 5)andtheirenergiesarederivedas

Allylcation(

Theenergiesindicatethat ψ 1 and ψ 2 arebondingMOs; ψ 3 isa nonbondingMO;and ψ 4 and ψ 5 areantibondingMOs.

Thesketchesofthe π MOsareshownbelow.Itisseenthatanorbital ψj has( j – 1)nodes.

Thefrontierorbitalsforthepentadienylcation,radicalandanion,and theirsymmetryaregivenbelow:

1.3.2.2AShort-CutMethodforSketching π MOs

Thesketchesofthe π MOscanbesimplifiedbyignoringthedifferenceof coefficients,wherethecoefficientsarenotimportantinamechanistic descriptionofpericyclicreactions.Ashort-cutmethodtodrawingsucha simplifiedpictureof π MOsistousethenodalpropertieswhichindicatethat anMO ψ j has(j – 1)nodes.Theprocedureisillustratedforthedrawingof frontierorbitalsin Fig.1.21.Notethatthenodesaretobeplacedinthemost symmetricalmannerintheprospectiveMO.

Thesymmetrypropertiesofthe π MOscanbesummarizedasfollows:

ψ j ( j ¼ odd) ) m symmetry;

ψ j ( j ¼ even) ) C2 symmetry.

BesidestheMOs,orbitalpicturerepresentation(withoutphasesign)of the π componentsisalsousedinmechanisticanalysisofpericyclicreactions. Theorbitalpicturesofthedieneandtrienecomponentsaresketchedas

Fig.1.21 Sketchesoffrontierorbitalsfromnodalproperties.

1.4CARBONYL π SYSTEM

Thesymmetrypropertiesof π MOsofthecarbonylsystemaresimilarto thoseofalkenes;however,theenergyandcoefficientpatternsdiffer.The energyofaporbitalonoxygen( 15.9eV)ismuchlowerthanthatoncarbon( 10.7eV)(see Table1.1).Thiswouldleadtoloweringofenergyof both πCO and π* CO comparedwiththoseforalkene(Fig.1.22).

Forthecarbonylgroup,thelowerenergypO wouldcontributemoreto thelowerenergy πCO andthehigherenergypC wouldcontributemoreto thehigherenergy π*CO.Asaresult,therewillbealargercoefficientonoxygenin πCO andalargercoefficientoncarbonin π* CO asshownin Fig.1.22 πCO isHOMOand π* CO isLUMO,thepolarizationofHOMOand

Fig.1.22 Energydiagramof π MOsofcarbonylgroupvis-a-visalkene π MOs.

LUMObeingopposite.Thepresenceoflow-lyingLUMOwithalarge coefficientoncarbonmakesthecarbonylgroupaparticularlyimportant electron-withdrawingsubstituentorareactivecomponentinpericyclic reactions.

1.5EFFECTOFSUBSTITUENTSONFRONTIERORBITAL ENERGIESANDCOEFFICIENTSOF π SYSTEMS

Aqualitativepictureoftheperturbationeffectsofdifferenttypesofsubstituentsonthefrontierorbitalenergiesandcoefficientsof π systemsisnecessary torationalizethefeaturesofreactivityandselectivityincycloadditions andotherpericyclicprocesses.Thesubstituentsaregenerallyclassifiedas follows:

•c-Substituents:Thesearesimpleconjugatingsubstituentssuchasvinyl, Phetc.Theycanactas π donorsoras π acceptorsbasedontheelectron demandoftheparent π system.

•z-Substituents:Theseindicateconjugatingandelectron-withdrawing substituentssuchasCOR,CO2R,CN,NO2,SiR3,BR2 etc.They actas π acceptors.

•x-Substituents:Thesedenotetheelectron-donatingsubstituentssuchas OR,NR2,R(alkyl)etc.Theyactas π donors.

1.5.1HOMO/LUMOEnergiesandCoefficients ofSubstitutedAlkenes

Theunsubstitutedalkene(ethylene)isthereferenceorunperturbedalkene. Aperturbedalkenesystemisrepresentedbyc-,z-orx-substitutedalkene. Thepatternsoffrontierorbitalenergiesandcoefficientsfortheperturbed systemsvis-a-visunperturbedalkenecanbedeterminedbychoosingareasonablemodelforeachsubstitutedalkene.Anall-carbonmodelforwhich HMOenergiesandcoefficientsareknownisthepreferredchoicetodrawa qualitativeinference.

1.5.1.1Perturbationbyc-Substituents

Sinceac-substituentisaneutralconjugatingsubstituent(e.g.CH]CH2),a reasonablemodelforac-substitutedalkeneisbutadiene:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.