Optical fiber sensors for the next generation of rehabilitation robotics arnaldo leal-junior - The f

Page 1


https://ebookmass.com/product/optical-fiber-sensors-for-thenext-generation-of-rehabilitation-robotics-arnaldo-lealjunior/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Optical

Fiber Sensors: Fundamentals for Development of Optimized Devices Ignacio Del Villar

https://ebookmass.com/product/optical-fiber-sensors-fundamentals-fordevelopment-of-optimized-devices-ignacio-del-villar/

ebookmass.com

Artificial Intelligence for Future Generation Robotics

Nath Shaw

https://ebookmass.com/product/artificial-intelligence-for-futuregeneration-robotics-rabindra-nath-shaw/

ebookmass.com

Dynamic Intentions: DCMC Next Generation (DreamCatcher MC Next Generation Book 1) Liberty Parker

https://ebookmass.com/product/dynamic-intentions-dcmc-next-generationdreamcatcher-mc-next-generation-book-1-liberty-parker/

ebookmass.com

Biomedical Defense Principles to Counter DNA Deep Hacking

Rocky Termanini

https://ebookmass.com/product/biomedical-defense-principles-tocounter-dna-deep-hacking-rocky-termanini/

ebookmass.com

Cloud Ten (Nailed It! Book 1) Fearne Hill

https://ebookmass.com/product/cloud-ten-nailed-it-book-1-fearne-hill/

ebookmass.com

VWL für Dummies 2nd Edition Detlef Beeker

https://ebookmass.com/product/vwl-fur-dummies-2nd-edition-detlefbeeker/

ebookmass.com

College Algebra (Collegiate Math) 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/college-algebra-collegiate-math-2ndedition-ebook-pdf/

ebookmass.com

The Arctic Fury Greer Macallister

https://ebookmass.com/product/the-arctic-fury-greer-macallister-2/

ebookmass.com

Principles of General, Organic, & Biological Chemistry 3rd Edition Janice Gorzynski Smith

https://ebookmass.com/product/principles-of-general-organicbiological-chemistry-3rd-edition-janice-gorzynski-smith/

ebookmass.com

Introduction to Social Work: An Advocacy Based Profession (Social Work in the New Century) 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/introduction-to-social-work-an-advocacybased-profession-social-work-in-the-new-century-2nd-edition-ebook-pdf/

ebookmass.com

OpticalFiberSensorsfortheNext

GenerationofRehabilitationRobotics

This page intentionally left blank

OpticalFiberSensors fortheNext Generationof RehabilitationRobotics

ArnaldoLeal-Junior

MechanicalEngineeringDepartment

FederalUniversityofEspiritoSanto Vitória,Brazil

AnselmoFrizera-Neto

ElectricalEngineeringDepartment

FederalUniversityofEspiritoSanto Vitória,Brazil

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-323-85952-3

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: SonniniR.Yura

EditorialProjectManager: IsabellaC.Silva

ProductionProjectManager: SojanP.Pazhayattil

Designer: VictoriaPearson

TypesetbyVTeX

2.1Softrobots:definitionsand(bio)medicalapplications

2.2Softrobotsforrehabilitationandfunctionalcompensation

2.3Human-in-the-loopdesignofsoftstructuresandhealthcare systems

2.3.1Human-in-the-loopsystems34

2.3.2Human-in-the-loopapplicationsandcurrenttrends37

2.3.3Human-in-the-loopdesigninsoftwearablerobots39

2.4Currenttrendsandfutureapproachesinwearablesoftrobots

3.3Gaitanalysissystems:fixedsystemsandwearablesensors

4.1Historicalperspective

4.2Lightpropagationinopticalwaveguides

4.3Opticalfiberpropertiesandtypes

4.4Passiveandactivecomponentsinopticalfibersystems

4.4.1Lightsources77

4.4.2Photodetectors77

4.4.3Opticalcouplers79

4.4.4Opticalcirculators80

4.4.5Spectrometersandopticalspectrumanalyzers81

4.5Opticalfiberfabricationandconnectionmethods 83

4.5.1Fabricationmethods84

4.5.2Opticalfiberconnectorizationapproaches87 References 89

5.Opticalfibermaterials

5.1Opticallytransparentmaterials

5.2Viscoelasticityoverview

5.3Dynamicmechanicalanalysisinpolymeropticalfibers 101

5.3.1DMAonPMMAsolidcorePOF103

5.3.2DynamiccharacterizationofCYTOPfibers107

5.4Influenceofopticalfibertreatmentsonpolymerproperties 111 References 115

6.Opticalfibersensingtechnologies

6.1Intensityvariationsensors 119

6.1.1Macrobendingsensors120

6.1.2Lightcoupling-basedsensors125

6.1.3Multiplexedintensityvariationsensors127

6.2Interferometers 129

6.3Gratings-basedsensors 133

6.4Compensationtechniquesandcross-sensitivitymitigationin opticalfibersensors

7.Wearablerobotsinstrumentation

7.1Opticalfibersensorsonexoskeleton’sinstrumentation

7.2Exoskeleton’sangleassessmentapplicationswithintensity variationsensors 152

7.2.1Casestudy:activelowerlimborthosisforrehabilitation (ALLOR)156

7.2.2Casestudy:modularexoskeleton157

7.3Human-robotinteractionforcesassessmentwithFiberBragg Gratings 160

7.4Interactionforcesandmicroclimateassessmentwithintensity variationsensors 166

References 172

8.Smartstructuresandtextilesforgaitanalysis

8.1Opticalfibersensorsforkinematicparametersassessment 175

8.1.1Intensityvariation-basedsensorsforjointangle assessment175

8.1.2FiberBragggratingssensorswithtunablefilter interrogationforjointangleassessment178

8.2Instrumentedinsoleforplantarpressuredistributionand groundreactionforcesevaluation 183

8.2.1FiberBragggratinginsoles183

8.2.2Multiplexedintensityvariation-basedsensorsforsmart insoles188

8.3Spatiotemporalparametersestimationusingintegratedoptical fibersensors 198 References 199

9.Softroboticsandcompliantactuatorsinstrumentation

9.1Serieselasticactuatorsinstrumentation 201

9.1.1Torquemeasurementwithintensityvariationsensors202

9.1.2Torquemeasurementwithintensityvariationsensors206

9.2Tendon-drivenactuatorsinstrumentation 212

9.2.1Artificialtendoninstrumentationwithhighlyflexible opticalfibers213 References 217

PartIV Casestudiesandadditionalapplications

10.Wearablemultifunctionalsmarttextiles

10.1Opticalfiberembedded-textilesforphysiologicalparameters monitoring 223

10.1.1Breathandheartratesmonitoring224

10.1.2Bodytemperatureassessment232

10.2Smarttextileformultiparametersensingandactivities monitoring 234

10.3Opticalfiber-embeddedsmartclothingformechanical perturbationandphysicalinteractiondetection 239

11.Smartwalker’sinstrumentationanddevelopmentwith compliantopticalfibersensors

11.1Smartwalkers’technologyoverview

11.2Smartwalkerembeddedsensorsforphysiologicalparameters assessment 247

11.2.1Systemdescription247

11.2.2Preliminaryvalidation250

11.2.3Experimentalvalidation252

11.3Multiparameterquasidistributedsensinginasmartwalker structure 252

11.3.1Experimentalvalidation252

11.3.2Experimentalvalidation256

12.Opticalfibersensorsapplicationsforhumanhealth

12.1Roboticsurgery

12.2.1Introductiontobiosensing269

12.2.2Backgroundonopticalfiberbiosensingworking principles271

12.2.3Biofunctionalizationstrategiesforfiberimmunosensors276

12.2.4Immunosensingapplicationsinmedicalbiomarkers detection279

Preface

Theadvancesinmedicineandphysicaltherapyinconjunctionwithnewdevelopmentsofmechatronicdeviceswithahigherlevelofcontrollabilityenabled thedevelopmentofassistiveroboticdevices,whichareexploredbymanyresearchgroupsaroundtheworld.Concurrently,thereisthedevelopmentand widespreadofopticalfibertechnology,whichisincreasinglyusedassensors devices.Theopticalfibersensorscharacteristicsarewellalignedwiththerequirementsofroboticinstrumentation,especiallytheoneswithelectricmotors, commonlyusedinwearablerobots:Opticalfibersensorsareimmunetoelectromagneticperturbationsofferingprecisemeasurementsinnoiseenvironments. Inaddition,theflexibilityofopticalfibersisalsoalignedwiththenewtrends insoftandflexibleroboticsystems,wherethesensorscanbeembeddedinthe robot’sstructureortheycanbeplacedonwearabledevicesforpatientmonitoring.Yearsago,alloftheseadvancesresultedinanewresearchdirection,where theopticalfibersensorswereusedontherobots’instrumentationtoextendtheir controlcapabilitiesbymeasuringparametersthatwerenotcommonlymeasured withconventionalelectromechanicalsensors.

Theresultsofyearsofresearchinroboticsandopticalfibersensorsina jointeffortoftheGraduatePrograminElectricalEngineeringandMechanical EngineeringDepartmentoftheFederalUniversityofEspiritoSanto(UFES)are summarizedinthisbook.Theaimofthisbookistoprovideacomprehensive understandingonthisnewresearchtopicanditsunderlyingtheoryandprinciples.Thisbookwasproposedandconceivedundertheassumptionthatthe nextgenerationofwearablerobotsanddevicesnotonlywillincludethesoft structureandcompliantactuators,butalsothenewopticalfibersensorsembeddedintherobots’structureandactuationunits.Wedividedthebookintofour parts.Inthefirstpartofthisbook,thedevelopmentsinwearablerobotsand assistivedevicesaswellashuman-in-the-loopdesignandtherecentdevelopmentsonsoftroboticsarediscussed.Inthesecondpart,thefocusisshiftedto opticalfibersincludingthepresentationofanoverview,themaincomponents, andcharacteristicsofanopticalfiber-baseddetectionsystemandthematerials commonlyusedonthedevelopmentofopticalsensors.Moreover,opticalfiber sensorsapproachesarepresented.Thethirdpartpresentstheopticalfiber-based instrumentationsystemsinwearablerobotsandassistivedevices,resultingin

x Preface

thecombinationoftheknowledgeacquiredinthefirstandsecondpartsofthe book.Thediscussedsystemsincludewearablerobots,smartstructuresinwhich thesensorsareembeddedinrigidand/orsoftstructuresoftherobots,compliant actuatorsandsmartwearabletextilesforpatientsmonitoring.Inthelastpart ofthebook,differentcasestudiesandadditionalapplicationarepresentedto provideabroaderviewofthemanypossibilitiesofopticalfibersensorsinassistivedevices,whichincludethedevelopmentsinsmartwalker’sinstrumentation, roboticsurgerywithmanipulators,physiologicalparametersmonitoringusing multifunctionaltextiles,andeveninbiosensorsforhealthassessment.

Thisbookcouldnotbewrittenwithoutthehardworkofthecontributors, L.Avellar,V.Biazi,W.Coimbra,andL.Vargas-Valencia,allofthemfrom UFES,contributedforsomechaptersthroughoutthebook.C.Marquesfrom UniversityofAveiro,alongtimecontributorinourresearchgrouphelpedus onthebiosensorsapplicationsusingopticalfibers.Theadvancesandmethods discussedinthisbookweredevelopedintheframeworkofdifferentresearch projectsfocusedonrehabilitationoropticalfibersensingtechnologiesasfollows:

–Activetransparentorthosisforrehabilitationandmovementassistance (CAPES88887.095626/2015-01);

–ResearchCenteronPhotonicsandAdvancedSensing(FAPES84336650);

–Opticalfibersensorsnetworkforpatientsremotemonitoring(FAPES 320/2020);

–Opticalfibersensorsinoil-waterinterfacemeasurementinproductiontanks (Petrobras2017/00702-6).

Wewouldalsoliketothankallthesupportfromourcolleaguesinwritingthis book.

ArnaldoLeal-Junior AnselmoFrizera-Neto FederalUniversityofEspiritoSanto,Vitória,Brazil

PartI Introductiontosoft roboticsandrehabilitation systems

This page intentionally left blank

Chapter1

Introductionandoverviewof

wearabletechnologies

1.1Motivation

Sincetheearlydaysofhumanhistory,thereisacontinuousincreaseinthelife expectancy,whichleadstothepopulationaging.Inhalfofacentury,from1950 to2000,theelderlypopulation(over65years)rosefrom131millionin1950to 418millionin2000,morethanathreefoldincreasein50years(Rowland, 2009). Thisincreaseinlongevityreflectstheevolutionofthesocietywithadvances onpublichealth,medicine,economyandsocialdevelopment(UnitedNations, 2019).Alloftheseadvancescontributetothecontrolofdiseases(includingthe eradicationofsomediseases),injuriesprevention,andreductionofpremature deaths(especiallyinnewborns).Insummary,manyhealthconditionsthatwere deadlyinthepast(includingdiseasessuchassmallpoxandpolio)nowadaysare treatableorcurable.AccordingwithUnitedNations(UN)reports,therearefour trendsintheglobalpopulation,whicharethepopulationgrowth,urbanization, internationalmigration,andthepopulationaging(Turner, 2009).

Generally,theelderlypopulationisdefinedasnumberofpeopleover65 years,whereastheworkingagesaredefinedastheintervalbetween25and64 years.Inaddition,therearethechildren(whoseagesare0to14years)andthe youthpopulation,agesbetween15and24years.Therefore,commonmetrics tosetthesceneofpopulationagingarethepercentagecompositionofthepopulation,consideringallfourgroups,i.e.,children,youth,working-ageadults, andolderpopulation.Therefore,commonmetricstosetthesceneofpopulationagingarethepercentagecompositionofthepopulation,consideringall fourgroups,i.e.,children,youth,working-age,andolderpopulation(United Nations, 2019).Fig. 1.1 showsthepopulationpercentagewith65yearsorolder from1950to2020andincludesstatisticalprojectionsforthenext80years(until 2100).

Intheanalysisofthepopulationaging,someunderlyingfactorssuchasaccessibilitytomedicalcare,publichealthpolicies,andsocialdevelopmentshould alsobeconsidered.Thesefactorsarenotuniformlydistributionamongcountries,andthustherearecountrieswithhigherproportion(andincreaserate)of elderlypeople.Theincreaseofelderlypopulationacrossthecountriesishigher inmoredevelopedregionsandinhigherincomecountries.In1950,Francewas thecountrywithhighestproportionofanolderpopulation(11.4%).Then,in

FIGURE1.1 Worldpopulationagingthroughouttheyearsandpredictionsforthenext80years (UnitedNations, 2019).

FIGURE1.2 Populationwith65yearsorolderineachregion(UnitedNations, 2019).

1975,Swedenwastheleadingcountryinelderlieswith15.1%ofthepopulationover65years.TheincreaseofanelderlypopulationcontinuesasItalyhad 18.1%in2000(Rowland, 2009).ThistrendcontinueswithEuropeandNorthernAmericaastheregionswiththehighestratioofanelderlypopulation,as showninFig. 1.2

AsshowninFig. 1.2,NorthernAmerica,Europe,Australia,andNew Zealandaretheregionswiththehighestelderlypopulationproportion.Itisalso worthnotingthattheEasternandSoutheasternAsiaregionistheonewiththe highestincreaserateintheolderpopulation,especiallyafter2010.However,it ispossibletoobservethatalmostallregionsshowedanincreaseoftheelderly populationthroughouttheyears.Astheolderpopulationproportionistheratio betweenthepopulationover65yearsandthetotalpopulation,suchincreasein theelderlypopulationproportionalsoisrelatedtoafertilityreductiontrendin theworldwidepopulation.AsdepictedinFig. 1.1,thereisnosubstantialincreaseonthepopulationbetween0–4years.Theso-calledagepyramidisthe agepopulationdistributionacrosstheagegroups,asshowninFig. 1.3.Theage pyramidbarelyresemblesatriangularshapenowadaysandwillcontinuously changeaccordingtostatisticalprojections.

Thedemographictransitioninworldpopulationsetsnewchallengesindifferentareas,inaneconomicalperspective,theincreaseofanolderpopulation increasesthedemandsforpensions,especiallywhencombinedwithareduction oftheratiobetweentheelderlyandworking-agepopulation(Turner, 2009).Anotherchallengeisrelatedtothehealthcareoftheelderlypopulationthatsuffers frominherentconditionsofnormalagingsuchasimmunosenescence,urologic andsensorychanges,whichincludehearingloss,visualacuity,andvestibular functiondegradation(JaulandBarron, 2017).Suchconditionsleadtovariation inphysicalfunctions,includingthereductionofwalkingspeed,mobilitydisability,difficultyinactivitiesofdailyliving,andincreaseoffallrisk(Jauland Barron, 2017).Thedegradationofphysicalfunctionsinconjunctionwiththe cognitivereductioncanalsoleadtopsychologicalandsocialissues(Jauland Barron, 2017).Thepopulationagingalsoresultsinanincreaseofclinicalconditionsthataffectthehumanhealth,theso-calledchronicage-relateddiseases andgeriatricsyndromes(Franceschietal., 2018).Theseconditionsincludeosteoarthritis,rheumatoidarthritis,Alzheimer’sdisease,Parkinson’sdisease,and weaknessoftheskeletalmuscles.Alloftheseconditionsleadtodegradationof physicaland/orcognitivefunctions(Franceschietal., 2018).Itisworthnoting thatstrokes,spinalcordinjuries,andmusculoskeletalinjuriescanalsoleadto majorlocomotorimpairments(Huoetal., 2016)

Disabilitiesandimpairmentsintheworldpopulationareincreasingdueto factorssuchaspopulationagingandtheincreaseinchronicdiseases(Organization, 2011).In2019,nearly15%oftheworldpopulationhaveatleastoneofthe manytypesofdisabilities,whichrepresentabout1billionpeopleintheentire world(Organization, 2018).Thephysicalandcognitivedisabilitieshaveamajor impactindailylifesincetheyimposelimitationsonworkperformance,activitiesofdailyliving,andhindertheindependentdevelopmentinthecommunity (AllenandHogan, 2001).Ifahigh-incomecountrysuchasUnitedStatesof America(USA)isanalyzed,about26%ofadultshavesomeformofdisability (Ferneini, 2017).Fig. 1.4 showsthetypesoffunctionalimpairmentamongthe 26%group,whichresultedin61millionpeople.

FIGURE1.3 Agepyramidevolutionworldwidefrom1950to2020,includingprojectionsforthe next30years.Eachcolorrepresentsoneagegroup,i.e.,0–14years,15–24years,25–64years,and theonesolderthan65years(UnitedNations, 2019).

AsshowninFig. 1.4,themostcommondisabilityismobility,causedbylocomotorimpairment,wheredifferentclinicalconditionscanleadtoamultitude ofgaitdisorders,assummarizedinFasanoandBloem(2013).Inanattemptof mitigating(oreliminating)thephysicalimpairments,thephysicalrehabilitation emergesasafeasibleoptionwithpredefinedclinicalguidesfortherehabilitationofdifferentdisorders(PirkerandKatzenschlager, 2017).However,asthe populationwithphysicaldisabilityincreases,manyregionsreportshortagein physiotherapistsandrehabilitationpersonnel(Organization, 2011).Actually,for high-incomecountries,thereisabout5physiotherapistsper10,000population andthisnumberisevenlowerforlow-incomeregions(Organization, 2011).

FIGURE1.4 TypesofdisabilitiesintheUSA(Ferneini, 2017).

Thisscenariohaspushedtheboundariesfornoveltherapeuticmethodsandassistancedevicesforpatientswithlocomotorimpairment,whichalsoresultinthe developmentofnoveldeviceswiththeaimofmonitoringparametersforhuman healthassessment(Majumderetal., 2017).

Inordertoofferindependenceandattenuatetheeffectsofhumangaitdisordersandphysicalimpairments,differentassistancedeviceshavebeenproposed throughouttheyears,e.g.,prostheses(Haetal., 2011),exoskeletons(Bayonet al., 2016),orthosis(dosSantosetal., 2015)andsmartwalkers(SWs)(Martins etal., 2012).Thelatterisgenerallyusedasasupportingdeviceinthepatients bipedestation,whichaidsintheirbalance,andthus,improvingthemobility (Martinsetal., 2012).SWspresentactuatorsandelectroniccomponentsaimingtoprovideabetterassistancetotheusers,wherethefunctionalitiesofsuch devicesincludeautonomouscontrolwiththepossibilityofsharedormanual controlaswell,sensorialfeedback,highersafety,andthepossibilityofmonitoringtheuser’state(Martinsetal., 2015).Amongthewearableroboticdevices forrehabilitation,exoskeletonsshowadvantagesoverconventionalrehabilitationtherapiesrelatedtotheirhigherrepeatabilityintherehabilitationexercises, possibilityoftreatmentcustomization,andquantitativefeedbackofthepatient’s recovery(Kwakkeletal., 2008).Inaddition,wearablerobotscontrolstrategies forhuman-robotphysicalandcognitiveinteractionsenableusingexoskeletons asassistancedevicesfordailyactivities,whichincludegaitassistance(Bueno etal., 2008).

Thepossibilityofmonitoringparametersofmovementaswellasphysiologicalparametersforhumanhealthenablesnoveldevelopmentsinhealthcarein

whichitispossibletoassessthepatient’sconditionforthecontinuousmonitoringofhealthconditionsaswellasthepossibilityofanticipatingsomediseases and/ordisorders.Themonitoredparametersforhumanhealthassessmentincludefootplantarpressure,whichprovidesimportantdataregardingthehuman locomotion(AbdulRazaketal., 2012).Withtheplantarpressureassessment,it ispossibletoobtainafootpressuredistributionmap,whichplaysanimportant roleonthemonitoringoffootulcerations(ofparticularimportancefordiabetes patients).Inaddition,footpressuremapsenablemeasurementsoffoot-function indexessuchasarchindex,whichprovidetheevaluationofthearchtypeof eachindividualthatisalsorelatedtoinjuriesinrunners(Teyhenetal., 2009). Furthermore,thedynamicevaluationofthefootplantarpressurecanalsoaid cliniciansonthegaitrelatedpathologiesdiagnosis(Leal-Junioretal., 2018a).

Thegaitcycleisdividedintotwomainphases:stanceandswing,which presentmanysubdivisions(Taborrietal., 2016).Thesubdivisionsofthestance phasecanbedetectedbytheplantarpressurevariationanditiscriticalforthe controlofwearabledevicesforgaitassistance(Villa-Parraetal., 2017).Additionally,themeasurementandanalysisofjointanglescanprovidebenefitsfor cliniciansandtherapistssinceitisusedontheevaluationandquantification ofsurgicalinterventionsandrehabilitationexercises(Dejnabadietal., 2005). Inaddition,suchmeasurementscanbeappliedfortrainingathletes(Hawkins, 2000)andthekinematicdatahavebeenemployedonthecontrolofneuralprostheses(TongandGranat, 1999).

Furthermore,wearablesensorscanbeusedonhealthcareapplications(Nag etal., 2017).Tothatextent,significantadvancesinsensortechnology,wireless communications,anddataanalysishaveenabledachangeofscenario,wherethe healthconditionassessmentisnotlimitedtoclinicalenvironments(Korhonenet al., 2003).Thusitisalsopossibletomonitordifferentphysiologicalparameters forpatientsathome,whichisespeciallydesirablefortheelderlypopulation andpeoplewithlocomotordisabilities(Majumderetal., 2017).Amongmany importantphysiologicalparameters,abnormalitiesontheheartrate(HR)and breathingrate(BR)areimportantindicatorsofsomecardiovasculardiseases (Böhmetal., 2015),fatigue(Nishyamaetal., 2011),apnea(Nishyamaetal., 2011),andrespiratoryabnormalities(Straußetal., 2014).

Thesenewadvancesinhealthcaretechnologyprovidenewinsightsforrehabilitationandtherapeutics,whereawidespreadofwearabletechnologieshas beenobservedinthelastyearswithanimpactinindustrialmanufacturingfor thesenewproducts,regulations,anddatasecurity(Erdmieretal., 2016).From theuserperspective,methodsforincreasingthepatientengagementontheuse ofsuchtechnologiesarealsoproposed(Tranetal., 2019).Furthermore,challengesrelatedtothetechnologysustainability,failurerates,privacy,andsecurity havebeenaddressed(Bove, 2019).Thewidespreadofwearableassistivetechnologiesinconjunctionwiththeincreaseonthepatientengagementresultina continuousincreaseonthemarketofwearablehealthcaredevices(TheEuropeanCommunities, 2016).Fig. 1.5 showsanoverviewoftheEuropeanmarket

onhealthcarewearabledevices,wherealargeincreaseonthemarketcanbe seenwiththeforecastofevenhigherincreaseinthecomingyears.Inaddition, Fig. 1.5 alsoshowsthatalmostahalf(42%)ofthewearabledevicesarefocused onhealthcareapplicationsandthisvaluecanbeevenhigherifweconsiderthat otherhealthcareapplicationsarerelatedtomonitoringandsensing(16%ofall applications).

FIGURE1.5 Wearabledevicesapplicationsandhealthcaremarketoverview(TheEuropeanCommunities, 2016).

Thecontinuousagingofthepopulationaswellastheincreaseonchronic diseasesandphysicalimpairmentsintheworldpopulationmotivatethedevelopmentofnewsmart/roboticdevicesforhumanassistanceandhealthcondition assessment.Nowadays,suchtechnologieshavealargeshareonthemarketand areprogressivelypresentinourdailylife.Itispossibletoclassifysuchtechnologiesintotwomajorgroups:(i)wearableroboticsandassistivedevicesand(ii) wearablesensorsandmonitoringdevices.Bothgroupsarethoroughlydiscussed inthenextsections.

1.2Wearableroboticsandassistivedevices

Robotswereoriginallydesignedtoreplacehumansinrepetitiveorpreciseindustrialtaskswhereminimalornointeractionwiththeoperatoroccurred.Currently,itisusualtonoticerobotsclosetothehumaninanunimaginablesetof scenarios,fromcleaningrobotstorehabilitationandfunctionalcompensation devices(Huoetal., 2016).Eveninindustrialenvironments,thereishumanrobotcooperationtodevelopcomplexandheavy-dutytasks.Inthiscontext, thereisacontinuouschangeoftheparadigmofrobotsdesignandcomplex (physicalandcognitive)human-robotinteractionisatthecenteroftechnologicaldevelopment(Morenoetal., 2008).

Wearablerobots(WR)aredefinedasthosewornbyhumanoperatorsaiming atsupplementingorevenreplacingphysicalfunctions(Morenoetal., 2008). Additionally,wearablerobotscanbeusedtoreplacemissinglimbs,asprostheticdevices,oralongsidewithhumanlimbs,creatingtheso-calledorthotic devicesorexoskeletons.Inthiscontext,itisimportanttodefinephysicalhumanrobotinteraction(pHRI)asthegenerationofsupplementaryforcestoempower andovercomehumanphysicalandmotorlimitsderivingfromtraumaordisease(Alamietal., 2006).Physicalhuman-robotinteractioninvolvesanetflux ofpowerbetweenthewearabledeviceandtheuser.Alternatively,cognitive human-robotinteraction(cHRI)impliesmakingthehumanawareofthepossibilitiesoftherobotatthesametimethattheindividualcontrolstherobotic device(Pons, 2010).Consideringthecontextofmotorcontrol,cognitiveprocessleadstoplanningandexecutionofmotortasks,involvingactivityfrom centralandperipheralstructures.Thusinformationtodecodehumanintention isgatheredfromdifferentlevelsofthisprocess,fromcentralandperipheralnervoussystemstohumanmotion,whichresultinbrain-,neural-andmovementcontrolledexoskeletons(Pons, 2010).BothcHRIandpHRIhavedirectimpact ontheusabilityanddependabilityofassistiverobotictechnologies.TheconceptsofcHRIandpHRIarealsotranslatedtootherapplicationsofrehabilitation robotics,suchaspreviouslyproposedinhuman-robotinteractionforlocomotion assistancewithsmartwalkers(CifuentesandFrizera, 2016).

Thedevelopmentofdifferentinstancesofwearablerobotsisintricately linkedtotheapplicationsforwhichtheyareproposed.ResearchandtechnologicaldevelopmentsofWRdatefromtheearly1960s,whentheUSDepartmentof Defenseproposedtheconceptofpoweredsuits.Inparallel,CornelAeronautical Laboratoriesbroughttolighttheconceptofhumanamplifiersasmanipulators toenhancethephysicalcapabilitiesoftheoperator(Roconetal., 2008).Infact, accordingtoMorenoetal.(2008),therearedifferentformsofclassifyingWR. Thefirstoneisintoprostheticororthoticdevices.Prostheticrobotsarethose thatsubstitutelostlimbswhileorthoticrobotsoperateinparallelwiththesubject’slimbs.Asecond(anduseful)classificationisaccordingtotheapplication ofuse.Inthiscase,applicationsrangefromservicerobots,rehabilitation,and functionalcompensationdevices(alsocalledmedicalexoskeletons),spaceapplicationstodevicesformilitaryuse.

BeyondthepotentialapplicationsofWRtoaugmentloadcarryingcapacitiesortoenabletheusertoworkinharshenvironments,thisbookfocuseson therehabilitationandfunctionalcompensationwearabledevices.Rehabilitation andfunctionalcompensationarekeyinanagingpopulation,wheretheshortage ofcaregiversisareality.Whilerehabilitationdevicescanbeusedforimproving lostfunctionsinalargerangeofapplicationsanddisabilities,functionalcompensationdevicesareakeytoincreaseindependenceandperformanceindaily tasksofindividualswithachroniclesionorpermanentdysfunctions(Huoetal., 2016).

Rehabilitationandwearablerobotsdatefromtheearly1960s.Startingwith pioneeringworkatCaseInstituteofTechnology,afourdegree-of-freedom (DoF)externallypoweredexoskeletonwasproposedand,in1969,theRancho GoldenArmwaspresentedasasixDoFpoweredorthosis(Harwinetal., 1995).

Anotherinterestingapproachthatledtotheevolutionofrehabilitationrobots isusingindustrialrobotsincombinationwithinterfacedevicestoassistpatients.TheUSDepartmentofVeteransAffairsandStanfordUniversity(VA/SU) roboticsprogramproposedtheRoboticsAidProjectwiththegoalofdeveloping asystemforpeopleaffectedbyquadriplegia(VanderLoos, 1995).Therobot couldbevoice-controlledtoperformpreexistingprograms.Robotsforassisting individualsinActivitiesofDailyLiving(ADLs)weredevelopedbytheClinical RoboticsLaboratoryattheVASpinalCordInjuryCenter(SCIC).InEurope (Dallawayetal., 1995),theSpartacusProjectproposedtheuseofmanipulators toassistindividualswithspinalcordinjuries.Arobotarmwasalsoproposedto assisttetraplegicpatientsatUniversityofHeidelberg(Germany).TheHeidelbergManipulatorusedageneral-purposepneumaticendeffectorwasusedfor manipulationandpageturningforwhichcouldalsobeperformedbyaseparatelycontrolledvacuum“finger.”Foramoredetailedhistoricaldescriptionof rehabilitationrobotics,pleaserefertoRoconandPons(2011).

LimitationsonthedevelopmentofWRswerehistoricallyrelatedtolimitationsonpowersupply,sensor,andactuatortechnologies.Inpresentdays,some ofthoselimitationsremain,beingoneofthemainreasonsfornotfindingmany WRambulatorydevices.Assensorsevolvedtominiaturization,withtherelated advantagesintransducingphenomenathroughdifferentenergydomains,the sametrendisyetnotachievedinpowersupplytechnologiesandonthedevelopmentofactuatorsthataredesignedtoimposeapredefinedmechanicalstate ontheroboticstructure.

InmostWRapplications,controlstrategiesrequireforce-controlledactuators,whichishardlyachievedinmostactuatortechnologiesduetoimpedance, striction,andbandwidthlimitations(Pons, 2010).Traditionaltechnologies,such aspneumatic,hydraulic,andelectromagneticactuatorsarefoundinseveral exoskeletalrobots(Huoetal., 2016).Directdriveactuatorsareaninterestingmannertoachieveclosetoidealforcesources.However,suchsystemsare power-hungry,bulky,andheavyforexoskeletons,especiallythosedesignedto beambulatory(Duongetal., 2016).

Serieselasticactuators(SEAs)are,inthissense,anotherimportantapproach toachieveacontrollableimpedanceandbandwidthforwearabledevices.Electromagneticactuatorsareusuallysettodrivetheexoskeleton’sjointsandtoset acontrolledforcebycompressingtheelasticelement(BlayaandHerr, 2004). SEAsdesignalsoenablethepossibilityofestimatingtheoutputtorquethrough springdeflection,whichgreatlysimplifytheactuatorinstrumentation,since onlyanglesensorscanbeused(dosSantosetal., 2015).

Anotherinterestingapproachistousetheuser’smusclesasactuatorsby meansoffunctionalelectricalstimulation(FES)systemswithhighselectivity andperformance(SpringerandKhamis, 2017).Itisimportanttonotethatthe humanmusculoskeletalsystemispreservedaftersomelesionsthatleadtomotorimpairments,suchasstrokeandspinalcordinjury.Althoughsuchartificial activationofmusclescanfunctionasthesolesourceofactuation,applications ofintelligentFESsystemsinconjunctionwithotheractuators(suchasSEA) arealsoaninterestingalternativeforincreasinguser’sparticipation,avoidthe decreaseofmotorfunction,andatthesametime,providestablelocomotion (Seeletal., 2016).Otheremergingtechnologies,suchaselectroactivepolymers (Miriyevetal., 2017),electro-andmagneto-rheologicalfluids(Andradeetal., 2018),andshapememoryalloys(Bundhooetal., 2009)alsocouldbeconsideredpromisingforWRactuation,butarenotaseasilyfoundintheliteratureas thepreviouslymentionedtechnologies(Morenoetal., 2008).

Consideringsensortechnologyanditscloseinteractionwiththescopeof thisbook,thedevelopmentofcompactandenergeticallyefficientsensingdevicesenablebetterperformanceofwearableroboticsasmoreinformationfrom thedualphysicalandcognitivehuman-robotinteractionsaregathered,which improvesthedecision-makingprocessontherobotandthecompliancebetweenbothintrinsicallyinterfacedagents(humanandrobot).Sensorsallow betterfeedbackforhumanmotorcontrolandareakeystonetomonitorthe human-robot(andenvironment)interaction.Inthissense,solutionsformonitoringbioelectricalactivityfromtheuser’sneuromuscularsystem,kinematics (positions,angles,velocities,andaccelerations),andtheinteractionforcesand pressuresarecriticalinWRtechnologies.

Sensorsarefundamentaltoachievenaturalinterfacesincognitiveinteraction.Forabetterinteractionwiththeuser,informationshouldbegatheredfrom differentlevels,i.e.,centralnervoussystem(CNS),peripheralnervoussystem (PNS),andmovement.ConsideringtheCNS,informationfromtheuser’sbrain activityisobtainedforthedevelopmentofbrain-controlledexoskeletons(Pons, 2010).Inthisarea,sensorsaremainlyintegratedwithbrain-machineinterfaces andelectroencephalogram(EEG)isthemostusedsignal.Advancesinwireless, dryandimplantableEEGelectrodesarealsocurrentresearchanddevelopment areas(Xuetal., 2017).Neuralcontrolofwearabledevicescanbeachievedby interfacingrobotswiththehumanPNS.Surfaceandimplantedelectromyography(EMG)electrodesallowabroadrangeofapplications.Althoughintraneural/implantedinterfacesalreadyshowpromisingresults,thereareimportant

drawbacksthatshouldbeconsidered(whicharealsofoundonimplantedEEG electrodes),sincetheysufferfromhighnoiseandneeddirectcontactwiththe measuredregion;theirinstallationiscumbersomeandtime-consuming(Moreno etal., 2008).Suchsensorsalsoneedcomplexsignalprocessingtechniques,and themeasuredelectricalpotentialisnotdirectlyrelatedtotheappliedforceon thehuman-robotinteraction.

Thethirdlevelofinteractioninvolvestheacquisitionofkinematicandkineticinformation.Inthissense,encoders,hall-effectsensors,potentiometers, electrogoniometers,andmicroelectromechanicalsystems(MEMS)arealready widelyusedforhumanandrobotjointmeasurementsofparameterssuchas deformation,angle,torque,andforce.Sensorsformonitoringthephysicalinteractionbetweenhumanandrobotarealsofundamentalforthesafeoperationof theroboticdeviceincloseinteractionwithhumans.BeyondthekinematiccompatibilitybetweenexoskeletonandlimbanatomythatshouldbetakenintoaccountduringtheWR’sdesign,thecorrectapplicationandmonitoringofforces andpressuresinthephysicalinterfacearenecessaryforaneffectivemechanicalpowertransferbetweenrobotandtheuser.Abroadrangeoftechnologies, includingpiezoelectricorcapacitivesensors,straingauges,andpiezoresistive polymerscanmonitorforceandpressureinteractionbetweenahumanandrobot (Morenoetal., 2008).

Themonitoringcomfortandergonomicsplayanimportantroleinwearable robotsusabilityandusermotivationontherehabilitationtasks,wheresuitable monitoringofloadsonhumantissues(throughmonitoringforceandpressure) andmicroclimate(temperatureandhumidity)shouldbeperformedinorderto avoidpressureulcers,scars,andothertissuedamages.Sensorsdesignedtoprovidedirectmeasurementsofsuchparametersareessentialforachievingthe usabilityandsafetyrequirementsinrehabilitationandfunctionalcompensation systems.Humidityinformationcanbeacquiredwithdifferentsensortechnologies:capacitive,resistive,andthermalconductivitysensorsarefound.Temperaturesensingisalsomatureforindustrialapplications,whereabroadrangeof sensitiveandprecisedevicesbasedonthermocouplesandsemiconductorand resistivesensorsarefound.Nevertheless,suchsensorssystemsarenotusually foundincurrentWR(Huoetal., 2016).

Thetrendofsoftrobotsasthefutureofwearabletechnologybroughtimportantconstraintsandnewchallengesforthedevelopmentofflexibletechnologies forsensors,astheconventionalrigidstructuresforsensorsarenotsuitablefor suchnovelflexibleandsoftrobots.Inthissense,newmaterialsforflexiblesensorsarealsothefocusofresearchinseveralresearchgroups.Softrobotsare anemergingfieldthataimsatdevelopingrobotsthataremoreadaptableto theirsurroundings.Suchdevicesareexpectedtoperformdifferentandmoreautonomoustasksandtomimicthemotionandfunctionsofbiologicalsystems (Editorial, 2018).Softandsmartmaterials(suchaselastomersandtextiles) andfabricationtechnologies(especially3Dprinting(Wallinetal., 2018)and

origamifoldingtechniques(RusandTolley, 2018))areimportantinthedesign ofsoftrobots.

Thetechnologicalchallengesinvolvedinthedevelopmentandintegrationof softactuators,sensors,control,andpowersystemstodesignartificialandintelligentsoftrobotsthatcanworksafelyincloseinteractionwithhumansare importantgoalsofthisfield.Applicationsofsoftrobotsincludeassistiveand wearabledevicesthatcanworkinspaceorwithinhumanorgans.Itisimportant tonotethatsoftrobotswillnotreplacetraditionalrigid(medical)exoskeletons, consideringthatarigidstructureandpowerfulactuatorsareneededforagreat numberofapplications,suchasprovidingtheabilitytomovebodypartsfor patientsthatareparalyzedbelowthewaist.Instead,softrobotswilloffercomplementarycapabilitiesforapplicationsthatrequiresoftsystems(Walsh, 2018). Thesoftmaterialpropertiesprovideinterestingadvantagesforassistiverobots, especiallybyminimizingrestrictionstothewearerandeliminatingtheneed foraligningrobotandbiologicaljoints.Additionally,softtechnologiescanbe designedtonotinterferewithnaturalmovementsoftheuser.Suchlowinertia features,whichareusuallyhardtoachieveinconventionalorrigidbiomechatronicdevices.Fig. 1.6 summarizesthewearablerobotstechnologiesdiscussed inthissectionandshowsthemonitoredparametersinsuchdevices.

Thisbookaddressesapromisingandyetmaturetechnology,opticalfiber sensors,whichrepresentanevolutiononthedesignandintegrationofsoftsensorsinflexiblestructures,oraspartofthefabricationofsmartmaterials.Such technologycanbeusedfordevelopingdistributedorquasidistributedsensor systemsaswillbefurtherexploredinthenextchapters.Suchsystemscanprovidedifferentmeasurementsandparameterstobeusedinrehabilitationand functionalcompensationwearableandsoftroboticsystems.

1.3Wearablesensorsandmonitoringdevices

Thepatientmonitoringparametersincludethebiomechanicalones,subdivided intokinematicsandkinetics.Suchparametersprovideimportantinformationregardingthehumanphysicalconditionandaredirectlyrelatedtotheefficiency onthedailyactivityperformanceaswellasthelocomotion(Kirtley, 2006). Thebiomechanicsofhumanmovementisthestudyofthemechanicalcharacteristicsandaspectsofhumanmovement(Knudson, 2018).Asanimportant featureinhumanlocomotion,themovementanalysisincludesgaitanalysis, whichcomprisesthesystematicstudyofhumanwalking,performedbycollectingkinematicandkineticdata(Wongetal., 2015).Inthekinematicsassessment, thedescriptionofbodymotionisperformedwithoutconsideringthecausesof motion(Wongetal., 2015).Thekinematicparametersincludejointangles,centerofmass(CoM)displacementvelocity,andspatiotemporalgaitparameters suchascadence,stride,andsteplength,amongothersasdiscussedinKirtley (2006).Thespatiotemporalgaitparametersdescribethefootplacement,gait eventstiming,andvelocityvariables(Kirtley, 2006).Theassessmentofsuch

FIGURE1.6 Schematicrepresentationofthewearablerobots(exoskeleton,inthiscase)andthe parametersfortheirinstrumentation.

parametersformsthebasisofthegaitkinematicanalysisasitcomplementsthe angularanddisplacementdataingait.Inthemovement’skineticsassessment, theforcesandtorquesthatinitiatethemovementareanalyzed.Thus,italsoconsiderstheforcesgeneratedinternallyinthebodythatresultinhumanmovement (Wongetal., 2015).Ingeneral,kineticsparametersincludegroundreaction forces(GRF),plantarpressuredistribution,andjointmomentum(Muro-de-la Herranetal., 2014).

Thekinematicparameterassessment,especiallyhumanjointangles,are appliedonrehabilitation,trainingathletesandthediagnosisofneurologicaldisordersthataffectsthemovement(El-GoharyandMcNames, 2012).Moreover, thekinematicdatameasuredcanbeemployedonneuralprosthesescontroland functionalelectricalstimulation(FES)(TongandGranat, 1999).Camera-based motioncapturesystemsprovidereliablemeasurementsofhumankinematics. However,itisacostlyandtime-consumingtechnique.Asitislimitedtolaboratoryorclinicalenvironment,itcannotbeappliedonthecontinuousmonitoring ofhumanmovement,especiallyinremote(orin-home)(El-GoharyandMcNames, 2012).Therefore,forgaitanalysis,themotioncaptureandkinematic measurementarelimitedtofewgaitcycles.Withtheaimofaddressingthese

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.