Numerical solutions of three classes of nonlinear parabolic integro-differential equations 1st editi

Page 1


https://ebookmass.com/product/numerical-solutions-of-threeclasses-of-nonlinear-parabolic-integro-differentialequations-1st-edition-jangveladze/

Crucial Conversations: Tools for Talking When Stakes are

High, 3rd Edition Joseph Grenny & Kerry Patterson & Ron Mcmillan & Al Switzler & Emily Gregory

https://ebookmass.com/product/crucial-conversations-tools-for-talkingwhen-stakes-are-high-3rd-edition-joseph-grenny-kerry-patterson-ronmcmillan-al-switzler-emily-gregory/

ebookmass.com

Academic Press is an imprint of Elsevier

32 Jamestown Road, London NW1 7BY, UK

225 Wyman Street, Waltham, MA 02451, USA

525 B Street, Suite 1800, San Diego, CA 92101-4495, USA

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

Copyright © 2016 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-804628-9

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

For information on all Academic Press Publications visit our website at http://store.elsevier.com/

ACKNOWLEDGMENTS

ThefirstauthorthanksFulbrightVisitingScholarProgramfor givinghimtheopportunitytovisitU.S.A.andtheNavalPostgraduateSchoolinMonterey,CA,U.S.A.forhostinghimduring theninemonthsofhistenurein2012-2013.Thesecondauthor thanksShotaRustaveliNationalScientificFoundationofRepublicofGeorgiaforgivinghimopportunitytovisitU.S.A. andtheNavalPostgraduateSchoolinMonterey,CA,U.S.A.for hostinghimduringthefourmonthsofhistenurein2013.

Abstract

Numerical Solutions of Three Classes of Nonlinear Parabolic Integro-Differential Equation. http://dx.doi.org/10.1016/B978-0-12-804628-9.50008-9

© 2016 Elsevier Ltd. All rights reserved.

Thisbookisconcernedwiththenumericalsolutionsofsome classesofnonlinearintegro-differentialmodels.Somepropertiesofthesolutionsofthecorrespondinginitial-boundaryvalue problemsstudiedinthemonographequationsaregiven.Three typesofnonlinearintegro-differentialmodelsareconsidered.Algorithmsoffindingapproximatesolutionsareconstructedand investigated.Resultsofnumericalexperimentswithtablesand graphicalillustrationsandtheiranalysisaregiven.Thebook consistsoffourchapters.Attheendofthebookalistofthe quotedliteratureandindexesaregiven.Eachchapterisconcludedwithadetailedsection,entitled”Commentsandbibliographicalnotes,”containingreferencestotheprincipalresults treated,aswellasinformationonimportanttopicsrelatedto, butsometimesnotincludedinthebodyofthetext. 1

Keywords: Electromagneticfieldpenetration,Maxwell’s equations,integro-differentialmodels,existenceanduniqueness, asymptoticbehavior,semi-discreteandfinitedifferenceschemes, Galerkin’smethod,finiteelementapproximation,errorestimate, stabilityandconvergence.

Chapter1 Introduction

Abstract

Thedescriptionofvariouskindsofintegro-differentialequationsandabriefhistoryoftheiroriginandapplicationsare given.Theimportanceofinvestigationsofintegro-differential modelsispointedoutaswell.Classificationofintegro-differentialequationisgiven.Themainattentionispaidonparabolic typeintegro-differentialmodels.Inparticular,threetypesof integro-differentialequationsareconsidered.Twoofthemare basedonMaxwell’sequationsdescribingelectromagneticfield penetrationintoasubstance.Thethirdoneisobtainedby simulationofheatflow.Attheendofthechapter,asatthe endofeachchapter,thecommentsandbibliographicalnotesis given,whichconsistsofdescriptionofreferencesconcerningto thetopicconsidered.

Numerical Solutions of Three Classes of Nonlinear Parabolic Integro-Differential Equation. http://dx.doi.org/10.1016/B978-0-12-804628-9.50001-6

© 2016 Elsevier Inc. All rights reserved.

Keywords: Electromagneticfieldpenetration,Maxwell’s system,heatflowequation,integro-differentialmodels. 3

Inmathematicalmodelingofappliedtasksdifferential,integral,andintegro-differential(I-D,forshort)equationsappear veryoften.Therearenumerousscientificworksdevotedtothe investigationofdifferentialequations.Thereisavastliterature inthefieldofintegralandintegro-differentialmodelsaswell.

Thedifferentialequationsareconnectingunknownfunctions, theirderivatives,andindependentvariables.Ontheotherhand, integralequationscontaintheunknownfunctionsunderanintegralaswell.

Thetermintegro-differentialequationintheliteratureis usedinthecasewhentheequationcontainsunknownfunction togetherwithitsderivativesandwheneitherunknownfunction, oritsderivatives,orbothappearunderanintegral.

Letusrecallthegeneralclassificationofintegro-differential equations.Iftheequationcontainsderivativesofunknownfunctionofonevariablethentheintegro-differentialequationiscalled ordinaryintegro-differentialequation.Theorderofanequation isthesameasthehighest-orderderivativeoftheunknownfunctionintheequation.

Theintegro-differentialequationsoftenencounteredinmathematicsandphysicscontainderivativesofvariousvariables; therefore,theseequationsarecalledintegro-differentialequationswithpartialderivativesorpartialintegro-differentialequations.

Intheapplicationsveryoftenthereareintegro-differential equationswithpartialderivativesandmultipleintegralsaswell, forexample,Boltzmannequation[66]andKolmogorov-Feller equation[288].

Volterraisoneofthefoundersofthetheoryofintegraland integro-differentialequations.Hisworks,especiallyintheintegralandintegro-differentialequations,areoftencitedtilltoday. TheclassicalbookbyVolterra[469]iswidelyquotedintheliterature.In1884Volterra[465]beganhisresearchinthetheoryof

CHAPTER1.INTRODUCTION

integralequationsdevotedtodistributionofanelectricalcharge onasphericalpatch.Thisworkledtotheequation,whichin themodernliteratureiscalledtheintegralequationofthefirst kindwithsymmetrickernel.

Theworkonthetheoryofelasticitybecamethebeginning researchofVolterraleadingtothetheoryofpartialintegrodifferentialequations.In1909Volterra[466]hasstudiedaparticulartypeofsuchequationsandhasshownthatthisintegrodifferentialequationisequivalenttoasystemconsistingofthree linearintegralequationsandasecondorderpartialdifferential equations.

Thefirstexamplesofintegro-differentialequationswithpartialderivativesinvestigatedinthebeginningofthetwentieth centurywereinSchlesinger’sworks[417],[418],wherethefollowingequationisinvestigated:

Numerousworksinthebeginningofthetwentiethcentury weredevotedtoresearchofintegro-differentialequationsofvariouskinds.Theexcellentbibliographyinthiscaseisgiveninthe classicalbookbyVolterra[469].Inaddition,Kerimov[271],the editoroftheRussiantranslationofthisbook,hasupdated(up to1970s)thelistofreferencesonintegralandintegro-differential equations.

Letusdescribesomeclassesofmathematicalmodelsofsecondorderpromotingintensiveresearchonpartialintegro-differentialequations.

Whenwetakeintoaccounthereditaryphenomena,thequestionsofphysicsandmechanicsleadtointegro-differentialequations.Ahereditaryphenomenonoccursinasystemwhenthe phenomenondoesnotdependonlyontheactualstateofthe systembutonalltheprecedingstatesthroughwhichthesys-

Integro-differentialequationsofparabolictypeariseinthe studyofvariousproblemsinphysics,chemistry,technology, economics,etc.Oneveryimportantproblemofappliedtype isgeneratedbymathematicalmodelingofprocessesofelectromagneticfieldpenetrationintoasubstanceandisdescribedby thewell-knownMaxwell’sequations[300].Intheworks[187] and[188],complexsystemcorrespondingtononlinearpartialdifferentialequationswasreducedtointegro-differentialform.If thecoefficientofthermalheatcapacityandelectroconductivity ofthesubstancearehighlydependentontemperature,thenthe Maxwell’ssystemcanberewritteninthefollowingform(see [187]and[188]):

Insystem(1.6), ∇× W and ∇· W aretheusualvectoroperatorswithrespecttothevariables x =(x1,x2,x3). Evenonedimensionalscalarversionofthismodelisverycomplicatedand itsinvestigationhasbeenpossibleyetonlyforspecialcases.The one-dimensionalscalarcaseofthemodel(1.6),(1.7)hasthefollowingform

where a(S) ≥ a0 = const> 0isagainaknownfunctionofits argument.Investigationof(1.6),(1.7),and(1.8)typemodels

CHAPTER1.INTRODUCTION

beganintheworks[138],[187],and[188].Sincethenmany scientificpublicationsweredevotedtotheinvestigationofexistenceanduniquenessoftheirsolutionsundervarioustypesof initialandboundaryconditions.Inthisrespect,especiallysignificantaretheworks[49],[50],[141],[146],[147],[219],[220], [238],[254],[256],[302],[303],[304],[305],[306],[307],[322], [333],[334],andreferencetherein.Authorsofthisbookhave alsomadecontributioninthisdirection,forexample,see[137], [138],[139],[140],[141],[145],[146],[147],[186],[187],[188], [219],[220],[223],[238],[247],[248],[253],[254],[256],[261], andreferencetherein.

Makingcertainphysicalassumptionsinmathematicaldescriptionoftheabove-mentionedprocessofpenetrationofelectromagneticfieldintoasubstance,Laptev[306]hasconstructed anewintegro-differentialmodel,whichrepresentsageneralizationofthesystemintroducedin[187]and[188].Founded onMaxwell’ssystemthefollowingparabolicintegro-differential modelisobtained

Intheworks[303],[305],and[306]forconditionallyclosed operators,anoperatorschemeisconstructed.Thisschemeis usedfor(1.6),(1.7)typemodelstoproveexistenceanduniquenessofsolutionofinitial-boundaryvalueproblems.Intheabovementionedwork[306]Laptevpointsoutthatfortheseso-called averagedintegro-differentialmodels(1.9),itisnecessarytodevelopadifferent,specialapproach.

Insystems(1.6),(1.7),and(1.9), W =(W1,W2,W3)denotes avector,whichisconnectedbyavectorofamagneticfield H = (H1,H2,H3)andisthefunctionofthevariables(x1,x2,x3,t), whichwewillshortento(x,t).

Themultidimensionalscalaranaloguesofsystems(1.6),(1.7), and(1.9)havethefollowingforms: ∂U (x,t)

and

respectively.

Inequations(1.10)and(1.11)wehave x =(x1,...,xn)and thevectoroperator ∇U isgivenby ∇U = gradU =

(x,t)

1 ,...,

(x,t)

n =(D1U,...,DnU ) .

Somegeneralizationsofthemodels(1.6)-(1.11)aregivenin theworks[137],[139],[145],[219],[305],and[306].Onekindof thesemodelshastheforms: ∂U (x,t)

(x,t)

CHAPTER1.INTRODUCTION

and

Themodelsoftype(1.6)-(1.13)arecomplexandhavebeen intensivelystudiedbymanyauthors.Theexistenceanduniquenessofglobalsolutionsofinitial-boundaryvalueproblemsfor equationsandsystemsoftype(1.6)-(1.13)werestudiedin [49],[50],[137],[138],[139],[140],[141],[145],[186],[187],[188], [219],[223],[238],[247],[248],[253],[261],[302],[303],[304], [305],[306],[307],[322],[333],[334],andinanumberofother worksaswell.

Theexistencetheoremsthatareprovedin[137],[138],[139], [140],[141],[145],[187],[188],and[219]arebasedona-priori estimates,modifiedGalerkin’smethodandcompactnessargumentsasin[327],[328],[461],and[462]fornonlinearelliptic andparabolicequations.

Forequation(1.8)withnonhomogeneousright-handsideand a(S)=1+ S,orforequation(1.13)intheone-dimensional casewith q =2,suchtheoremforfirstinitial-boundaryvalue problemisprovedinsection3.6.

Theasymptoticbehavioras t →∞ ofthesolutionsofsuch modelshasbeentheobjectofintensiveresearchinrecentyears, see[28],[29],[31],[32],[33],[34],[35],[139],[141],[145],[146], [147],[217],[218],[219],[220],[223],[227],[228],[229],[231], [232],[233],[234],[235],[236],[237],[238],[239],[240],[241], [242],[243],[245],[246],[247],[248],[251],[252],[253],[254], [256],[257],[261],[276],[277],[278],[280],[282],[283],andreferencetherein.

Anothermodelconsideredinthisbookandstudiedbyone oftheauthorsofthismonograph[376]is

andalsoMSandPhDstudentsoftheappropriatespecializations.

1.1Commentsandbibliographical notes

Mathematicalmodelsofmanynaturalphenomenaandprocesses canbedescribedbytheinitial-boundaryvalueproblemsposed fornonstationarypartialdifferentialandintegro-differentialequationsandsystemsofsuchequations.Investigationandnumericalsolutionoftheseproblemsaretheactualsphereofmathematicalphysicsandnumericalanalysis.Onesuchpartialintegrodifferentialmodeldescribestheprocessofelectromagneticfield penetrationintoasubstance.Inthequasi-stationaryapproximation,thecorrespondingsystemofMaxwell’spartialdifferentialequationscanberewritteninintegro-differentialform(1.6), (1.7)(see[187]and[188]).

Mathematicalmodelsdescribingelectromagneticprocesses andmanyrelativephenomenaaregiveninmanyscientificpapersandbooks,see,forexample,[92],[136],[300],[359],[360], [399],[419],[473],andreferencestherein.

ItiswellknownthatelectromagneticfielddiffusionprocessesandmanyotherimportantpracticalprocessesaresimulatedbyMaxwell’ssystemsofpartialdifferentialequationsand Maxwell’s-typesystemsaswell(see,forexample,[195],[197], [290],[297],[298],[300],[360],[426],[485],[486],[487],[489], [491],andreferencestherein).

Manyscientificworksaredevotedtoinvestigationofvarious problemsforMaxwell’sandMaxwell’s-typesystems,see[4],[5], [56],[60],[101],[106],[120],[121],[124],[131],[139],[144],[145], [152],[158],[194],[195],[197],[208],[224],[225],[226],[247], [253],[275],[276],[290],[362],[365],[367],[397],[409],[427],

[452],[453],[454],[470],[475],[476],[477],[485],[486],[487], [489],[491],andreferencestherein.

Aswehavealreadypointedout,byusingMaxwell’ssystem [300]formathematicalsimulationoftheprocessofelectromagneticfieldpenetratingintoasubstance,newclassofintegrodifferentialmodels(1.6),(1.7),(1.8),and(1.10)arises(see[187] and[188]).

Integro-differentialequationsariseinmanyotherpractical processesaswell,see,forexample,[11],[21],[22],[36],[37], [55],[59],[74],[84],[119],[127],[128],[164],[185],[187],[188], [295],[298],[306],[310],[311],[312],[355],[356],[357],[363], [373],[380],[384],[405],[425],[459],[463],[465],[466],[467], [468],[469],[471],[484],andinanumberofotherworksaswell.

Themotivationforstudyingintegro-differentialproblems comesfromthemanyphysicalmodelsinsuchfieldsaselectromagneticwavepropagation,heattransfer,nuclearreactor dynamics,andthermoelasticity.Besidestheintegro-differential equationsariseinmanyspheresofhumanactivityaswell.For example,thesecondorderfullynonlinearintegro-differential equationsarederivedfromthepricingproblemoffinancialderivativesandoptimalportfolioselectionprobleminamarket[59]. In[84]nonlinearintegro-differentialequationsthatarisefrom stochasticcontrolproblemswithpurelyjumpLevyprocesses areconsidered.

Manyproblemsofmodernscienceandengineeringcanbe describedbypartialintegro-differentialequations.Sincequite alotoftheseproblemsaretime-dependent,mostofthemare evolutionequationsandespeciallynonlinearevolutionparabolic equations,see[93],[177],[179],[180],[191],[216],[310],[311], [312],[322],[332],[345],[346],[358],[451],andreferencestherein).

Manyscientificworksaredevotedtoinvestigationandnumericalsolutionofparabolicintegro-differentialmodels,see[6], [18],[45],[53],[62],[63],[69],[74],[83],[86],[87],[93],[98],[103], 1.1.COMMNETSANDBIBLIOGRAPHICALNOTES

[108],[115],[118],[128],[137],[139],[145],[155],[156],[163], [175],[177],[181],[182],[191],[198],[247],[253],[263],[265], [266],[267],[276],[279],[281],[306],[308],[310],[311],[312], [313],[319],[320],[322],[323],[327],[353],[358],[370],[376], [378],[389],[393],[427],[430],[432],[433],[447],[448],[449], [450],[451],[456],[479],[483],[488],[492],[497],andreferences therein.

Studyofthemodelsoftype(1.6),(1.7),and(1.8)hasbegun intheworks[138],[187]and[188].Intheseworks,inparticular,thetheoremsofexistenceofsolutionoftheinitial-boundary valueproblem(withfirst(Dirichlet)boundaryconditions)for scalarequationwithone-dimensionalspacevariableareproved. Investigationsofhigherspacedimensionsformodel(1.10)carriedoutinitiallyin[137]and[140].

In[306]somegeneralizationofthesystemoftype(1.6),(1.7) wasproposed.Inparticular,assumingthatthetemperature oftheconsideredbodydependsonthetimevariable,butindependentofthespacecoordinates,thenthesameprocessof penetrationofamagneticfieldintothematerialissimulated bytheaveraged(astheauthorof[306]hasnamedit)integrodifferentialmodels(1.9)and(1.11).

Studyofthemodelsoftype(1.9)and(1.11)hasstartedin theworks[217]and[219].

Onemustnotethatsomeworksweredevotedtothestudy ofmodelingofphysicalprocessofelectromagneticfieldpenetrationinthecaseofcylindricalconductors.Inthiscase,the above-mentionedintegro-differentialmodel(1.6),(1.7),written incylindricalcoordinates,wasgivenin[148].Thework[333] isdevotedtotheinvestigationofperiodicproblemforonedimensional(1.8)typemodelincylindricalcoordinates.

Interestintheabove-mentionedintegro-differential(1.6)(1.11)modelsisincreasing.Somegeneralizationsof(1.10)and (1.11)models,whichhavetheforms(1.12)and(1.13)corre-

1.1.COMMNETSANDBIBLIOGRAPHICALNOTES

spondingly,aregivenandstudiedin[219],[305],andinanumberofotherworksaswell.Equation(1.12)isinvestigated,for example,in[145],[219],[305],and[306].Equation(1.13)was investigatedin[145]and[219].Inthescientificliteraturesome moregeneralmodelshavealsoappeared,see[137],[139],[145], [219],[305],[306],and[322].

Manydifferentkindsofinitial-boundaryvalueproblemswith avarietyofboundaryandinitialconditionsareconsideredfor theabove-mentionedintegro-differentialequations.Intheworks [246],[280],[281]investigationandnumericalapproximationof problemswithmixedboundaryconditions,for(1.10)and(1.11) typeone-dimensionalscalarmodels,arestudied.

Letusalsonotethatfirstkindinitial-boundaryvalueproblemswithnonhomogeneousboundaryconditionononesideof lateralboundaryarealsoconsideredandstudiedinmanyworks. Thistypeoftheproblemstatementisdictatedbymathematical simulationofthephysicalprocesses,see,forexample,[148]and problem(2.64),(2.65)givenin”Commentsandbibliographical notes”sectioninChapter2.

Thetheoremsprovedforinvestigatingtheasymptoticbehaviorastimetendstoinfinityinsomecasesshowthedifferencebetweenstabilizationcharacterofsolutionswithhomogeneousand nonhomogeneousboundaryconditionsofthefirstkindinitialboundaryvalueproblems.Moreprecisely,inhomogeneouscase stabilizationhasanexponentialcharacter,whereasinnonhomogeneouscaseithaspower-likeform.

Theworks[49],[50]arealsoworthmentioning,whereinvestigationofinverseproblemsformultidimensionalmodelsof (1.10)typeiscarriedout.

Anotherintegro-differentialmodelstudiedinthismonograph is(1.14).Thismodeldescribesheatflowinmaterialwithmemory[196],[345].Italsoarisesinthetheoryofviscoelasticity [109],[344],and[346].

Asarulewecannotfindexactsolutionsoftheconsidered nonlineardifferentialandintegro-differentialmodels.Therefore, particularattentionshouldbepaidtoconstructionofnumerical solutionsandtotheirimportanceforintegro-differentialmodels. Thefirststepsinthisdirection,forthemodelsstudiedinthis monograph,aremadeintheworks[139],[220],[274],[376],and [378].Nowtheresearchinthisdirectionhasintensified.

Letusnotethatthemodelsbeingconsideredinthismonographhavearisenfrompracticaltasks.Buttheycanbeconsideredasmodels,generalizingknownnonlinearparabolicequations,whicharestudiedinmanyknownscientificpapers,books, andmonographs,see[76],[133],[134],[169],[199],[298],[327], [332],[381],[385],[461],andreferencestherein.

Manyscientificresearchesaredevotedtonumericalsolution ofpartialdifferentialandnonlinearparabolicequationsaswell, see[23],[43],[104],[167],[171],[183],[193],[210],[213],[225], [226],[301],[327],[400],[404],[407],[411],[415],[435],[439], [440],[447],andthereferenceslistedinthesepapersandbooks.

AswehavealreadymentionedthemainpartofintegrodifferentialstructuresconsideredherehasarisenfromMaxwell’s systemsofpartialdifferentialequations.TherearemanyscientificpapersandbooksonthenumericalsolutionofMaxwell’s systemsandMaxwell’s-typesystemsaswell,see[4],[5],[15], [26],[27],[54],[68],[139],[142],[145],[153],[212],[224],[247], [253],[260],[276],[314],[315],[316],[317],[336],[341],[369], [434],[442],[472],[480],[493],[498],andreferencestherein. Theresultsoftheseresearchesveryoftenareusedinconstructionandinvestigationofthenumericalalgorithmsforthecorrespondingintegro-differentialmodels.

Thedetaileddescriptionofinvestigationandnumericalsolutionoftheabove-mentionedmodelsisgiveninChapters2-4. Morecompletereferencesandcommentsaregiveninasection entitled”Commentsandbibliographicalnotes”ineachchapter.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.