Optimal state estimation for process monitoring, fault diagnosis and control 1st edition ch. venkate

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes 1st Edition Ch. Venkateswarlu Satya Eswari Jujjavarapu

https://ebookmass.com/product/stochastic-global-optimization-methodsand-applications-to-chemical-biochemical-pharmaceutical-andenvironmental-processes-1st-edition-ch-venkateswarlu-satya-eswarijujjavarapu/ ebookmass.com

Data-Driven and Model-Based Methods for Fault Detection and Diagnosis Majdi Mansouri

https://ebookmass.com/product/data-driven-and-model-based-methods-forfault-detection-and-diagnosis-majdi-mansouri/

ebookmass.com

Fault-Tolerant Attitude Control of Spacecraft Qinglei Hu

https://ebookmass.com/product/fault-tolerant-attitude-control-ofspacecraft-qinglei-hu/

ebookmass.com

Toward Behavioral Transaction Cost Economics: Theoretical Extensions and an Application to the Study of MNC Subsidiary Ownership George Z. Peng

https://ebookmass.com/product/toward-behavioral-transaction-costeconomics-theoretical-extensions-and-an-application-to-the-study-ofmnc-subsidiary-ownership-george-z-peng/

ebookmass.com

Attachment Narrative Therapy Rudi Dallos

https://ebookmass.com/product/attachment-narrative-therapy-rudidallos/

ebookmass.com

Networking Essentials, 6th Edition Beasley

https://ebookmass.com/product/networking-essentials-6th-editionbeasley/

ebookmass.com

Structural Injustice: Power, Advantage, and Human Rights Madison Powers

https://ebookmass.com/product/structural-injustice-power-advantageand-human-rights-madison-powers/

ebookmass.com

Sycamore Promises Paul Colt

https://ebookmass.com/product/sycamore-promises-paul-colt-2/

ebookmass.com

Precipitation Partitioning by Vegetation: A Global Synthesis 1st ed. 2020 Edition John T. Van Stan

https://ebookmass.com/product/precipitation-partitioning-byvegetation-a-global-synthesis-1st-ed-2020-edition-john-t-van-stan/

ebookmass.com

Burlar

https://ebookmass.com/product/burlar-al-diablo-napoleon-hill-3/

ebookmass.com

OptimalStateEstimationfor ProcessMonitoring,Fault DiagnosisandControl

Ch.Venkateswarlu

ChiefScientist(Retd.),IndianInstituteofChemicalTechnology(CSIR-IICT),Hyderabad,India

RamaRaoKarri

PetroleumandChemicalEngineering,FacultyofEngineering,UniversitiTeknologiBrunei,Gadong, BruneiDarussalam

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-323-85878-6

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

EditorialProjectManager: SamYoung

ProductionProjectManager: SruthiSatheesh

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

PartI

Basicdetailsandstateestimation algorithms1

1.Optimalstateestimationandits importanceinprocesssystems engineering3

1.1Introduction3

1.2Significanceofstateestimation3

1.3Roleofstateestimationinprocesssystems engineering4

1.4Outlineofthisbook4 1.5Summary4

2.Introductiontostochasticprocesses andstateestimationfiltering5

2.1Introduction5

2.2Probabilityandstochasticvariables5

2.2.1Probabilitytheorems6

2.2.2Conditionalprobability7

2.3Probabilitydistributionsanddistribution functions7

2.3.1Discreterandomvariablesand discreteprobabilitydistributions8

2.3.2Continuousrandomvariablesand continuousprobabilitydistributions10

2.4WhiteGaussiannoiseandcolorednoise13

2.5Stochastic/randomprocesses14

2.5.1Stochasticmodelscheme15

2.5.2Stochasticrepresentationofreal processes16

2.5.3Stochasticrepresentationofgeneral dynamicmodels18

2.6Filtering,estimation,andprediction problem18

2.6.1Filtering,prediction,andsmoothing18

2.6.2Bayesfilteringapproachforstate estimation19

2.6.3Stochasticfilteringapproachfor stateestimation19

2.7Summary20 References20

3.Linearfilteringandobservation techniques21

3.1Introduction21

3.2Representationofasystemand associatedvariables21

3.2.1Definitionofsystemstate21

3.2.2Systemvariables21

3.2.3Statespacerepresentationof linearsystems22

3.2.4Outputequations22

3.2.5Discretetimerepresentationof linearsystems23

3.3Conceptsofobservabilityand controllability24

3.3.1Observabilityofacontinuoussystem24

3.3.2Observabilityofadiscretesystem25

3.3.3Controllabilityofacontinuoussystem25

3.3.4Controllabilityofadiscretesystem25

3.4Recursiveweightedleastsquares estimator27

3.4.1Estimationprocedure30

3.5Luenbergerobserverforstateestimation31

3.5.1Discreteformofobserverdesign32

3.5.2Discreteobserverbasedstate feedbackcontrol32

3.5.3Continuousformofobserver37

3.5.4Continuousobserverbasedstate feedbackcontrol38

3.6ReducedorderLuenbergerobserver forstateestimation41

3.7Kalmanfilterforstateestimation44

3.7.1DiscreteKalmanfilter44

3.7.2Filtercovariancematrices46

3.7.3ContinuousKalmanfilter52

3.8Stateestimationapplicationsoflinear filteringandobservationtechniques56

3.9Summary56 References56

4.Mechanisticmodel-basednonlinear filteringandobservationtechniques foroptimalstate/parameter estimation59

4.1Introduction59

4.2Generalnonlinearsystemandsystem models59

4.2.1Mechanistic/firstprinciplemodels59

4.2.2Generalrepresentationofdynamic models61

4.3Observabilityofnonlinearsystems61

4.3.1Localobservability62

4.3.2Globalobservability64

4.4ExtendedKalmanfilter65

4.4.1Processrepresentationforstate estimation66

4.4.2Processrepresentationforstateand parameterestimation66

4.4.3ExtendedKalmanfilterfor continuoustimenonlinearsystems66

4.4.4ExtendedKalmanfilterfordiscrete timenonlinearsystems68

4.4.5Emphasisoncovariancematricesof extendedKalmanfilter68

4.5SteadystateextendedKalmanfilter73

4.6Two-levelextendedKalmanfilter74

4.6.1Stateestimationfilter74

4.6.2Parameteridentificationfilter75

4.7AdaptivefadingextendedKalmanfilter75

4.8UnscentedKalmanfilter76

4.9SquarerootunscentedKalmanfilter78

4.10EnsembleKalmanfilter80

4.11Particlefilter81

4.12ReducedorderLuenbergerobserver84

4.12.1Determinationofobserver coefficientmatrices84

4.13ReducedorderextendedLuenberger observer85

4.14Nonlinearobserver86

4.15Stateestimationapplicationsofnonlinear filteringandobservationtechniques88

4.16Summary88 References88

5.Data-drivenmodelingtechniquesfor stateestimation91

5.1Introduction91

5.2Principalcomponentanalysis91

5.2.1Basicprinciples91

5.2.2GeometricinterpretationofPCA92

5.2.3Eigenstructurefordatamatrix92

5.2.4PCAmodelestablishment93

5.3Projectiontolatentstructures94

5.3.1Theregressionproblem94

5.3.2Scalingandcenteringthedata94

5.3.3PLSmodel94

5.4Artificialneuralnetworks95

5.4.1ANNstructureanditscomponents95

5.4.2Neuronprocessingfunctions97

5.4.3Learningparadigms97

5.4.4Learningalgorithmsandtraining procedure97

5.4.5Informationprocessing100

5.4.6ANNarchitectures100

5.5Radialbasisfunctionnetworks102

5.5.1StructureofRBFN103

5.5.2AutomaticconfigurationofRBFN105

5.5.3Implementationprocedure106

5.6Nonlineariterativepartialleastsquares107

5.6.1NIPALSalgorithmforPLS107

5.6.2NonlinearPLSwithinPLS framework108

5.6.3NIPALSalgorithmforRBFN108

5.7Stateestimationapplicationsof data-drivenmodelingtechniques110

5.8Summary110 References110

6.Optimalsensorconfiguration methodsforstateestimation113

6.1Introduction113

6.2Briefreviewonsensorconfiguration methods113

6.3Optimalsensorconfiguration:classical methods114

6.3.1Sensitivityindex114

6.3.2Singularvaluedecomposition114

6.3.3Principalcomponentanalysis115

6.4Optimalsensorconfiguration: gramian-basedmethodsforlinear systems116

6.4.1Observabilitygramianforlinear systems116

6.4.2Observabilitygramian-basedsensor selectionprocedure117

6.5Optimalsensorconfigurationfor nonlinearsystems117

6.5.1Empiricalobservabilitygramianfor nonlinearsystems118

6.5.2Empiricalobservabilitygramian metrics119

6.5.3Empiricalobservabilitygramian-based sensorselectionprocedure119

6.6Summary119 References121

PartII

Optimalstateestimationfor processmonitoring123

7Applicationofmechanistic model-basednonlinearfilteringand observationtechniquesforoptimal stateestimationinmulticomponent batchdistillation125

7.1Introduction125

7.2Batchdistillationprocessandits dynamicmodel125

7.3Simplifieddynamicmodelofbatch distillation128

7.3.1Equilibriumrelations128

7.4Theapplicationsystem128

7.5Measurementsconfigurationforstate estimation129

7.6Performancecriteria132

7.7ExtendedKalmanfilterforcompositions estimation132

7.7.1DesignofEKFestimator132

7.7.2EKFimplementationresults134

7.8SteadystateKalmanfilterfor compositionsestimation136

7.8.1DesignofSSKFestimator136

7.8.2SSKFimplementationresults136

7.9AdaptivefadingextendedKalman filterforcompositionsestimation137

7.9.1DesignofAFEKFestimator137

7.9.2AFEKFimplementationresults137

7.10Comparativeperformanceof compositionestimators137

7.11Summary139 References140

8Applicationofmechanistic model-basednonlinearfilteringand observationtechniquesforoptimal stateestimationinmulticomponent reactivebatchdistillationwith optimalsensorconfiguration141

8.1Introduction141

8.2Reactivebatchdistillationprocessandits dynamicmodel142

8.2.1Equilibriumrelations144

8.2.2Enthalpyrelations144

8.3Simplifieddynamicmodelofreactive batchdistillation144

8.4Theapplicationsystem145

8.5Sensorconfigurationforstateestimation145

8.5.1Sensorconfigurationusing sensitivityindex146

8.5.2Sensorconfigurationusing singularvaluedecomposition147

8.5.3Sensorconfigurationusing principalcomponentanalysis149

8.6Performancecriteria152

8.6.1Meanintegralsquarederror152

8.7ExtendedKalmanfilterforcompositions estimation152

8.7.1DesignofextendedKalmanfilter estimator154

8.7.2ExtendedKalmanfilter implementationresults155

8.8Summary160 References161

9Applicationofmechanistic model-basednonlinearfilteringand observationtechniquesforoptimal stateestimationincomplex nonlineardynamicalsystems163

9.1Introduction163

9.2NonlineardynamicalCSTR164

9.2.1Mathematicalmodel164

9.2.2Stabilityanalysis165

9.2.3Bifurcationanalysis166

9.3Optimalstateestimationinnonlinear dynamicalCSTR166

9.3.1Stateestimatordesign166

9.3.2Stateestimationresults170

9.4Nonlineardynamical homopolymerizationreactor170

9.4.1Mathematicalmodel171

9.4.2Stabilityanalysis173

9.4.3Steadystatesolution174

9.4.4Bifurcationanalysis177

9.5Optimalstateestimationinnonlinear dynamicalhomopolymerizationreactor177

9.5.1Stateestimatordesign179

9.5.2Stateestimationresults181

9.6Summary181 References183

10Applicationofmechanistic model-basednonlinearfilteringand observationtechniquesforoptimal stateestimationofakraftpulping digester185

10.1Introduction185

10.2Experimentalsystemanddynamic modeling186

10.2.1Batchpulpingprocess186

10.2.2Developmentofadynamic modelforkraftpulpingdigester188

10.3Optimalstateestimationofkraft pulpingdigester191

10.3.1DesignofEKF191

10.3.2Designofnonlinearobserver193

10.4Stateestimationresults193

10.5Summary196 References198

11Applicationofmechanistic model-basednonlinearfilteringand observationtechniquesforoptimal stateestimationofacontinuous reactivedistillationcolumnwith optimalsensorconfiguration201

11.1Introduction201

11.2Theprocessanditsmathematical model202

11.2.1Totalmassbalance202

11.2.2Componentbalance202

11.2.3Energybalance203

11.2.4Trayhydraulics203

11.3Optimalsensorconfigurationusing empiricalobservabilitygrammians204

11.3.1Significanceofoptimalsensor configurationinareactive distillationcolumn204

11.3.2Measurementspecificempirical observabilitygrammians204

11.3.3Optimalsensorconfiguration usingempiricalobservability grammians206

11.4Stateestimatordesign207

11.5Estimatorperformancemeasurefor optimalityofsensorconfiguration210

11.6Analysisofresults211

11.7Summary214 References215

12Applicationofmechanistic model-basednonlinearfilteringand observationtechniquesforoptimal stateestimationofacatalytictubular reactorwithoptimalsensor configuration217

12.1Introduction217

12.2Theprocessanditsmathematicalmodel218

12.2.1Process218

12.2.2Mathematicalmodel218

12.3Methodofsolution219

12.4Resultsofnumericalsolution221

12.5Optimalsensorconfigurationin acatalytictubularreactor222

12.5.1Significanceofsensor configurationinatubular reactor223

12.5.2Empiricalobservability Grammians223

12.5.3Optimalsensorconfiguration usingempiricalobservability Grammians223

12.5.4Sensorconfigurationresults224

12.6Optimalstateestimationusing unscentedKalmanfilter226

12.6.1Stateestimatordesign227

12.6.2Stateestimationresults227

12.7Summary229 References229

13Applicationsofdata-driven model-basedmethodsforprocess stateestimation231

13.1Introduction231

13.2Projectiontolatentstructures model-basedcompositionsestimator formulticomponentbatch distillation231

13.2.1Stateestimatordevelopment232

13.2.2Stateestimationresults234

13.3Artificialneuralnetworkmodel-based compositionsestimatorfor multicomponentbatchdistillation236

13.3.1Stateestimatordevelopment236

13.3.2Stateestimationresults238

13.4Radialbasisfunctionnetwork model-basedcompositions estimatorformulticomponentbatch distillation238

13.4.1Stateestimatordevelopment238

13.4.2Stateestimationresults239

13.5NIPALS RBFNmodel-based compositionsestimatorfor multicomponentbatchdistillation243

13.5.1Stateestimatordevelopment243

13.5.2Stateestimationresults243

13.6Summary246 References246

PartIII

Applicationofdatadriven model-basedmethodsfor processstateestimation247

14Optimalstateandparameter estimationforfaultdetectionand diagnosisincontinuousstirred tankreactor249

14.1Introduction249

14.2Generalstructureofmodel-based faultdetectionanddiagnosis250

14.3Generalprocessdescriptionforfault detectionanddiagnosis251

14.4NonlinearCSTR,itsmathematical modelandfaultcasesconsidered252

14.5MethodofextendedKalmanfilter253

14.5.1Designstrategy253

14.5.2Analysisofresults255

14.6Methodofreducedorderextended Luenbergerobserverandextended Kalmanfilter257

14.6.1Designstrategy257

14.6.2Analysisofresults260

14.7Methodoftwo-levelextendedKalman filter261

14.7.1Designstrategy261

14.7.2Analysisofresults263

14.8Methodofadiscreteversionof extendedKalmanfilterand sequentialleastsquares264

14.8.1Designstrategy264

14.8.2Analysisofresults266

14.9Methodofdiscreteversionof extendedKalmanfilterand simultaneousleastsquares267

14.9.1Designstrategy267

14.9.2Analysisofresults269

14.10Summary269 References270

15Optimalstateandparameter estimationforfaultdetectionand diagnosisofanonlinearbatchbeer fermentationprocess271

15.1Introduction271

15.2Generalstructureandgeneralprocess descriptionformodel-basedfault detectionanddiagnosis271

15.3Batchbeerfermentationprocess,its mathematicalmodelandfaultcases272

15.3.1Mathematicalmodel272

15.3.2Faultcasesinbatchbeer fermentation273

15.4MethodofextendedKalmanfilter273

15.4.1Designstrategy273

15.4.2Analysisofresults274

15.5Methodofreduced-orderextended Luenbergerobserverandextended Kalmanfilter276

15.5.1Designstrategy276

15.5.2Analysisofresults279

15.6Methodoftwo-levelextended Kalmanfilter279

15.6.1Designstrategy279

15.6.2Analysisofresults282

15.7Methodofdiscreteversionofextended Kalmanfilterandsequentialleast squares284

15.7.1Designstrategy284

15.7.2Analysisofresults284

15.8Methodofdiscreteversionof extendedKalmanfilterand simultaneousleastsquares285

15.8.1Designstrategy286

15.8.2Analysisofresults287

15.9Summary287 References287

16Optimalstateandparameter estimationforfaultdetectionand diagnosisofahigh-dimensional fluidcatalyticcrackingunit289

16.1Introduction289

16.2Processrepresentation290

16.3Fluidcatalyticcrackingunit290

16.4Mathematicalmodeloffluidcatalytic crackingunit291

16.4.1Feedandpreheatsystems291

16.4.2Reactor292

16.4.3Regenerator296

16.4.4Airblowers300

16.4.5Catalystcirculation302

16.4.6Nomenclatureandnumerical data303

16.5Fluidcatalyticcrackingunitsystem variables305

16.5.1Statevariables305

16.5.2Algebraicvariables305

16.5.3Measuredvariables305

16.6Faultcasesconsideredinfluid catalyticcrackingunit306

16.7Designofdiscreteversionofextended Kalmanfilter306

16.8DesignofunscentedKalmanfilter307

16.9Analysisofresults308

16.10Summary310 References311

PartIV

Optimalstateestimationfor processcontrol313

17Optimalstateestimator-based inferentialcontrolofcontinuous reactivedistillationcolumn315

17.1Introduction315

17.2Processandthedynamicmodel315

17.2.1Processdescription316

17.2.2Thedynamicmodelofthe process317

17.3Theprocesscharacteristics317

17.3.1Nonlinearityanalysis317

17.3.2Interactionandstabilityaspects317

17.4Classicalproportional-integral/ proportional-integral-derivative controllersfordistillationcolumn319

17.5Briefdescriptionofgeneticalgorithms319

17.6Designofgeneticallytuned proportional-integralcontrollers320

17.6.1Controllertuning320

17.6.2Formulationoftheobjective function320

17.6.3Desiredresponsespecifications forgenetic-algorithmtuning321

17.7Designofcompositionestimator322

17.8Analysisofresults325

17.9Summary330 References330

18Optimalstateestimationfor nonlinearcontrolofcomplex dynamicsystems333

18.1Introduction333

18.2Optimalstateestimationand estimator-basedcontrolofchaotic chemicalreactor333

18.2.1Chaoticchemicalreactorandits mathematicalmodel333

18.2.2Estimatordesignandestimation results334

18.2.3Controlleralgorithm334

18.2.4Controllerdesign334

18.2.5Analysisofresults335

18.3Optimalstateestimationand estimator-basedcontrolof homopolymerizationreactor338

18.3.1Homopolymerizationreactor anditsmathematicalmodel338

18.3.2Estimatordesignandestimation results338

18.3.3Controllerdesign338

18.3.4Analysisofresults339

18.4Summary342 References342

19Optimalstateestimatorbased controlofanexothermicbatch chemicalreactor343

19.1Introduction343

19.2Experimentalsystemandits mathematicalmodel343

19.2.1Experimentalbatchreactor344

19.2.2Analysisofreaction components345

19.2.3Esterificationreactormodel345

19.3State/parameterestimation347

19.4Controlalgorithms348

19.4.1ExtendedKalmanfiltercontrol348

19.4.2Genericmodelcontrol349

19.4.3Modelpredictivecontrol349

19.5Designofestimatorbasedcontrollers fortheesterificationreactor350

19.5.1ExtendedKalmanfiltercontrol350

19.5.2Genericmodelcontrol350

19.5.3Modelpredictivecontrol351

19.6Analysisofresults352

19.7Summary356 References357

Optimalstateestimationfor onlineoptimization359

20Optimalstateandparameter estimationforonlineoptimization ofanuncertainbiochemical reactor361

20.1Introduction361

20.2Theprocessanditsmathematical model362

20.3Stateandparameterestimationusing extendedKalmanfilter362

20.4Stateandparameterestimationusing two-levelextendedKalmanfilter362

20.5Onlineoptimizationproblem363

20.6Functionalconjugategradientmethod363

20.7ExtendedKalmanfilter-assistedonline optimizingcontrolofthebiochemical reactor364

20.7.1Designingthestrategy364

20.7.2Analysisofresults365

20.8Two-levelextendedKalman filter-assistedonlineoptimizing controlstrategy366

20.8.1Designingthestrategy366

20.8.2Analysisofresults367 20.9Summary368 References371

21Overview,opportunities,challenges, andfuturedirectionsofstate estimation373

21.1Overview373

Preface

Thisbookisaddressedtostudents,researchers,andindustryprofessionalsinmultipledomainsofscience,engineering, andtechnology.Thisbookcoversthefundamentalsandadvancedtopicsofstateestimationwithanumberofsolved examplesandcasestudies,whicharebeneficialtothepersonnelofdifferentdisciplinestogainknowledgeandapplyto theproblemsencounteredintheirrespectivedomains.Generalreadersofinitialchaptersthatcoverfundamentals,algorithms,basicproblems,andsolvedexamplesonstateestimationareexpectedtohavefamiliaritywiththebasicsof mathematics.Readersoflateralchaptersthatdealwiththedesignandrealapplicationsofstateestimatorsareexpected tohavefamiliaritywiththefundamentalsofmathematics,mathematicalmodeling,andcontrolconceptsalongwiththeir basicdomainknowledgeinengineeringandscience.

Stateestimationorsoftsensingisanapproachthatdealswiththemethodsthatareusedtoestimatetheunmeasured processvariablesthroughtheuseofknownmeasurementsandprocessknowledge.Theenhanceddegreeofprocess automationandthegrowingdemandforhigherperformanceinindustrialsystemsmakestateestimationanintegralpart ofvariousoperationalstrategiesassociatedwiththeprocesssystemsengineeringfield.Itoccupiesagreaterroleinthe design,modeling,monitoring,faultdiagnosis,optimization,controlandoperationofallkindsofphysical,chemical, biological,andotherengineeringandtechnologicalprocessesthroughtheuseofsystematiccomputer-aidedapproaches. Thetaskofstateestimationhasbecomemorechallenginginthefaceofgrowingdemandtomeettherequirementsof processsafety,environmentalregulations,energyefficiency,betterproductquality,andoptimumutilizationofavailable resources.

Thecontentsofthisbookareorganizedsuchthatthereadersinastep-by-stepapproachcanlearnthebasicsofstate estimation,acquaintthemselveswiththerelevantalgorithms,andunderstandtheproblem-solvingapproaches.Asthey gofurther,theywillbegettingfamiliarwiththedesignconceptsandrealapplicationsofstateestimationtowardsprocessmonitoring,faultdiagnosis,onlineoptimization,andcontrol.Basedontheknowledgegainedfromtherealapplications,theaudiencecancreateorapplytheconceptsandstrategiesofstateestimationtosolvetheproblemsintheir respectivedomainsofscienceandengineering.Thereforethisbookcoversthepedagogicalaspectssuchasknowledge, understanding,application,analysis,evaluation,andcreation.

Thisbookispresentedinfiveparts,whereinthedetailsregardingthedescription,algorithms,examples,procedures, realsystemapplications,andcasestudiesconcerningdifferentapproachesandmethodsofstateestimationareelaboratedindetail.Thefirstpartofthisbookconsistsofsixchapterscoveringthebasicdetails,avarietyofstateestimation algorithmsindifferentapproaches,andtheirimplementationprocedures,alongwithsolvedexamples.Moreover,variousmethodsofsensorconfigurationforstateestimationandtheirimplementationproceduresarecoveredinthispart. Thesecondpartcomprisessevenchapterscoveringmechanisticmodel-basedfilteringandobservationtechniquesas wellasdata-drivenmodel-basedstateestimationmethods.Thedesignandimplementationofvariousstateestimation strategiesformonitoringapplicationsofseveralrealprocessesarepresentedanddiscussedthoroughlyinthispart.The thirdpartofthebookcontainsthreechaptersemphasizingthedesignandapplicationofvariousquantitativemodelbasedstateestimationmethodsforprocessfaultdetectionanddiagnosisinvariousnonlinearprocesses.Thefourthpart consistsofthreechaptersdealingwiththemethodsandapplicationsofstateestimationtowardprocesscontrol.The algorithmicimplementation,design,andevaluationofdifferentstateestimationmethodswithseveralrealapplications arepresentedindetailinthispart.Thefifthpartconsistsofachapterexplainingtheimportanceofstateestimationin onlineoptimization.Differentstateestimationmethodswithdesignandimplementationproceduresforonlineoptimizationofrealprocessesarepresentedinthispart.Thelastchapterattheendofthisbookbriefsanoverview,opportunities,challenges,andfuturedirectionsinstateestimation.

Formulation,design,andimplementationofvariousstateestimationstrategiestosolveawidevarietyofbasecases aswellasrealengineeringproblemsmakethisbookmorebeneficialtoresearchersworkinginmultipledomains.Many referenceswithavarietyofstateestimationandrelatedthemetitlesareincludedattheendofeachchapterofthis

book.Thesereferenceswillbeimmenselyusefultothereaderstoadvancetheirgeneralknowledgeanddomainknowledgeinthefieldofstateestimation.

Finally,thefirstauthortakesthisopportunitytothankhiscolleagueDr.K.YamunaRani,belovedPhDstudents Dr.RamaRaoKarri,Dr.C.Sumana,Dr.N.Anil,Dr.P.Anand,Dr.J.S.Eswari,andseveralgraduateandpostgraduate studentsattheIndianInstituteofChemicalTechnology(CSIR-IICT)fortheircontributoryresearchsupporttothis book.Also,thankstoCSIR-IICTmanagementforprovidingthisopportunitytopursuetheresearchandpublishits majoroutcomes.

Abouttheauthors

Dr.Ch.Venkateswarlu hasformerlyworkedasascientist,seniorprincipalscientist,andchief scientistatIndianInstituteofChemicalTechnology(IICT),Hyderabad,apremierresearchand development(R&D)instituteofCouncilofScientificandIndustrialResearch(CSIR),India. Recently,heretiredastheDirectorR&DatBVRajuInstituteofTechnology(BVRIT), Narsapur,GreaterHyderabad.Priortothis,hehasalsoworkedasaprofessor,principal,and headofChemicalEngineeringDepartmentofthesameinstitute.Hecompletedhisgraduation fromAndhraUniversity,India,andfromIndianInstituteofChemicalEngineers,andpostgraduationandPhDinChemicalEngineeringfromOsmaniaUniversity,Hyderabad,India.He holds35yearsofR&Dandindustryexperiencealongwith20yearsofteachingexperience. Hisresearchinterestslieintheareasofdynamicprocessmodelingandsimulation;process identificationanddynamicoptimization;processmonitoringandfaultdiagnosis;stateestimationandsoftsensing;statisticalprocesscontrolandadvancedprocesscontrol;appliedengineeringmathematicsand evolutionarycomputing;artificialintelligenceandexpertsystems;andbioprocessengineeringandbioinformatics.He haspublishedmorethan120researchpapersinpeerjournalsofreputealongwithsomemoreinternationalandnational proceedingpublications.Heisalsocreditedwith150technicalpaperpresentationsandinvitedlectures.Hehasauthored abookpublishedbyElsevieralongwithafewbookchapters.Heisalsoineditorialboardsofafewinternationaljournals.HehasexecutedseveralR&DprojectssponsoredbyDSTandIndustry.Heisareviewerofseveralinternational researchjournalsandmanynationalandinternationalresearchprojectproposals.Hehasguidedseveralpostgraduate andPhDstudents.Hehasservedasalong-termguestfacultyforpremierinstitutessuchasBhabaAtomicResearch CentreScientificOfficersTraining,BITSPilaniMS(off-campus),andIICT-CDACBioinformaticsPrograms.Heisa fellowofAndhraPradeshAkademiofSciencesandTelanganaStateAcademyofSciences.Hereceivedvariousawards inrecognitiontohisR&Dandacademiccontributions.

Dr.RamaRaoKarri workingasaprofessor(Sr.Asst.)inPetroleumandChemical Engineering,FacultyofEngineering,UniversitiTeknologiBrunei(UTB),BruneiDarussalam. HehasobtainedhisPhDinchemicalengineeringfromIndianInstituteofTechnology(IIT) Delhi,MastersfromIITKanpur,andBachelorsfromAndhraUniversityCollegeof Engineering,Visakhapatnam,India.HehasworkedasapostdoctoralresearchfellowatNUS, Singapore,forabout6yearsandhasover18yearsofworkingexperienceinacademics,industry,andresearch.HehasledthewaterresourcesclusterteamatUTB(2015 17),whichhas focusedonwater energynexus,smartwater,andenvironmentalmanagement.Hisresearch activitiesaremainlyfocusedinthedevelopmentofmodelingmethodsforsystemswithinherent uncertaintiesinmultidisciplinaryfields.Hehasexperienceofworkinginmultidisciplinary fieldsandhasexpertiseinvariousevolutionaryoptimizationtechniquesandprocessmodeling. Hehaspublishedaround100+researcharticlesinreputedjournals,bookchapters,andconferenceproceedingswitha combinedimpactfactorof312.2andhasanh-indexof23(ScopusandGoogleScholar).Heisaneditorialboardmemberin6renownedjournalsandapeer-reviewmemberformorethan81reputedjournalsfromElsevier(22),Springer (18),Taylor&Francis(9),ScientificReports,andotherreputedjournals(32),andhaspeerreviewedmorethan300 manuscripts.HeisarecipientofPublonsPeerReviewerAwardastop1%ofglobalpeerreviewersforEnvironment& EcologyandCrossfieldcategoriesfortheyear2019.Heisalsodelegatingasanadvisoryboardmemberformanyinternationalconferences.HeheldapositionasEditor-in-Chiefin InternationalJournalofChemoinformaticsandChemical Engineering,IGIGlobal,USA(April2019 August2020).HeisalsoaManagingGuestEditorforspecialissues (1)“Magneticnanocompositesandemergingapplications,”in JournalofEnvironmentalChemicalEngineering

(IF:5.909),and(2)“NovelCoronaVirus(COVID-19)inEnvironmentalEngineeringPerspective,”in Journalof EnvironmentalScienceandPollutionResearch (IF:4.223),Springer.Hehasalsobeenaguesteditorforthespecial issue“NanocompositesfortheSustainableEnvironment”in AppliedSciencesJournal (IF:3.056),MDPI.Heisthe associateeditorin ScientificReports (IF:4.379),SpringerNature,and InternationalJournalofEnergyandWater Resources(IJEWR),SpringerInc.HeisalsothecoeditorandmanagingeditorforsevenElsevier,oneSpringer,andone CRCeditedbooks.Recentlyhehasbeenlistedinthe2021world2%scientistsreportcompiledbyStanfordUniversity Researchers.

Optimalstateestimationandits importanceinprocesssystems engineering

1.1Introduction

Monitoring,diagnosis,andcontrolofprocessplantsheavilyrelyonaccurateandquicklyaccessiblereal-timeinformationofthestatesthatdescribetheoperatingbehavioroftheprocess.Thevariablesthatprovideacompleterepresentationoftheinternalstatusofthesystematagiveninstantoftimearereferredtothestatesofthesystem.Inseveral processes,thefullstateoftheplantisnotdirectlymeasurable,andtheprocessmeasurementsareusuallycorrupted withnoise.Therefore,reducingthenoiseinthemeasurementsandreconstructingthestateoftheplantisacrucialissue fromtheprocessmonitoring,faultdiagnosisandcontrolpointofview.Filteringandpredictionareelementaryconcepts tostateestimation.Theaimofthefilteringandestimationproblemistoestablishthebestestimateforthetruevariable ofasystemfromanincompleteandnoisysetofobservationsofthesystem.Optimalestimationofunmeasuredprocess statesisattractive,whenconventionalhardwaresensorsarenotavailable,orthecostandtechnicallimitationsprohibit theirusage.Themethodsthatareemployedtoestimatetheunmeasuredprocessvariablesarecalledstateestimators/soft sensors.Thesesoftsensorsuseknownmeasurementsandprocessknowledgetoprovidetheestimatesoftheunmeasured processvariables,whichareincorporatedinprocessoperationschemestoachieveeconomicoptimum.Theadvancementincomputertechnologyandcheapcomputingpowerleadstonewdevelopmentsinsoftsensortechnology.

1.2Significanceofstateestimation

Stateestimatorsorsoftsensorscanbebuiltbyusingcurrentlyavailableonline,offline,andhistoricalinformationof theprocess.Thebehaviorofanyprocessisindicatedbythestatesoftheoutputvariables,whicharedependentonthe inputstotheprocess.Asubsetoftheseprocessoutputsrepresentstheprimaryvariablesthatquantifytheproductivity intermsofthepurity,quality,orpropertiesoftheproduct.Theseso-calledprimaryvariablesareoftentheonesthat aredifficulttomeasureonline.Theotheroutputs(e.g.,temperature,flow,andpressure)arecalledsecondaryvariables, whichcanbeeasilymeasuredonline.Becauseoftheintrinsicfeatureoftheprocess,thestatesofthesecondaryvariableshaveacertaindependencyonthestatesoftheprimaryvariables.Forexample,pressuresandtemperaturescan definetheliquidcompositioninasystem.Itisnoteasytoaccessthemeasurementsintimeforstateslikeconcentrationsandtheparameterslikereactionratesandheattransfercoefficientsinchemicalandbiochemicalprocesses.Ifsuch statesandparametersareestimatedusingtheknownmeasurementsoftemperaturesandpressures,theseestimatedvariablescanbeusedinprocessoperationschemestoimproveplantperformance.Forinstance,separationsystemslike multicomponentdistillationcolumnsaretobeoperatedaspreciselyaspossibletomeetthedesiredproductpurityspecifications.Ifthecurrentcompositionsofthecolumnsareavailableintime,theycanformabaseforimprovingtheprocessperformancethroughoperatordecision-makingorindevelopinganautomaticclosed-loopcontrolscheme.An automaticsensorsystemforcompositionmeasurementisnoteconomicalsincecomponentanalyzerslikegaschromatographinvolvelargemeasurementdelaysandhighinvestmentandmaintenancecosts.Asanalternative,componentconcentrationscanbeestimatedfromthetemperaturemeasurementusingthestateestimators.Thus,itshouldbepossible tousethereadilyavailablesecondaryvariablestoinfertheprimaryvariablethroughtheuseofasoftsensor.Stateestimationhasbecomeanintegralpartofvariousschemessuchaprocessdesign,modeling,monitoring,faultdiagnosis, optimization,control,andoperationofallkindsofprocesses.

3 OptimalStateEstimationforProcessMonitoring,FaultDiagnosisandControl.DOI: https://doi.org/10.1016/B978-0-323-85878-6.00013-0 © 2022ElsevierB.V.Allrightsreserved.

1.3Roleofstateestimationinprocesssystemsengineering

Thetechnologicaladvancementshavemadetheprocessindustryundergosignificantchangesemphasizingoptimally runningtheplantswithdueconsiderationtosafety,monitoring,andcontrolwithminimalmanualintervention.The increaseddegreeofautomationandthegrowingdemandforhigherperformance,efficiency,andreliabilityinindustrial systemsmakesthetaskofstateestimationanintegralpartofvariousoperationalstrategiessuchasmonitoring,diagnosis,andcontrolconcerningthefieldofprocesssystemsengineering.Stateestimationisasubjectofimmenseinterest withapplicationsinconventionalandadvancedprocesscontrol,supervisorycontrol,processmonitoring,onlineoptimization,productqualitymonitoring,datareconciliation,faultdetection,anddiagnosis,etc.Thestateestimation-based applicationshavebecomemorecrucialinthefaceofgrowingdemandtomeetprocesssafetyrequirements,environmentalregulations,energyefficiency,betterproductquality,andoptimumutilizationofavailableresources.Tomeet variousgoalsconcerningplantoperations,detailedinformationaboutthenumberofprocessvariablesandparametersis required.Installationofadditionalinstrumentationandsensorstomonitortheplant’soperationcanbeexpensiveboth intermsofthecapitalcostaswellasmaintenancecost.Withtheuseofstateestimator/softsensor,itispossibletoestimatemanyothervariablesandprocessparametersbystrategicallymeasuringfewkeyvariablesoftheprocess. However,togainthemaximumbenefitfromthestateestimationtechniques,thesensorsthatprovidevitalinformation aboutthemeasuredvariablesaretobeplacedatoptimallocationsintheprocessplant.Thus,optimalselectionofmeasurementshasbecomeanimportantprerequisiteforthesuccessfulestimationofprocessstates.Varioussensorconfigurationmethodshavebeenintroducedforthepurposeofprocessstateestimation.Thus,stateestimationwithoptimal sensorsselectionhasattainedgreatersignificanceinmonitoring,diagnosis,andcontrolofhighdimensionalsystems.

1.4Outlineofthisbook

Approachesforstateestimationcanbebroadlyclassifiedintomechanistic/firstprinciplemodel-basedapproachanddatadrivenmodel-basedapproach.Themechanisticmodel-basedapproachincludesvariousstochasticmodel-basedfiltering andobservationtechniquessuchasKalmanfilter,extendedKalmanfilter,unscentedKalmanfilter,squarerootunscented Kalmanfilter,particlefilter,andensembleKalmanfilter.Thedata-drivenmodel-basedapproachincludesthestateestimatorsderivedbasedonprincipalcomponentanalysis,partialleastsquares,artificialneuralnetworks,andradialbasis functionnetworks.Furthervariouslinearandnonlinearobserversarealsoappliedforoptimalstateestimation.The detailsregardingthedescription,algorithms,examples,applications,andcasestudiesconcerningdifferentapproaches andmethodsofstateestimationareelaboratedinthisbooktobenefitawideraudienceofdifferentdisciplines.

Thebookispresentedinfivesectionshighlightingseveralapplicationsofstateestimationinprocesssystemsengineeringfield.Thefirstsectioncoversthefundamentaldetailsaboutstateestimation,whereinawidevarietyofstateestimationalgorithmsindifferentapproachesandtheirimplementationprocedures,alongwithsolvedexamplesarepresented in-detail.Also,variousmethodsofsensorconfigurationforstateestimationandtheirimplementationproceduresarecovered.Thesecondsectioncoversprocessmonitoringapplicationsofstateestimation,whereindesignandimplementation ofvariousstateestimationstrategiesformonitoringapplicationsofseveralrealprocessesarediscussed.Thethirdsection ofthebook,emphasizesthemethodsandapproachesofstateestimationtowardsprocessfaultdetectionanddiagnosis.The significanceofstateestimationtowardsthisdirectionisdealtwithdifferentrealapplicationsoffaultdetectionanddiagnosisindesign,executionandperformanceevaluation.Thefourthsectionofthisbookpresentsthemethodsandapproaches ofstateestimationtowardsprocesscontrolwithalgorithmicimplementation,design,andevaluationprocedures.The importanceofstateestimationtowardsprocesscontrolisdescribedwithseveralrealapplications.Thefifthsectionexplains theimportanceofstateestimationinonlineoptimizationofengineeringsystems.Inthissection,differentstateestimation methodsarepresentedwithdesignandimplementationproceduresforonlineoptimizationofrealprocesses.

1.5Summary

Astateestimatororsoftsensorisamathematicaltechniqueusedtoinferimportantprocessvariablesthatarenotphysicallymeasured.Optimalestimationofthestatesofaplantfromitsmodelinconjunctionwithitsmeasuredoutputsconstitutesadominantroleintheprocesssystemsengineeringdomain.Stateestimationishighlyusefulandsupportiveto variousprocessoperationschemessuchasadvancedprocesscontrol,faultdetection,processmonitoring,andproduct qualitycontrolthataimtoachievehigherprocessperformance.Thisintroductorychapterexplainsthesignificanceand importanceofstateestimationandbriefsaboutthethemeofthisbookthatdealswiththedetailsoffundamentals,algorithms,examples,applications,andcasestudiesconcerningdifferentapproachesandseveralmethodsofstateestimation.

Chapter2

Introductiontostochasticprocessesand stateestimationfiltering

2.1Introduction

Inmanyautonomoussystems,theknowledgeofthesystemstateisessentiallyrequiredtomonitorthestatusofthe process.Inarealisticsituation,thestateofaprocessisoftennotdirectlyobtainablebutitisusuallyinferredorestimatedbased onthesystemoutputsmeasuredbyinstruments(sensors)alongwiththesupportofadynamicmodelrepresentingthesystem.In mostcases,buildingaperfectmodelto captureallthedynamicphenomenonisnotpossible.Tocompensatefortheunmodelled dynamics,processnoiseisoftenaddedtothedynamicmodel.Moreover,toaccountthemeasurementerrorsinrealisticsituation, propermeasurementnoiseisaddedtothemeasurementmodel.Processesthatareassociatedwithsucharandomnoisephenomenonaredefinedasstochasticorrandomprocesses.Formostengineeringapplications,theprocessnoiseandmeasurementnoise areassumedtofollowzero-meanGaussian ornormaldistribution.Thegeneralideaoffilteringandestimationproblemisto establishthebestestimateforthetruevariableofasystemfromanincompleteandnoisysetofobservationsofthesystem.

Thischapterdescribesandelaboratesthebasicconceptsrelatingtostochastic variables,noise,probability,probability distributions,randomprocesses,stochasticrepresentationofgeneraldynamicmodels,filtering,prediction,andestimation. Theconceptsanddefinitionspresentedinthischapterprovideabasicframeworkforotherchaptersofthisbook.

2.2Probabilityandstochasticvariables

Aprobabilityvariableisarandomvariable,whereasastochasticvariableisachancevariable.Theprobabilityvariableisusuallydenotedbyacapitalletter X or Y.Thenamesuggeststhatthevariablehassomethingtodowiththeconceptofprobabilities.Suppose,adieisrolledand X istheoutcome,thentheoutcomevariesforeveryturn.Thus X representsarandom variable.Thepossiblevaluesof X are1,2,3,4,5,and6.Occurrenceofeachofthesevalueshasaprobabilityof1/6.Inastatisticalsense,probabilityrepresentstherelativefrequencyofanevent,whenitisobservedformorenumberoftimes.Assume thatadiscreterandomvariable X takesonthevalues x1, x2, , xk asaresultofanexperiment.If X takesthevalue xi for m observationsandthetotalnumberoftrialsis n,thentheratio m/n iscalledtherelative frequencyoftheevent X 5 xi.Therelativefrequency m/n itselfisarandomnumberandchangesaccordingtothenumberoftrialsperformed.Asanexampleofrelativefrequency,considerthetossingofacoin.Heretheevents areheadsandtails.Consideringboththeeventsoccurequally likely,thatimpliesthecoinisunbiasedanditistossedalargenumberoftimessuchthattheeventheadsappearexactlyhalf thenumberoftails.Therelativefrequencyofoccurrenceofheadsisthus0.5.Similarly,theprobabilityoftailsis0.5.

Ingeneral,theprobabilityisanonnegativenumberanditsvaluesliebetween0and1.Avalueof“zero”indicates thattheeventwillnotoccurand“one”signifiesthattheeventcertainlyoccurs.Supposewehaveacaseof n possible events, x1, x2, ..., xn,whicharemutuallyexclusiveinthesensethattheoccurrenceofoneeventexcludestheother. Considertheprobabilitiesofoccurrenceoftheseeventsas p1, p2, , pn,respectively,suchthatthecombinedprobabilityofalltheeventsisunity,thatis, p1 1 p2 1 ? 1 pn 5 1.

Probabilitymeasure: Theprobabilityofaneventismeasuredbyassigninganumericalvalueforeachevent.Considera samplespace S with n(S)outcomesinwhichtheevent A occurs n(A)times.Theprobabilitymeasureisexpressedas

Numberoffavorableoutcomes

Probabilityofanevent 5

Numberofpossibleoutcomes

Ifthesamplespace S has n equallylikedoutcomes,then

Thisiscalledauniformdistributionon S.

Example1: Considerrollingafairdie3times,findtheprobabilitywhenallthenumbersarethesameineachtrail.

Solution

Whenthedieisrolledthreetimes,thesamplespacehas216orderedtripletsas(i, j, k).Sincethedieisfair,the eventofinterestistheequalprobabilityofthesamenumberswithsixoutcomes:

Thuswehaveauniformprobabilitydistribution.Here n(A) 5 6and n(S) 5 216. Thus, P(A) 5 6/216 5 1/36.

2.2.1Probabilitytheorems

Theadditionandmultiplicationtheoremsofprobabilityarebriefedasfollows:

Additiontheorem: Let A and B aretwoindependenteventsinthesamplespaceofanexperiment.

If A and B aremutuallyexclusiveevents, A - B 5 nullset.Thus

Ifthesamplespaceconsistsof n eventssuchthat

Thus,accordingtotheadditiontheorem,

Multiplicationtheorem:Let A and B aretwoindependenteventsinthesamplespaceofanexperiment.According tothemultiplicationtheorem,

If A1, A2,..., An areindependenteventsinthesamplespace,then

Example2: Considerthrowingofasinglediewithsamplespace S 5 {1,2,3,4,5,6}.Whatistheprobabilityof gettinganoddnumber , 3andevennumber . 3?

Solution

Thesamplespace S isrepresentedby S 5 1; 2; 3; 4; 5; 6 fg

Let A and B aremutuallyexclusiveeventsinthesamplespace.

2.2.2Conditionalprobability

Itisaprobabilitymeasurethatdealswithdependentevents.Suppose A and B aretwodependentevents;the P(A/B) definestheprobabilityofevent A aftertheoccurrenceof B.Then P(A/B)canbeinterpretedasaprobabilityof A given B.Similarly, P(B/A)definestheviceversa.Thisconceptisknownasconditionalprobabilitysinceaconditiononthe occurrenceof B or A isspecified.

Themeasureforconditionalprobabilityisgivenasfollows:

If A and B areindependentevents,then

Itisoftenrequiredtofindtheprobabilityofevent B aftertheoccurrenceofevent A.Thisprobabilityiscalledthe conditionalprobabilityof B given A anddenotedas P(B/A).Theprobabilitymeasureforthiscaseisgivenby

Incaseiftheevents A and B occurinasamplespace S,and P(A) ¼ 0, P(B) ¼ 0,then

If A and B areindependentevents,then

If P(A) ¼ 0, P(B) ¼ 0,then

Thismeansthattheprobabilityof A doesnotdependontheoccurrenceornonoccurrenceoftheprobabilityof B, andviceversa.

Example3: Aprobleminanengineeringsubjectisgiventothreestudents A, B,and C.Thechancesofsolvingthe problembythestudentsare1/3,1/4,and1/5,respectively.Whatistheprobabilitythattheproblemissolved?

Solution

Theprobabilitythat A cansolvetheproblem, P(A) 5 1/3.

Theprobabilitythat A cannotsolvetheproblem 5 1 1/3 5 2/3

Theprobabilitythat B cansolvetheproblem, P(B) 5 1/4.

Theprobabilitythat B cannotsolvetheproblem 5 1 1/4 5 3/4

Theprobabilitythat C cansolvetheproblem, P(C) 5 1/5.

Theprobabilitythat C cannotsolvetheproblem 5 1 1/5 5 4/5

Theprobabilitythat A, B,and C cannotsolvetheproblem 5 2/3 3 3/4 3 4/5 5 2/5

Theprobabilitythattheproblemissolvedbyatleastonestudent 5 1 2/5 5 3/5

2.3Probabilitydistributionsanddistributionfunctions

Theprobabilityfunctionsandtheprobabilitydistributionsaredescribedasfollows:

2.3.1Discreterandomvariablesanddiscreteprobabilitydistributions

Randomvariablescanbediscreteorcontinuous.Ifarandomvariabletakesafinitesetofcountablevalues,itiscalled adiscreterandomvariable.Let X beadiscreterandomvariable.Ourinterestistocomputetheprobabilitiesoftheform P(X 5 xk)forvariousvaluesof xk intherangeof X.As xk variesas x1, x2, ,etc.,intherangeof X,theprobability P (X 5 xk)alsovaries.Thus P(X 5 xk)isafunctionof xk.Theprobabilityfunctionisrepresentedby

(2.16)

Theprobabilityfunctionisalsocalleda probabilitydistribution whichisgivenby

For x 5 xk,thisfunctionfollows Eq.(2.16);whileforothervaluesof x, f(x) 5 0.

Ingeneral, f (x)isaprobabilityfunctionif

(i) f (x) $ 0 (ii) P f ðxÞ 5 1,wherethesumistakenastheoverallpossiblevaluesof x.

(2.17)

Example4: Supposethatacoinofthehead(H)andtail(T)istossedtwice,thesamplespacebecomes S 5 {HH, HT, TH, TT}.Let X betherandomvariablerepresentingthenumberofheadsthatcancomeupinthesamplespace.Find theprobabilityfunctioncorrespondingtotherandomvariable X.

Solution

Wehave X isarandomvariablerepresentingeachofthesamplepoint HH, HT, TH,and TT inthesamplespace. Thus,wehave PHHðÞ 5 1=4; PHTðÞ 5 1=4; PTHðÞ 5 1=4 ; and PTTðÞ 5 1=4:

Then

5 0 ðÞ 5

PX 5 2 ðÞ 5 PHHðÞ 5 1=4

Theprobabilityfunctionisgivenin Table2.1

Example5: Findwhetherthefollowingfunctions f1(x) and f2(x) representtheprobabilitydistributionfunctionsfordiscreterandomvariables.

;

Solution

Thefunction f1(x)takesnonzerovalues3/4and1/4atthepoints x 52 2and3,respectively,and x takesallother valueswithzeroprobability,thatis, f1( 2) 5 3/4, f1(3) 5 1/4,and f1(x) 5 0,elsewhere.Condition(i)issatisfiedsince f1(x) $ 0forallvaluesof x.Condition(ii)isalsosatisfiedbecause3/4 1 1/4 1 0 5 1.Hence f1(x)representsaprobabilityfunctionforadiscreterandomvariable x

TABLE2.1 Probabilityfunctionforexample4. x 012 f(x)1/4 1/2 1/4

Similarly,inthecaseof f2(x), Px f2 ðxÞ 5 1,thuscondition(ii)issatisfied.However, f2(x)at x 5 4,thatis, f2(4) 52 1/3, whichisnegative.Hencecondition(i)isviolated.Therefore f2(x)cannotbetheprobabilityfunctionofanyrandomvariable. Cumulativedistributionfunction: Thedistributionfunctionorcumulativedistributionfunctionforadiscrete randomvariable X canbeobtainedfromitsprobabilityfunctionbynotingthat,forall x in(2~ , ~ ),

wherethesumistheoverallvaluesof u takenonby X forwhich u # x If X takesononlyafinitenumberofvalues x1, x2, ..., xn,thenthedistributionfunctionisgivenby

Example6: Findthedistributionfunctionfortherandomvariable x inExample4.

Solution

Thedistributionfunctionis

Thedistributionfunction [1] issketched,asshownin Fig.2.1.

Fromthedistributionfunction(Fig.2.1),itcanbeobservedthatthemagnitudeofjumpsat0,1,and2aretheprobabilitiesgivenin Table2.1.Thisshowsthattheprobabilityfunctioncanbeobtainedfromthedistributionfunction. Accordingly,theprobabilityfunctionofadiscreterandomvariableobtainedfromthedistributionfunctionisgivenby:

FIGURE2.1 Plotofthedistributionfunction.

2.3.2Continuousrandomvariablesandcontinuousprobabilitydistributions

Arandomvariablethatassumesaninfinitenumberofvaluesiscalledacontinuousrandomvariable.Thedistribution functionofacontinuousrandomvariable X isdefinedas

The F(x)iscalledtheProbabilityDistributionFunctionoftherandomvariable X.Thefollowingaretheproperties oftheprobabilitydistributionfunction:

Theconditionalprobabilitydistributionfunctionoftherandomvariable X forevent A isdefinedas

Thedistributionfunction F(x) 5 P(X # x)canbeconsideredasamonotonicallyincreasingfunctionwhich increasesfrom0to1andisrepresentedasshownin Fig.2.2.

Onthebasisofintegralcalculus,theprobabilitydistributionfunctioncanbedefinedasthederivativeof F(x)as

Thefunction f (x)hastheproperties

FIGURE2.2 Monotonicallyincreasingfunctionfrom0to1.

Thefunction f(x)isalsocalleda probabilitydensityfunction(PDF) orsimply densityfunction ofacontinuousrandomvariable.If f(x)isthedensityfunctionforarandomvariable X,thenwecanrepresent y 5 f(x)graphicallybya curveasin Fig.2.3.Since f(x) $ 0,thecurvecannotfallbelowthe x-axis.Theentireareaboundedbythecurveand the x-axismustbe1.Geometricallytheprobabilitythat X isbetween a and b,thatis, P(a , X , b),isthenrepresented bytheareashownshadedin Fig.2.3.

TheconditionalPDFoftherandomvariable X forevent A isdefinedas

Supposewehavetworandomvariables X1 and X2,theconditionalprobabilitydensityofthefirstgiventhatthesecondtakesonthevariable x2 as

where f(x1, x2)and f(x2)arethejointprobabilitydensityofthetworandomvariablesandthemarginaldensityofthe secondvariable.

Example7: Theprobabilitydensityisrepresentedbyanexponentialdecayfunctionoftheform

Computetheprobabilities(i) P(0 # t # 2),and(ii) P(3 # t # 8).

Solution

Probabilitiesarecalculatedastheareasunderthedensitycurvebetweenthecorrespondingordinatesortheintegral ofthedensityoverthegiveninterval.

(i)Theprobability P(0 # t # 2)isgivenby

FIGURE2.3 Probabilitythat X isbetween a and b

(ii)Theprobability P(3 # t # 8)isgivenby

Theprobabilitiesareshownintheshadedareascoveredbydottedlinesasshownin Fig.2.4

Example8: Considerthefollowingdensityfunction

(a) Findtheconstant k

(b) Compute P(2 , X , 3)

Solution

Thefunction f (x)hasthepropertiessuchas f (x) $ 0,and Ð ~ 2~ f ðxÞdx 5 1.

(a) f (x) $ 0if k . 0

Sincethismustbeequalto1,whichmeans64k 5 1 . k 5 1/64.

(b) P 2 , X , 3 ðÞ

If f(x)iscontinuous,weknowtheprobabilityof X isequaltoanyparticularvalueiszero.Insuchacase,wecan replaceeitherorbothofthesigns , in Eq.(2.25) by # .Thus,forthisexample,

FIGURE2.4 Probabilitiesoftheexponentialfunction.

Example9: Iftworandomvariableshavethejointprobabilitydensity

Findtheconditionalprobabilitydensityofthefirstvariable,giventhatthesecondvariabletakesonthevalue x2 Solution

First,wefindthemarginaldensityofthesecondrandomvariablebyintegratingthefunctionwithrespectto x1.

and f(x2) 5 0,otherwise.

Hence,bydefinition,theconditionalprobabilityofthefirstrandomvariablegiventhatthesecondtakesonthevalue x2 is

and f(x1, x2) 5 0,otherwise.

2.4WhiteGaussiannoiseandcolorednoise

Infilteringandestimationproblems,mostofthephysicalsystemsunderconsiderationarenoisy.Thenoisemayarisein anumberofways.Forexample,theinputstothesystemmayassociatewithnoisewhichisunknown/unpredictable. Theoutputsfromthesystemmaybenoisyduetosensorsignalmeasurementinaccuracies.Whitenoiseandcolored noiseareimportantsignalsinstochasticsystems.

Whitenoise: Insignalprocessing,whitenoiseisarandomsignalhavingequalintensityatdifferentfrequencies, givingitaconstantpowerspectraldensity.Whitenoisedrawsitsnamefromwhitelight,althoughlightthatappears white,generallyitdoesnothaveaflatpowerspectraldensityoverthevisibleband.Indiscrete-time,whitenoiseisa discretesignalwhosesamplesareregardedasasequenceofseriallyuncorrelatedrandomvariableswithzeromeanand finitevariance.Ifeachsamplehasanormaldistributionwithzeromean,thesignalissaidtobeadditivewhite Gaussiannoise.

Considerthediscretemodelofatypicalsystemisrepresentedbythefollowingequations:

where xARn denotethestatevariables, θ denotesystemparameters,and yARm denotestheoutputs. H is m 3 n measurementmatrix, G isstatenoisecoefficientmatrix,andthesymbols w and v refertoGaussianwhitenoises.White noisesaresomeuncertaintiesthatareindependenttimeseriesanddistributedidentically,whichmeansnoautocorrelationbetweenthem.Inaparticularcase,the“Gaussianwhitenoise”hasanormaldistributionwithzeromeanandstandardvariation σ .

Forthesystemin Eq.(2.28),theGaussianwhitenoise{w}onstatesandGaussianwhitenoise{v}onoutputhasthe followingstatisticalexpectationswithrespecttotheirmeanandautocorrelations.Themeanvectorandautocorrelation matrixof w and v are:

where E istheexpectedvalueoperatorand I isanidentitymatrix.

Colorednoise:Colorednoisesaresomeuncertaintiesthataredependentontheirpaststatesandhaveanautocorrelation.Inparticular,passinga“Gaussianwhitenoise”fromfirst-orderfilterresultscolorednoise.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.