Optical holography: materials, theory and applications pierre-alexandre blanche - The ebook is ready

Page 1


https://ebookmass.com/product/optical-holography-materialstheory-and-applications-pierre-alexandre-blanche/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Optical Materials and Applications: Volume 1 Novel Optical Materials Francesco Simoni

https://ebookmass.com/product/optical-materials-and-applicationsvolume-1-novel-optical-materials-francesco-simoni/

ebookmass.com

Optical properties of materials and their applications

Second Edition Singh

https://ebookmass.com/product/optical-properties-of-materials-andtheir-applications-second-edition-singh/

ebookmass.com

Optical Thin Films and Coatings 2e : From Materials to Applications. 2nd ed. Edition Flory

https://ebookmass.com/product/optical-thin-films-and-coatings-2e-frommaterials-to-applications-2nd-ed-edition-flory/

ebookmass.com

Management and Cost Accounting, 8th Edition Alnoor Bhimani

https://ebookmass.com/product/management-and-cost-accounting-8thedition-alnoor-bhimani/

ebookmass.com

Principles of Computer Security: CompTIA Security+ and Beyond (Exam SY0-601), 6th Edition Greg White

https://ebookmass.com/product/principles-of-computer-security-comptiasecurity-and-beyond-exam-sy0-601-6th-edition-greg-white/

ebookmass.com

Paranoid Pedagogies: Education, Culture, and Paranoia 1st Edition Jennifer A. Sandlin

https://ebookmass.com/product/paranoid-pedagogies-education-cultureand-paranoia-1st-edition-jennifer-a-sandlin/

ebookmass.com

Napoleon's Hundred Days and the Politics of Legitimacy 1st Edition Katherine Astbury

https://ebookmass.com/product/napoleons-hundred-days-and-the-politicsof-legitimacy-1st-edition-katherine-astbury/

ebookmass.com

A Commentary on Virgil's Eclogues Andrea Cucchiarelli

https://ebookmass.com/product/a-commentary-on-virgils-eclogues-andreacucchiarelli/

ebookmass.com

Narrative Policy Analysis 1st ed. Edition R.A.W Rhodes

https://ebookmass.com/product/narrative-policy-analysis-1st-ededition-r-a-w-rhodes/

ebookmass.com

(eTextbook PDF) for The International

4th Edition

https://ebookmass.com/product/etextbook-pdf-for-the-internationalbusiness-environment-4th-edition/

ebookmass.com

OpticalHolography Materials,TheoryandApplications

PIERRE-ALEXANDREBLANCHE,PHD

ResearchProfessor CollegeofOpticalSciences

TheUniversityofArizona Tucson,Arizona,UnitedStates

OPTICALHOLOGRAPHY-MATERIALS,THEORYANDAPPLICATIONSISBN:978-0-12-815467-0

Copyright 2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compoundsorexperimentsdescribedherein.Becauseofrapidadvances inthemedicalsciences,inparticular,independentverificationofdiagnosesanddrugdosagesshouldbe made.Tothefullestextentofthelaw,noresponsibilityisassumedbyElsevier,authors,editorsorcontributorsforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

Publisher: MatthewDeans

AcquisitionEditor: KaylaDosSantos

EditorialProjectManager: FernandaOliveira

ProductionProjectManager: PoulouseJoseph

CoverDesigner: AlanStudholme

3251RiverportLane St.Louis,Missouri63043

ListofContributors

Pierre-AlexandreBlanche,PhD ResearchProfessor CollegeofOpticalSciences TheUniversityofArizona Tucson,AZ,UnitedStates

V.MichaelBove,Jr.,SB,SM,PhD PrincipalResearchScientist MediaLab MassachusettsInstituteofTechnology Cambridge,MA,UnitedStates

MarcGeorges,PhD Doctor CentreSpatialdeLiège STARResearchUnit LiègeUniversité Angleur,Belgium

TomD.Milster,BSEE,PhD Professor CollegeofOpticalSciences UniversityofArizona Tucson,AZ,UnitedStates Professor ElectricalandComputerEngineering UniversityofArizona Tucson,AZ,UnitedStates

SilvioMontresor,PhD LeMansUniversité LAUMCNRS6613 LeMans,France

IzabelaNaydenova,PhD,MSc Professor SchoolofPhysicsandClinicalandOptometricSciences CollegeofSciencesandHealth TUDublin Dublin,Ireland

PascalPicart,PhD Professor LeMansUniversité LAUMCNRS6613 LeMans,France

EcoleNationaleSuperieured’IngenieursduMans LeMans,France

VincentToal,BSc,MSc,PhD CentreforIndustrialandEngineeringOptics DublinTechnologicalUniversity Dublin,Ireland DirectorforResearch OptraceLtd. Dublin,Ireland

Preface

Morethan70yearsafteritsdiscovery,holographyisstill mesmerizingthepublicwithitsabilitytodisplay3D imageswithcrispdepthrenderingandshimmering colors.Today,hologramsaremorethanacuriosity,and theyhavefoundapplicationsinalargevarietyofproductsrangingfromsecuritytagstohead-updisplaysand gunsights.Inadditiontomirrorsandlenses,holograms havebecomeanessentialtoolthatenablesscientiststo controllightinnovelways.

However,oneapplicationeludesourquest:the highlyanticipatedholographictelevision.Thereason holographictelevisionsarenotavailableatyourlocal electronicsstore,explainedindetailinthisbook,isthe extraordinarilylargeamountofinformationthatmust beprocessedanddisplayedinordertogeneratedynamic holograms.Fortunately,theemergenceofnewdisplay technologiessuchasspatiallightmodulatorsand micromirrordevicesarehelpingengineersdevelopprototypesthatarebecomingmoreconvincing.Itismy beliefthatholographictelevisionwillemergeverysoon.

Workinginthe fieldofholographyisextremely gratifyingbecausetheresearchisattheforefrontofsome veryexcitingnewtechniquesanddevelopments.In recentyears,wehaveseentheappearanceoftheholographicmicroscope,theholographicopticaltweezers, andholographicsensors.

Inthisbook,sevenaccomplishedscientistsexplain whereintheirown fieldholographyoccupiesacenter stage.Theyguidethereaderfromtheessentialconcepts tothelatestdiscoveries.

The firstchapterbyPierre-ABlancheisanintroductiontotheworldofholography.Itstartswithashort historyandtakestheapproachofdescribingholography usingdiffractiongratings,whichcaneasilybegeneralized.Thischapterexplainsthebasicconceptssuchas thickvs.thinhologramsortransmissionvs.reflection geometries.Thescalartheoryofdiffractionwithits rigorousmathematicalexpressionsisdevelopednext. Thischapterconcludeswithasectiondescribingthe majoropticalconfigurationsthathavebeendeveloped forrecordinghologramsandhowtheyproducehologramswithdifferentcharacteristics.

Thesecondchapter,alsobyPierre-ABlanche, describesholographicrecordingmaterialandtheir processing.Tounderstandthedifferentmaterialcharacteristicsandmetrics,thischapterstartsbyexplaining theterminologiesusedinthis fi eld.Permanentmaterialsthatcanonlyrecordthehologramonceare introduced fi rst,followedbyrefreshablematerials wherethehologramcanberecorded,erased,and recordedagain.Thischapteralsoreviewselectronic devicesthatcandynamicallyrecordordisplay holograms.

Chapter3byTomD.Milsterdetailsalgorithmsthat cancomputeholographicpatterns,suchasthe Gerchberg SaxtoniterativeFouriertransformalgorithm.Startingfromthisseminalwork,Milsterdiscusses itsconvergencepropertyandthenexpandstomore modernvariationsthatarenowusedtoreducenoiseand improvecomputationalspeed.

MichaelBoveauthoredChapter4aboutholographic television.Afterabriefoverviewofthedifferenttechniquesthathavebeendeveloped,thechapterdiscusses thelimitationsduetotheverylargespatiotemporal bandwidthrequiredtogeneratedynamicholograms.As awaytoovercomethislimitation,differenttechnologies oflightmodulatorsandmicrodisplaysareintroduced andtheirperformancecomparedintheprospectoftheir useforthefutureholographictelevision.Thischapter concludeswithaveryinterestingtakeonholographic augmentedandvirtualreality.

InChapter5,MarcGeorgespresentstheholographic interferometrytechnique.Thistechniqueallowsthe measurementofthephaseofanobjectorascene,which evolvesovertime,andisusedtodetectdefectsinlaminatedmaterial.Itcanalsobeusedformeasuringthe vibrationmodesofindustrialcomponentssuchasturbineblades.Afterdefiningthecharacteristicsofanideal system,Georgesreviewsthedifferentimplementations thathavebeenproposed,movingfromanalogsystems tothemoremodernelectronicspecklepatterninterferometry.Becausethesensorresolutionkeepsimproving, itisnowpossibletodetecttheinterferencefringes directlyþ,whichleadstothemostrecentdigital

holographicinterferometrytechniques,whichare describedattheendofthechapter.

Chapter6,writtenbyPascalPicartandSilvio Montresor,isdedicatedtodigitalholography.Digital holographyistheinverseproblemofacomputergeneratedhologramandisaboutdigitallyreconstructingtheopticalwavefrontfromarecordedinterference pattern.PicartandMontresorstartbyintroducingthe fundamentalsofFourieropticsandthenmovetothe differentconfigurationsfortherecordingofdigital holograms,followedbythedescriptionofdifferent algorithmsforthenumericalreconstructionofdigital holograms.Finally,thenoiseindigitalholographic imagesisdiscussed,anddifferenttechniquesforits reductionarecompared.

HolographicsensorsareintroducedinChapter7, whereIzabelaNaydenovadescribesthisuniqueand fascinatingaspectofholograms.Startingwithabrief

historicaloverview,thechapterdescribeshologramsasa sensorplatform,thefabricationofthephotonicstructures,andthedifferentapproachestofunctionalizethe holographicmaterials.Thechapterendsbylistingthe challengesfacingthefuturedevelopmentofholographic sensors.

Chapter8isdedicatedtotheuseofholographyfor security.Inthischapter,VincentToalexplainsthe problemofcounterfeitproductsanditspreventionusing securitytagssuchasholograms.Thisapplicationis enabledbythemassproductionofhologramsaswellas theirserialization,whicharebothdescribed.What makeshologramssointerestingforsecurityisthatthey canbeusedinanonimagingwaysuchasmatch filtering andjointtransformcorrelation.Toalalsoexplainshow encryptionmethodscanbeusedtomakethesecurity evenmoreunbreakable.Finally,holographictechniques fortheimagingofconcealedobjectsarepresented.

IntroductiontoHolographic

ASHORTHISTORY

Welcometothebeautifulworldofholography.With theirshimmeringcolorandghostlikeappearance,hologramshavetakenaholdinthepopularimagination, andbuzzmarketingalike.Thisisarareaccomplishment forascientifictechnique,thatworthtobenoted. Togetherwiththisgeneralappreciation,comesthe misinterpretation.Theword “hologram” issometimes associatedtothephenomenathathavenothingtodo withthescientificusageoftheterm.Itisnotproblematicineverydaylife,butitcanbecomeconflicting whenthetechnologypenetratesthemarket.Wehave allheardaboutholographicglass,holographichow fromdeceasedartists,holographictelevision,princess Leiahologram,etc.Somearehologramsindeed,some arenot.Thisbookwillhelpdemystifyholography, andIhopeitwillhelpyougainanewappreciation forthetechniquethatcanbeappliedinalotofdifferent circumstances.

Thereexistthreepossiblewaystoalterorchangethe trajectoryoflight:reflection,refraction,anddiffraction. Inoureverydayexperiences,wemostlyencounterreflectionsfrommirrorsand flatsurfaces,andrefractionwhen welookthroughwater,orwearprescriptionglasses.Scientistshaveusedreflectionandrefractionforover 400yearstoengineerpowerfulinstrumentssuchastelescopesandmicroscopes.IsaacNewton [1] championed theclassicaltheoryoflightpropagationasparticles, whichaccuratelydescribedreflectionandrefraction. Diffraction,ontheotherhand,couldnotbeexplained bythiscorpusculartheory,andwasonlyunderstood muchlaterwiththeconceptofwavepropagationof light, firstdescribedbyHuygens [2],andextensively developedlaterbyYoung [3] andFresnel [4]

Wavepropagationtheorypredictsthatwhenthe lightencountersanobstaclesuchasaslit,theedges donot“cut” asharpborderintothelightbeam,asthe particletheorypredicted,butratherthereisformation ofwaveletsthatpropagateonthesideinnewdirections.

Thisisthediffractionphenomenon.Eventually,theparticleandwavepointsofviewwillbereconciledbythe quantumtheory,andthedualityofwaveparticlewas developedbySchrödinger [5] anddeBroglie. [6,7]

Whilethelightpropagationfrommirrorsandlenses canbeexplainedwiththethoroughunderstandingof reflectionandrefraction,holographycanonlybe explainedbyrecognizingdiffraction.Ahologramis nothingbutacollectionofpreciselypositionedaperturesthatdiffractsthelightandformsacomplexwave frontsuchasathree-dimensional(3D)image.Inadditionbecausethelightisconsideredasawaveinthese circumstances,boththeamplitudeandthephasecan bemodulatedtoformthehologram.Amplitudemodulationmeanslocalvariationofabsorption,andphase modulationmeansachangeintheindexofrefraction orthicknessofthematerial.Inthelattercaseofphase modulation,theholographicmediacanbetotally transparent,whichaccountforapotentiallymuchefficientdiffractionoftheincidentlight.Wewilldescribe thedifferentpropertiesofhologramsin Section2

Hologramsareverywellknownfortheaweinspiring3Dimagestheycanrecreate.Buttheycan alsobeusedtogeneratearbitrarywavefronts.Examples ofsuchwavefrontsarefocalizationexactlylikealens,or reflectionexactlylikeamirror.Thedifferenceofthehologramfromtheoriginalelement(lensormirror)is that,inbothcases,diffractionisinvolved,notreflection orrefraction.Thattypeofhologram,calledholographic opticalelement,isfoundinopticalsetupswherefor reasonofspace,weight,size,complexity,orwhenitis notpossibletouseclassicalopticalelements.Someexamplesincludecombinerinhead-updisplay,dispersiongratinginspectrometers,orspotarraygenerators forcamerasandlaserpointers.

Therearetwoverydifferenttechniquesfor manufacturingholograms.Onecaneithercomputeit orrecorditoptically.Computingaholograminvolves thecalculationofthepositionoftheaperturesand/or

phaseshifters,accordingtothelawsoflightpropagation derivedbyMaxwell [8].Thiscalculationcanbefairlyeasy forsimplewavefrontssuchasalens,forextremely complicatedforhigh-resolution3Dimages.Ontheother hand,opticallyrecordingahologramimpliestheregistrationofboththeamplitudeandthephaseofthewavefront.Capturingthelightintensitywas firstachieved withtheinventionofphotographybyNiépcein1822. Butrecordingthephaseeludedscientistsuntil1948. Althoughtheconceptofopticalinterferencewasknown forages,itisonlywhenDennisGaborintroducedthe conceptofmakinganobjectbeaminterferewithareferencebeamthatrecordingthephasebecamepossible [9,10].Indeed,whentwocoherentbeamsintersect, constructiveanddestructiveinterferencesoccursaccordingtothephasedifference,thistransformsthephaseinformationintointensityinformationthatcanbe recordedthesamewayphotographsaretaken.Insome sense,thereferencebeamisusedtogenerateawavecarrierthatismodulatedbytheinformationprovidedby theobjectwave(similarlytoAMradio).

GaborcoinedthetermholographicfromtheGreek words holos: “whole” and graphe: “drawing” because thetechniquerecordedforthe firsttimetheentirelight fieldinformation:amplitudeandphase.Gaborusedthe techniquetoincreasetheresolutioninelectronmicroscopyandreceivedtheNobelPrizeinPhysicsin1971 forthisdiscovery.

Owingtotheveryshortcoherencelengthofthelight sourcesavailabletoGaboratthetime,theobjectand referencebeamsrequiredtobecolinear.Unfortunately, thisconfigurationyieldtoverypoorimagingquality becausethetransmittedbeamand 1diffractedorders weresuperimposed,leadingtohighnoiseanda “twinimage” problem.

Holographicimagingwillhavetowaitfortheinventionofthevisiblelightlaserin1960byMaiman [11], andforLeithandUpatniekstoresolvethetwin-image problem [12,13].Usingalongcoherencelengthlaser source,onemaydivideabeamintotwoparts oneto illuminatetheobject(theobjectbeam)andtheother (thereferencebeam)iscollimatedandincidentatan angletothehologramrecordingmaterial.Asaresultof thehighdegreeofcoherence,theobjectandreference beamswillstillinterferetoformthecomplexinterference patternthatwecallthehologram.Onreconstruction,a monochromaticbeamisincidenttotherecordedhologramandthedifferentdiffractedwavesareangularly separated.Thisway,the0, þ1,and 1orderscanbe observedindependently,solvingtheproblemofboth noiseandtwinimagesobservedinin-lineholograms. Section6 willdescribethedifferentconfigurationtorecordholograms.

Inparallel,andindependentlytoLeithandUpatnieks,Denisyukworkedonhologramswheretheobject andreferencebeamsareincidentthehologramplane fromoppositedirections [14 16].Suchholograms areformedbyplacingthephotosensitivemediumbetweenthelightsourceandadiffuselyreflectingobject. Inadditionofbeingmuchsimplerandmorestableto record,thesereflectionhologramscanbeviewedbya whitelightsourcebecauseonlyanarrowwavelengthregionisreflectedbackinthereconstructionprocess.We willseethefundamentalreasonforthisselectivityin Section2.3 aboutthecharacteristicsofthickholograms.

Oncehigh-qualityimagingandcomputer-generated holograms(CGHs)weredemonstrated [17,18],the researchonholographyexperiencedaphenomenal growth,expandingtoencompassalargevarietyofapplicationssuchasdatastorage [19],informationprocessing [20],interferometry [21],anddynamicholography [22] tociteonlyafew.Today,withthewidespreadaccessto activeLCoSandMEMSdevices,thereisarejuvenation oftheholographic fieldwhereanewgenerationofresearchersisapplyingthediscoveriesofthepastdecades toelectronic-controlledspatiallightmodulators.New applicationsareonlylimitedbytheimaginationofscientistsandengineers,anddevelopmentsarecontinuously beingreportedinthescientificliterature.

Thischapterwillcontinuebydevelopingthetheory ofthickandthindiffractiongratings.Oncethesebases havebeenestablished,wewillmovetothescalartheory ofdiffractionthatshowshowtocalculatethelight field fromadiffractiveelement,andviceversa.Wewill finish bydescribingseveralimportantexperimentalsetup usedtorecordholograms.

DIFFRACTIONGRATINGS

WavesandInterference

Agreatdealcanbeunderstoodaboutholography withoutthecomplicationofimaging,andbysimply lookingatthepropertiesofdiffractiongratings.Diffractiongratingsareparticularhologramswheretheinterferencesfringes,orBragg’splanes,areparallel.As such,theytransformoneplanewaveintoanotherplane wavewithadifferentdirection.Thissimpleactionon thelightbeammakesthemathematicalformalism mucheasiertounderstand.

Aftertheanalysisofsimplegratings,holographicimagescansimplybeviewedasthesuperpositionof severalplanarwavefronts,andthehologramitselfcan beviewedasthesuperpositionofseveralgratings, muchlikeFresnelandFourierdecompositions.

Maxwell’sequationdefinesthepropertiesoftheelectromagnetic field.Inaddition,formostholographic

applications,themagnetic fieldcanbeneglected withoutlossofgenerality.Inthatcase,onlytheHelmholtzequationremainstodefinetheelectric field E: 1 c2 v2 E vt 2 V2 E ¼ 0 (1.1)

with c beingthespeedoflightandboldfacefontused torepresentvectors.

Asolutionofthisdifferentialequationhastheform ofaplanewave:

where A isanimaginaryvectordescribingthedirection oftheelectric fieldoscillation,andcontainthepolarizationinformation, k isthewavevectorpointinginthedirectionoflightpropagationwhichmagnitudeisrelated tothewavelength jkj¼ 2p/l r isthepositionvector definingthepositionatwhichthe fieldiscalculated, u isthefrequency,and f thephaseofthewave.Two equivalentrepresentationofaplanewaveareillustrated in Fig.1.1.Ithastobenotedthatasphericalwavefront isalsosolutionoftheHelmholtzequation.

UsingEuler’sformulaexp(ix) ¼ cosx þ isinx,the planewavesolutioncanberewrittenas:

Uðr ; t Þ¼ A exp½iðk $ r ut þ f b a(1.3)

wherethepolarizationvector b a hasbeenextractedfrom theamplitudevector A whichisnowthescalar A

Oneneedtokeepinmindthattheactualelectric field E istherealpartofthecomplexnotation U in Eq.(1.3):

Whentwoplanewavesoftheformof Eq.(1.3) cross eachother,interferenceoccurs.Thetotal fieldcanbe describedas:

wherethesubscriptsnumber1and2describingthetwo waves.

Inthisformulation,wecanseethatthepatternisnot necessarilystaticbutchangeasafunctionoftime.Itis onlyinthespecialcasewhere u1 ¼ u2 that Eq.(1.5) becomestimeinvariantandcanbeexpressedinasimpler form,wherethetotalintensityis

wherethe*denotesthecomplexconjugate.

Tomaximizethecontrastbetweendark(destructive interference)andbright(constructiveinterference)regionsoftheinterferencepattern,thepolarizationof thewaveshouldbeidentical b a 1 ¼ b a 2 ,andtheequation reducestothefamiliarform:

Thisintensitymodulationcanberecordedinsidea materialasanindexmodulationorabsorptionmodulationpatterntoformadiffractiongrating.

Eq.(1.7) describingtheintensitymodulationin space,canberecastasastaticplanewavewithawave vectordefinedas:

FIG.1.1 Planewaverepresentationas (A):planeofequal fieldintensityor (B):oscillationoftheamplitudeof the fieldalongthewavevector k

E

Similartothedefinitionof k1 and k2 thatarethe wavevectorsofthelightbeams, K isthegratingvector oftheinterferencepattern.Themagnitudeofthegrating vector k2 isrelatedtothespacing L betweentwoplanes ofequalmagnitude,alsocalledtheBragg’splanes:

Duringthereadingofadiffractiongrating,anincidentplanewavedefinedbythewavevector ki encounterstherecordedgrating K andisdiffractedinthe direction kd accordingtotheK-vectorclosingcondition: jKj¼ kd ki (1.10) TheK-vectorclosingconditionisidenticaltothegrating equationdevisedfromcrystallographicmeasurements wherethemodulationplaneswereactuallyrowsof atoms:

where qd istheangleofdiffraction, qi istheangleofincidence,and m isanintegernumberthatde finesthe diffractionorder.

Bothgeometriesareshownin Fig.1.2 withthedefinitionoftheangles.

Theangulardispersionasafunctionofthefrequency canbedirectlyderivedfromthegrating Eq.(1.11)

From Eq.(1.12),itcanbeseenthatthelowerfrequencies(red)arediffractedatalargeranglethanthe higherfrequencies(blue).Thisisthereversefrom whatisobservedwitharefractiveprism(withnormal indexdispersion),wherehigherfrequenciesexitata largerangle.Thisoppositioncanbeusedtomakean opticalsystemachromatic,withthediffractiveelement compensatingthedispersionoftherefractivelens.

Thedirectionofthediffractionmaximumsaregiven bytheBragg’slawthatcanbeunderstoodastheconditionforconstructiveinterferenceforthelightinteracting withtwosuccessivediffractionplanes:

FIG.1.2 Definitionoftheanglesandvectorsforthebeam interferencegeometry,andK-vectorclosingconditionfor thesamegeometry.

indicationontheintensityofthewavebeingdiffracted, onlythe directionandfrequency.Thecalculationofthe waveintensity,ordiffractionefficiency,accordingto thegratingparameterswillbederivedin Section2.3 forthickvolumegrating,andin Section2.4 forthinor surfacereliefgratingwithdifferentformatmodulation.

PointSourceInterference

Armedwiththegeneralequationfortheinterferencebetweentwowaves(Eq.1.7),letusderivesomespecific casesandobservethepatternformedbythefringes.

where qB istheangleofincidenceforwhichthereisa maximumofdiffractedintensity,alsocalledBragg’ s angle, 4 istheslantangleofthegrating,thatis,theangle betweenthegratingvectorandthenormaltothegrating surface(see Fig.1.2).

Itshouldbenotedthatthegratingequations expressedin Eqs.(1.10) (1.13)donotgiveany

Two-planewaves

Inthecaseoftwo-planewavethathavedifferentincidenceangles,thephaseandintensityarerespectively givenby:

fi ¼ 2p l x sin qi Ii ¼ 1 (1.14)

Insertedinto Eq.(1.7),wefoundfortheinterference pattern:

whichisidenticaltothegrating Eq.(1.11) witha patternfrequencyof:

Thisexpressiononlybecameinterestingbylooking atparticularcasessuchasthetwothatfollow.

Side-by-sidepointsources

Forpointsourcesthatarelocatedsidebysidealongthe x axis,withaseparationdistanceof Dx,andifwe consideraconstantintensity,wecandescribethephase andintensityas:

Thegeometryofthisconfigurationalongwiththe interferencepatternformedisshownin Fig.1.3. Wecanseethattheinterferencepatternonlyvaries alongonedimension(x).Therecordingofthispattern insideamaterialformsadiffractiongrating.

Arbitrarypointsources

Insteadofusingplanewaves,wecanusespherical waveswitharbitraryorigins(xi, yi, zi).Theirphaseand intensityisnowdescribedby:

Inallgeneralities,theinterferencepatternis

Sotheinterferencepatternbecomesarelativelysimpleexpression:

Thegeometryofthisconfigurationalongwiththe interferencepatternformedisshownin Fig.1.4.

Collinearpointsources

Forpointsourcesthatarelocatedonthe z axisbutat differentdistances,andconsideringaconstantintensity, thephaseandintensityaregivenby:

i ðx; y Þ¼ 2p l zi þ p lzi x2 þ y 2 Ii ¼ 1 (1.21)

FIG.1.3 Geometryandinterferencepatternproducedbytwo-planewavesincidentatdifferentangles.

Theinterferencepatternis

Thegeometryofthisconfigurationalongwiththe interferencepatternformedisshownin Fig.1.5.We willseeanidenticalpatternwhenwewillstudythe Gaborzoneplatein Section3.4.4.

Ithastobenotedthatfromtheperspectiveofthe pointsources,thetwocaseswejustdevelopedareidentical.Thetwointerferencepatternsareformedeitheron theside,oralongtheaxisofseparationofthetwosources.

ThickGrating’sCharacteristics

Theinterferencepatternformedbytwo-planewaves wasintroducedin Fig.1.3 .Oncethispatternis recordedinsideamaterial,itformsadiffraction grating.Thedirectionofthediffractedwavecanbe determinedusingthegrating Eq.(1.11) .Nowweare

goingtostudythedistributionofenergyaroundthe Bragg’sangleandtheBragg’ swavelengthforthick diffractiongratings.

Thesedistributionshave firstbeenderivedbyKogelnikinhiscoupledwavetheory [23].Anotherderivation thatalsogiveverygoodresultsiscalledtheparallel stackedmirrormodelandhasbeenintroducedby Brotherton-Ratcliffe [24,25].Thesetwomodelsgive analyticalsolutionsinthecasewhenthegratingsatisfies theBragg’sconditionfor “thick” gratings.

Thickgratingcriteria

Thisthickgratingconditionissomewhatmisnamed becauseitisnotbasedonthephysicalthicknessof thematerial,butonthepremisethatmostoftheenergy isconcentratedinthe firstdiffractionorder.ThisconditionofoperationisalsocalledtheBraggregimeandis indeedobservedingratingsandhologramsforwhich therecodingmediaareratherthick.Thisisbecause,in thiscondition,theincidentbeaminteractsseveraltimes

I
FIG.1.4 Geometryandinterferencepatternformedbytwopointsourceslocatedsidebyside.
FIG.1.5 Geometryandinterferencepatternformedbytwopointsourceslocatedalongtheaxisoflightpropagation.

withthegratingstructure,andthereisaprogressive transferofenergyintothediffractedbeam.

Bycontrast, “thin” gratingsoperatedintheRamanNathregimeofdiffractionwhereanappreciable amountofenergycanbefoundinhigherordersof diffraction.Owingtotheirsmallerthickness,thetransferofenergyisnotrestrictedtothe firstorders.Theenergydistributiondiffractedbythingratingcannotbe calculatedusingtheKogelniktheoryortheparallel stackedmirrormodelandrequiresthemoreextensive andlaboriousrigorouscoupledwaveanalysisdevelopedbyMoharamandGaylord [26]

Thereisnotacleardividingboundarybetweenthin andthickgratings.Instead,severalcriteriahavebeen devisedaccordingtotheapproximationsusedinsolvingthecoupledwaveequation,andaccordingtotheresultsobservedexperimentally.

Twoofthemostusedcriteriatodistinguishbetween thickandthingratingsaretheKleinandCookcriteria [27],andtheMoharamandYoungcriteria [28].

KleinandCookcriteria:

with Q0 < 1forthingratings,and Q0 > 10forthick gratings.

TheMoharamandYoungcriteria:

where Dn isthematerialindexmodulation,and r < 1 definesthingratings,when r 1definesthickgratings. Wecanseethatthiscriteriondoesnoteventakethe physicalthickness(d)ofthegratingintoaccount.

Tosatisfythethickgratingcriterion,theBragg’ s planesneedtoextendtoacertainvolumeinsidethe material(thusthename).Suchadiffractionstructure cannotbejustoverlaidonthesurface.Theadvantage ofthickgratingisthatmostofthediffractedenergyis foundinthe firstorder.Forthatreason,thickgrating areofparticularinterestinholographicimagingandengineeringbecauseonedoesnothavetodealwithlight presentinhigherdiffractionorders,whichinducenoise andreduceefficiencyinthedesired first-orderimage.

Efficiencyofthickgratings

Therigorousderivationofthickgratingdiffraction efficiency,expressedastheratiobetweenthewaveintensityinthe firstorderandtheincidentintensity,can befoundintheoriginalpublications [23,24].Here, wewillsummarizetheprincipalresultsinthespecial casesofunslanted(4 ¼ 0or p/2),phase(Dn),and amplitude(Da)sinusoidalmodulation.Forthesespecificconditions,themathematicalexpressionssimplify dramatically,anditishelpfultokeepinmindthegeneraltrendastheygiveagoodintuitionforothercases.

Inadditiontothemodulationformat(phaseand amplitude),twodifferentconfigurationsofthegrating willbediscussed:transmissionandreflection.Illustrationofthesetwogeometriesareshownin Fig.1.6, whereaslantangle 4 hasbeenintroducedforthesake ofgenerality.

Intransmissiongeometry,thediffractedlightexits thegratingbytheoppositesideoftheincidentlight: thelightgoesthroughthegrating.Todoso,theBragg’ s planesareorientedmoreorlessorthogonaltothe gratingsurface.Thegratingfrequencyintransmission geometryrangefrom300to3000linepairspermm (lp/mm)forvisiblelight.

Inthereflectiongeometry,thediffractedlightexitsthe gratingbythesamesideoftheincidentlight,thelightreflectedbackfromthegrating.Inthisgeometry,the Bragg’splanesareorientedmoreorlessparalleltothe surface,andthegratingfrequencyisover4000lp/mm.

Phasegratings,wheretheindexofrefractionis modulated,canreach100%efficiencyeitherintransmissionorinreflection.TheexpressionforTE(transverseelectrical)modeisrespectivelygivenby:

Fortransmissionconfigurationand:

Forreflectionconfiguration.

Plotsofthesefunctionsaccordingtotheindexmodulationamplitude(Dn)areshownin Fig.1.7.

Itshouldbeobservedthatinthecaseofatransmissiongrating,theefficiencyisaperiodicfunction(sin) thatreachesitsmaximumwhenthephasemodulation equal mp/2(m beinganinteger).Whenthephasemodulationextendspastthe firstmaximum,thegratingis saidtobeovermodulated,andthelightstartstobe

Themanufacturingofthickgratinggenerallyinvolves therecordingofaninterferencepatternusinganoptical setup,techniquesthatwillbedetailedin Section6.The reasonforopticalrecordingisthatthediffractivestructuresneedtobeembeddedinsidethevolumeofthe material,whichisdif ficulttoaccessotherwise.Itis alsopossibletoproducediffractivestructuresthat satisfythethickgratingconditionsusingmultilayer coatingofdielectriclayers.Suchstructuresarebetter knownasdichroicmirrorsorinterference filters.

FIG.1.6 Definitionoftheanglesandvectorsfortransmission(left)andreflection(right)gratings.TheK-vector closureconditionisalsodrawnforeachgeometry.

FIG.1.7 DiffractionefficiencyofaphaseBragg’sgratingin transmissionorreflectionaccordingtotheindexmodulation amplitude Dn

coupledbacktothezeroorder,reducingtheefficiency. Theminimumisreachedwhen Dn ¼ mp. Inthereflectionconfiguration,thediffractionefficiencymonotonicallyincreases,andthereisno

overmodulationpossible.Thereasonisthatthelight transferredintothe firstorderexitsthemediaand doesnotpropagatefurtherintothevolumewhereit wouldhavehadachancetobecoupledbackintothe zeroorder.

Amplitudegratings arelessefficientthanphasegratingsbecausethemodulationisbasedontheabsorption ofaportionoftheincidentlight.Volumeamplitude gratingsdoexceed7.2%efficiency.Theexpressionfor TEforatransmissiongratingis

where a istheabsorptioncoefficientandcanreach valueshigherthan1, Da isthemodulationofthat coefficient.

Eq.(1.27) exhibitsamaximumefficiencyof3.7% when a ¼ Da ¼ ln3.

Foranyvalueoftheabsorption a,themaximumefficiencyisachievedwhenthemodulationismaximum: Da ¼ a.

Forthereflectioncase,theTEefficiencyisgivenby:

wheretheparameter A denotestheabsorptionterm:

A ¼ ad/cos qi

Theefficiencyforthereflectionamplitudegrating monotonouslyincreaseswiththemodulation,asymptoticallyapproachingamaximumof7.2%.

Plotsofthediffractionefficiencyaccordingtothe modulationwhen a ¼ Da fortransmission(Eq.1.27) andreflection(Eq.1.28)Bragg’sgratingsareshownin Fig.1.8.

ThesolutionsfortheTM(transversemagnetic) modeshouldbeadjustedfromtheTEsolutionswith thecouplingfactor kk addedtothemodulationfactor, either Dn or Da:

ThisisduetotheverydifferentBragg’splanefrequencies(L)observedforthesegeometries.Inthe transmissiongeometry,thegratingfrequencyranges from300to3000lp/mm,whereasinthereflectiongeometrythegratingfrequencyismorethan4000lp/mm. TheexpressionsforphasegratingsinTEmodefor thedifferentcasesarethefollowing:

TRANSMISSIONCONFIGURATION

AngularDispersion

Dispersionofthickgratings

Thecoupledwavetheoryalsoallowsthederivationof dispersionforeachconfigurationaccordingtowavelengthandtheangularincidence [23].Moreimportantly,oneneedstorecognizethatevenwiththesame characteristicsofthicknessandmodulationamplitude, transmissionandreflectiongratingshaveverydifferent behaviorswhenitcomestodispersionandselectivity.

FIG.1.8 DiffractionefficiencyofanamplitudeBragg’s gratingintransmissionorreflectionaccordingtothe absorptioncoefficient,andassumingmaximummodulation amplitude. a ¼ Da

withthedetuningparameter Dli givenby:

REFLECTIONCONFIGURATION

AngularDispersion

Withtheparameter Ai givenby:

Andthedetuningparameter Dqi isgivenby:

Withtheparameter Bi givenby:

Andthedetuningparameter Dli givenby:

Notethatthesedispersion Eqs.(1.30 1.34),(1.37) canbefurtherapproximatedbysinc2 functionswiththe appropriatedetuningcoefficients.

TypicalangularandspectraldispersioncharacteristicsofreflectionBragg’sgratingsareillustratedin Figs.1.9and1.10.Generallyspeaking,transmission gratingarediffractingalargebandwidthofwavelengths eachataveryspecificangles,theyproducearainbow. Theyarewavelengthtolerantandangularlyselective. Ontheotherhand,reflectiongratingsdiffractavery

narrowbandwidthatanyangle,theyactasanotch filter,reflectingonesinglecolor.ReflectionBragg’sgratingsarewavelengthselectiveandangularlytolerant. Althoughtheserulesofthumbbehaviorforthe differenttypeofgratingsareveryusefultokeepin mind,theycanbeprovedwrongforparticularcases suchasedge-litgratings(4 ¼ p/4)thatfallinbetween thetwocategories,orforverythickgratings (d > 100 mm)thatareextremelyselectiveinbothangle andwavelengthindependentlyoftheirconfiguration. Edge-litgratingshaveaslantanglecloseto45 (Fig. 1.11).Theirnamecomesfromthefactthattoachieve thisangle,oneofthebeamsneedstobeincident fromtheside(edge)ofthematerial.Thistypeofgrating isusefulforinjectingorextractingthelighttoandfrom awaveguide.Thistypeofconfiguration,usinga waveguide,hasrecentlygainedpopularityforsolar concentrationapplication [29],augmentedrealityseethroughdisplays [30,31],andhead-updisplay [32]

FIG.1.9 Typicalangular(left)andspectral(right)dispersionofatransmissionorreflectionBragg’sgratings. Generallyspeaking,transmissiongratingsareangularlyselective,whenreflectiongratingsarewavelength selective.

FIG.1.10 Pictureofvolumephaseholographicgratings. (A) Transmissiongratingthatdispersestheincident lightintoarainbow. (B) Reflectiongratingthatselectivelydiffractstheredportionofthespectrum.Both hologramsaremadefromthesamematerial(dichromatedgelatin)andareilluminatedbyahalogenwhitelight.

FIG.1.11 Geometryofanedge-lithologram.Thediffracted beamisevanescent,thatis,directedparalleltothesurfaceof thematerial.

Theangleandfrequencyselectivitypropertiesofedge-lit hologramsareinbetweenthoseobservedfortransmissionandreflectiongratings(Fig.1.9).Theseproperties areidenticaleitheriftheedge-lithologramisusedin reflection(hologramplacedatthebottomofthewaveguide),ortransmission(hologramplacedatthetopof thewaveguide).Thisisbecausethehologramparameters,angleandfrequency,changeonlyveryslightlybetweenthetwoorientations.

Multiplexing

Becausethickgratingscanbemadehighlyselectiveaccordingtothereadingangleorwavelength,itispossible torecordmultiplehologramsatthesamelocation,and inthesamematerial,whichdonotinterferewitheach other.Thismeansthatonehologramcanberead withouthavinganylightdiffractedbytheothersholograms.Thistechnique,knownasmultiplexing,isparticularlyusefulfordatastoragewherethememorycapacity canbeincreasedthousandsoftimes [33].Itisalsoused forcreatingcolorhologramsfromthreehologramsdiffractingindividuallythered,green,andbluecolors [34].Aparticularcaseofwavelength-multiplexedhologramistheLippmannphotographythatwillbeintroducedin Section6.10.1[35]

Thegratingvector K canbemodi fiedintwoaspects: magnitudeanddirection.So,twotypesofmultiplexing arepossible:angularandwavelength.Inangularmultiplexing,thedirectionofthegratingvectorischangedby

usingdifferentincidenceanglesforeachhologram.In wavelengthmultiplexing,themagnitudeofthegrating vectorischangedforeachhologrambyusingdifferent wavelengthstorecordthem.

Asageneralrule,theef fi ciencyofeachhologram duringmultiplexingfollowsa 1 N 2 H lawwhere NH is thenumberofholograms.Indeed,ifthemaximumdynamicrange(amplitudeorphase)ofthematerialis DM eachmultiplexedhologramisusingaportion ofthisrange,sothemodulationperhologramis DM /N H.Astheef fi ciencyisproportionaltothesquare ofthemodulation( Eqs.1.25and1.26 ),weobtainthat hf1 N 2 H

Thisrelationshipisonlyvalidforthecaseswherethe hologramcannotbeovermodulated.Overmodulation meansthattheopticalpathdifference(Dn d)thatcan beachievedinthematerialislargerthanthe p/2necessarytoobtainmaximumefficiency: h ¼ 100%.When thematerialisextremelythick,orwhenthemodulation canbemadeextremelylarge,itispossibletorecord severalmultiplexedhologramswitheachonehaving 100%efficiencyfordifferentincidentanglesorwavelengths,ofcourse.

Animportantmetricinmultiplexedhologramsisthe crosstalk.Thisistheratiobetweenthesumoftheenergiesdiffractedbythehologramthatarenotinterrogated,andtheenergydiffractedbythehologramsthat isbeingread.Thecrosstalkisparttoofsignal-to-noise ratio(SNR)forthesystem.Assuch,itisoftenexpressed indecibel(dB).

Fig.1.12 showstheangularselectivityoftwohologramswiththesameparameters,butwithdifferentslant anglestoshiftthediffractionpeaksby3.5+.Althoughthe angularseparationofthemainlobeislargerthantheir full-widthhalfmax(1+),thecrosstalkisincreaseddue tothepresenceofsecondarylobesinthediffractionprofile.Atzerodegree,thecrosstalkis4.2%or 27.5dB.A lowercrosstalkcouldbeachievedbyusingashiftof either2.5+ or4+,wherethemainlobeswouldbealigned withaminimumfromtheotherhologram.

ThinGrating’sCharacteristics

ThingratingsoperateintheRaman-Nathregimewhere theincidentwaveinteractsonlyafewtimeswiththe modulation.Thiscanbeonlyonesingletimeasfor thecaseofsurfacereliefgratings. Eqs.(1.23)and (1.24)mathematicallydescribetheconditionforthe thingratingregime.Inthismodeofoperation,asubstantialamountofenergycanbecoupledinhigher diffractionorders(m > 1).However,thisisnotalways thecaseandathinsurfacereliefgratingcanbemade highlyefficientaswewillseeinthissection.

FIG.1.12 Angularselectivityoftwotransmissionholograms with634lp/mm,in100 mmthickmaterial,andat800nm wavelength.Althoughtheangularseparationoftheholograms islargerthanthemainlobefull-widthhalfmaxof1+,thecross talkisincreasedduetothepresenceofsecondarylobesin thediffraction.

Thingratingsareextremelyimportantbecausethey caneasilybemanufacturedbyprintingastructureobtainedbycomputercalculation.Mostoftheholograms encounteredindailylifesuchassecuritytagonbanknotesandluxurygoodsfallinthatcategoryandare madebytheembossingtechnique(seeChapter2on holographicmaterials).Thingratingscanalsobe dynamicallydisplayedusingelectronicallycontrolled spatiallightmodulatorssuchasLCoS(liquidcrystal onsilicon)andDLP(digitallightprocessor).

Theefficiencyofthingratingsdependsontheshape ofthemodulation [36].Asforthickgratings,onecan distinguishbetweenamplitudeorphasemodulation, butforthingratings,itisalsoimportanttorecognize thegeometricalformatoftheprofilesuchassquare,sinusoidal,orsawtoothpattern.

TherigorouscalculationoftheefficiencyandnumberofordersisbasedonFourierdecompositionof thecomplexamplitudeofthetransmittedwavefunction t(x)accordingtothegratingmodulation M(x).By findinganexpressionoftheform: t ðxÞ¼

Theportionoftheintensityinthe mth orderis hm ¼

A2 m ,andthedirectionofpropagationforthatorderis givenbythevector mK

Wearegoingtoanalyzesixcasesthatarerelevantto today’sholographicmanufacturinganddisplays.These includethethreemodulationprofilesshownin Fig.1.13:sinusoidal,binary(orsquare),andsawtooth (orblazed).Foreachoftheseshapes,thetwopossible

FIG.1.13 Shapeofthemodulationformatforthingratings thataremathematicallyanalyzedinthetext.

modulationformatwillbeinvestigated:amplitude andphase.Wewillalsoconsiderwhathappenwhen thesawtoothprofileisdigitizedinto m discretelevels.

Sinusoidalamplitudemodulation

Forasinusoidalamplitudegrating,themodulation formatisgivenby:

t ðxÞj¼ MðxÞ¼ M0 þ DM 2 sinðKxÞ

M0 þ DM 4 expði K

where M0 ˛ [0,1]istheaveragetransmittance, DM ˛ [0,1]isthetransmittancepeaktovalleymodulation, and jKj¼ 2p/L isthewavevector.

Thethreedifferenttermsontherightsideof Eq. (1.41) areassociatedwiththeamplitudeofthedifferent diffractionorders:0, þ1, 1respectively.Thereareno higherordersforsuchgrating.Thediffractionefficiency (h ¼jt 1j2)foundinthe 1orderforthismodulation isgivenby:

whichismaximumwhen M0 ¼ DM/2 ¼ 1/2.

Thebehaviorofthediffractionefficiencyasafunctionoftheamplitudemodulation DM isplottedin Fig.1.14.

Sinusoidalamplitudegratingscanbefabricatedby recordinganinterferencepatternintothinlayerofsilver halideemulsionandthenchemicallyprocessedto revealthelatentimage.

Sinusoidalphasemodulation

Forasinusoidalphasegrating,thereisnoabsorption: t(x) ¼ 1,butthecomplexamplitudetransmittanceis givenby:

j

FIG.1.14 Diffractionefficiencyofthingratingsaccordingto themodulationshape(sine,square,sawtooth),format (amplitudeorphase),andmodulationamplitude DM

Sinusoidalphasegratingscanbefabricatedby recordinganinterferencepatternintoaverythinlayer ofphotopolymerordichromatedgelatinandprocessingtheemulsiontoboosttheindexmodulation.

Binaryamplitudemodulation

Forabinaryamplitudegrating,themodulationisa squarefunction,andtheFourierdecompositionis expressedas:

where M0 isaconstantphaseshift,and DM isthepeak tovalleyphasemodulation.

Ignoringtheconstantphaseshift,theright-handside of Eq.(1.43) canbeexpandedinaFourierseriesas:

Thetermsofthisdecompositionarealloddsdueto the2m 1expressionintheexponentialfunctions.In consequence,therearenoevendiffractionordersfor thistypeofmodulation.Thediffractionefficiencyfor the 1ordersisgivenby:

where Jm istheBesselfunctionofthe firstkindwiththe mth orderrepresentingtheamplitudeofthewaves, whentheexponentialtermsrepresentplanewavesdirection,thatis,thediffractedorders.

Fromthedecompositiongivenin Eq.(1.44),itcan beseenthatthereisaninfinitenumberofdiffractionorders(oneforeachtermofthesum).

Thediffractionefficiencyinthe firstordersisgiven by:

Maximumefficiencyisachievedwhen M0 ¼ DM/2 ¼ 1/2.

Thebehaviorofthediffractionefficiencyaccording tothepeaktovalleyamplitudemodulationisshown in Fig.1.14.

Binaryamplitudegratingshavebeenhistorically manufacturedbyusingofficeprintersontransparent films.Nowadays,thistypeofmodulationisfound whenaholographicpatternisdisplayedonaDLPlight modulator.TheDLPpixelsarecomposedofmirrorthat canbe flippedleftorright.Fortheincidentlightbeam, themirrorsactasnearlyperfectreflectororabsorber dependingofthedirectiontheyareoriented.

Binaryphasemodulation

Forabinaryphasegrating,thecomplexamplitude transmittanceisgivenbythefollowingexpression:

whichismaximumwhen dM ¼ 1.18.Noteherethat thisvalueof dM meansthatthepeaktovalleyphase modulationshouldbeslightlylargerthan p tomaximizetheefficiency.

Thebehaviorofthediffractionefficiencyaccording tothepeaktovalleyphasemodulationisshownin Fig.1.14

Thetermsofthedecompositionarealloddsdueto the2m 1expressionintheexponentialfunctions,so therearenoevendiffractionordersaswehaveseenin thecasefortheamplitudebinarygrating.However,

converselytotheamplitudecase,thephasemodulation termisnowcontainedintheexponentialandneedsto beexpandedto findthevalueoftheefficiency.Forthe m orders,theefficiencyis

withsinc(x) ¼ sin(px)/(px).

Forthe firstordersefficiency,wehave

whichismaximumfor DM ¼ 1,thatis,apeaktovalley phasemodulationof p/2.

Thebehaviorofthediffractionefficiencyaccording tothephasemodulationisshownin Fig.1.14

Binaryphasegratingcanbemanufacturedbyusing single-layerphotolithographicprocesswhereaphotoresinisselectivelyexposedandremoved.Thepatterncan beusedasit,inthiscase,thephasemodulationisgiven bythicknessoftheresinlayertimesitsindexmodulationminus1: DM ¼ d(n 1).Alternatively,theresin canbecoveredbyalayerofmetalthatmakethestructurereflective.Inthiscase,themodulationisgivenby twicethethicknessoftheresinlayerduetothedouble passofthelightinthegrooves: DM ¼ 2d

Acounter-intuitive,butnonethelessimportant, resultfromthisdecompositionexerciseisthatthe maximumdiffractionefficiencyinthe firstordersis largerforsquaregratings(40.5%forphase,10.1%for amplitude)thanforsinusoidalgratings(33.8%for phase,6.25%foramplitude).

Sawtoothphasemodulation

Forasawtoothphasegrating,whichisalsocalled blazedgrating,thecomplexamplitudetransmittanceis

pathlengthdifferenceistwiceaslargeduetothedouble passofthelight.

Discretizedsawtoothphasemodulation

Foradiscretizedsawtoothphasegrating,therampis composedof m levelsspacedapartatequalamplitude (see Fig.1.13).Thisconfigurationisimportanttoderive because,formanymanufacturingprocesses,itisnot possibletoreproduceaperfectlysmoothsawtoothprofile.Instead,theslopeiscomposedofmultiplediscrete steps.Forexample,itispossibletoexposeandetch photo-resinseveraltimestomakesuchastepped sawtoothprofile.ItisalsothecaseofLCoSmodulators thatgeneratethattypeofmodulationwheretherampis approximatedbythedigitaldynamicrangeofthe pixels.

Forthistypeofmodulation,thediffractionefficiency forthe þ1or 1ordersgivenby [37,38]:

Thediffractionefficiencyforthe þ1or 1ordersis

Expression1.53yieldsthesameresultas Eq.(1.52) forthelimitwhere m / N .

Similarlythanfortheblazedprofile,themaximum efficiencyisachievedwhenthephasemodulationis 2p: DM ¼ 2,butitvarieswith m,thenumberoflevels:

Tomaximizetheefficiency,theamplitudeofthe modulationshouldbe DM ¼ 2,whichisequaltoa peaktovalleyphasemodulationof2p (see Fig.1.14).

Notethatwhenphasepatternsareusedinareflectionconfiguration,themodulationishalfoftheone obtainedforatransmissionconfigurationbecausethe

Italsohastobenotedthat,becausethelateral spacingbetweenthestepsis fixedbytheresolutionof theprocessorbythepixelpitchinthecaseofan LCoSLSM,themaximumgratingspacingachievable (L)isdividedbythenumberoflevelsusedtodefine theramp.Thisreductionofthegratingspacinglimits themaximumdiffractionangleachievablebythe diffractionpatternaccordingtotheBragg Eq.(1.13) In Fig.1.15,weplottedboththebehavioroftheefficiency,whichincreaseswiththenumberoflevels,and thediffractionangle,whichdecreaseswiththesame number.Thus,theuserisoftenconfrontedtoachoice inselectingeitherhighefficiencyorlargerdiffraction angle.

Althoughthefunctionof Eq.(1.54) iscontinuous,in therealworld, m canonlytakesdiscretevalues,starting at2. m ¼ 2isthecaseofabinarygrating,forwhich Eq. (1.54) logicallygivesthesamevalueofefficiency (40.5%)aswhencomputeddirectlyby Eq.(1.49), describingbinaryphasegrating.

FIG.1.15 Diffractionefficiencyandangleofadiscretized sawtoothgratingstructurewitha2p phasemodulation, accordingtothenumberoflevelsdefiningthesawtooth function.

Ithastobenotedthatthemodulationamplitudefor maximumefficiencyis DM ¼ 2for Eq.(1.54),and DM ¼ 1for Eq.(1.49),becauseduringthedigitization ofthemodulation,theaveragelevelismultipliedbya factoroftwo.

SCALARTHEORYOFDIFFRACTION

Nowthatwehaveseenthediffractionbyvariousperiodicgratings,wearegoingtogeneralizetheformalism foranystructure.Findingthemathematicalformulationforthetransformationbetweentheaperturegeometryandthediffracted fieldwillallowusnotonlyto determinetheformofthewavediffractedbyaspecific structurebutalsotocalculatethepatterntogeneratea particular field,theso-calledCGH.

Computingthediffractionpatternfromanobjector theretrievaloftheobjectfromtheobserveddiffraction patternisthe fieldofdigitalholography.Chapter5of thisbookisdedicatedtothesecomputations,andthe presentsectionismeantasanintroductiontothe field.

Digitalholographyoffersmanyadvantagescompared withregulardigitalphotography.Forexample,by capturingonbothphaseandamplitudeofthediffracted field,wecancomputethe3Dstructureoftheoriginalobject,changethefocusoftheinstrumentafterthedatahas beencaptured(postfocusing),orobservewavelength scaledeformationofanobject [39,40].

KirchhoffDiffractionIntegral Tostart,wewouldliketodeterminethepropagationof the fieldaftergoingthroughanarbitraryapertureas shownin Fig.1.16

FIG.1.16 Geometryanddefinitionofthecoordinate systemsforthepropagationoftheelectromagnetic field throughanaperture.

Theenergycarriedbythemagnetic fieldisusually muchweakerthantheenergyintheelectrical field (jBj¼jEj/c),sowearegoingtosimplifythecalculation bylimitingourselvestotheelectric field.

AccordingtotheHuygen’sprinciple,theaperture actsasahomogeneouslightsource,andthe fieldis nullintheopaqueportionsoftheaperture.So,atdistance z,the fieldisgivenbythesummationoverall thepointsoftheaperturemultipliedbythewavepropagationfunctiontothatdistance:

ThewavepropagationissolutionoftheHelmholtz equationintroducedin Eq.(1.1),andwewillchoose thesphericalwavesolution:

Inserting Eq.(1.56) Intoexpression1.55,weobtain the Kirchhoffdiffractionintegral:

where,forCartesiancoordinates: rz0 ¼ z2 þðxz x0 Þ2 þðyz y0 Þ2 q

FresnelDiffractionIntegral AselegantastheKirchhoffdiffractionintegral(Eq. 1.57)is,itisveryhardtocomputeandsomesimplificationsarenecessarytoobtainamanageableexpression.

Letusconsidertheexpansionofthe z termof the rz 0 expressioninTaylorseries: sqrt1 þ ε ¼ 1 þ

ε 2 ε2 8 þ .,suchthat: rz0 ¼ z þ 1 2 " xz x0 z 2 þ xz x0 z 2 # þ (1.58)

Our firstsetofapproximationswillbetoneglectthe thirdterminsidethecomplexexponential(exp(ikrz0)), andthesecondterminthedenominator(rz0)of Eq. (1.57).Thissetofsimplificationsisreferredasthe paraxialapproximationasitcanbeappliedforasmall apertureinregardtothedistance z:z [ xz x0 and z [ yz y0.

Thisleadstothe Fresneldiffractionintegral:

Theparaxialapproximationvaliditycriteria,usedto truncatetheTaylorseries,canalsobeexpressedasthe Fresnelnumber F:

whichisknownasthe Fraunhoferdiffractionintegral. Thisresultisparticularlyimportantonceitisrecognizedthattheintegrationtermissimplythe Fouriertransformoftheaperture.Furthermore,becauseitistheoptical intensitythatisrelevantformostapplications: I ¼jE2j, thephasefactorinfrontoftheintegralcanbeneglected. Ultimately,thislongmathematicaldevelopment leadstotheveryconvenientandelegantformulation:

ThecriteriafortheFraunhoferdiffractionintegralto bevalidisthattheobservationdistance z mustbemuch largerthantheaperturesizeandwavelength:

where D istheaperturediameter.

TheFresnelnumberinequality(Eq.1.60)expresses thefactthatthedistance z shouldbelargerthanthe wavelength l,butnotnecessarilymuchlargerthanthe aperture D.So,theFresnelapproximationisvalidin theso-called “ near field.”

FraunhoferDiffractionIntegral Ifweareinterestedbythesolutionforanobservation planefartherawayfromtheaperture,thatis,inthe “far field,” where z k x2 0 þ y 2 0 max ,furtherapproximationcanbeused.

IfweexpendthequadratictermsoftheFresnel diffractionintegral(Eq.1.59)as(a b)2 ¼ a 2

ðxz ; yz Þ¼ expðikz

Thequadraticphasefactorcanbesettounityover theentireaperture:

Thisconditionisknowninopticsasthe “far field” approximation.

DiffractionbySimpleApertures

ConsideringtherelativesimplicityoftheFraunhofer diffractionintegral(Eq.1.63),itispossibleto find analyticalsolutionsforsimpleaperturesilluminated byaplanewave:

Wearegoingtodevelopthecasesofthefollowing apertures:

• aslit

• acircularpinhole

• multipleslits

• aFresnelzoneplate

Diffractionbyaslit

Theslitisarectangularfunctionlocatedat z ¼ 0of width W alongthe x dimension:

Therefore, Eq.(1.61) canbewrittenas:

Theintegrationofthe fieldovertheslitisgivenby:

UsingEuler’sformula,wehave

Or,incylindricalcoordinates(sinq ¼ x/z):

Becausetheintensitycanbeexpressedas: I]UU*

Theintensitydistributionof Eq.(1.71) isshownin Fig.1.17.

Diffractionbyacircularpinhole

Thediffractionbyacircularapertureofdiameter D isa two-dimensional(2D)generalizationofthecaseofa slitwitharotationalsymmetryappliedtoit.Theintensitydistributioninthefar fieldbecomes

FIG.1.18 Diffractionpatternformedbyacircularaperture: theAirydisk.

Diffractionbymultipleslits

UndertheFraunhoferconditionexplainedin Section 3.3,theintensitydistributiondiffractedby m slitsof width W eachseparatedbyadistance Dx is

ThediffractionpatternformedbythepinholeapertureiscalledtheAirydiskandisshownin Fig.1.18 AcrosssectionofthisAirydiskpatternisasinc2 functionplottedin Fig.1.17

FIG.1.17 Interferencebyaslitofwidth W.Thedotedlineis asin2 functionforwhichsecondaryminimaarecollocated.

ThisequationcanbeobtainedbytheFouriertransformoftheapertureasexpressedin Eqs.(1.63)and (1.64 ).Alternatively,itcanbederivedbymultiplying theexpressionsforthediffractionbyasingleslit (whichgivesthe fi rsttermof Eq.1.73 )withtheinterferenceof m slits(whichgivesthesecondtermof Eq. 1.73).

Fig.1.19 showsanexampleofdiffractedintensity obtainedforthreeslits,withthedifferenttermsof Eq. (1.73) plottedindependently.

Fresnelzoneplate

TheFresnelzoneplateisabinarystructurethatactsasa lens.Thezoneplatediffractstheincidentplanewave intoafocalspot.ThepatternofaFresnelzoneplateis comprisedofalternatingopaqueandtransparentrings thatactlikeslits.Theradii Rm oftheseringsissuch thattheinterferenceisconstructivealongtheaxisat thefocaldistance f:

FIG.1.19 Far fieldintensitypatternformedbythe diffractionfrom3slits(plainline).Thepatternisobtainedby multiplyingtheinterferenceof3slits(dotedline)bythe diffractionbyasingleslit(dashedline).

Fig.1.20 showsaFresnelzoneplatestructureandthe conditionontheradii Rm oftheringstoobtain constructiveinterferenceatadistance f,whichisthat thedistancefromtheradiitothefocalpointmustbe amultipleofhalfwavelength(ml/2).

Ithastobenotedthattheblackandtransparent ringscomposingtheFresnelzoneplatecanbeinverted withoutanyalterationinthediffractionproperties.

TheFresnelzoneplateisabinaryamplitudemodulationdiffractiveelement.Inthatregard,wehaveseen in Section2.4 onthingratingcharacteristicsthatsuch astructurediffractsmultipleoddorders.Inthecaseof thezoneplate,thepositivehigherorders(2m þ 1) willformmultiplefocalpointsat f/(2m þ 1),when thenegativeorders( 2m þ 1)willactas negativelenses withfocallengths f/(2m þ 1).

Toreducethenumberofhigherordersandconcentratetheenergyintofewerfocalspots,itispossibleto replacetheFresnelbinarymodulationpatternbyasinusoidalgrayscalemodulation.Suchagrayscalezone platewillonlydiffractintothe þ1and 1orders(see Section2.4).Toincreasethethroughputefficiencyof thezoneplate,itisalsopossibletoreplacetheamplitudemodulationwithaphasemodulation.

ThegrayscalezoneplateiscalledtheGaborzone plateandisshownin Fig.1.21.Theamplitudeofthe modulation M accordingtothedistancetothecenter r isgivenby:

with k ¼ 2p/l.

TheGaborzoneplatemodulationisthesameasthe oneobtainedbymakinginterfereaplanewavewitha collinearpointsourcelocatedatadistance f fromthe planeoftheinterferogram.Wewillseethisgeometry whendiscussingtheholographicrecordingsetupin Section6.

Zoneplatesareparticularlyinterestingtoobtainthin andlightopticalelementsthatcanreplacebulkyrefractivelenses.Morecomplexdiffractivestructurescanalso becomputed(i.e.,CGH),suchthattheyperformmore elaborateopticalfunctions.TheseCGHscanreplace asphericallensesthataredifficultandcostlytomanufacture.ZoneplatesandCGHscanalsobeusedto manipulateelectromagneticradiationsforwhichthere isnorefractivematerial,suchasforX-rays,orwhen therefractivematerialsaretooexpensive(chalcogenide glassesforthermalinfraredradiation).

Derivingtheshapeofanaperturetoobtainaspecific wavefrontinvolves findingtheinversefunctionofthe diffractionintegral.WecanuseeithertheKirchhoff

FIG.1.20 Fresnelzoneplatediffractivestructureandradiiofthesuccessiveringstoobtainconstructive interferenceatthedistance f.

FIG.1.21 Gaborzoneplatepattern:sinusoidalphaseor amplitudemodulationthatfocusesanincidentplanewave intoafocalspot.

(Eq.1.57),theFresnel(Eq.1.59),ortheFraunhofer(Eq. 1.63)diffractionintegrals,tocalculatethespecificaperturethatwillgeneratethedesiredwavefront.

Forthemostgeneralcase,anexactsolutionforthese equationscannotbefound,andthediffractionpattern (i.e.,theshapeoftheaperture)mustbecalculatedusing acomputer.The fieldofCGHsstartedinthelate1960s whenscientistsgainedgreateraccesstocomputers.The fieldexpandsrapidlywiththeimplementationofthe fastFouriertransform(FFT)algorithmthatmade possibletocomputeFouriertransformover22Dimages ofsignificantsize [17,18,41]

However,evenwithtoday’scomputers,itisnotyet possibletocomputeCGHsintheirmostrigorous form,usingtheKirchhoffdiffractionintegral,inreal time,forcomplex3Dimages.Thisproblem,known asthecomputationalbottleneck,canbegetaround usingsimplerexpressions(Fresnel,Fraunhofer)and byusinglookuptablesthatcontainprecalculated valuesfortheaperturetogeneratespeci fi cshapes andwavefronts [42 44] .TheoptimizationofthealgorithmstocomputeCGHisstillanactivetopicof researchtoday.

COMPUTER-GENERATEDHOLOGRAMS FourierHologram

Theeasiestpathforthecomputationofthediffraction patternistousetheFraunhoferdiffractionintegral (Eq.1.63)andtaketheinverseFouriertransformof eachsides:

thediffractionintegral.Thecommonshorthandfor theseconditionstoberespectedisthattheholographic imagewillbeformedatinfinity: z / N.Toobservethe imageatamoreconvenientdistance,onecanusealens whichwillformtheimageatitsfocallength.This configurationisshownin Fig.1.22

ConsideringtheFouriertransformof2Dfunctionis alwaysa2Dfunction,andthatthesolutionisindependentofthedistance z,thereisonlyoneimageplanefor theFourierhologramandtheimagewillbetwo dimensional.

ExampleofaFourierbinaryamplitudehologramis shownin Fig.1.23

FresnelHologram

FindingtheinversefunctionfortheFresneldiffraction integral(Eq.1.59)issomewhatmorecomplicated thanfortheFraunhoferequationbecausethe field E is nowafunctionofthepropagationdistance z Eq. (1.59) canberewrittenbycreatingaparabolicwavelet functionsuchas:

Ofcourse,thesamefar fieldconditionsregardingthe imagedistancebeingmuchgreaterthantheaperture sizeandwavelengthapplytoboththisexpressionand

Bysubstituting h(z)in Eq.(1.59),itnowpossibleto findanexpressionfortheaperture:

FIG.1.22 Formationoftheimageatthefocalofalenswith aFourierhologram.

FIG.1.23 ExampleofaFourierholographicpattern(right) computedfroma2D fielddistribution(right).

FIG.1.24 ImageformationwithaFresnelcomputergeneratedhologram.

FIG.1.25 ExampleofaFresnelholographicpattern(right) computedfromatwo-fielddistributionlocatedatdifferent distances(right).

Eq.(1.78) iscertainlymoredauntingthanthe simplerFourierexpression1.76.However,thebenefit ofFresnelhologramisthatthereisnoneedtoinclude alensinthesetupinordertobringtheimagetoafocus, thediffractionpatterndoesthefocusingbyitself(see Fig.1.24).Theinclusionofthewaveletpropagation generatesFresnelzoneplate-likestructuresinthehologramthatactsasdiffractionlensestofocustheimageat finitelocations.

Inaddition,theimagegeneratedbytheFresnelhologramcanbethreedimensional,thatis,composedof severalfocalplanes.AnexampleofacomputergeneratedFresnelhologramisshownin Fig.1.25 where thetwosectionsoftheimagewillbeformedatdifferent distances.Acloseobservationofthediffractivepattern willrevealsomecentrosymmetricstructuresthatare duetotheFresnelzoneplates.

TheFresneldiffractionintegralequationcanalsobe usedtoreconstructanobjectwhenthehologram(or interferogram)iscapturedasanimage.TodayCMOS andCCDsensorshavepixelssmallenoughtoresolve theinterferenceproducedbysmallobjectslocated nearthesensorplane.Theadvantagesofnotimaging theobjectofinterestarethat, first,nolensisneeded,

andsecond,the3Dinformationcanbereconstructed. Thistechniquehasbeenusedtodemonstratevery high resolutionholographicmicroscopescapableof resolvingsinglecellssuchasredbloodcellsandlymphocytes [45].

IterativeComputationofHologram,the Gerchberg-SaxtonAlgorithm

Whencomputingadiffractionpatternfromanimage, orwhenreconstructinganimagefromadiffraction pattern(inversetransformation),theFouriertransform operationgeneratestwoterms:arealpart,whichisthe transmittance(amplitude);andanimaginarypart, whichisthephasemodulation.Quiteoftenoneor theotherisnotcapturedduringthemeasurement,or notreproducedduringthedisplayofthehologram. Thisisduetothepropertiesoftheimagesensor(amplitudeonly),orbecauseofthecharacteristicsofthe displayelement:LCoSSLMarephase-onlyelements, andDLPsareamplitude-onlyelements.Leftunaddressed,thisproblemreducestheefficiencyofthehologramandincreasesthenoiseintheimage.

Aneffectivewaytominimizethedegradationisto useaniterativecomputationsuchastheGerchbergSaxtonalgorithm [46].Theprincipleofthisalgorithm isthatthephase(intensity)ofthe mth iterationcan beusedalongthesourceintensity(phase)distribution tocalculatethe m þ 1stfunctionviaFouriertransform anditsinverse.Aschematicdiagramoftheiterationis shownin Fig.1.26 whereaphasehologramis computedfromtheimageintensitydistribution.Chapter3ofthisbookdevelopsthedifferentvariationsofthe Gerchberg-Saxtonalgorithmandtheirusefordifferent applications.

Forimagingpurpose,theGerchberg-Saxtonalgorithmconvergesquiterapidlyasitcanbeseenin Fig.1.27,whereonlythreeiterationsarenecessaryfor thehologramtoeliminatemostofthenoiseintheimageitreproduces.

However,forapplicationswherethenoiseneedsto bereducedtoaminimum,itcouldtakeseveraltens ofiterationstooptimizetheSNR [47].Foramore detaileddiscussionabouttheGerchberg-Saxtonalgorithmaswellasmoreadvancedcomputationaltechniques,seeChapter3byTomD.Milster.

ResolutionofComputer-Generated Holograms

ThelimitationintheresolutionofCGHcomesfrom severalfactors.The firstonebeingthecomputationof theFouriertransform,whichusuallyusesaFFTalgorithmthatsamplesthefunctionandlimitsthenumber offrequencies.Becauseofthissampling,theresultis

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.