Optics of charged particles 2nd edition hermann wollnik - The 2025 ebook edition is available with u

Page 1


https://ebookmass.com/product/optics-of-chargedparticles-2nd-edition-hermann-wollnik/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Encyclopedia of modern optics 2nd Edition Duncan G. Steel (Editor)

https://ebookmass.com/product/encyclopedia-of-modern-optics-2ndedition-duncan-g-steel-editor/

ebookmass.com

Nonlinear optics 4th ed Edition Boyd

https://ebookmass.com/product/nonlinear-optics-4th-ed-edition-boyd/

ebookmass.com

Charged Elemental (The Zeita Chronicles Book 2) Embry Fox

https://ebookmass.com/product/charged-elemental-the-zeita-chroniclesbook-2-embry-fox/

ebookmass.com

Modality: A History (Oxford Philosophical Concepts)

Yitzhak Y. Melamed

https://ebookmass.com/product/modality-a-history-oxford-philosophicalconcepts-yitzhak-y-melamed/

ebookmass.com

Valuation Workbook 7th Edition Mckinsey & Company Inc.

https://ebookmass.com/product/valuation-workbook-7th-edition-mckinseycompany-inc/

ebookmass.com

The Spirit of Inquiry : How One Extraordinary Society

Shaped Modern Science 1st Ed. Edition Susannah Gibson

https://ebookmass.com/product/the-spirit-of-inquiry-how-oneextraordinary-society-shaped-modern-science-1st-ed-edition-susannahgibson/ ebookmass.com

Geographical Models with Mathematica 1st Edition Edition André Dauphiné (Auth.)

https://ebookmass.com/product/geographical-models-withmathematica-1st-edition-edition-andre-dauphine-auth/

ebookmass.com

The Massachusetts Eye and Ear Infirmary Illustrated Manual of Ophthalmology 5th Edition Neil J. Friedman

https://ebookmass.com/product/the-massachusetts-eye-and-ear-infirmaryillustrated-manual-of-ophthalmology-5th-edition-neil-j-friedman/

ebookmass.com

Hitler’s Allies: The Ramifications of Nazi Alliance

Politics in World War II 1st Edition John P. Miglietta

https://ebookmass.com/product/hitlers-allies-the-ramifications-ofnazi-alliance-politics-in-world-war-ii-1st-edition-john-p-miglietta/

ebookmass.com

Cultural

https://ebookmass.com/product/cultural-anthropology-the-humanchallenge-15th-edition-dana-walrath/

ebookmass.com

OPTICSOF CHARGED PARTICLES

OPTICSOF CHARGED PARTICLES

SecondEdition

HERMANNWOLLNIK

NewMexicoStateUniversity,LasCruces, NM,UnitedStates

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-818652-7

ForInformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: CharlotteCockle

EditorialProjectManager: SusanIkeda

ProductionProjectManager: BharatwajVaratharajan

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

Forewordtosecondeditionxi Forewordxiii

1.Gaussianopticsandtransfermatrices1

1.1 Themethodoftransfermatrices1

1.1.1 Thedescriptionofstraightraysinopticalsystems1

1.1.2 Propertiesofthinlenses3

1.2 Anopticalsystemthatcontainsonethinlens4

1.2.1 Theformationofarealimageorofavirtualimage6

1.3 Generalopticalsystems8

1.3.1 Thesignificanceofthedisappearanceofelementsof transfermatrices10

1.4 Transfermatricesoflensmultiplets11

1.4.1 Thetransfermatrixofadoubletoftwothinlenses12

1.5 Roundlensesforchargedparticles18 References19

2.Generalrelationsforthemotionofchargedparticlesin electromagneticfields21

2.1 Energy,velocity,andmassofacceleratedchargedparticles21

2.2 Forcesonchargedparticlesinelectromagneticfields22

2.2.1 Themagneticrigidity25

2.2.2 Theelectrostaticrigidity26

2.3 Thedescriptionofabundleofparticlesofdifferentkinetic energiesandmasses28

2.4 Therefractiveindexoftheelectromagneticfield29

2.5 TheEuler Lagrangeequations32 Appendix33 Hamilton’svariationalprincipleandtheLagrangeequations33 Themotionofchargedparticlesintime-independent magneticandelectrostaticfields35 References37

3.Quadrupolelenses39

3.1 Theelectricandmagneticfieldsinquadrupolelenses40

3.1.1 Fieldsinelectricquadrupolelenses41

3.1.2 Fieldsinmagneticquadrupolelenses42

3.2 Particletrajectoriesinquadrupolelenses43

3.2.1 Theequationsofmotion43

3.2.2 Focusingpropertiesofsinglequadrupolelenses46

3.3 Thedesignofquadrupolemultiplets49

3.3.1 Quadrupoledoublets50

3.3.2 Quadrupolemultiplets56

3.4 Thin-lensapproximationsforquadrupolemultiplets59

3.4.1 Doublypoint-to-parallelfocusingthin-lensquadrupole multiplets60

3.4.2 Stigmaticfocusingthin-lensquadrupolemultiplets63

3.4.3 Thinlensquadrupolemultipletsforwhich ðx jaÞ and ðbjbÞ vanishsimultaneously65

3.4.4 A “beamrotator” 65 References66

4.Sectorfields67

4.1 Homogeneousmagneticsectorfields68

4.1.1 Particletrajectoriesinhomogeneousmagneticsectorfields68

4.1.2 Focusinganddispersingpropertiesofhomogeneousmagnetic sectorfields72

4.1.3 Obliqueentranceandexitofparticlebeamsinsectormagnets81

4.2 Inhomogeneousmagneticsectorfieldsformedbyinclinedplanarpole faces(wedgemagnets)86

4.2.1 Particletrajectoriesinwedgemagnets87

4.2.2 Focusinganddispersingpropertiesofwedgemagnets90

4.3 Radiallyinhomogeneoussectorfieldsformedbyconicalpolefacesor toroidalelectrodes92

4.3.1 Theequationsofmotioninradiallyinhomogeneoussectorfields93

4.3.2 Particletrajectoriesinradiallyinhomogeneousmagneticor electrostaticsectorfields98

4.3.3 Focusinganddispersingpropertiesofradiallyinhomogeneous sectorfields100

4.3.4 Examplesofradiallyinhomogeneoussectorfields104

4.4 Particleflighttimesinradiallyinhomogeneoussectorfields, quadrupoles,andfield-freeregions106 Appendix109 Paraxialtrajectoriesinwedgemagnets109 References112

5.Chargedparticlebeamsinphasespace113

5.1 Liouville’stheoremandfirst-ordertransfermatrices114

5.2 Phase-spaceareasofparticlebeamspassingthroughopticalsystems115

5.2.1 Phase-spaceareasofparticlebeamsinfield-freeregions116

5.2.2 Phase-spaceareasofparticlebeamsinimage-formingsystems117

5.2.3 Thevirtualthinobjectlens118

5.3 Beamenvelopes120

5.3.1 Envelopesofbeamswithparallelogram-likephase-spaceareas122

5.3.2 Envelopesofbeamswithoctagon-likephase-spaceareas123

5.3.3 Envelopesofbeamswithellipticalphase-spaceareas123

5.4 Positionsandsizesofenvelopeminima129

5.4.1 Imagesandpupils129

5.4.2 Beamwaists130

5.4.3 Pupilsandwaistsforpoint-to-parallelfocusingsystems131

5.5 Minimalbeamenvelopesatpostulatedlocations131

5.6 Liouville’stheoremanditsapplicationtowide-anglebeams134

5.6.1 Abbe’ s “SineLaw” foratwo-dimensionalphasespace135

5.6.2 Thecurrentdensity136

5.7 Beamswithspacecharge137

5.7.1 Thecompensationofspacechargeinparticlebeams138

5.7.2 Thecalculationoftransporteffectsinconstantdiameter ionbeams139

5.7.3 Thedesignofbeamlinesforhigh-intensitybeams141 References143

6.Particlebeamsinperiodicstructures145

6.1 Single-particletrajectoriesandbeamenvelopes146

6.1.1 Systemswithpostulatedopticalproperties149

6.1.2 Opticalsystemsthathaveidenticalentranceandexitbeams151

6.2 Ringsofunitcells158

6.2.1 Lateralbeamdeviations158

6.2.2 Longitudinalbeamdeviations159 References160

7.Fringefields161

7.1 Particletrajectoriesinthefringefieldsofdipolemagnets161

7.1.1 Positionsofeffectivefieldboundariesindipolemagnets163

7.1.2 Fringe-fieldshuntsfordipolemagnets165

7.1.3 Fringe-fieldshuntsforhomogeneousandinhomogeneous dipolemagnets169

7.1.4 y-Focusinginthefringefieldsofdipolemagnets169

7.1.5 Transfermatricesofrealisticmagneticsectorfields174

7.2 Particletrajectoriesinfringefieldsofelectrostaticdeflectors174

7.2.1 Electrostaticdeflectorsbiasedsymmetricallytoground175

7.2.2 Electrostaticdeflectorsbiasedasymmetricallytoground176

7.2.3 Transfermatricesofrealisticelectrostaticsectorfields178

7.3 Particletrajectoriesinthefringefieldsofquadrupolelenses179 References182

8.Imageaberrations183

8.1 Systematicsofimageaberrations183

8.2 Originofimageaberrations190

8.2.1 Geometricaberrations191

8.2.2 Chromaticaberrations196

8.3 RelationsbetweencoefficientsofEq.(8.2)duetotheconditionof symplecticity201

8.3.1 Canonicaltransformationswithtimebeingtheindependentvariable201

8.3.2 Canonicaltransformationswithpositionbeingthe independentvariable202

8.3.3 Theconditionofsymplecticity204

8.4 Imageaberrationsof nth order211

8.4.1 Overallimageaberrations213

8.4.2 Theaberrationdrivingtermsofallorders217

8.4.3 Imageaberrationsduetofringefields217 Appendix222

Coefficientsofimageaberrationsof nthorder222

Equationsofmotionintime-independentfields223

Explicitparticletrajectoriesinradiallyinhomogeneouselectromagnetic sectorfields224 References228

9.Designofparticlespectrometersandbeamguidelines229

9.1 Single-sectormagneticspectrometers229

9.1.1 Ionbeamsfrompoint-likeandslit-likeionsources232

9.1.2 Asectormagnetionanalyzerassistedbyonequadrupolelens233

9.1.3 Aphase-spaceadapterforionbeamsinsectormagnets234

9.2 Aqualityfactorforparticlespectrometers235

9.2.1 Arigidity-or QΔ -value236

9.2.2 Anenergy QK -valueandamass Qm -value240

9.2.3 A Q-valuefor N cascadedspectrometers241

9.2.4 Achromaticsystems242

9.3 Time-of-flightparticlespectrometers245

9.3.1 A Qt -valuefortime-of-flightmassanalyzers247

9.3.2 Isochronousopticalsystems248

9.3.3 Angleandenergy-focusingisochronousopticalsystems249

9.4 Thealignmentofanopticalsystemandthecorrectionofits aberrations251

9.4.1 Thecorrectionofthesecond-orderapertureaberrationsin magneticsystems253

9.4.2 Thecorrectionofimageaberrationsinelectrostaticsystems263 References265

10.Time-of-flightmassspectrographs267

10.1 Time-of-flightmassspectrographsthatusesectorfields269

10.1.1 Time-of-flightmassspectrographsthatusemagnetic sectorfields269

10.1.2 Acceleratorstorageringsusedastime-of-flightmass spectrographs270

10.1.3 Determiningthepassagetimeforhigh-energyions271

10.2 Time-of-flightmassspectrographsthatuseelectrostaticsectorfields272

10.3 Low-energyionbeamsintime-of-flightmassspectrographs275

10.3.1 Ioncoolinginaquadrupoleiontrap275

10.3.2 Coolingionsinandextractingthemoutofaflattrap277

10.3.3 RF-carpetstointroduceionsintocoolers277

10.4 Acceleratingandbunchingofionsinpulsedelectricfields278

10.4.1 Acceleratingandbunchingbyasinglepulsedfield279

10.4.2 Ionbunchingtoadesiredposition281

10.4.3 Delayedionextraction283

10.5 Energy-isochronoustime-of-flightmassspectrographsthatuse ionmirrors285

10.5.1 Energy-isochronoustime-of-flightmassspectrographsthat usegriddedionmirrors285

10.5.2 Energy-isochronoustime-of-flightmassspectrographsthat usegrid-freeionmirrors287

10.5.3 Energy-isochronoustime-of-flightmassspectrographsthat useseveralionmirrors287

10.6 Amultireflectiontime-of-flightmassspectrograph288

10.6.1 MovingionsintoandextractingthemoutofaMRTOF-MS290

10.6.2 Determiningthenumberoflapsthationshaveperformed inamultireflectiontime-of-flightmassspectrograph291

10.6.3 ThedesignofaMRTOF-MSforprecisemassdeterminations292

10.6.4 Achievablemassresolvingpowers293

10.6.5 ORBITRAP:asmallhighfrequencymultireflectiontime-of-flight massspectrograph296

References297 Index 301

Forewordtosecondedition

Thesecondeditionof OpticsofChargedParticles followsthefirstedition aftermorethan30yearsandattemptstooutlineagainhowchargedparticlesmoveinmagneticandelectricfields.Inthissecondedition,newly arisenquestionsareaddressedas,forinstance,thoseofnewtime-of-flight measurements,andoldexplanationsareimprovedinsimplicityandcompletenessdescribinghowchargedparticlesmovethroughthemainand thefringefieldsofopticalsystemsandthroughindividualopticalelements. Also,itusesthesametypeofformulationandnomenclaturethroughout thebook.

Aswiththefirstedition,thesecondeditiondoesnotrequirethe readertohaveanyspecialpreknowledgeofchargedparticleoptics. However,itrequiresthatthereaderhassomebasicunderstandingofthe physicsandmathematicsequivalenttoanundergraduateeducation.The intentionofthesecondeditionisalsonottoleadthereadertoindividual mountaintopsofscientificfindings,butrathertoahighplateauofunderstandingfromwherethemountaintopscanbeseenandreachedbyhisor herownstrengthandskill.

Ihavetriedtosupplyacomprehensivesetofreferences,whichinclude theearliestpublicationsaswellasthemostimportantones.However,not allpossiblereferencesarelisted,asthiswouldhaveexceededtheavailable space.

Atthispoint,Iwouldliketoacknowledgethemanyfruitfuldiscussions andinsightsabouttheobjectofchargedparticleopticswithmycolleagues M.Berz,K.Brown,S.Dodonov,K.Halbach,A.Kalimov,H.Matsuda, T.Matsuo,S.Schepunov,P.Schury,D.Vieira,andM.Wada.Ialso extendmythankstomywifeAnnettewhoconstantlysupportedmyefforts oversomanyyears.

SantaFe,03-05-2021 HermannWollnik

Foreword

Someintroductorybooksaswellasseveralarticlesinscientificjournals andresearchreportshavebeenpublishedonthesubjectofchargedparticleoptics.However,exceptforbasicaspects,itisverydifficulttoobtaina generaloverviewfromthesesources,asmostconcentrateonisolatedproblemsandnormallyusedifferentmathematicalformalisms.Furthermore, astheresultsareappliedtoquitedifferentproblems,thesolutions obtainedareoftenincompatible.Thisbookunifiessuchapproaches, resultinginadescriptionofhowchargedparticlesmoveinthemainand fringingfieldsofmagneticorelectrostaticdipoles,quadrupoles,hexapoles, etc.,usingthesametypeofformulationandconsistentnomenclature throughout.Besidesthedescriptionofparticletrajectoriesandbeam shapes,guidelinesaregivenfordesigningparticleopticalinstruments.

Thisbookdoesnotrequirethereadertohaveanyknowledgeof chargedparticleoptics;however,theequivalentofanundergraduateeducationinphysicsandmathematicsisneeded.Itiswrittenneithertocarry everyonetothemountaintopsofscientificfindingsnortostopatthe foothillsofthemountainrange.Rather,itshouldleadtheinterested readertoahighplateauofunderstandingfromwhichhecanreachthe mountaintopsbyhisownstrength.

Ihavetriedtosupplyacomprehensivesetofreferenceswitheach chapter,normallyquotinganearlyandarecentpublicationforanygiven problem.However,notallpossiblereferencesaregivensincethiswould haveexceededtheavailablespace.

Atthispoint,IwouldliketoacknowledgethemanyfruitfuldiscussionsIhavehadwithM.Berz,H.Matsuda,T.Matsuo,andH.Nestle. IamalsogreatlyindebtedtoR.Kosempelfortheskilledandcareful drawingofthemanyfiguresinthisbookandtoM.Gowansfortheexperiencedandpatienttypingandretypingofthemanuscript.

Gaussianopticsandtransfer matrices

Chargedparticleopticsisverysimilartolightoptics.Therefore,inthis chapter,wemainlydescribetheeffectspresentinlight-opticalsystems. Theresultsobtainedcanlaterbeappliedtothediscussionofoptical systemsforchargedparticles.

1.1Themethodoftransfermatrices

Forgeometriclightoptics,ithasbeencustomarysincethetimeof Newtontouseanalgebraicformulationforallequationsinvolved;however,inrecentyearsthismethodhasatleastpartiallybeenamendedby theuseof transfermatrices.Forsimpleopticalsystems,theuseoftransfer matriceshasnoparticularadvantage.Forcomplexsystems,ontheother hand,itoffersanunexcelledsimplicityandclarity,ashasbeenshown forparticleopticsby Cotte(1938), Penner(1961), Brownetal.(1964), and Wollnik(1967) aswellasby Herzberger(1958) or Halbach(1964) forlightoptics.

1.1.1Thedescriptionofstraightraysinopticalsystems

Assumethe z-axisofaCartesiancoordinatesystemtorepresenttheoptic axisofabundleofraysinwhichcasethedeviationfromtheoptic axis-the z-axis-ofanystraightrayofthisbundlecanbedescribed (see Fig.1.1)by

OpticsofChargedParticles

DOI: https://doi.org/10.1016/B978-0-12-818652-7.00004-7

with l 5 z2 z1 .Thoughnotimportanthere,itisgenerallyusefulto describenotonlythedeviations xzðÞ; yðzÞ butalsotheanglesof 1

optic axis z

profile-plane-1 at profile-plane-2 at

Figure1.1 Thedeviationofastraightrayfromtheopticaxispassingobliquely throughtwoprofile-planeslocatedat z1 and z2 from x1 ; y1 to x2 ; y2 .

inclinations α z ðÞ; β ðzÞ ofarayrelativetotheopticaxis.Inaregionofa constantrefractiveindextheseinclinationsstayconstant

tanα z2 ðÞ 5 tanα z1 ðÞ orabbreviatedtanα2 5 tanα1 (1.1c) tanβ z2 ðÞ 5 tanβ z1 ðÞ orabbreviatedtanβ 2 5 tanβ 1 (1.1d)

The Eqs.(1.1) canalsobewritteninamatrixnotationandsodescribe astraightrayasitmovesthrougharegionoflength l 5 z2 z1 ofconstantrefractiveindex:

Herein a tanα and b tanβ denoteinclinationsofrayswithrespectto theopticaxis,whereintheseinclinationsareonlyusedasabbreviationsfor tanα andtanβ .Onlyin Section1.3,moredetailsareoutlined.

Thematrixnotationsasusedin Eqs.(1.2) provideagoodoverview overthedetailsofanopticalsystemandprovideacompactdescription.In detailthefactisexpressedthatthereare

Position-vectorsX1 (x1, a1)and Y1 (y1, b1)inprofile-plane1, thatis,atposition z1,aretransformedby x-and y-transfermatricestonewposition-vectors X2 (x2,a2)andY2 (y2, b2)inprofile-plane2,thatis,atposition z2.

asisillustratedin Fig.1.1.Incaseofrotationallysymmetricsystems,the x-and y-transfermatricesareidentical.Asinthischapter,onlyrotationally symmetricsystemsaredescribed,itissufficienttodescribeonlytheprojectionofraysontothe xz-plane,asisdoneherein Eq.(1.2a) oronto the yz-planeasisdoneherein Eq.(1.2b)

1.1.2Propertiesofthinlenses

Athinlensisdefinedasaninfinitesimallythindevicethatcausesabundleofparallelrays,thatis,abundleoflightrays,tobefocusedtoasocalledfocalpoint(see Fig.1.2 ).Indetail,araythatarrivesatthe profile-plane-2at z2 justupstreamofathinlensadistance x2 5 xðz2 Þ awayfromtheopticaxiswithaninclination a2 5 az2 ðÞ tanα2 and movestotheprofile-plane-3at z3 ,itkeepsthepositionx 2 ,butisbent byanangle x2 =f towardtheopticaxisincaseofafocusinglens(see Fig.1.2 ),sothat

Herein f istheso-calledfocallengthofthethinlens. Eq.(1.3) canalsobe writteninamatrixnotationas

Figure1.2 Athinlensthatfocusesabundleofparallelstraightraystoapointis shown.Incasetheincomingraysareaxis-parallel,theraysarefocusedtoapointon theopticaxis,theso-calledfocalpoint.Incasetheincomingraysareobliquetothe opticaxis,thispointisoffthe z-axisandlocatedapproximatelyinthefocalplane, whichisperpendiculartotheopticaxisandincludesthefocalpoint.

Thetransfermatrixof Eq.(1.4) describestheactionofathinlens, whentheinitialraysareparalleltothe z-axis.However,thistransfer matrixisalsocorrectforthecasethattheinitialraysareinclinedrelative totheopticaxis.Inthiscasethebend Δα issimplyaddedtotheinitial inclination a2 asisshowninthesecondpartof Fig.1.2

Noteherethatthetransfermatrixof Eq.(1.4) expressesallpropertiesof athinlenstofirstorderin x andin a andthatthefocallength f orbetter therefractivepower1=f istheonlyquantitythatcharacterizesthepropertiesofthethinlens.Notealsothataray,thatpassesthroughthemiddleof thethinlens,passesunbentsothatfor x2 5 0 Eq.(1.4) yields a3 5 a2 .

1.2Anopticalsystemthatcontainsonethinlens

Asimpleopticalsystemconsistsofonethinlens(see Eq.1.5)of focallength f anddriftregions(see Eqs.1.2) oflengths l1 upstreamand l2 downstreamofthethinlens.Suchanopticalsystemissketchedin Fig.1.3 characterizedby6position-vectors:

1. X1 ðx1 ; a1 Þ at z1 ; thatis,adistance w1 upstreamofthefocal-plane1

2. X2 ðx2 ; a2 Þ at z2 ,thatis,atthepositionofthefocal-plane1

3. X3 ðx3 ; a3 Þ at z3 ; thatis,ontheupstreamsideofthethinlens

4. X4 x4 ; a4 ðÞ at z4 ; thatis,onthedownstreamsideofthethinlens

5. X5 x5 ; a5 ðÞ at z5 ; thatis,atthepositionofthefocal-plane2

6. X6 x6 ; a6 ðÞ at z6 ; thatis,adistance w2 downstreamofthefocal-plane2

profile-plane 1

profile-plane 2 =focal-plane 1

profile-plane 6

optic axis z

profile-plane 5 =focal-plane 2

3 profile-plane 4

Figure1.3 Sketchedisanarbitraryraythatpassesthrougharegionthatincludesa thinlens.Shownarealsotheray’s x -positionsand a-inclinationsatdifferent z-positionsalongtheopticaxis.

Theseposition-vectors X1 ; X2 ; X3 ; X4 ; X5 ; X6 describeanarbitraryray (see Fig.1.3)byusingrepeatedly Eqs.(1.2a) and (1.4):

Asknownfromclassicalmatrixalgebra,itispossibletoobtainthe positionvector X6 x6 ; a6 byapplyingtheposition-vector X1 x1 ; a1 to theproductofthelisted5transfermatricessothat:

orexplicitly

Advantageously,themiddlethreetransfermatricesarecombinedtoa singlematrixthatdescribestheionmotionfromthefocal-plane1, upstreamofthethinlens,tothefocal-plane2,downstreamofthethin lens,(see Fig.1.3):

Usingthetransfermatrix Tff Eq.(1.5) canberewrittenas x6 a6 5 x

For w1 w2 5 f 2 thematrixelement ðxjaÞ vanishesandallraysthatstart fromapoint x1 5 xðz1 Þ underdifferentinclinations a1 meetagaininone point x6 5 xjx ðÞx1 .Inthiscaseonespeaksofan “object-image relationbetweentheprofileplanesat z1 and z6 ”.Thisrelation,the so-called “lensequation” isknownsincealongtimeandhasbeen reportedalreadyinNewton’sPRINCIPIAin1685.

Noteherethatthedeterminantsofallsofarshowntransfermatrices havethemagnitudeof1,thatis

orexplicitly xjx ðÞ aja ðÞ xja ðÞ ajx ðÞ 5 1.Thispropertyholdsverygenerallyfor anytransfermatrixthatdescribestrajectoriesofchargedparticlesmoving throughanopticalsystem,inwhichtherefractiveindexforlightopticalsystemsortheelectricpotentialforsystems ofchargedparticlesisidenticalatthe beginningandattheend.ThereasonforthispropertyisthatparticletrajectoriesarealwaysdeterminedfromHamiltonianequationsofmotion,inwhich casetheobtainedsolutionsforparticlemotionsarecalledtobesymplectic.

1.2.1Theformationofarealimageorofavirtualimage

Fromthecondition xja ðÞ 5 0in Eq.(1.7),whichestablishesanobjectimagerelationbetweentheprofileplanesat z1 and z6 in Eq.(1.7) or z1 and z2 in Fig.1.4,theso-called lensequation: w1 w2 5 f 2 or 1 l1 1 1 l2 5 1 f (1.9) isderived,forwhich w1 w2 isalsoreplacedby(l1 f Þðl2 f)asonemay takefrom Fig.1.4

2

Figure1.4 Theformationoftherealimageofanobjectbyathinlensoffocal length f .Notethatthecenterrayofonegroupofrayspassesunbentthrough thecenterofthethinlensandthatthecenterrayofanothergrouppasses throughthefirstfocalpointandthenisparalleltotheopticaxisdownstreamof thethinlens.

Forthecasethatthe Eq.(1.9) arevalidthe Eqs.(1.5) and (1.7) transformto

describingthattheimage x6 is xjx ðÞ timeslargerthantheobjectofsize x1 .Noteherethat xjx ðÞ 52 w2 =f 5 1 l2 =f isthesocalledlateralmagnification Mx ,whichisalwaysnegativeaslongas l2 . f .Inotherwords, theimage x6 isalwaysupsidedownwithrespecttotheobject x1 asis shownin Fig.1.4

Incaseofafocusingthinlenswith f . 0,onecanreadfrom Eq.(1.10b) that,whentheobjectislocatedat l1 with 1. l1 , f avirtualmagnifieduprightimageisformed,locatedat l2 . f Incaseoflightrayssuchopticalsystemsarecalled “loups” or “magnifyingglasses.”

2. 2f . l1 . f arealmagnifiedupside-downimageisformed,locatedat l2 . 2f

3. l1 . 2f arealdemagnifiedupside-downimageisformed,locatedat 2f . l2 . f (see Fig.1.5).

2

Figure1.5 Theformationofavirtualimageofanobjectbyalightopticthinlensof focallength f isshown.Noteherethatanobliqueraythatstartsfromx1 canpass unbentthroughthecenterofthethinlensandthatanaxis-parallelraythatstarts fromx1 isbentbythethinlenssothatitpassesthroughthedownstreamfocal point.Inthiscaseallraysseemtooriginatefromanenlargedvirtualimagelocated inbackoftheobject.

1.3Generalopticalsystems

Therelationbetweenpositionvectors Xm1n and Xm inprofile planesat zm1n and zm canbewrittenforanarbitraryopticalsystemas

1n

(1.11) with xm and xm1n describinghowmucharayisapartfromtheopticaxis andfurthermorewhatinclinations am and am1n ithasrelativetotheoptic axis.Suchatransfermatrixalsodescribestheactionofagenerallens system,inwhichraysarebenttowardtheopticaxisincaseoffocusing lensesorawayfromitincaseofdefocusinglenses.Whenspeakingof inclinations,itisirrelevantforallfirst-orderdiscussions,whetheronetalks ofinclinations a; b oroftanα; tanβ with α; β beinganglesofinclinations. However,itisgoodtounderstandthattheinclinationsaredefinedas ratiosofcomponentsofparticlevelocitiesorincaseoflightraysofvelocitiesofshortpulsesoflight:

Herein v isthevelocityofaparticleorofashortlightpulseand vx ; vy ; vz arecomponentsthereof.Explicitlytheserelationscanbewrittenas

Also,itissufficienttoconsiderthatlensesdeflectparticletrajectories orlightraysproportionallytothedistancetheyhavefromtheopticaxis atthepositionofthelens,thatis,theproportionalityconstantto x is1. However,verygenerallythisproportionalitycouldalsobenonlinear.

Definingittobe k2 wouldyield:

wherein kðzÞ canalsovarywith z.Thisgeneralpropagationequationis namedaftertheastronomerGeorgeHill1 asHill’sequation.Assuming that kðzÞ ispiecewiseconstant,andthatthedifferential Eq.(1.14) issolved foreachsectionof z withconstant k2 . 0,itisfoundthat xzðÞ 5 c ðÞcos kz ðÞ 1 ðd Þsin kz ðÞ

Introducingtheinitialconditions xz1 ðÞ 5 x1 and az1 ðÞ 5 a1 intothese relationsthecoefficients c and d aredeterminedandthe Eqs.(1.15) can bewrittenfor k2 . 0with k 5 kðzÞ: xðzÞ aðzÞ 5 cosðkzÞ ksinðkzÞ k 1 sinðkzÞ cosðkzÞ x1 a1 (1.16)

Noteherethatfor k2 , 0thefunctionssinðkzÞ andcosðkzÞ arereplaced bysinh kz ðÞ andcosh kz ðÞ

Thetransfermatricesof Eq.(1.16) aresolutionsofHill’sequationund thusthemostgeneralfirst-orderdescriptionsoftrajectoriesofcharged

1 Throughoutthisbookanequation d 2 x=dz2 52 k2 ðzÞx willbecalledHill’sequation,thoughin mostpublicationsHill’snameisonlyusedif kðzÞ isperiodicwith z

particlespassingthroughvaryingpotentialsaslongasthepotentialsat z1 and z2 areidentical.

1.3.1Thesignificanceofthedisappearanceofelementsof transfermatrices

Tounderstandthemeaningofthedifferentmatrixelementsforageneral opticalsysteminmoredetail,itisusefultodiscuss,whattheirindividual disappearanceimplies(Halbach,1964).Noteherethatthedeterminantof anytransfermatrixequalsunity(see Eq.1.8)sothatnevermorethantwo diagonalmatrixelementscanvanishsimultaneously,thatis,either xjx ðÞ 5 aja ðÞ 5 0oralternatively xja ðÞ 5 ajx ðÞ 5 0.

1.3.1.1Theconditions x ja ðÞ 5 0and/or ðajx Þ 5 0inatransfermatrix

For xja ðÞmn 5 0 thefirstrowof Eq.(1.11) reads xm1n 5 xjx ðÞmn xm describing that xm1n doesnotdependon am .Consequently,allraysthatstartedunder differentinclinations am fromonepointontheprofileplaneat zm ,meet againatonepointontheprofileplaneat zm1n .Thismeansthatthereisan object-imagerelationbetweenprofileplanesat zm and zm1n withalateral magnification Mx 52 xjx ðÞmn .Thissituationisillustratedin Fig.1.6A,where thestartandtheendpointsaresituatedonthe z-axis.

the case ( | ) =0

(B) the case ( | ) =0

the case ( | ) =0

(D)the case ( | ) =0

Figure1.6 Schematicrepresentationsofopticalsystems,whicharereferredtoas(A) beingparallel-to-pointfocusing,when x jx ðÞmn 5 0,(B)beingpoint-to-pointfocusing, when x ja ðÞmn 5 0,(C)havingnofocusingpower,when ajx ðÞmn 5 0,(D)beingpointto-parallelfocusing,when aja ðÞmn 5 0.

(C)
(A)

For ajx ðÞmn 5 0 thesecondrowof Eq.(1.11) reads am1n 5 aja ðÞmn am describingthat am1n doesnotdependon xm .Consequently,abundleof parallelrays,whichattheprofileplaneat zm areallinclinedbytheangle am relativetothe z-axis,aretransformedtoabundleofparallelraysat theprofileplaneat zm1n withallraysbeinginclinedbyanangle am1n 5 aja ðÞmn am orinotherwordsmagnifiedbyanangularmagnification Ma 52 aja ðÞmn .Thissituationisillustratedin Fig.1.6B,inwhichinitial andfinalbundlesofparallelraysareshown.

1.3.1.2Theconditions x jx ðÞ 5 0 and/or ðajaÞ 5 0 inatransfermatrix

For xjx ðÞmn 5 0 thefirstrowof Eq.(1.11) reads xm1n 5 xja ðÞmn am describingthat xm1n doesnotdependon xm .Consequently,abundleofparallel rays,whichattheprofileplaneat zm formsabundleofparallelraysareall inclinedbythesameangle am relativetothe z-axisandwillbefocusedto thesamepointintheprofileplaneat zm1n : Thismeansthattheprofile planeat zm1n isthesecondfocalplaneoftheopticalsystem.Thissituation isillustratedin Fig.1.6C,forthecasethattheinitialraysareallparallelto the z-axis,sothatthefinalfocusissituatedonthe z-axis.

For aja ðÞmn 5 0 thesecondrowof Eq.(1.11) reads am1n 5 ajx ðÞmn xm describingthefactthat am1n doesnotdependon am .Consequentlyallrays, thatstartedfromonepointunderdifferentanglesofinclination am fromthe profileplaneat zm ; willbeparallelafteradistance f downstreamoftheprofile planeat zm1n .Thissituationmayalsobeunderstoodastheprofileplaneat zm beingthefirstfocalplaneofthecorrespondingopticalsystem.Thissituationis illustratedin Fig.1.6D forthecasethatallraysstartedfromonepointonthe z-axis,sothattheraysofthefinalbundleareallparalleltothe z-axis.

1.4Transfermatricesoflensmultiplets

Lensmultipletscanconsistoftwo,three,four....individuallenses,and itspropertiescanbedeterminedfromtheproductofthetransfermatricesof allsubparts.Thefirststepininvestigatingsuchlensmultipletscanbetoestablishatransfermatrixthatconnectsthemultiplet’sentrancefocal-plane-1toits exitfocal-plane-2(seealso Fig.1.7)as xjx ðÞff ajx ðÞff xja ðÞff aja ðÞff 5 1 0

principal-plane 1 principal-plane 2

focal-plane 1

2

Figure1.7 Apoint-to-pointfocusinglensmultipletisshown,inwhichthedistance betweenthetwofocalplanesis2f 1 dpp ,with dpp beingthedistancebetweenthe twoprincipleplanesofalensmultiplet.

Hereinthecentermatrixdescribesthepropertiesofthelensmultipletandthe driftlengths r1 ; r2 mustbechosensothat xjx ðÞff 5 aja ðÞff 5 0.Thisresultsin

(1.18a)

Experimentally r1 ; r2 couldbeobtainedforanexistinglensmultiplet bysendingaparallelbeamthroughthemultipletfromtheleftandfrom therightsideandobservethepositionsofthefocuspointsontheopposite sideofthelensmultiplet.

1.4.1Thetransfermatrixofadoubletoftwothinlenses

Incaseofathinlensdoublet(see Fig.1.8),theoveralltransfermatrix fromanobjecttoanimageisdescribedby Eq.(1.17),whereinthemiddle transfermatrixof Eq.(1.17) is

Introducingtheelementsofthistransfermatrixintothe Eqs.(1.18) onefindsthefocallength fd ofthequadrupoledoubletandthedistances r1 ; r2 betweenthedoubletfocallengthand(see Fig.1.8)thepositionsof thefocalplanesoflens-1andoflens-2

with d 5 f1 1 f2 1 dff asonemaytakefrom Fig.1.8.Noteherethat fd can bevariedbyvaryingthedistance d betweenthelenses.Notefurtherthatfor fd tobepositiveoneorallthreeofthequantities dff ; f1 ; f2 mustbenegative.

planes-lens-1 principle-planes of doublet focal-planes of

planes-lens-2

Figure1.8 Alensdoubletconsistingoftwofocusingthinlenses.

Thedistances l1fd and l2fd betweenthefocalplanesofthedoubletand thepositionsofthefirstandthesecond thinlenses,respectively,arefoundas

andthedistances l1pd and l2pd betweentheprincipleplanesofthethin lensdoubletandthefocalplanesarefoundas

Importantisalsothatthedistance dppd betweenthetwoprinciple planesofthedoubletis

1.4.1.1Thetelescopeaspeciallensdoublet

Awell-knownlensdoubletisatelescope,whichbecameimportant alreadyseveral100yearsagotoobserveobjectsthatarelongdistances away.Suchdevicesformasmallrealimageofadistantobject,whichis

observedthroughaloupeormagnifyingglass(see Fig.1.5).Thus,the twolens-systemachievesanobject-imagerelationbetweenthedistant objectandthevirtualimage,whichrequires xja ðÞff 5 0forthetransfer matrixofthelensdoublet.Also,asisshownin Fig.1.9,theincoming lightraysthatoriginatedfromonepointofthedistantobjectforma quasi-parallelbeam,whichshouldbetransformedbythetelescopeintoan outgoingparallelbeam,sothattheincominglightiscompletelypassedto theobserver.Suchasituationwasalreadyshownin Fig.1.6B and discussedasbeingcausedby ajx ðÞff 5 0.

axis

Figure1.9 Twotelescopesareshowneachoneofwhichconsistsoftwolenses,a firstso-calledobjectivelensandasecondsocalledeyepieceorocular.Thereisa Keplertelescope,whichhasanegativeangularmagnification a2 =a1 andforwhich bothlensesarefocusing,andaGalileantelescope,whichhasapositiveangularmagnification a2 =a1 andforwhichoneofthelensesisfocusingwhiletheotherisdefocusing.NotethatforhighperformanceapplicationstheKeplertelescopeispreferred whileGalileantelescopesareused,whencompactdevicesaredemanded.

Applyingtheconditionthattheoutgoingraysformaparallelbeam, whentheincomingbeamisaparallelbeamto Eq.(1.19) resultsin dff 5 0,whichisthesameasstatingthatthesecondfocalplaneofthe objectlensandthefirstfocalplaneoftheeye-pieceorocularcoincide. Forasystemtoobservefarawayobjectsthetelescopemustenlargethe

inclination a1 oftheincomingbeamtoamagnifiedinclination aja ðÞa1 of theoutgoingbeamwiththeratioofthetwoinclinationsbeing

Toachieveahighangularmagnification, f1 mustbelargeand f2 mustbesmall. Noteherethatthediameteroflens-1,theobjectlens,limitsthe diameter D1 oftheincomingparallelbeamandthatthetelescopeshould bedesignedsothatthediameter D2 ofthefinalparallelbeamissmaller thanthediameteroftheobserver’seyepupil.Notefurtherthatthe amountoflightthatiscollectedbytheeyeoftheobserverisincreasedby thetelescope’ s ðD1 =D2 Þ2 ,whichmakesitadvantageoustochooselarge diametersfortheobjectlens.

Therearetwosolutionsforatelescope.Thereistheso-calledastronomicalorKeplertelescopeforwhich f1 . 0and f2 . 0and Ma isnegative,thatis,theobjectisseenupsidedown.ThereisalsotheDutchor Galileantelescope,forwhich f1 . 0and f2 , 0and Ma ispositive,thatis, theobjectisseenupright.Inbothcasestheusedlensesshouldbewell designedlensmultiplets,sothattheimageaberrationsofthelensesdonot limittheresolvingpowerofthetelescope.

1.4.1.2Lensesoflongandshortfocallengthsforphotographic cameras

Forsomeapplicationsoflensdoubletsonedefocusingandonefocusing lensarecombined,sothatthefocallength fd ofthelensdoubletispositive onlyfor dff , 0accordingto Eq.(1.20a).Consequently,thetwolenses arerelativelyclosetoeachotherandaccordingto Eq.(1.21c) theprincipleplanesareshiftedtowardthesideofthepositivelensasisshownin Fig.1.10.Thispropertyofadoubletcanbeusedtoconstructlensesfor whichtheprincipalandthefocalplanesareshiftedtosuitablepositions relativetothephysicaldimensionsofthelenses.Oneexampleofsucha designisatele-lensthatcanbeusedforaphotographiccamera.Insucha cameratheimageofaverydistantobject,thatis, w1fd N,issituated ataposition w2fd 5 f 2 d =w1fd closebyanddownstreamofthefocal-plane-2 ofthecameralens.Theimageofadistantobjectislocatedatthesecond focalpaneofthedoubletanditssizeisthemagnitudeoftheobject multipliedbythelateralmagnification Mx 5 fd =w1fd ofthedoublet. Tokeepthismagnificationwithinlimitsandstillallowtoobservedetails oftheimage,itisadvantageoustousealensoflongfocallength fd .On theotherhand,suchalensislargeandinconvenienttocarry.Asolution

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.