Optimal operation of integrated multi-energy systems under uncertainty 1st edition wu - The complete

Page 1


OptimalOperationofIntegratedMulti-Energy SystemsUnderUncertainty1stEditionWu

https://ebookmass.com/product/optimal-operation-ofintegrated-multi-energy-systems-under-uncertainty-1stedition-wu/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Distributed Energy Resources in Local Integrated Energy Systems: Optimal Operation and Planning Giorgio Graditi

https://ebookmass.com/product/distributed-energy-resources-in-localintegrated-energy-systems-optimal-operation-and-planning-giorgiograditi/

ebookmass.com

Technologies for Integrated Energy Systems and Networks Giorgio Graditi

https://ebookmass.com/product/technologies-for-integrated-energysystems-and-networks-giorgio-graditi/

ebookmass.com

Comprehensive Energy Systems, vol.5 - Energy Management 1st Edition Canan Acar

https://ebookmass.com/product/comprehensive-energy-systemsvol-5-energy-management-1st-edition-canan-acar/

ebookmass.com

Chemistry in Context for Cambridge International AS & A Level 7th Edition Graham Hill

https://ebookmass.com/product/chemistry-in-context-for-cambridgeinternational-as-a-level-7th-edition-graham-hill/

ebookmass.com

Diagnostic Pathology: Thoracic 2nd Edition

Saul Suster

https://ebookmass.com/product/diagnostic-pathology-thoracic-2ndedition-saul-suster/

ebookmass.com

World Dance Cultures: From Ritual to Spectacle 1st Edition – Ebook PDF Version

https://ebookmass.com/product/world-dance-cultures-from-ritual-tospectacle-1st-edition-ebook-pdf-version/

ebookmass.com

Mountain Shadows (Rosemary Mountain Romantic Suspense Book 1) Nicole Gardner

https://ebookmass.com/product/mountain-shadows-rosemary-mountainromantic-suspense-book-1-nicole-gardner/

ebookmass.com

The Nation Form in the Global Age: Ethnographic Perspectives Irfan Ahmad (Editor)

https://ebookmass.com/product/the-nation-form-in-the-global-ageethnographic-perspectives-irfan-ahmad-editor/

ebookmass.com

Unfettered Demon: MM Paranormal Romance (Found & Freed: The Unfettered Book 3) S. Rodman

https://ebookmass.com/product/unfettered-demon-mm-paranormal-romancefound-freed-the-unfettered-book-3-s-rodman/

ebookmass.com

Protocols for High-Risk Pregnancies: An Evidence-Based Approach 6th Edition – Ebook PDF Version

https://ebookmass.com/product/protocols-for-high-risk-pregnancies-anevidence-based-approach-6th-edition-ebook-pdf-version/

ebookmass.com

OPTIMALOPERATION OFINTEGRATED MULTI-ENERGY SYSTEMSUNDER

UNCERTAINTY

OPTIMALOPERATION OFINTEGRATED MULTI-ENERGY SYSTEMSUNDER UNCERTAINTY

QIUWEIWU

AssociateProfessor,TechnicalUniversityofDenmark,Denmark

JINTAN

PhDcandidate,TechnicalUniversityofDenmark,Denmark

MENGLINZHANG

Postdoctoralresearcher,TechnicalUniversityofDenmark,Denmark

XIAOLONGJIN

Postdoctoralresearcher,TechnicalUniversityofDenmark,Denmark

ANATURK

PhDcandidate,TechnicalUniversityofDenmark,Denmark

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-824114-1

ForInformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

AcquisitionsEditor: GrahamNisbet

EditorialProjectManager: SaraValentino

ProductionProjectManager: KameshRamajogi

CoverDesigner: ChristianJ.Bilbow

TypesetbyAptara,NewDelhi,India

1.Introductionofintegratedenergysystems1

1.1 Introduction1

1.2 Integratedenergysystem5

1.3 CurrentstatusofintegratedenergysystemsinChinaandDenmark9

1.4 Recommendationsforfurtherdevelopmentofintegratedenergysystems11

1.5 Conclusion12 References13

2.Mathematicalmodelofmulti-energysystems17

2.1 Introduction17

2.2 Modelingofcouplingdevices19

2.3 Mathematicalmodelofthedistrictheatingnetwork23

2.4 Mathematicalmodeloftheelectricpowernetwork30

2.5 Modelingofthenaturalgassystem31 References50

3.Uncertaintymodeling55

3.1 Introduction55

3.2 Scenariogenerationwithspatial-temporalcorrelationsinSO57

3.3 Partition-combineuncertaintysetmodelinginRO63

3.4 Casestudy68

3.5 Conclusion76 References76

4.Optimaloperationofthemulti-energybuildingcomplex79

4.1 Introduction79

4.2 ConfigurationofaBC81

4.3 PMIBwiththeHVACsystem83

4.4 Formulationofthehierarchicalmethod91

4.5 Resultsanddiscussions96

4.6 Conclusion107 References108

5.MPC-basedreal-timedispatchofmulti-energybuildingcomplex111

5.1 Introduction111

5.2 ConfigurationandmodelingoftheBC114

5.3 Themulti-timescaleandMPC-basedschedulingmethod119

5.4 Resultsanddiscussions127

5.5 Discussions140

5.6 Conclusion141 References141

6.Adaptiverobustenergyandreserveco-optimizationofan integratedelectricityandheatingsystemconsidering winduncertainty145

6.1 Introduction145

6.2 Mathematicalformulationofadaptiverobustenergyandreserve co-optimizationfortheIEHS147

6.3 Solutionmethodology157

6.4 Simulationresults160

6.5 Summaryandconclusion167 References167

7.Decentralizedrobustenergyandreserveco-optimizationfor multipleintegratedelectricityandheatingsystems171

7.1 Introduction171

7.2 StructureanddecentralizedoperationframeworkofmultipleIEHSs173

7.3 Mathematicalformulationofdecentralizedrobustenergyandreserve co-optimizationformultipleIEHSs176

7.4 Solutionmethodology181

7.5 Simulationresults185

7.6 Conclusion192 References193

8.Chance-constrainedenergyandmulti-typereservesscheduling exploitingflexibilityfromcombinedpowerandheatunits andheatpumps195

8.1 Introduction195

8.2 Frameworkofchance-constrainedtwo-stageenergyandmulti-type reservesscheduling197

8.3 PrimaryFRRandfollowingreserveprovisionfromCHPunitsandHPs198

8.4 Mathematicalformulationofdecentralizedrobustenergyandreserve co-optimizationformultipleIEHSs204

8.5 Reformulationasamixed-integerlinearprogram211

8.6 Simulationresults213

8.7 Conclusion219 References219

9.Day-aheadstochasticoptimaloperationoftheintegratedelectricity andheatingsystemconsideringreserveofflexibledevices221

9.1 Introduction221

9.2 Two-stagestochasticoptimaldispatchingschemeoftheIEHS223

9.3 ReserveprovisionandheatregulationfromcondensingCHPunits225

9.4 MathematicalformulationofstochasticoptimaloperationoftheIEHS228

9.5 Casestudy238

9.6 Conclusion246 References246

10.Two-stagestochasticoptimaloperationofintegrated energysystems249

10.1 Introduction249

10.2 BackgroundandDAscheduling249

10.3 MathematicalmodeloftheIESfortwo-stageDAscheduling254

10.4 Scenariogenerationandreductionmethod270

10.5 Exampleofacasestudy276

10.6 Conclusion290 References291

11.MPC-basedreal-timeoperationofintegratedenergysystems295

11.1 Introduction295

11.2 BackgroundandRTscheduling296

11.3 MPC-basedRTscheduling302

11.4 MathematicalmodelsoftheIESforMPC-basedRTscheduling308

11.5 Solutionprocessandcasestudy319

11.6 Simulationresults322

11.7 Conclusion333 References334

AppendixA:Basicsofstochasticoptimization337

A.1 Stochasticoptimizationfundamentals338

A.2 Scenariogenerationandreduction342

A.3 Generalformulationoftwo-stageoptimization345 References346

AppendixB:Introductiontoadaptiverobustoptimization349

B.1 FormulationofAROwithresource350

B.2 Solutionmethodology350 References353 Index 355

Biography

QiuweiWu receivedthePhDdegreeinPowerSystemEngineeringfrom NanyangTechnologicalUniversity,Singapore,in2009.Hewasasenior R&DengineerwithVestasTechnologyR&DSingaporePteLtdfromMar. 2008toOct.2009.HehasbeenworkingatDepartmentofElectricalEngineering,TechnicalUniversityofDenmark(DTU)sinceNov.2009(PostDoc Nov.2009-Oct.2010,AssistantProfessorNov.2010-Aug.2013,Associate ProfessorsinceSept.2013).HewasavisitingscholarattheDepartment ofIndustrialEngineering&OperationsResearch(IEOR),Universityof California,Berkeley,fromFeb.2012toMay2012.Hewasavisitingscholar attheSchoolofEngineeringandAppliedSciences,HarvardUniversity fromNov.2017Oct.2018.Hisresearchinterestsareoperationandcontrol ofpowersystemswithhighpenetrationofrenewables,includingwind powermodellingandcontrol,activedistributionnetworks,andoperation ofintegratedenergysystems.

JinTan receivedtheM.S.degreefromtheDepartmentofElectrical Engineering,WuhanUniversity,Wuhan,China,in2018.Sheisworking towardthePh.D.degreeinelectricalengineeringfromTechnicalUniversity ofDenmark,KongensLyngby,Denmark.Herresearchinterestsincludethe optimaloperationofintegratedelectricityandheatingsystemandrenewable energyintegration.Currently,sheisinvolvedintheprojectofUsingFlexible DistrictHeatingwithHeatPumpsforIntegratedElectricityandHeatDispatchwithRenewables.Shefocusesonmodelingtheintegratedelectricity andheatingsystem,investigatingtheflexibilitythatdistrictheatingsystem couldprovidetotheelectricpowersystem,andtheoptimaloperationforthe integratedelectricityandheatsystemconsideringwindpoweruncertainty.

MenglinZhang receivedtheB.S.degreeinelectricalengineeringfrom SouthwestJiaotongUniversity(SWJTU),Chengdu,China,in2011,and thePh.D.degreeinelectricalengineeringfromWuhanUniversity(WHU), Wuhan,China,in2017.ShewaswiththeDepartmentofElectricalEngineering,HuazhongUniversityofScienceandTechnology(HUST),Wuhan, Chinafrom2017to2019.Currently,sheisaPost-DoctoralResearcher withtheCenterforElectricPowerandEnergy,TechnicalUniversityof Denmark(DTU).Hercurrentresearchinterestsincludethemodelingof

temporal-spatialcorrelationofrenewablesinstochasticprogrammingand advanceduncertaintysettoreduceconservativenessinrobustoptimization, themodelingofoptimaloperationofintegratedelectricityandheatsystem consideringflexibility,andtheacceleratedsolvingalgorithmforthebulk system.

XiaolongJin obtainedthePh.D.degreefromtheSchoolofElectricaland InformationEngineering,TianjinUniversity,Tianjin,China,in2019.Heis nowaPostdocresearcherwithTechnicalUniversityofDenmark(DTU). Hisresearchinterestsincludeenergymanagementofmulti-energysystems andmulti-energybuildings.Specifically,hisresearchfocusesonimproving energyefficiencyandreducingoperatingcostofmulti-energysystems andmulti-energybuildingswithdesignedenergymanagementframeworks, whichusestheflexibilitiesfromthreeaspects:1)Usethedemand-side flexibilitybydispatchingtheflexiblemulti-energyloadsinsmartbuildings; 2)Usethenetwork-sideflexibilitybycoordinatingthemulti-vectorenergy networks;3)Usethesupply-sideflexibilitybyschedulingthevarious generationsintheenergystationsandthedistributedenergyresources connectedwithmulti-energysystemsandmulti-energybuildings.

AnaTurk receivedtheB.S.degreefromtheFacultyofElectricalEngineeringandComputerScienceatUniversityofMariborinSlovenia andMScdegreeinEnergyEngineeringfromFacultyofEngineering andScienceatAalborgUniversityinDenmarkin2018.Sheiscurrently pursuingaPh.D.attheCenterofElectricPowerandEnergy(CEE)at theDepartmentofElectricalEngineeringattheTechnicalUniversityof Denmark(DTU).Herresearchinterestincludeintegrationandmodelingof multi-energysystems(districtheating,naturalgasandelectricpowersystem), stochasticprogrammingandoptimaloperationandschedulingofmultienergysystems.Inparticular,specialfocusisonoptimaloperationandreal timecontrolofintegratedenergysystemsbyusingmodelpredictivecontrol.

CHAPTER1

Introductionofintegrated energysystems

1.1Introduction

Energyplaysanimportantroleinthedevelopmentofsociety.Beforethe industrialrevolution,biomass(i.e.,wood)wastheworld’smainprimary energysource.Since1900,mostprimaryenergycamefromwoodand coal [1],butwiththeadventoftheautomobileandairplanesinthe early20thcentury,oilbecamethedominantfuel.In2018,mostofthe world’senergywasgeneratedfromfossilfuels(81%).Therestcamefrom bioenergy,includingtraditionalsolidbiomass(9.4%),nuclear(5%),hydro (2.5%),andotherrenewablessuchaswind,solar,andgeothermal(2.1%) [2] Inrecentyears,withgrowingenvironmentalconcerns,especiallyoverglobal climatechangeandlocalpollution,attentiontointernationalagreementsfor reducinggreenhousegasemissionsandcleaningair,withaconsequential increaseofrenewableenergytechnologies,hasincreased.TheEuropean Unioniscommittedtoreducinggreenhousegasemissionstobe80%to 95%below1990levelsby2050,andabouttwothirdsoftheenergyshould befromtherenewablesources [3].IntheUnitedStates,arenewableenergy transitionisunderway,ledbycommunitiesandstates [4].Denmarkhasbeen apioneerinimplementingrenewableenergy,andtheDanishenergysystem hasundergoneatransformationalchange,whereasChinarankedfirstinthe worldintermsofcumulativeandnewinstallationsofonshorewindpower by2018 [5].

Sincemajorrenewablesourceslikewindandsolarcaneasilybeturned intoelectricity,andelectricpowercaneasilybetransmitted,transformed,and used,suchresourcesareexpectedtobecomethedominantenergycarriers inthefuture.Inrecentyears,windpowerandphotovoltaic(PV)powerhave beengrowingrapidlyinmanycounties. Fig.1.1 showstheinstalledwind powercapacityfrom2010to2019,whichreachedabout622GWin2019 [6].China’scumulativeinstalledwindpowercapacityfrom2004to2019 isillustratedin Fig.1.2,whichreachedabout236GWinthelatteryear, accountingforalmost36%oftotalinstalledwindcapacityworldwide [8].It isestimatedthatmorethan25%ofnewoffshorewindpowercapacitywillbe

Figure1.1 Installedwindpowercapacityovertheworldfrom2010to2019.From InternationalRenewableEnergyAgency [6].

Figure1.2 CumulativeinstalledwindpowercapacityinChina.FromHeetal. [7]. addedinChinaby2030 [9].InDenmark,cumulativewindpowercapacity was6.13GWin2019,withonshoreandoffshorewindturbinecapacities reaching4.43GWand1.70GW,respectively [10].Inaddition,windpower productionaccountedfor47.2%ofDenmark’sdomesticelectricitysupply.

Figure1.3 Proportionofonshoreandoffshorewindpowerandthetotalwindpower shareforelectricitysupplyinDenmark.

Fig.1.3 showstheproportionofonshoreandoffshorewindpower,aswell asthetotalwindpowershareofelectricitysupplyinDenmarkfrom2011 to2019.Meanwhile,solarpowerandsolarthermalenergyhaveexperienced stronggrowthinthepasttwodecades. Fig.1.4 showstheinstalledsolarpower andsolarenergycapacityfrom2010to201,whichreachedabout585GW in2019 [11]

Itshouldbenotedthatthepoweroutputofrenewabletechnologies likewindandsolarPVfluctuatesduetorapidlychangingmeteorologicalconditions.Becausetheyhaveazeromarginalcost,renewablepower fromwindandPVisreplacingconventionalthermalpowerplants,which conventionallyhavebeenresponsibleforprovidingmanyelectricalpower systemservices,suchasreserves,voltagecontrol,frequencycontrol,stability services,andblackstartrestoration [11].Theincreasingpenetrationof theserenewablepowersourcesisthereforeposingsubstantialchallengesto theplanning,secureandreliableoperation,andcontrolofpowersystems [12], [13].Hence,therequirementsforflexibilitytoaccommodatelarge amountsofnaturallyfluctuatingrenewableenergyareincreasing.

Inseveralcountriesandregions,partsofthegas,heating,cooling,and transportationsystemshaverespondedtotheseflexibilityrequirementsby meansofadeepcouplingofmultipleenergysectors.Indeed,duetothe intrinsicstoragecapabilitiesof,forexample,thethermalinertiaofdistrict heatingpipesandbuildings [14],thestorageofelectricvehiclebatteries [15],

Figure1.4 Installedsolarcapacityovertheworldfrom2010to2019.FromInternational RenewableEnergyAgency [11].

andvariousenergyconversiontechniques(e.g.,power-to-heat,power-togas[P2G],combinedheatandpower[CHP]units),theheatingandgas sectorscanprovideextraflexibilitytotheelectricpowersystem(EPS). Differentenergysectorsarecoupledattheproductionordemandside.

Theintegrationofdifferentenergysectorscansolvesomechallenges tothestableandreliableoperationofelectricpowersystemswithhigh penetrationsofrenewableenergy [16].Thiswillnotonlyfacilitatethe integrationofrenewableenergybutalsocanimprovethecostefficiency ofthewholeenergysystemifdoneproperly.InDenmark,Energinetisthe transmissionsystemoperatorofthecountry’selectricityandgastransmission grids [11],which,bycontrollingbothwholesalegridsystems,basically demonstratestheintegrationoftwodifferentenergysystems.Inaddition,the DanishPartnershipSmartEnergyNetworkswasestablishedin2014tobring togetherDanishenergycompanies,industry,andknowledgeinstitutions withinelectricity,heating,cooling,andgas.Thispromisestobeaneffective approachforachievingtheambitiousDanishclimateandenergygoalofa fully100%renewable-basedenergysystemby2050.

Inadditiontotheintegrationofinfrastructuraltechnology,coordinatedoperationandcontrolofanintegratedenergysystemarenecessary [17], [18].Atpresent,inmostcountries,theregulationandmanagement ofdifferentenergysectorsarestillseparatebothforhistoricalreasonsand duetothedifferentsetsofrulesbasedondiverseprinciples.Thislackof uniformstandardizationimpedesthedevelopmentofefficientintegration andoptimalsolutionsforthewholesystem.Well-functioningandefficient integratedenergysystemsshouldbebasedonanintegratedenergysystem approachthatincorporatesnoveldigitalsolutions,includingsensorsand actuatorsembeddedinthesystem,variousInternettechnologies,platforms withservice-baseddesigns,andnovelbusinessmodels [19],butthiscanonly workeffectivelyifthecross-sectorregulationsarecompatible.

Duringthepastfewdecades,theconceptofthesmartgridhasemerged. ItinvolvesnewconceptsandtechnologiesintheEPS.TheEuropean UnionCommissionTaskForceforSmartGridsdefinesthesmartgridas “anelectricitynetworkthatcancost-efficientlyintegratethebehaviorand actionsofallusersconnectedtoit—generators,consumers,andthosethat doboth—inordertoensureaneconomicallyefficient,sustainablepower systemwithlowlossesandhighlevelsofqualityandsecurityofsupplyand safety.”Theideaofthesmartgridcanbeextendedtosmartenergy,whereby informationandcommunicationtechnologyalsoplayanimportantrolein enhancingtheperformanceofthecoordinatedoperationandcontrolofall ofthecoupledenergysectors [20].

1.2Integratedenergysystem

An integratedenergysystem isdefinedasacost-effective,sustainable,andsecure energysysteminwhichrenewableenergyproduction,infrastructure,and consumptionareintegratedandcoordinatedthroughenergyservices,active users,andenablingtechnologies. Fig.1.5 givesanoverviewofaDanishintegratedenergysystemprovidingflexibilityforthecost-effectiveintegration ofrenewableenergies.Thedifferentcharacteristicsofthecoupledelectricity, heating,andgasenergysectorsinintegratedenergysystemsarelistedin Table1.1.

1.2.1Electricitysector

TherewillbemorenaturallyfluctuatingpowergenerationintheEPS,which canflowbi-directionally,fromlarge-scalegeneratorsviathegridtothe

Figure1.5 Overviewofanintegratedenergysystem.

Table1.1 Differentcharacteristicsofvariousenergysectors.

Energy

Sector Properties

Electricity Long-distancetransport

IntrinsicFlexibility Flexibility Need

Verylow(seconds) High Lowlosses

Easytogeneratefromrenewable energysources

Easyconversiontootherenergy carriers

Heating Local/district

Mediumlosses

Difficulttoconverttoother energycarriers(iflow temperature)

Gas Long-distancetransport

Lowtransmissionlosses

Intrinsiclossesduringconversion atthepointofuse

Easytoconverttoheatand electricity

FromLundetal. [27]

Medium(days) Medium

High(months) Low

consumer,andbereinjectedbyprosumersintothegrid.Inaddition,over time,small-scaledistributedgenerationandfluctuatingrenewablegenerationwillgraduallyreplaceconventionalcentralpowerplants.Sincethe traditional(large-scale)synchronouselectricitygenerationunitsthatprovide inertiaresponsearebeingreplacedbynonsynchronousrenewableenergy technologies(effectivelyviapowerelectronicsinverters),thetotalinertia inthesystemisbeingreduced,leadinginturntoadverseimpactsonthe frequencysecurityoftheEPS.Thisconsiderablyincreasestherequirement forflexibility,especiallyfrequencycontrolreserves,tomaintainsystemfrequencysecurity.Toobtainadditionalflexibilitytosupporttheoperationand controloftheEPS,newenergyconversiontechniques,demandresponse,and newpowergenerationschedulingstrategiesarebeingintroducedintothe electricitysector.Theconversiontechniquesincludethestillconventional gas-firedelectricpowerplants(gastopower)andcogenerationplants(gas toheatandelectricalpower),aswellasheatpumps(electricpowertoheat) andfuturetechnologiesthatconvertelectricalenergyintomoleculessuch ashydrogenandmethane(P2G) [21].Bypromotingappropriateinteraction betweenelectricpowergenerationandactiveconsumers(includingcommercial,industry,andresidential),demandresponsecanoffergreatbenefitsto operationofthesystem [22].Theelectricalloadsarecontrolledbyintelligent managementsystemsparticipatingintheelectricitymarkets.Asanexample, intheEuropeanUnion–supportedprojectEcoGridEU,flexibilityonthe consumersideissupposedtooriginatemainlyfromlocalheatingsystemsin buildings [23].

1.2.2Heatingandcoolingsector

Withthefurtherdevelopmentoflow-energybuildings,residentialand officeenergyconsumption,includingheatingandcoolingdemand,willfall correspondingly.Bydevelopingmoredistrictheatingandcoolingsystems whereappropriateandjustified,itispossibletomovetowardamore sustainableenergysystembasedonrenewableenergy [24].Inthisregard, theconceptofa4thGenerationDistrictHeatingSystem(4GDH)was proposedinDenmark [25],whereasthe5thGenerationDistrictHeating System(5GDH)wasdevelopedfurther,alsoknownasColdDistrictHeating Networks [26].Thesesystemsarebasedontheideaoflow-temperatureand ultra-low-temperaturedistrictheatingsystems(DHSs)respectively,which canreusethewasteheatfromindustryandbuildings,aswellasreduce heatloss.Theheatingnetworksin4GDHarecharacterizedbynormal

distributiontemperaturesof50◦ C(supplypipe)and20◦ C(returnpipe)as annualaverages,whereasthetemperaturesinpipeswith5GDHarearound 5to30◦ C,whichkeepsheatlosstoaminimumandreducestheneedfor extensiveinsulation.In5GDH,electricalheatboostersareusuallyinstalledat thebuildingsideforheatinghottapwater.Inaddition,heatstorageisplaying anincreasinglyimportantroleintheheatingsector,whichcanenhancethe flexibilityofCHPunitsandintegratefluctuatingwindpowerbetterthrough theconversionofelectricalenergyintoheat.

1.2.3Naturalgassector

Duetothelowcostoftheenergycarrier,lowenvironmentalemissions,and highefficiencyofnaturalgas–basedtechnologies,naturalgashasbecome thesecondlargestsourceoftheworldenergyconsumption [5].Ontheone hand,gascaneasilybeconvertedintoelectricityandheatbygas-firedpower generation,suchascombinedcyclegasturbines,high-efficiencycondensing boilers,andCHP.CHP(orco-generation)intensifiesthecouplingbetween naturalgasandelectricitypowersystems.Ontheotherhand,withthe hopefullysuccessfulfuturedevelopmentofP2Gtechnology,electricpower canalsobeconvertedintogas(hydrogenandmethane),andthenthe convertedgascanbeinjectedintothenaturalgassystemtogetherwithbiogas [28].Itshouldbenoted,however,thatalthoughtheoverallefficiencyofthis processisquitelow,itmayneverthelessbeanecessarybuildingblockin achievingtherequiredsystemintegrationbetweensectorstoensurelongtermstorage.TheP2Groutecanhelpdecreasethecurtailingofrenewable energiesandprovidemoreflexibilityfortheEPS.Furthermore,thenatural gassystemhaslarge-scalestoragecapabilitiesduetothepressureflexibility andthelargevolumesinpipelinesandcaverns [11]

1.2.4Transportationsector

TheEuropeanEnvironmentalAgency,whichkeepstrackofworldwide finalenergyconsumption,hasfoundthatthetransportsectorisresponsible foraboutathirdofoverallfinalenergyconsumption [29].Thus,because oftheaccompanyingCO2 emissionsandlocalpollution,itiscrucialthat thetransportationsectorreplacesfossilfuelswithrenewable-basedenergy carriers [30].Theelectrificationoftransportationthroughbatteryelectric vehicles(BEVs)andfuelcellhybridelectricvehiclesarepromisingtechnologies,sincetheycanreducefossilfuelconsumption,aswellasenhancethe integrationofnaturallyfluctuatingrenewableenergies.Forinstance,BEVs

canbechargedanddischargedatdifferenttimesandlocations.Thus,itis treatedasaflexibleload(G2V)andstorageinthepowersystem,whichcan changetheloadbothintimeandspace [31].Meanwhile,BEVscandischarge electricpowertothepowersystemlikegenerationunitsthroughvehicle togrid(V2G)technology.Withtheproperdesignandcontrolstrategies, BEVscanprovidemultipleancillaryservicestothepowersystem,suchas frequencyresponse [32].

1.2.5Operationofintegratedenergysystems

Theoptimaloperationandsmartcontrolofintegratedenergysystemscan improvethesustainability,reliability,andcostefficiencyofthewholesystem. Takingintoaccountdiverseenergyconversiontechnologiesandthecoordinationofdifferentenergysectors,theenergyservicesrequiredbycustomers orsystemoperatorscanbeprovidedinmanydifferentways.Withcentralized control,theentiresmartenergysystemisgenerallymanagedbyasingle operator,andoverall,theappropriateoperationconstitutesalarge-scale centralizedproblem,whichismorecomplicatedthanwithanindividual system.Toimprovecomputationefficiencyandprotectinformationprivacy, distributedordecentralizedsolutionsaredesiredtoachieveindependent yetcoordinatedoperation [33].Inaddition,therewillbequitealotof localcontrolviaintegratorsandaggregators,whichalsorequiresdistributed operationandcontrol.Apartfromtheaforementionedtechnicalaspects,a propermarketdesignwiththerightincentivesandclear(i.e.,stimulatingand nomutuallyopposing)regulationswillberequiredtoensuretheeffective operationofintegratedsmartenergysystemsaswell.

1.3CurrentstatusofintegratedenergysystemsinChina andDenmark

Duringtheperiodofthe12thFive-YearPlan(2011–2015),coalconsumption inChinafellby5.2%andtheconsumptionofnon-fossilfuelsincreasedby 2.6% [34].Before2006,electricitygenerationcamemainlyfromconventionalthermalpowerunitsandhydropowerunits.ToreduceCO2 emissions, powergenerationfromrenewablesourcesofenergysuchaswind,solar, andhydrohasdevelopedrapidlyinChinaduringthepastdecade.Itis expectedthatCO2 emissionswillpeakataround2030andthatthenonfossil-fuelshareofprimaryenergywillincreaseby20%bythesameyear [35].Moreover,theChinesegovernmenthasrecentlyannouncedatargetof

achievingcarbonneutralityby2060.Inaddition,duetoitshigherconversion efficiencyandlowerenvironmentalemissions,naturalgashasattracted increasingattention,expectingtoreach15%oftotalfuelconsumptionin thewholeenergysectorby2030.InnorthernChina,theDHSisbeing adoptedtosupplyheattoconsumers.TheCHPunitsandheatboilerscover 62.9%and35.7%ofheatingproduction,respectively,withtherestmainly beingsuppliedbyindustrywasteheatandgeothermal.However,theelectric powerandheatgenerationofCHPunitsdependsonheatloads,whichlimits theoperationalregionoftheCHPunits.CHPunitsmustrunwhentheheat isneeded,leadingtoahighcurtailmentofwindpowerinthewinter.

Since2015,theNationalEnergyAdministrationofChinahasissuedseveralpoliciestosupportthedevelopmentofintegratedenergy systems,includingmicrogridswithhighrenewablepenetrationandan overallintegratedenergysystem,referredtoastheEnergyInternet (http://www.nea.gov.cn/).TheStateGridTianjinElectricityPowerCompanyisthefirstcompanytoconductdemonstrationprojectsofintegrated energysystems,whichwouldachievecoordinatedmanagementandcontrol oftheelectricity,heating,andcoolingfluxesandflows.Theintegrated energysystem,ifdoneproperly,improvesthecostefficiencyofthewhole systemandreducesCO2 emissions.TheStateGridJiangsuElectricity PowerCompanyhascompletedademonstrationprojectofadistrictsmart energysystemwith70%penetrationofrenewables,whichincorporatesthe electricity,heating,cooling,andtransportationenergysectors.Inaddition, theChinaSouthernPowerGridhasinvestigatedhowtodesignandoperateasmartenergysystemthatincludestheelectricity,heating,gas,and transportationenergysectors.However,atpresent,theEPS,DHS,andgas systemsareoperatedbydifferententitiesinChinaandarethusplanned individually.

In2018,electricityfromrenewablesaccountedfor60%ofDenmark’s domesticelectricitysupply,andwindpoweraccountedfor40% [36].In particular,thetransitionfromfossilfuelstorenewableenergyfordistrict heatingissignificantinDenmark.Thepercentageofrenewablescovered 60%ofdistrictheatingproductionin2018 [36].Apartfromsecuring adequatecapacitythroughtheconnectionwithneighboringcountries,the heatingsectorinDenmarkplaysamajorroletoprovideflexibilityforthe EPSinintegratingfluctuatingwindpower.Theheatingandelectricity sectorsarecoupledthroughCHPplants,whichgeneratearound70%of thermalenergyintheDanishDHS.Sincetheelectricitytaxisbeingreduced graduallyovertime,electricboilersandheatpumpshaveattractedincreasing

attention.Combinedwiththeelectricboilers,heatpumps,andheatstorage, CHPunitscanprovidemoreflexibilitytotheEPS.

Tofacilitatetheintegrationofwindpower,Denmarkhasconductednumerousresearchprojectsonfutureintegratedenergysystems.Forexample, theEnergyLabNordhavnprojectisademonstrationprojectforadenseand integratedfutureenergysystem.Itdemonstrateshowelectricityandheating, energy-efficientbuildings,andelectrictransportationwiththeinnovative useofdataandanalyticscanbeintegratedintoanintelligent,flexible,and optimizedenergysystem [37].Alow-temperaturedistrictheatingsystem incorporatingsmartenergynetworktechnologies,heatstorage,energyflexiblebuildings,decentralizedsupplyoptions,andfuel-shiftsolutionshas beendeveloped.IntheCopenhagenNordhavnarea,activeparticipationby occupantsofthelow-energybuildingsactingasagileconsumersandusers, andthereforebecomingactiveenergy-flexibleelements,hasbeeninvestigated.Anotherproject,CentreforIT-IntelligentEnergySystems(CITIES), hasdevelopedmethodologiesanddigitalsolutionsfortheanalysis,operation, anddevelopmentofintegratedurbanenergysystems,withtheultimate aimofachievingindependencefromfossilfuelsbyutilizingtheflexibility oftheenergysystemthroughintelligence,integration,andplanning [38]. TheEnergyPlantoolhasbeendevelopedbyAalborgUniversitytodesign a100%renewableenergysystemthatincludeselectricity,heating,cooling, transportation,andindustrialsectors.TheEnergyPlantoolisinvestigating themodelingofallrelevantenergygenerationunits,energystorage,and energyconversiontechnologies [39].

1.4Recommendationsforfurtherdevelopmentof integratedenergysystems

Anefficienttransitiontoasmartenergysystemrequiresintensiveresearch anddevelopmenteffortsregardingtheintegrationofvariousenergyconversiontechniques,systemoperationframeworks,digitalization,andcommunicationsystems,amongothers.Thefollowingsuggestionsforfurtherresearch intoanddevelopmentofintegratedenergysystemsarerecommended: Investigatenewoptimaloperationframeworksandcontrolstrategiesformultiple energysystems.Giventhefactthatvariousenergysectorsaremanagedby differententitiesandthatthecoordinationofdifferentenergysectorsis insufficientatpresent,researchshouldbeconductedtocoordinatevariousenergysectorswithdifferentoperationaltimescalesandcharacteristicswhilerespectingtheprivacyofdifferententities.Thedevelopmentof

Optimaloperationofintegratedmulti-energysystemsunderuncertainty

integratedenergysystemsshouldfocusonprovidingsecureandreliable energyservicestoendusers.

Designmulti-energycarriermarketsanddevelopnewbusinessmodelframeworks. Todistributesmartenergysystemcostsandbenefitsacrossenergysectors andservicesefficiently,newregulationsandbusinessmodelsshould bedeveloped.Acorrespondingdemonstrationactingasoperational platformsfornewbusinessmodelsisneeded.Inaddition,theincentives neededforenergyconsumersandbuildingmanagementtoadoptflexible consumptionshouldbeexplored.

Developsolutionsforthemoreefficientintegrationofenergystorageandadvanced energyconversiontechnologiestoaccommodatethegrowthinfluctuatingrenewable energy.Optimaloperationandsmartcontrolofthevariousenergyinfrastructuresshouldbeinvestigatedindepth,enablingadditionalflexibility acrosstheseinfrastructurestoefficientlybalanceandutilizerenewable energy,mainlyintegratedintothepowersystem.

Designanddeveloplow-energybuildingsforagreentransition.Buildingsplay animportantroleasthemainconsumersincities.Togetherwithindoor climatesandthermalinertia,thepotentialflexibilityofbuildingscan beutilized.Advancedbuildingenergymanagementandcontrolsystems shouldbedevelopedtointeractwiththe(external)smartenergysystem andincreaseenergyflexibility.

Developintegrateddesignandplanningmethodsacrossenergysectorsforintegratedenergysystems.Atpresent,therearenonationalpoliciesand regulationsregardingintegratedenergysystemsineitherChinaor Denmark.Thecoordinateddesignandplanningshouldevolvetoremove thebarriersbetweenthedifferentenergysectorsandfacilitatethe deploymentofsmartenergysolutions.

1.5Conclusion

Cross-sectorintegratedenergysystemswillbedevelopedovertheworldto copewiththefluctuationsanduncertaintyfromrenewablesinanefficient way.Theintegratedenergysystemwillbethemostefficientsolution toincreasetheenergyefficiencyofsystemsandreduceenvironmental emissions.Thischapterdescribedtheconceptoftheintegratedenergy system,integratingtheelectricity,heating,cooling,gas,andtransportation sectorswithhighrenewableenergypenetration.Thedifferenttimescales andcharacteristicsofthedifferentenergysectorscreatechallengesforthe coordinatedoperationofthedifferentenergysectors.Manyprojectshave

beenconductedtodemonstratetheeconomicandenvironmentalbenefits ofintegratedenergysystems.Furtherresearchanddevelopmentarerequired todealwiththechallengestothegreentransitiontowardasmartenergy system,includingadvancedtechnologies,novelmarketdesignsandbusiness models,andconsistentnationalregulationstoremovethebarriersbetween thedifferentenergysectors.

References

[1]VSmil,EnergyTransitions:History,Requirements,Prospects,PraegerPublishers,West Port,CT,2010.

[2]InternationalEnergyAgency,Worldenergyoutlook2019,2019. https://www.iea. org/reports/world-energy-outlook-2019.(Accessed16April2021).

[3]EuropeanUnion.Energyroadmap2050,2012. https://ec.europa.eu/energy/sites/ener/ files/documents/2012_energy_roadmap_2050_en_0.pdf.(Accessed16April2021).

[4]UCLALuskinCentreforInnovation,Progresstoward100%cleanenergy:incitiesand statesacrosstheU.S.,2019. https://innovation.luskin.ucla.edu/wp-content/uploads/ 2019/11/100-Clean-Energy-Progress-Report-UCLA-2.pdf.(Accessed16April2021).

[5]YHe,MYan,MShahidehpour,ZLi,CGuo,LWu,etal.,Decentralizedoptimizationof multi-areaelectricity-naturalgasflowsbasedonconereformulation,IEEETransPower Syst33(4)(2018)4531–4542.

[6]InternationalRenewableEnergyAgency,Windenergy. https://www.irena.org/wind (Accessed16April2021).

[7]ZHe,DDrozdov,JWang,WShen,CLi,WLi,Competitivenessofthewindpower industryinChina:ananalysisbasedontheextendedDiamondModel,JRenewSustain Energy12(2020)052701.

[8]GlobalWindEnergyCouncil,Globalwindreport2019. https://gwec.net/.(Accessed 16April2021).

[9]Reve,Chinatoaccountforover25%globaloffshorewindpowercapacityby2030,2020. https://www.evwind.es/2020/08/25/china-to-account-for-over-25-global-offshorewind-power-capacity-by-2030/76767.(Accessed16April2021).

[10]WindEurope,WindenergyinEuropein2019,2019. https://windeurope.org/wpcontent/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2019.pdf (Accessed16April2021).

[11]InternationalRenewableEnergyAgency,Solarenergy. https://www.irena.org/solar (Accessed16April2021).

[12]HHLarsen,LSPetersen,DTUInternationalEnergyReport:EnergySystemIntegrationsfortheTransitiontoNon-FossilEnergySystems,TechnicalUniversityofDenmark, Lyngby,2015..

[13]CTang,JXu,YSun,JLiu,XLi,DKe,etal.,Aversatilemixturedistributionandits applicationineconomicdispatchwithmultiplewindfarms,IEEETransSustainEnergy 8(4)(2017)1747–1762.

[14]NZhang,CKang,QXia,JLiang,Modelingconditionalforecasterrorforwindpower ingenerationscheduling,IEEETransPowerSyst29(3)(2014)1316–1324.

[15]GLiu,TJiang,TBOllis,XZhang,KTomsovic,Distributedenergymanagement forcommunitymicrogridsconsideringnetworkoperationalconstraintsandbuilding thermaldynamics,ApplEnergy239(2019)83–95.

[16]BVMathiesen,HLund,PNørgaard,Integratedtransportandrenewableenergysystems, UtilPolicy16(2)(2008)107–116.

[17]PPinson,LMitridati,COrdoudis,JOstergaard,Towardsfullyrenewableenergysystems: experienceandtrendsinDenmark,CSEEJPowerEnergy3(1)(2017)26–35.

[18]ZLi,WWu,JWang,BZhang,TZheng,Transmission-constrainedunitcommitment consideringcombinedelectricityanddistrictheatingnetworks,IEEETransSustain Energy7(2)(2015)480–492.

[19]YHe,MYan,MShahidehpour,ZLi,CGuo,LWu,YDing,DecentralizedOptimizationofMulti-AreaElectricity-NaturalGasFlowsBasedonConeReformulation, IEEETransPowerSystems33(4)(2018)4531–4542Inthisissue,doi:10.1109/TPWRS.2017.2788052

[20]HLund,PAØstergaard,DConnolly,BVMathiesen,Smartenergyandsmartenergy systems,Energy137(2017)556–565.

[21]XYu,XXu,SChen,JWu,HJia,Abriefreviewtointegratedenergysystemandenergy Internet,DiangongJishuXuebao/TransChinaElectrotechSoc31(1)(2016)1–13.

[22]FTeng,VTrovato,GStrbac,Stochasticschedulingwithinertia-dependentfrequency regulation,IEEETransPowerSyst31(2)(2015)1557–1566.

[23]EGuelpa,ABischi,VVerda,MChertkov,HLund,Towardsfutureinfrastructuresfor sustainablemulti-energysystems:areview,Energy184(2019)2–21.

[24]PSiano,Demandresponseandsmartgrids:asurvey,Renew.Sustain.EnergyRev.30 (2014)461–478.

[25]LZhang,NGood,PMancarella,Building-to-gridflexibility:modellingandassessment metricsforresidentialdemandresponsefromheatpumpaggregations,ApplEnergy 233–234(2019)709–723.

[26]YZong,SYou,JWang,Z.YDong,HCai,CTraeholt,Investigationofreal-time flexibilityofcombinedheatandpowerplantsindistrictheatingapplications,Appl Energy237(2019)196–209.

[27]HLund,SWerner,RWiltshire,SSvendsen,JEric,FHvelplund,etal.,4thGeneration DistrictHeating(4GDH):integratingsmartthermalgridsintofuturesustainableenergy systems,Energy68(2014)1–11.

[28]MWirtz,LKivilip,PRemmen,DMuller,5thGenerationDistrictHeating:anovel designapproachbasedonmathematicaloptimization,ApplEnergy260(2020)114158.

[29]LHHvidtfeldt,SPLeif,DTUInternationalEnergyReport2015:EnergySystemsIntegrationfortheTransitiontoNon-FossilEnergySystems,TechnicalUniversityofDenmark,Lyngby,2015. https://backend.orbit.dtu.dk/ws/portalfiles/portal/119583507/ DTU_International_Energy_Report_2015_rev.pdf.(Accessed16April2021).

[30]QZeng,BZhang,JFang,ZChen,Abi-levelprogrammingformultistageco-expansion planningoftheintegratedgasandelectricitysystem,ApplEnergy200(2017)192–203.

[31]ShellInternationalBV.ShellWorldEnergyModel:aviewto2100,2017. https://www. shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenarios-energy -models/world-energy-model/_jcr_content/par/textimage.stream/1510344160326/ 2ee82a9c68cd84e572c9db09cc43d7ec3e3fafe7/shell-world-energy-model.pdf (Accessed16April2021).

[32]TQian,CShao,XLi,XWang,MShahidehpour,Enhancedcoordinatedoperationsof electricpowerandtransportationnetworksviaEVchargingservices,IEEETransSmart Grid11(4)(2020)3019–3030.

[33]KKnezovi ´ c,MMarinelli,AZecchino,PBAndersen,CTraeholt,Supportinginvolvementofelectricvehiclesindistributiongrids:loweringthebarriersforaproactive integration,Energy134(2017)458–468.

[34]RJAskjar,PBAndersen,AThingvad,MMarinelli,Demonstrationofatechnologyneutralcontrolarchitectureforprovidingfrequencycontrolusingunidirectionalcharging ofelectricvehicles,in:Proc.202055thInternationalUniversitiesPowerEngineering Conference(UPEC),2020.

[35]JTan,QWu,WWei,FLiu,CLi,BZhou,Decentralizedrobustenergyandreservecooptimizationformultipleintegratedelectricityandheatingsystems,Energy205(2020) 118040.

[36]ThedevelopmentofenergyinChina,2018(inChinese),2018. http://www.chyxx.com/ industry/201802/611045.html.(Accessed16April2021).

[37]InternationalEnergyAgency,Worldenergyoutlook2017,2017. https://webstore. iea.org/download/direct/1055?fileName=World_Energy_Outlook_2017.pdf. (Accessed16April2021).

[38]DanishEnergyAgency,Energystatistics2018,2018. https://ens.dk/sites/ens.dk/files/ Statistik/energy_statistics_2018.pdf.(Accessed16April2021).

[39]EnergyLabNordhavn,Asmartcityenergylab,2019,2019. http://www.energy labnordhavn.com/.(Accessed16April2021).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.