Pericyclic chemistry. orbital mechanisms and stereochemistry mandal - Get the ebook in PDF format fo

Page 1


Individualism and the Rise of Egosystems. The Extinction Society Matteo Pietropaoli

https://ebookmass.com/product/individualism-and-the-rise-ofegosystems-the-extinction-society-matteo-pietropaoli/ ebookmass.com

Emerging trends in applications and infrastructures for computational biology, bioinformatics, and systems biology : systems and applications 1st Edition Arabnia

https://ebookmass.com/product/emerging-trends-in-applications-andinfrastructures-for-computational-biology-bioinformatics-and-systemsbiology-systems-and-applications-1st-edition-arabnia/ ebookmass.com

Tempting the Boss: An Age Gap/Bodyguard Romance (Golden Gate Billionaires Book 4) Cora North

https://ebookmass.com/product/tempting-the-boss-an-age-gap-bodyguardromance-golden-gate-billionaires-book-4-cora-north/

ebookmass.com

Capable Women, Incapable States: Negotiating Violence and Rights in India Poulami Roychowdhury

https://ebookmass.com/product/capable-women-incapable-statesnegotiating-violence-and-rights-in-india-poulami-roychowdhury/

ebookmass.com

Quick Start Guide to FFmpeg: Learn to Use the Open Source Multimedia-Processing Tool like a Pro 1st Edition V. Subhash

https://ebookmass.com/product/quick-start-guide-to-ffmpeg-learn-touse-the-open-source-multimedia-processing-tool-like-a-pro-1st-editionv-subhash/

ebookmass.com

Kidney Transplantation - Principles and Practice: Expert Consult - Online and Print 8th Edition Stuart J. Knechtle Md

https://ebookmass.com/product/kidney-transplantation-principles-andpractice-expert-consult-online-and-print-8th-edition-stuart-jknechtle-md/

ebookmass.com

PERICYCLIC CHEMISTRY

OrbitalMechanismsand Stereochemistry

DIPAKK.MANDAL

FormerlyofPresidencyCollege/University Kolkata,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

© 2018ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-814958-4

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JohnFedor

AcquisitionEditor: EmilyMcCloskey

EditorialProjectManager: BillieJeanFernandez

ProductionProjectManager: PaulPrasadChandramohan

CoverDesigner: MarkRogers

TypesetbySPiGlobal,India

Dedicatedtothememoryofmyparents.

PREFACE

Itisabout50yearssincetheappearanceofthepioneeringworkof R.B.WoodwardandR.Hoffmannonthetheoryofconservationoforbital symmetryinconcertedreactions.Thewordpericyclicwasintroducedin1969 andtheapplicationoftheconceptoforbitalsymmetrytopericyclicreactions provedtobeamajorturningpointinunderstandingorganicreactionmechanisms.The1981NobelPrizeinChemistrywasawardedtoK.Fukuiand R.Hoffmannfordevelopingtheoriesofpericyclicreactions(Woodwarddied in1979attheageof62andcouldnotsharethisprize;however,hewonthe NobelPrizein1965forhisworkonorganicsynthesis).Pericyclicreactions havearemarkablequalityofbeingmanifold,extremelyelegant,andhighly useful;theyrevealstereochemicalintricaciesandidiosyncrasiesandremain asanintegralpartofchemistryteachingandresearch.

Pericyclicchemistryiscoveredineverygraduatecourseandinadvanced undergraduatecoursesinorganicchemistry.Ergo,thisbookisaddressed principallytoanaudienceofgraduateandadvancedundergraduatestudents. Thepurposeofwritingthisbookisentirelypedagogic,keepinginview thatourstudentscraveunderstanding,notfactualknowledgealone.The bookevolvesfromaseriesoflecturenotesandstudents’feedbackduring myteachingthiscoursetograduatestudentsformorethan20years.The mechanisticdescriptionsandthestereochemistryresultingfromorbital mechanismsareattheheartofthisbook;thesynthesisofspecifictarget moleculeshasbeengenerallygivenshortshrift.

Thebookcontainselevenchapters.Anintroductiontomolecularorbital theory(Chapter1)andrelevantstereochemicalconcepts(Chapter2)have beenprovidedasabackgroundaidtofollowthechaptersonpericyclic chemistry.Intheintroductorychapter(Chapter3),Ihaveintroducedall fourclassesofpericyclicreactionsinvolvingthreemechanisticapproaches linkedthroughorbitalpicturerepresentation.Thisunifyingandintegrated stylewouldhelpenhancethepedagogyofthistext.Thequalitativeperturbationmolecularorbitaltheoryhasbeenincorporatedasthemostaccessible andusefulapproachtounderstandingmanyaspectsofreactivityandselectivity.Threechapters(Chapters4–6)havebeendevotedtocycloadditions, themostversatileclass,onetoelectrocyclicreactions(Chapter7),twoto sigmatropicrearrangements(Chapters8and9),andonetogrouptransfer reactions(Chapter10).Aseparatechapter(Chapter11)isincludedto

illustratetheconstructionofcorrelationdiagramsinapractical, ‘how-to-do-it’manner.

Besidestheunifyingapproachofmechanisticdiscussion,themost importantdifferencebetweenthisbookandothersistheemphasisonstereochemistry,specificallyhowtodelineatethestereochemistryofproducts. Ihavefoundthatstudentsarenotoftenquitecomfortabletoworkstereochemistryforthemselves.Afterall,reactionstereochemistryisnoteasy! Studentsneedsomemorehelp.Toaddresstheirconcerns,Ihavealways beenlookingforinnovativeapproachestostereochemicalissues.Myefforts haveresultedinformulatingsimplestereochemicalrules/guidelines,someof whichhavebeenpublishedinthe JournalofChemicalEducation.Thesepublished(alsosomeunpublished)rules/mnemonicshavebeenusedextensively intherelevantchaptersasanaidtowritequicklyandcorrectlytheproduct stereochemistryinpericyclicreactions.

Usually,theproblemsetsaregivenattheendofchapterswithoutorwith answerkeys.OnepedagogicaldecisionIhavemadewithrespecttoproblem setsisthatmorethan130problemsareinsertedwithinthechapterswith detailedworkedsolutions,reinforcingthemainthemesinthetext.Itis hopedthatstudentscouldtesttheirlearningimmediatelywhilereading throughthechapters.Theseproblemsetsshouldbeconsideredanintegral partofthecourse.Alistofselectivereferencestoprimaryandreviewliteratureisincludedattheendofeachchapter.Thesereferences(about550) wouldenablethestudentsattheadvancedlevelstosupplementthematerials coveredinthechapters.

Theapproachpresentedinthisbookisdistinctandclass-tested.Ihope thisbookwillbeofvalueandinteresttothestudents,teachers,and researchersoforganicchemistry.Iencouragethereaderstocontactme (dm.pcchem@gmail.com)withcomments,corrections,andwithsuggestionsthatmightbeappropriateforfutureeditions.

Iwouldliketothankthereviewersforhelpfulsuggestions.Specialthanks areduetomyundergraduate,graduate,andresearchstudentsfortheirloving insistence,help,andencouragementinwritingthisbook.Iamgratefultothe editorialmembersEmilyM.McCloskeyandBillieJeanFernandez,productionmanager,andotherpeopleatElsevierfortheirexcellentsupportand cooperation.Finally,Ithankmyfamily,inparticularmydaughterSudipta, forhercontinuoussupportandmysonTirthaforhisactivehelpinreferencing.

CHAPTER1

MolecularOrbitals

Abasicandpictorialknowledgeofmolecularorbitals(MOs)isessentialfora mechanisticdescriptionofpericyclicreactions.Inthiscontext,asimplified andnonmathematicaldescriptionofMOtheory1–4 ispresentedinthischapter.WeshalldealwiththreekindsofMOs—σ, π and ω withmajoremphasis on π MOs,anddiscusstheirpropertieswithreferencetoorbitalsymmetry, energyandcoefficient.

1.1ATOMICORBITALS

Anatomicorbital(AO)isdescribedbyawavefunction ϕ,where ϕ2 denotes theprobabilityoffindinganelectronatanypointinathree-dimensional space.Thealgebraicsignof ϕ maybepositiveornegative,whichindicates thephaseoftheorbital(cf.thepeaksandtroughsofatransversewave).An orbitalcanhavenodeswhere ϕ ¼ 0.Onoppositesidesofanode, ϕ has oppositesigns.AnAOasagraphicaldescriptionof ϕ showslobeswith a+ora sign(theoppositesignsoftwolobesarealsoindicatedbyunshaded andshadedlobes).Ontheotherhand, ϕ2 isalwayspositivewhether ϕ is positiveornegative.Assuch,therepresentationofAOintermsof ϕ2 is madebydrawinglobeswithoutaphasesign.Thisdrawingreferstothe probabilitydistributionofAOs,andisindicatedinthistextassimplyorbital picture.

1.1.1s,pandHybridOrbitals

1sorbitalissphericallysymmetricalaboutthenucleusandhasasinglesignof ϕ.Itisrepresentedasacircle,beingonecross-sectionofthesphericalcontour.The2sorbitalisalsosphericallysymmetricalbutpossessesaspherical node.Thenodeisclosetothenucleusandhencetheinnersphereisnot importantforbondingoverlap.The2sorbitalisusuallydrawnasasingle circlewithasinglesignomittingtheinnersphere.

Unlikeansorbital,theporbitalsaredirectional,andorientedalongthe x-, y-and z-axis.Eachporbitalhastwolobeswithoppositesignsandone node(nodalplane).

PericyclicChemistry © 2018ElsevierInc. https://doi.org/10.1016/B978-0-12-814958-4.00001-5 Allrightsreserved.

Thesearecalled σ MOs.Here,‘+’combinationsignifiesin-phase(same sign)overlapwhen ψ 1 hasnonode.Incontrast,‘ ’combinationdenotes out-of-phase(oppositesign)overlapleadingtoanode(nodalplane)in ψ 2. TheMO ψ 1 haslowerenergythanpAOandiscalledbonding σ orbital (symbolized σ),while ψ 2 hashigherenergyandiscalledanantibonding σ orbital(σ*).

Fig.1.3 End-onoverlapoftwoporbitalstoproduce σ MOs.

Side-onapproach:Side-on(lateral)overlapoftwoporbitalsproducestwo MOs(ψ 1 and ψ 2)thatarenotcylindricallysymmetricalabouttheinternuclearaxis,andarecalled π MOs(Fig.1.4). ψ 1 haslowerenergywithnonode andisabondingMO(π),while ψ 2 withonenode(nodalplane)isofhigher energyandisanantibondingMO(π*).

Fig.1.4 Side-on(lateral)overlapoftwoporbitalstoproduce π MOs.

Orthogonalapproach:Fororthogonal(perpendicular)approachoftwop orbitals,bondingoverlapofthesamesigniscancelledbyanantibonding overlapoftheoppositesign(Fig.1.5).Thenetinteractionisthereforenonbonding. ψ 1 and ψ 2 havethesameenergyandareequivalenttoindividualp orbitals.ThesenonbondingMOsarecalled ω MOs.

Fig.1.5 Orthogonalapproachoftwoporbitalstoproduce ω MOs.

Itmaybementionedherethatbesidesnonbonding ω MOs,therearealso nonbonding π MOsthatcanariseinconjugated π systems(seelater).

Weshallseelaterthatthemoreimportantorbitalsinconnectionwith reactivityarethehighestoccupiedmolecularorbital(HOMO)andthelowestunoccupiedmolecularorbital(LUMO).Thesearecalledthefrontier MOs.Thus,forthe σ component(C HorC C),theHOMOis σ andtheLUMOis σ*

BesidesMOs,orbitalpicturerepresentation(withoutphasesign)ofa σ-componentisusedinthemechanisticanalysisofpericyclicreactions.

Fig.1.8 showstheorbitalpicturesofC HandC C σ components. The σ componentislabelledas σ2(2isthenumberofelectronsinthe component).

Fig.1.8 OrbitalpicturesofC HandC C σ components.

1.3H € UCKELMOLECULARORBITAL(HMO)THEORY FORACYCLICCONJUGATED π SYSTEMS

H € uckeltheory1,6 treatsa π systemindependentlyofthe σ framework(the π and σ orbitalsbeingorthogonaltoeachother).TheHMOtheoryassumes thefollowing:

(1) EachCoulombintegral(α)hasthesamevalue.

(2) Theresonanceintegral(β )issameforanytwoadjacentatomsbutzero fortwoatomsnotdirectlybonded.

(3) Theoverlapintegral(S)iszerofortheinteractionbetweentwo porbitals.

Itmightbesurprisingthat S isassumedtobezero,whilethewholeconcept ofchemicalbondingisbasedontheoverlapoforbitals(!).Infact,overlapis notreallyneglectedbecauseitisimplicitlyincludedinotherparameterssuch as β whichisroughlyproportionalto S.Theassumptionthat S ¼ 0greatly simplifiesthecalculation.

The π MOwavefunction(ψ j)isdescribedbyalinearcombinationofp AOs(ϕr)as

where n isthetotalnumberofporbitalsinvolvedand j ¼ 1,2,3,…,n.

Here,weshallconsiderthelinearconjugatedsystemsandobtaintheir π MOsandenergiesusingCoulsonequations7 asfollows:

1.3.1LinearConjugatedSystemWithEvenNumber ofpOrbitals

1.3.1.1Ethylene

Thesimplestsystemisethyleneinwhichtwoporbitals(n ¼ 2)areconjugatedtoeachotherinforminga π bond.AccordingtoEq. (1.3),the MOwavefunctionsare

ThecoefficientsareevaluatedusingEq. (1.4).Thus c11 ¼

0.707.Similarly,

¼

c22 ¼ 0.707.Substitutingthesevalues, weobtain

(Notethatthesignsofcoefficientsarearisingfromthecalculationusing Eq. 1.4.)

Thewavefunctions(π MOs)cannowbesketchedas

Therelativemagnitudesofthecoefficientsareusuallyindicatedbytherelativesizesofthelobes.Herethetwocoefficientshavethesamesizeforboth ψ 1 and ψ 2.For ψ 1,thecoefficientshavethesamesignindicatingin-phase (bonding)overlap.For ψ 2,thecoefficientshaveoppositesignsindicating out-of-phase(antibonding)overlapwhichcreatesanode(nodalplane).

1.3.1.2Butadiene

Thebasissetorbitalsofbutadiene(ϕ1–ϕ4)arefourporbitals(n ¼ 4).The wavefunctions(ψ 1–ψ 4)representingfour π MOsarewrittenas

UsingEq. (1.4),

othercoefficientsarecalculatedsimilarly.Weobtain

Thewavefunctions(π MOs)ofbutadienecanbesketchedin s-trans or s-cis conformation. Fig.1.13 showsthebutadiene π MOsinmorestable s-trans conformation.(Weshallseelaterthatitisthe s-cis formwhichis thereactivecomponentinmostpericyclicprocesses.)Therelativesizesof thelobesindicatequalitativelytherelativevaluesofthecoefficients.The numberofnodes(indicatedbydashedline)in ψ 1, ψ 2, ψ 3 and ψ 4 is0,1, 2and3,respectively.Thisindicatesthatanorbital ψ j has( j 1)nodes.

Fig.1.13 Sketchesof π MOsofbutadienein s-trans conformation.

Asthenumberofnodesincreases,theenergyoftheorbitalincreasesin theorder: ψ 1 < ψ 2 < ψ 3 < ψ 4.Inanotherfashion,ifwecountthenumberof bonding/antibondinginteractionsbetweentheadjacentporbitals,itisseen that ψ 1 withthreebondingoverlapsand ψ 2 withtwobondingandoneantibondinginteractionsbecomebondingMOswhereas ψ 3 withtwoantibondingandonebondinginteractionsand ψ 4 withthreeantibondinginteractions

becomeantibondingMOs.TheMOenergythereforeincreasesinthesame orderasshownabove.

Theenergiesofthe π MOscanhoweverbeestimatedusingEq. (1.5). Forexample, E1 ¼ α +2β cos π 5 ¼ α +1 618β .Theestimatedenergiesofall π MOsareshownintheMOenergydiagram(Fig.1.14).Notethatthemore positiveorlessnegative β valuesimplyadecreaseinenergy;lesspositiveor morenegative β valuesindicateanincreaseinenergy.

Fig.1.14 MOenergydiagramofbutadiene.

Thebonding/antibondingclassificationofthe π MOsisnowclearlyevident. ψ 1 and ψ 2 haveenergieslowerthantheenergy(α)ofaporbitalandare thereforebondingMOswhereas ψ 3 and ψ 4 areantibondingMOsastheir energiesarehigherthan α. (SincethedecreaseorincreaseinenergyofanMOisconsideredrelative totheenergyoftheAO, α canbearbitrarilyassumedtobezeroandtheMO energycanbeexpressedinonly β terms;howeverinthistextMOenergyis expressedinboth α and β terms,asobtainedfromtheenergyexpression.)

Thegroundstate π electronconfigurationofbutadieneis ψ 1 2 ψ 2 2.Thus, ψ 2 isHOMOand ψ 3 isLUMO.Inthefirstexcitedstate,oneelectronispromotedfrom ψ 2 (HOMO)to ψ 3 (LUMO).Asperthefrontierorbitalconventionusedinthistext(seep.10),thesinglyoccupied ψ 2 and ψ 3 also representHOMOandLUMOinthefirstexcitedstate.

TheHOMO/LUMOenergiesin s-trans and s-cis conformationsofbutadienearenotthesame.In s-cis conformation,theHOMOenergyisraised andtheLUMOenergyisloweredrelativetothoseinthe s-trans form (Fig.1.15).Unlikethe s-trans form,the s-cis conformationhasapossible interactionbetweenthetwoterminalporbitals.Anantibondinginteraction raisestheHOMOenergy,whileabondinginteractionlowerstheLUMO energyin s-cis conformation.

1.3.2LinearConjugatedSystemWithOddNumber ofpOrbitals

Wehaveseenthatthe π MOsofaconjugatedsystem(n ¼ even)comprise equalnumberofbondingandantibondingMOs.When n ¼ odd,theconjugated π systemisareactiveintermediate(carbocation,carbanionorcarbon radical)whenthe π MOswillcontainanonbondingMObesidesbonding andantibondingorbitalsasdescribedbelow.

1.3.2.1AllylSystem

Theallylsystem(cation,radicaloranion) representsaconjugated systemofthreeporbitals(n ¼ 3).Thewavefunctions(ψ 1–ψ 3)forthree π MOsare,accordingtoEq. (1.3),givenby

ThecoefficientsareevaluatedusingEq. (1.4).Forinstance, c21 ¼

¼ 0.Withthecalculatedvaluesof thecoefficients,thewavefunctionsare

In ψ 2,thecoefficientof ϕ2 iszerowhichindicatesthatthereisnocontributionof ϕ2 to ψ 2.Physically,thisimpliesthat ϕ2 isorthogonalto ϕ1 and ϕ3 in ψ 2.Theenergiesofthe π MOscanbeestimatedusingEq. (1.5).The sketchesoftheMOs,theirnodalpropertiesandtheestimatedenergiesare shownin Fig.1.19.Thenodalpropertiesindicatethat ψ j hasagain( j – 1) nodes,asobservedforthesystemwithevennumberofporbitals.Incase of ψ 2,anodepassesthroughthemiddlecarbonC-2.Theenergyof ψ 2 is α,whichissameastheenergyofaporbital,andhence ψ 2 isanonbonding MO.Itisseenthat ψ 1 isbondingand ψ 3 isantibonding.Thus,thethree π MOsofanallylsystemcompriseabonding,anonbondingandan antibondingMO.

Thefrontierorbitalsofanallylsystemdependonwhetheritisacation,a radicalorananion.Thenumberof π electronsinallylcation,radicaland anionis2,3and4,respectively.Thefrontierorbitalsaregivenbelow:

Fig.1.19 Thecoefficients,nodalpropertiesandenergiesofthe π MOsofanallylsystem.

ψ 1 2) Allylradical(ψ 1 2 ψ 2 1)Allylanion(ψ 1 2 ψ 2 2)

1

2

2

2 ψ 3

Thefrontierorbitalforanallylradicalis ψ 2 whichisasinglyoccupied molecularorbital(SOMO).Thesymmetrypropertiesofthe π MOsare shownin Fig.1.20

Fig.1.20 Orbitalsymmetriesof π MOsofanallylsystem.

Problem1.1

Derivethe π MOsofapentadienylsystemusingCoulsonequations.Sketch theMOsin s-cis conformationofthemoleculeshowingnode(s).Indicate thefrontierorbitalsforcation,anionandradicalspecieswithsymmetry.

Answer

Thepentadienylsystem(cation,radicaloranion)is The π MOs(ψ 1 – ψ 5)andtheirenergiesarederivedas

Allylcation(

Fig.1.21 Sketchesoffrontierorbitalsfromnodalproperties.

1.4CARBONYL π SYSTEM

Thesymmetrypropertiesof π MOsofthecarbonylsystemaresimilarto thoseofalkenes;however,theenergyandcoefficientpatternsdiffer.The energyofaporbitalonoxygen( 15.9eV)ismuchlowerthanthatoncarbon( 10.7eV)(see Table1.1).Thiswouldleadtoloweringofenergyof both πCO and π* CO comparedwiththoseforalkene(Fig.1.22).

Forthecarbonylgroup,thelowerenergypO wouldcontributemoreto thelowerenergy πCO andthehigherenergypC wouldcontributemoreto thehigherenergy π*CO.Asaresult,therewillbealargercoefficientonoxygenin πCO andalargercoefficientoncarbonin π* CO asshownin Fig.1.22 πCO isHOMOand π* CO isLUMO,thepolarizationofHOMOand

Fig.1.22 Energydiagramof π MOsofcarbonylgroupvis-a-visalkene π MOs.

LUMObeingopposite.Thepresenceoflow-lyingLUMOwithalarge coefficientoncarbonmakesthecarbonylgroupaparticularlyimportant electron-withdrawingsubstituentorareactivecomponentinpericyclic reactions.

1.5EFFECTOFSUBSTITUENTSONFRONTIERORBITAL ENERGIESANDCOEFFICIENTSOF π SYSTEMS

Aqualitativepictureoftheperturbationeffectsofdifferenttypesofsubstituentsonthefrontierorbitalenergiesandcoefficientsof π systemsisnecessary torationalizethefeaturesofreactivityandselectivityincycloadditions andotherpericyclicprocesses.Thesubstituentsaregenerallyclassifiedas follows:

•c-Substituents:Thesearesimpleconjugatingsubstituentssuchasvinyl, Phetc.Theycanactas π donorsoras π acceptorsbasedontheelectron demandoftheparent π system.

•z-Substituents:Theseindicateconjugatingandelectron-withdrawing substituentssuchasCOR,CO2R,CN,NO2,SiR3,BR2 etc.They actas π acceptors.

•x-Substituents:Thesedenotetheelectron-donatingsubstituentssuchas OR,NR2,R(alkyl)etc.Theyactas π donors.

1.5.1HOMO/LUMOEnergiesandCoefficients ofSubstitutedAlkenes

Theunsubstitutedalkene(ethylene)isthereferenceorunperturbedalkene. Aperturbedalkenesystemisrepresentedbyc-,z-orx-substitutedalkene. Thepatternsoffrontierorbitalenergiesandcoefficientsfortheperturbed systemsvis-a-visunperturbedalkenecanbedeterminedbychoosingareasonablemodelforeachsubstitutedalkene.Anall-carbonmodelforwhich HMOenergiesandcoefficientsareknownisthepreferredchoicetodrawa qualitativeinference.

1.5.1.1Perturbationbyc-Substituents

Sinceac-substituentisaneutralconjugatingsubstituent(e.g.CH]CH2),a reasonablemodelforac-substitutedalkeneisbutadiene:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.