Numerical methods in environmental data analysis moses eterigho emetere - The full ebook version is

Page 1


https://ebookmass.com/product/numerical-methods-inenvironmental-data-analysis-moses-eterigho-emetere/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Numerical Methods Using Kotlin: For Data Science, Analysis, and Engineering 1st Edition Haksun Li

https://ebookmass.com/product/numerical-methods-using-kotlin-for-datascience-analysis-and-engineering-1st-edition-haksun-li-2/

ebookmass.com

Numerical Methods Using Kotlin: For Data Science, Analysis, and Engineering 1st Edition Haksun Li

https://ebookmass.com/product/numerical-methods-using-kotlin-for-datascience-analysis-and-engineering-1st-edition-haksun-li/

ebookmass.com

Introduction to Research Methods and Data Analysis in Psychology Darren Langdridge

https://ebookmass.com/product/introduction-to-research-methods-anddata-analysis-in-psychology-darren-langdridge/

ebookmass.com

Varney’s Midwifery 6th Edition – Ebook PDF Version

https://ebookmass.com/product/varneys-midwifery-6th-edition-ebook-pdfversion/

ebookmass.com

https://ebookmass.com/product/cissp-cert-guide-certificationguide-4th-edition-robin-abernathy/

ebookmass.com

Japanese Communication, Culture, Context Yukiko Abe Hatasa

https://ebookmass.com/product/japanese-communication-culture-contextyukiko-abe-hatasa/

ebookmass.com

When Shadows Dream Wren Smythe

https://ebookmass.com/product/when-shadows-dream-wren-smythe/

ebookmass.com

Business Ethics: Best Practices for Designing and Managing Ethical

https://ebookmass.com/product/business-ethics-best-practices-fordesigning-and-managing-ethical/

ebookmass.com

The Science of Virtue: A Framework for Research Fowers

https://ebookmass.com/product/the-science-of-virtue-a-framework-forresearch-fowers/

ebookmass.com

Self-Made Boss Jackie Reses

https://ebookmass.com/product/self-made-boss-jackie-reses/

ebookmass.com

NumericalMethodsin EnvironmentalData Analysis

Thispageintentionallyleftblank

NumericalMethodsin EnvironmentalData Analysis

MosesEterighoEmetere

DepartmentofMechanicalEngineeringScience, UniversityofJohannesburg,SouthAfrica DepartmentofPhysics,CovenantUniversity,Ota,Ogun,Nigeria

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-818971-9

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceG.Janco

AcquisitionsEditor: PeterLlewellyn

EditorialProjectManager: AleksandraPackowska

ProductionProjectManager: SreejithViswanathan

CoverDesigner: MarkRogers

TypesetbyTNQTechnologies

CHAPTER1Overviewondatatreatment

1.1Mathematicaltechnique

1.3Statisticaldatatreatment... ...............................................7

CHAPTER2Casestudyinenvironmentalpollutionresearch

1.1Airpollution ................................................................14

1.2Landpollution.. ............................................................21

1.3Waterpollution.

1.4Noisepollution. ............................................................32

CHAPTER3Typicalenvironmentalchallenges...........................41

1 Introduction... ....................................................................41

1.1Thermalcomfortasasourceofenvironmentalconcern...

1.2Rainfallasasourceofenvironmentalconcern ...................44

1.3Recentenvironmentalcrisisandtheproblemofclimate change.. ......................................................................47

CHAPTER4Generatingenvironmentaldata:Progressand shortcoming...........................................................53

1 Methodofgeneratingenvironmentaldata:common challenges,safety,anderrors. ................................................53

1.1Dataqualityanderrors ..................................................55

1.2Satellitemeasurement.. ..................................................60

1.3Modelingprocedure ......................................................63

1.4Experimentalprocedure .................................................69

2 Commonerrorsinlaboratorypractice .....................................74 3 Maintaininglaboratoryapparatus ...........................................75

CHAPTER5Rootfindingtechniqueinenvironmentalresearch ...79

1 Applicationofrootfindingtechniquetoenvironmental data. .................................................................................79

1.1Therootfindingmethod.. ...............................................79

1.2Modificationoftherootfindingmethodtodata application ...................................................................82

1.3Computationalapplicationofrootfindingmethodto dataapplication... .......................................................103

CHAPTER6Numericaldifferentialanalysisinenvironmental research

1.1Eulermethod. ............................................................121

1.2ImprovedEulermethod.. .............................................122

1.3Runge Kuttamethod ..................................................123

1.4PredictorCorrectormethod... ........................................126

1.5Midpointmethod. .......................................................128

1.6Applicationofnumericalmethodsofsolving differentiationinenvironmentalresearch. ........................128

1.7Computationalprocessingofnumericalmethods forsolvingdifferentialequation... ..................................136

1.8Computationalapplicationofderivativesto environmentaldata ......................................................142

1.9Case1:derivativeofexperimentaldata... ........................142 References.. .........................................................................147 Furtherreading. ....................................................................148 CHAPTER7Numericalintegrationapplicationto

1.2Trapezoidalrule... .......................................................151

1.3Simpson’srule............................................................154

1.4Computationalapplicationofnumericalintegration. .........158 References.. .........................................................................168

4 Newtoninterpolation. ........................................................176

5 Splineinterpolation... ........................................................179

6 Computationalapplicationofinterpolation... .........................181 References... ........................................................................189

CHAPTER9Environmental/atmosphericnumericalmodels formulations:modelreview ..................................191

1 Introduction... ..................................................................191

1.1Globalforecastsystem ...............................................191

1.2NOGAPS-ALPHAmodel ...........................................192

1.3GlobalEnvironmentalMultiscaleModel(GEM). ............195

1.4EuropeanCenterforMediumRangeWeatherForecasts...196

1.5UnifiedModel(UKMO).. ...........................................197

1.6Frenchglobalatmosphericforecastmodel(ARPEGE).....199

1.7WeatherResearchandForecasting(WRF) .....................200

1.8JapanMeteorologicalAgencyNonhydrostaticModel (JMA-NHM).. ..........................................................203

1.9Thefifthgenerationmesoscalemodel ...........................205

1.10AdvancedRegionPredictionSystem(ARPS) .................206

1.11HighResolutionLimitedAreaModel(HIRLAM).... .......207

1.12GlobalEnvironmentalMultiscalelimitedareamodel ......208

1.13ALADINmodel... .....................................................210

1.14Etamodel. ...............................................................213

1.15Microscalemodel(MIMO)... ......................................215

1.16Regionalatmosphericmodelingsystem(RAMS) ............216 References... ........................................................................217 Furtherreading... ..................................................................221 Index.. .................................................................................................223

Thispageintentionallyleftblank

Preface

Environmentaldatamaybedescribedintermsofquantitative,qualitative,or geographicallyreferencedfactsthatrepresentthestateoftheenvironmentandits changes.Quantitativeenvironmentaldataconsistofdata,statisticsandindicators ofdatabases,spreadsheets,compendia,andyearbooktypeproducts.Qualitative environmentdataaredescriptions(e.g.,textual,pictorial)oftheenvironmentor itsconstituentpartsthatcannotbeadequatelyrepresentedbyaccuratequantitative orgeographicallyreferenceddescriptors.Geographicallyreferencedenvironmental dataaredescribedindigitalmaps,satelliteimagery,andothersourceslinkedtoa locationormapfeature.Summarily,itcanbepostulatedthatdatasetinenvironmentalstudiesislikebloodtothehumanbody.Alldecisionsinenvironmental studiesarebasedonobservablesthataremeasurable,reliable,realistic,andconsistentwiththeories.Environmentaltheoriesareformulatedfromobservables.Hence, afaultyobservablecanleadtoacolossalfailureinprocesses,prediction,model formulation,anddecision.

Theinevitableoutcomesofclimatechangehaveredefinedobservablessuchthat newtheoriesandmodelsarenecessaryduetodatainconsistency,noise,andspikes. Asidefromjustgettingdatasetandsimulating,itisnowexpedientthattheintegrity ofadatasetbethefirstlineofoperationindataanalytics.Thisfeatcanbeachieved throughtheguidanceofproventheories.Theknowledgeofthistheory,whento applyitonadataset,howtoapplyit,andwaystovalidateemergingresultsare salientinanyfieldofenvironmentalsciences.Hence,thefocusofthisbookisto educatebeginnersandprofessionalsontheabove.

Environmentalindicatorsareusuallytheenvironmentstatisticsthatareinneed offurtherprocessingandinterpretation.Basedonthis,thereistheneedoftheapplicationofnumericalmethodstovalidate,expatiate,predict,back-trace,andcreate newpossibilities.Validationtechniquethroughnumericalmethodsenablesthe researchertoascertainthepatterntrendofseriesofobservablesandtiethemto certainestablishedtheories.Expatiationtechniquethroughnumericalmethods enablestheresearchertotakeaninformednumericalguesstoreplacemissing data,noise,anddataanomalies.Missingdataiscommoninatmosphericresearch. Missingdatamakesthegenuityofthedatatobequestionableespeciallywhen theuserisabeginnerornovice.Assumeifthesatellitemeasurementofaparameter showsmissingvaluesfor7monthsinayearlydataset.Ignoringthemissingdatafor theremaining5monthswouldcertainlybeerroneoustoanalyzemonthlyorseasonally.Thesamescenarioappliestonoiseindataanddataanomalies.Thisbookseeks totrainbeginnersandprofessionalsontheaforementionedexpertise.

Thispageintentionallyleftblank

Overviewondata treatment 1

1. Introduction

Dataisusuallydefinedasraworunprocessedfactsorstatisticsthatwillneedtobe processedorinterpretedinordertogetinformation.Technically,therearethree typesofdatabasedontheirsourceandavailability:primary,secondary,andmosaic. Primarydataisdatathatiscollectedthroughfirsthandexperiences,studies,or research.Secondarydataisdataorinformationthathasbeencollectedfromother sources.Mosaicdatareferstodataandinformationthatiscollectedbyputting togetherbitsandpiecesofinformationthatarealreadypubliclyavailable.Environmentaldataarelargeamountsofunprocessedobservationsandmeasurementsabout theenvironment(oritscomponents)andrelatedprocesses.Datausedfortheproductionofenvironmentoutput,report,orstatisticsarecompiledbymanydifferent collectiontechniquesandinstitutionswhosedatasourcesarehostedprivatelyor publiclyatknownsites.Understandingandknowingtheprosandconsofeach sourceiskeyinenvironmentreportage.Datasourcesaretheinitiallocationswhere thecollecteddataoriginatesfromandrunspublicobjectfortheestablishmentand canbeaflatfile,database,scrapedwebdata,socialmedia,anddatabaseaccess whichprofuseacrosstheinternet.Datasourceisconsideredtohelpusersandapplicationstosecureandmovedatatowhereitneedstobe.Thepurposeofthedata sourceistobundleconnectioninformationthatiseasiertocomprehend.Inenvironmentalscience,datasourcecanbeclassifiedintotwo:theprimaryandsecondary data.Theprimarydataisoriginalandaccurateandiscollectedwiththeaimofgettingthesolutiontoaproblemathand,anditincludessurveys,observations,websites,questionnaires,etc.Itisreliable,objective,andauthentic.Thesecondary dataaredatathatarereadilyavailableandaremoreaccesibletothepublicthan theprimarydata(e.g.,industrysurveys,compilation).

Thetypeofdatathatcouldbeobtainedfromresearchcouldeitherbequalitative orquantitative.Qualitativedataresearchcentersaroundgettinginformationconcerningtheattribute,characteristics,orqualitiesofsample.Itdoesnotinvolve numbers.Whilequantitativedataresearchareresearchstudieswhosedataarequantifiablewiththeuseofnumbers,wheredataarecomputedthroughdiscretewhole numberintegersorcontinuousfloatingpointvalues.Therearealotofexamples ofnumericaldata;however,theyareallcategorizedintotwotypes:discreteand

continuousdata.Discretedataaredatathattakenumericalsymbolsastheyare countablelistofitems.Theytakevaluesthatcanbegroupedintocategoriesor list,wherethelistmayeitherbefiniteorinfinite.Discretedatatakesnumbercountingfrom1to10,or1toinfinity,butitalwaysoccursinarange.Continuousdataisa typeofnumericaldatawhichrepresentsmeasurements.Thesedataaredescribedas valuesthattakeintervalsuchasaverages,largestorsmallestnumber(among ranges),andcumulativegradepoint.

Therearedifferenttypesofdatasource.Flatfileisadatabasethatstoresdataina plaintextformatandteacheshowtoupload,prepare,andupdateyourcsvfilesto data-pines.Thisconsistsofasingletableofdatatypestableandcannotcontainmultipletablesofdatatypes,andithasnofoldersorpathsrelatedtothemandisusedto importdataandstoretableinformation.Examplesofflatfileincludeplaintext,binaryfile,delimitedfile,andflatfiledatabase.Anothertypeofdatasourceisdatabase.Databaseisoneoftheoldestdatasourcesandtherelationaldatabaseisone ofthecommondatabasesthatcaneasilybeconnectedtothedata-pines.Then eachdatabasewillthenberepresentedasanindividualdataconnection.Theysupportthemanipulationofdataandelectronicstorage.Thetypesofdatabaseare networkdatabase,hierarchicaldatabase,andobject-orienteddatabase.Atypical exampleofenvironmentalorganizationsthatmakeuseoftheflatfilesisthe NASA-associatedsatellitesextensionsuchasMERRAandGIOVANNI. Fig.1.1 showstheGlobalPrecipitationMeasurement(GPM)constellationsthathave someoftheirdatasetasflatfile.

WebServicesisatypeofdatasource.Itisasystemofcommunicationbetween twoelectronicdevicesoveranetworkandisalsoanassemblyofthesegmentthatthe softwaremakesavailableovertheinternet.Anditisformulatedtocommunicate withdifferentprogramsratherthantheusers.Inawebservicethewebtechnology knownasthe“Http”thisdatasourceisusedfortransmittingmachine-readablefile format(e.g.,theXML).Thetypesofwebservicesincludewebtemplate,webserviceflowlanguage,webserviceconversationlanguage,webservicemetadatalanguage,andwebservicedescriptionlanguage.Australiandepartmentof agriculture,water,andtheenvironmenthaveseveralwebserviceswherealistof environmentaldatacanbedownloaded.

Themostpopularformofdatasourceisdatabases.PopularenvironmentdatabasesincludeProquestNaturalSciencesDatabase,EngineeringVillage,GreenFILE,EnvironmentalImpactStatement(EIS)Database(EPA),Health & EnvironmentalResearchOnline,etc.Thereareseveraldifferenttypesofdatabases, andvariouscompaniesselldatabaseswithvariousplansandfeatures.MSAccess, Oracle,DB2,Informix,SQL,MySQL,AmazonSimpleDB,andavarietyofother databasesarewidelyusedtoday.Ingeneral,contingentdatabases thatis,databases thatdocumentacompany’sconsistenttransactions,suchasCRM,HRM,andERP arenotconsideredtobesuitableforbusinessrecords.Thisisattributabletoanumberofreasons,includingthefactthatdataisnotenhancedforitemizingandinspecting,andspecificallyqueryingthesedatabasesmayblockthelayoutandpreventthe databasesfromcorrectlytrackingtrades.OrganizationscanuseanETLtoolto

Flatfileuser:GlobalPrecipitationMeasurement(GPM)constellations(Laviolaetal., 2020).

obtaininformationfromtheirconstrainedservers,transformitintoBI-readyformat, andweighitintoadatastorageroomandperhapsanotherdatastore.Theoneflawin thistheoryisthatadatacirculationfocusisaperplexingandexpensiveplan,which iswhymanyorganizationswanttoreportexplicitlyagainsttheirstringentdatabases.

Onlinemediainformationisasourceofdata.ItisgatheredfromlongrangeinterpersonalcommunicationadministrationslikeFacebook,microbloggingstageslike twitter,mediasharingdestinationslikeYouTubeandInstagram,sites,conversation discussions,clientauditlocales,andnewlocales.Thisinformationcanbegathered fromthingshadbeenposted,as,acknowledgeorsearchaboutthroughyourgadgets.

Themethodofgeneratingprimarydataindisciplinesrelatedtoenvironmental sciencemaybethroughsurvey,experiment,andobservation.Surveyiscarried outbyquestioningindividualsbasedondifferenttopicsandreportingtheirresponses,andareusedtotestthedifferentconcepts,reflecttheattitudeofdifferent people,reportingcertainpersonalitiesofpeople,testinghypothesesofpeople’snatureofrelationshipsandpersonalities.Experimentisanorganizedstudywherethe analyzergetstounderstandtheeffects,causes,andprocessesinvolvedinaparticular processandinvolvesmanipulatingonevariabletodetermineiftherearechangesin theother.Thetypesofexperimentaldesignincludecompletelyrandomdesign,

FIGURE1.1

randomizedblockdesign,Latinsquaredesign,andfactorialdesignetc.Observation isamethodthatengagesvisionasitmainmeansofdatacollection,andisalsostudyingothers’behaviorswithouttakingcontrolofit.Thereareafewthingstokeepin mindwhencarrying-outexperimentinenvironmentalscience:

a. Measurementtechnique:Thistechniqueisrelevantbecauseithasanimpacton thesuccessofyourdata.Theconfigurationoftheequipmentaswellastheuse ofupdatedstandardsareessentialparametersbeforetakingmeasurement.Also, theproceduresforobtaininglivesamplesaresalientinexperimentaltechnique.

b. Multipletrials:Thisincludesgoingthroughtheinvestigationagainandagain. Themorepreliminaryworkyoudo,thehigheryouraveragevaluewouldbeand themoreaccurateandreliabletheresultswouldlooklike.

Themethodofgeneratingsecondarydatasetincludesinternetsources,external sources,satellitemeasurementetc.Internalsourcesaredatasetthatarewithinthe organizationandcanbeobtainedwithinashorteffort,aperiodoftimethanthe externalsourcesandtheyincludeinternalexperts,datamining,sales-forcereport, miscellaneousreport,accountingsourcesetc.Externalsourcesaredatasetthatare outsidetheorganizationandarequitedifficultbecausetheyhavemanycollections andthesourcesaremuchmorefrequent,andtheyincludesyndicateservice,governmentalpublications,nongovernmentalpublications,etc.

Datatreatmentisaveryessentialpartofanyexperimentalworkoranalysisofa secondarydataset.Itisessentialinallexperiments,spanningfromscientifictosocial tobusinesstomedicineetc.Datatreatmenthelpsresearchersidentifyerrors,spot trends,observecorrelationandrelationships,makeinferences,anddrawmeaning andconclusionsfromcollecteddata.Itinvolvesalltheactionsandprocessesin theinvestigationandcollectionofdataandtheadditionalprocessesperformedon datainordertoarriveatusefulinformation,soastomakedeductionsandinferences. Everyenvironmentalresearcher,regardlessoftheirfield,musthavethebasic conceptofdatatreatmentfortheirresearchortheirstudytobereliable.Datatreatmentisessentialandequallyimportant,aswellasdataorganization,todrawappropriateconclusionsinagivendataset.Datatreatmentisaprocesstoensureits reliabilityanduniquenessinexperimentsanddatacollectiondesigns.Thisprocess isvitaltoefficientlymakeuseofagivendataintherightway.Itisessentialto correctlytreatdatatomaintaintheresearch’sauthenticity,accuracy,andreliability. Awell-definedunderstandingisneededtoperformsuitableexperimentswiththe correctinformationobtainedfromanygivendataset.Datatreatmentcanbedescriptive,thatis,describingtherelationshipbetweenvariablesinapopulationsetsoasto distinguishbetweenanoise,spike,andtrend.Itcanalsobeinferential,thatis,testing agivenhypothesisbymakinginferencesfromacollecteddatasetoranestablishlaw ortheory.Toobtainthedesiredresult,datamustbeprocessedusingavarietyof methods.Allexperimentsrandomlyproduceerrorsornoise.Datanoisecaneither besystematicorrandomerrors.Itisadvisablethaterrorsandnoisebetakeninto considerationinthecourseoftheexperimentfortheresultoftheexperimentto makesense.

Regardlessofhowcautiousaresearchercanbewhilemeasuringorextracting samplesinanenvironment,allexperimentsarevulnerabletoinaccuraciescaused bythreeformsoferrors:systematic,random,andspontaneouserrors.Theseerrors aremosttimesspottedduringthetreatmentofdata,andthecorrectioncanthenbe reintegratedintheprocess.Spontaneouserrorsarewidelyreportedingeneticcode (Griffithsetal.,2000).Systematicerrorsareerrorsthatarecausedbyeitherthedata collectionequipmentorthemethodusedtocollectthedata.Internalerrorcan emergefrommeasuringorcharacterizinginstrumentswhichmostofthetime possessrandomerrorsthatoccuraccidentallyorunpredictablyintheexperimental configuration.Thistypeoferrorwillcontinuetooccurinallinstancesoftheexperimentuntilthesourceoftheerrorisaddressed.Someexamplesofthiskindoferror areanincorrectlycalibratedmeasuringdevice,awornoutinstrument,andamisconceptionontheobserver’send.Systematicerrorsareusuallyconsistentintheamount oferrorinthemeasuredvalue.Theseexperimentalerrorscanleadtotwodifferent kindsofconclusionerrors:type1andtype2errors.Atype1erroroccurswhena researcherrejectsatruenullhypothesis,resultinginafalsepositive.Atype2error, ontheotherhand,isafalsenegativecausedbyaresearcher’sinabilitytorejecta falsenullhypothesis.Inotherwords,themethodofdatatreatmentemployedin researchdependsonthefieldofresearchorkindofexperimentbeingconducted, asthiswouldaffectthekindofdatabeingcollected,andthedesiredformofthe datarequiredtoarriveataconclusion.Randomerrorsareerrorsthatarecaused byirregularandunpredictablevariationsintheexperiments.Thisvariationcould beasaresultofexternalenvironmentalconditionssurroundingtheexperiment;it couldalsobecausedbyafaultinthemeasuringinstrument.Thesetypesoferrors donotusuallyhavethesameerrorsinthesamedirectionforallinstancesofthe experiment.Randomerrorsoccurunknowinglyorunpredictablyintheexperimental configuration.Theyariseunknowinglyorunpredictablyintheexperimentalsetup. Datatreatmentisoneofthelastoperationsindataanalytics.Thereispreceding operationi.e.,datacollection,datapreparation,dataprocessing,datacleaning,etc., thatmustbedonebeforedatatreatment.Datacollectionisoneoftheinitialstagesof everyresearchendeavorthatinvolvesthecollectingofdatafromallavailableplatforms.Thiscouldbethroughsurveysandexperimentsinthelaboratoryorsites.Itis requiredthatthedatasourceberelevant,reliable,andauthentic.Datapreparationis theprocessthatoftenfollowsafterthedatacollectionstage.Thedatapreparation stageisoftenreferredtoaspre-processingstage.Thisisthestageatwhichdata isorganizedbeforeitisprocessedintotherequiredform.Dataprocessingisthe stageatwhichdataistranslatedintothereadable,relatable,andrequiredformat. Itmightinvolveplacingdataintorowsandcolumns,anditmightrequiretheuse ofacomputertoprocesstheinputdata.Itmayrequirecomplexprogramming,algorithms,etc.Themethodofprocessingofdatadependsonthetypeofdatatobeprocessed,processingtool/software,andsizeofdataset.Forexample,forasmallASCII datasetandMicrosoftexcelarecommonlyused.ForbigASCIIdata,structuredprogramminglanguageisusedtosavetimeandreduceerrors.Datacleaningistheprocesswherenoiseindataareremoved.Itissynonymoustodatatreatmentbutitisthe

preliminarystagebeforedatatreatment.Forexample,whendatasetsaredownloaded fromasatellitestationinASCIIformat,therecouldbemissingdata,whichmostof thetimeappearas“9.9999,”“***,”and“9999”orblank.Theremovalofthisanomaliesisdatacleaningnotdatatreatment.Also,inthedatacleaningstage,unnecessarydatacanberemovedsuchasduplicatesanderrors.Thedatacleaningprocess involvesdeduplication,matchingrecords,identifyingdatainconsistencies,checking theoveralldataquality,etc.Theemergingdatasetafterdatacleaningisexpectedto beintherequired,readableformat.Thisreadableformatcouldbeintheformofan equation,image,video,graph,theoryetc.Theinformationobtainedfromthisstage iswhatwillbeusedfordatatreatment.

Therearethreewaysofdatatreatmentinliterature.Theyare:

(a) Mathematicaltechnique(statisticaldatatreatment)

(b) Computationaltechnique(algorithmdataanalysis)

(c) Statisticaltechnique

1.1 Mathematicaltechnique

Thisisatechniquethatinvolvestheuseofmathematicaltheories,formulae,and mathematicalmanipulation.Someofthesemathematicalprocessesinclude:

I. Regressionanalysis:Thisisananalysisusedtoevaluatetherelationshipbetweentwoormoresetofnumericaldata.Whenusingthistechnique,welook foracorrelationbetweenthedependentnumericaldataandanynumberof independentvariablesthatmighthaveaneffectonthesenumericaldata.The aimofregressionanalysisistoestimatehowoneormorevariablesmight impactthedependentnumericaldata,inordertoidentifytrendsandpatterns. Thiswasusedspecificallyforpredictionandforecastingfuturetrends.Itisalso importanttonotethatregressionanalysisonlyhelpstodeterminewhetheror notthereisarelationshipbetweenasetofnumericalsetofdata,anditdoesnot sayanythingaboutthecauseoreffect.

II. Factoranalysis:Thisisatechniqueusedtoreducealargesetofvariablestoa smallernumberofvariables.Itworksontheideaofmultipleseparate, observablevariablescorrelatewitheachotherbecausetheyareallassociated withanunderlyingset.Thisisusefulnotonlybecauseitreducesvariableina particularsetofnumericaldataintosmallerunderstandablevariables,butit alsohelpstouncoverhiddenpatterns.

III. Timeseriesanalysis:Thisisastatisticaltechniqueusedtoidentifynumerical datausingtimeinterval.Itrecordsandseparatedataintogroupsbasedonthe datathathavesimilartimeintervalorthetimecreated.

Numericalanalysisismostlyneededtosolveengineeringproblemsthatresult intoequationsthatcannotbesolvedanalyticallywithsimpleformulas.Someapplicationsarelistedhere:

a. Modernapplicationsandcomputersoftware:Mostsophisticatednumerical analysissoftwareisembeddedinpopularsoftwarepackages,e.g.,spreadsheet programs.

b. Businessapplications:Modernbusinessesthesedaysmakemuchuseofoptimizationmethodsindecidingwhatorhowtoallocatearesourcemostefficiently,suchasinventorycontrol,scheduling,budgeting,andinvestment strategies.

1.2 Computationaltechnique

ThisisatechniquethatinvolvestheuseofAIsystemssuchasthecomputersystem. Thisinvolvesusingprogrammedcodes,encodedscriptsformulastoarrangeandpresentnumericaldatainanorganizedmannermeaningfultointerpretanduse.There arealotofprogrammingsoftwarecreatedtosolvethisproblem.Someofthebest onesincludethese:

I. Analytica:ThisisasoftwarecreatedanddevelopedbyLuminaDecisionSystemsforreceiving/retrieving,analyzing,andcommunicatingnumericaldata.It useshierarchicalinfluencediagramsforvisualcreationandviewofmodels, intelligentarraysforworkingonmultidimensionaldata.

II. MATLAB:MatrixLaboratoryisaproprietarymulti-paradigmprogramming languageandnumericcomputingworkingenvironmentdevelopedbyMathWorks.MATLABmakesitpossibleformatrixmanipulations,plottingof functionsanddata,implementationofalgorithms,creationofuserinterfaces, andinterfacingwithprogramswritteninotherlanguages.MATLABismade forthesourcepurposeofnumericaldatatreatment.

III. FlexPro:Thisisasoftwaredesignedfortheanalysisandpresentationofscientificandtechnicaldata.ThissoftwarewascreatedbytheWeisangGmbH team.ItwasdesignedtorunMicrosoftwindows.FlexProcananalyzelarge amountofdatawithhighsamplingrates.Alldatatobeanalyzedarestoredin anobjectdatabase.FlexProhasabuilt-inprogramminglanguage,FPScript, whichisoptimizedtocarryoutdataanalysisandsupportdirectoperationson non-scalarobjectssuchasvectorsandmatricesaswellascomposeddata structureslikesignalseries.

IV. FreeMat:Afreeopen-sourcenumericaldatatreatmentenvironmentandprogramminglanguage,similartoMATLAB.

V. jLab:ThisisanumericalcomputationalenvironmentcreatedwithaJava softwareandinterface.

1.3 Statisticaldatatreatment

Therearevariousmethodsinvolvedinthetreatmentofdata,andoneofthemost commonmethodsisthestatisticalmethodoftreatmentofdata.Whenyouapplya statisticalapproachtoadatasetinordertoturnitfromalistofmeaninglessnumbers intousefuloutput,thisisknownasthestatisticaltreatmentofdata.Statistical methodincludesbutnotlimitedto;mean,medianmode,range,standarddeviation, conditionalprobability,range,distributionrange,sampling,correlation,regression,

andprobability.Therearesomenotableerrorsindatatreatment,andusingstatistical techniquestoclassifypotentialoutliersanderrorsisanimportantaspectofdataprocessing.Statisticaldatatreatmentisoneoftheessentialaspectsofanyexperiment conductedtoday.Itcanbeseenusinganyknownstatisticalmethodtodrawmeaning fromasetofgivenmeaninglessdatasets.Statisticaldistributioncanbeclassified intotwogroups.Tobeginwith,oneofthemisconsideredtohavediscreterandom variables,whichmeansthateachwordincludesasinglenumericalvalue.Thesecondformofstatisticaldistribution,whichincludescontinuousrandomvariables,is calledacontinuousrandomvariabledistribution(thedataisknowntotakeinfinitely manyvalues).Statisticaldatatreatmentoftenentailsdefiningthedatacollection,and oneofthemosteffectivewaystodosoistousethemeasureofcoretendenciessuch asthemean,mode,andmedian.

Thecoretendenciesdescribedabovemakeitsimpleforanyresearcherto performanyresearchexperimentandunderstandhowthedatasetisconcentrated. Centraltendenciessuchasthestandarddeviation,range,anduncertaintyhelpthe researcherunderstandthedataset’sdistribution.Nevertheless,careshouldconsistentlybetakentoassumethatalldatasetsarethesameandevenlydistributed. Anyoftheabove-mentionedcentraltendenciescanbeusedtoensurethat.

Thismethodinvolvesusingsomestatisticalmethodstotransformagivenmeaninglessdataintomeaningfuldatasets.Itinvolvestheuseofsomestatistical methods:

➢ MEAN:Instatistics,thisisakeyidea.Itdescribesthecharacteristicsofastatisticaldistribution.Inasetofnumbers,itisthemostcommonvalue.

Tomeasureit,takeintoaccountthefiguresoftherelativemultitudeoftermsand thendividebythenumberofterms.Themeanofacollectionofdatacanbedeterminedinseveralways.Itcanbedeterminedusingthearithmeticmeanprocess, whichinvolvesdividingthetotalnumberofdatasetsbythesumofthetotalnumber ofdatasets.Tofindthemean,addallofthenumbersinasettogether,thendividethe totalbythetotalnumberofnumbers.Adataset’smeancanalsobecalculatedbya methodknownasthegeometricmean,whichisthe nthrootoftheproductofall numbersinthedataset.Itincludesthevolatilityandcompoundingeffectsofreturns. Thearithmeticmean,alsoknownasthemeanorstandard,isthesumofasetof valuesdividedbythenumberofvaluesinthegroup.

➢ MODE:Theestimateofthewordthatoccursoftenintheformofdissemination withadiscretearbitraryvariable.Themodeisthenumberthathappens frequentlyinsideabunchofnumbers.Itisfeasibletohavetwomodes (bimodal),threemodes(trimodal),ormoremodesinsidebiggerarrangements ofnumbers.Bimodalappropriationreferstotheappropriationthathastwo modes.Trimodalappropriationisathree-modeappropriation.Themostsevere

Mean ¼ Sumofalldatapoints
Numberofdatapoints

estimateofcapabilityistheformofdispersionwithaconstantirregularvariable.Similarly,discreteappropriationscanhavemorethanonemode.Inthis case,ittakesspecialexpertisetoidentifyerrorsornoiseinagivendataset.The advantagesofthemodeisitssimplicitytoidentifyanddetermineavalue.Its disadvantageofmodeisthepossibilitythatasetofvaluesmighthaveonlyone mode,ornomodeatall.Also,modeisnotstablewhenthestatisticshassmall numbers.

➢ RANGE:Therangeofyourdatainstatisticsistherangefromthelowesttothe highestvalueofthedistribution.Bysubtractingthelowestfromthehighest value,thespectrumisdetermined.Awidevarianceinadistributionimplies highvariability,whileasmallrangeindicateslowvariability.

➢ MEDIAN:Themiddlevalueindistributionisreferredtoasthearithmetic median,whichisapositionalaverage.Itdividesthesequenceintotwohalves bygroupingtheelementsinascendingordescendingorderofmagnitudebefore findingthemiddlevalueandisdenotedbythesymbolXorM.Itcanalsobe referredtoasthemiddlepositionorthemiddleclass,ormedianclass.For example,inasetofnumbers1,2,3,4,5,themedianofthesetofnumbers wouldbe3.Inthecasewheretwonumberareinthemiddleclass(e.g.,1,2,3,4, 5,6)themedianofthesetofnumbersistheaverageof3and4whichis3.5.

➢ STANDARDDEVIATION:Thestandarddeviationisacalculationofagroupof values’varianceordispersion.Alowstandarddeviationmeansthatthevalues aresimilartotheset’smean(alsoknownasthepredictedvalue),whileahigh standarddeviationindicatesthatthevaluesaredistributedoutacrossagreater spectrum.Thiscanbecalculatedwiththeformula

where

s ¼ standarddeviation

N ¼ sizeofthepopulation

xi ¼ eachvaluefromthepopulation

m ¼ populationmean

➢ SAMPLING:Datasamplingisapredictiveresearchmethodologythatinvolves selecting,manipulating,andanalyzingarepresentativesubsetofdatapointsin ordertouncovercorrelationsandtrendsinabroaderdatacollection.Thereare variousmethodsusedtosampledata:

• Simplerandomsampling

• Systematicsampling

• Stratifiedsampling

• Clustersampling

Samplingisamethodofstatisticalsurveyinginwhichapredeterminednumber ofobservationsaretakenfromalargergroupofindividuals.Themethodusedto collectdatafromalargergroupofindividualsvariesdependingonthetypeofstudy beingconducted,butitcanincludebasicdiscretionarysamplingorprecise sampling.

Samplingistheselectionofasampleofpatientsfromwithinameasurablepopulationtodeterminethepopulation’sattributes.Samplingisarealisticapproachthat isconcernedwiththeindividual’sinterpretationpreference.

➢ CONDITIONALPROBABILITY:Theprobabilityofoneoccurrencehappening inthecontextofoneormoreothereventsisknownasconditionalprobability. Conditionalprobabilitydenotesthelikelihoodofacertainoutcomeoccurringif anothereventhasalreadyhappened.Itisalwaysexpressedastheprobabilityof B givenan A,anditiswrittenas P(B|A),wheretheprobabilityof B isaninfinite supplyofevents.

➢ DISTRIBUTIONRANGE:Therangeofaspeciesisthegeographicalarea withinwhichthatspeciescanbefound.Withinthatrange,distributionisthe generalstructureofthespeciespopulation,whiledispersionisthevariationin itspopulationdensity.Therangeisthesmalleststretchthatincludesallthe detailsandhasatouchofmeasurabledisplacement.Itisratedinthesameunits asthedata.Itisgenerallyhelpfulincontributingtothedispersionofsmall instructionalassortments,andithasaninfinitesupplyofdiscernments.

➢ REGRESSION:Regressionisamathematicaltechniqueusedineconomics, investing,andotherfieldstoevaluatetheintensityandnatureofarelationship betweenonedependentvariable(usuallydenotedby Y)andasetofother variables(knownasindependentvariables):

Yi ¼ f ðXi ; bÞþ ei

where

Yi

¼ dependentvariable

f ¼ function

Xi

¼ independentvariable

b ¼ unknownparameters

ei

¼ errorterms

Threemajorusesofregressionanalysisare:

• Determiningthestrengthofpredictors

• Predictinganeffect

• Trendforecasting

Typesofregressioninclude:

• Linearregression

• Polynomialregression

• Ridgeregression

• Lassoregression

• Elasticnetregression

Thismethodincludesseveralvariationssuchaslinearandmultiplelinear. Regressionanalysisoffersnumerousapplicationsinvariousdisciplines,including finance.Linearregressionisbasedonsixfundamentalassumptions:thedependent andindependentvariablesshowalinearrelationshipbetweentheslopeandtheintercept;theindependentvariableisnotrandom;thevalueofresidualerroriszero;the valueoftheresidualerrorisconstantacrossallobservations;thevalueoftheresidualerrorisnotcorrelatedacrossallobservations;theresidualerrorvaluesfollowthe normaldistribution.Linearregressionisamodulethatassessesrelationshipbetween adependentvariableandanindependentvariable.

Multiplelinearregressionissimilartothesimplelinearregressioninaway,with theexceptionsofthemultipleindependentvariablesareuseinthemodel. Noncollinearity-multiplevariablesshouldshowaminimumofcorrelationwith eachother.Iftheindependentvariablesarehighlycorrelatedwitheachother,it willbedifficulttoaccessthetruerelationshipbetweenthedependentandindependentvariables.

➢ VARIANCE:Astatisticalcalculationofthespreadbetweennumbersinadata setisknownasavariance.Variancequantifieshowfareachnumberintheset deviatesfromthemean,andhencefromanyothernumberintheset.

References

Griffiths,A.J.F.,Miller,J.H.,Suzuki,D.T.,etal.,2000.AnIntroductiontoGeneticAnalysis, seventhed.W.H.Freeman,NewYork.Spontaneousmutations.Availablefrom: https:// www.ncbi.nlm.nih.gov/books/NBK21897/.

Laviola,S.,Monte,G.,Levizzani,V.,Ferraro,R.R.,Beauchamp,J.,2020.Anewmethodfor haildetectionfromtheGPMconstellation:aprospectforaglobalhailstormclimatology. Rem.Sens.12(21),3553. https://doi.org/10.3390/rs12213553

Thispageintentionallyleftblank

Casestudyin environmentalpollution research 2

1. Introduction

Pollutioncanbedefinedastheadditionofhazardousandtoxicmaterialstotheenvironment,therebycausingadverseeffects.Pollutioncanalsobedefinedastheintroductionofpollutantswhichcouldbeintheformofharmfulsubstancesorenergy intotheatmospherewhicheventuallybecomesdetrimentaltoit.Therearethree maintypesofpollution:

•Airpollution

•Waterpollution

•Landpollution

However,thereareotherequallyimportanttypesofpollutionsuchasnoise pollution,thermal(heat)pollution,plasticpollution,radioactivepollution,andlight pollution.Apollutantisanymaterialorsubstancethatcontainspropertiesthatare harmfultothebioticandabioticsystem.Pollutantscansimplybedefinedasconstituentsthatmakeuporareinvolvedinpollution.Theyarethemaincompositionof pollution.Pollutantscanbedividedintotwocategories:

1. Primarypollutants

2. Secondarypollutants

Primarypollutantsarethepollutantsatthefirstpointofintroductionintothe environment,whilethesecondarypollutantsarethepollutantsthatareformed fromtheseprimarypollutantsandtheadverseeffectsofotherexternalfactorson them.Pollutantscanbeofanyformwhethersolid,gaseousorliquid,orradioactive, soundandheatenergy.Pollutantsaremostlyanthropogenic(man-madepollutants), butinsomecases,pollutioncanbecausedbynaturaleventssuchaswildfires,where theairiscontaminated.

Pollutionisasoldasmankindsincetheancienttimesbeforecivilization from thefirestheycreatedtothewastetheyleftbehind.Althoughitwasnotamatterof greatconcernatthetime,withtheincreaseinpopulation,thequickspreadofindustrializationandcivilizationandestablishmentsoftownsandcities,pollutionisnow anissuethatproposesdangerintheyearsahead.Withtheincreaseofenvironmental CHAPTER

NumericalMethodsinEnvironmentalDataAnalysis. https://doi.org/10.1016/B978-0-12-818971-9.00003-X Copyright © 2022ElsevierInc.Allrightsreserved.

pollutionandpollutants,effortshavebeenmadetoprovideawarenesstocountries, states,andtowns,andlawshavebeenpassedtoreducepollutionandcontrolthe damagethathasalreadybeendonetotheenvironment.Someoftheselawsare

•TheAirPollutionControlActof1955,UnitedStates

•BiologicalDiversityActof2002,India

•OilPollutionofTheSea(CivilLiabilityandCompensation)(Amendment)Act of2003,Ireland

•Environmental(PreventionofPollutioninCoastalZoneandOtherSegmentsof TheEnvironment)Regulationof2003,Kenya

•CleanWaterActof1972,UnitedStates

•CleanAirActof1970,UnitedStates

•PollutionPreventionActof1990,UnitedStates

•EnvironmentalManagementActof1997,Netherlands

•PollutionControlActof1981,Norway

1.1 Airpollution

AccordingtoWorldHealthOrganization(WHO),9outof10peoplebreathehighly contaminatedair.Airpollutioncanbedefinedasthepresenceoradditionofharmful particulates(suchasaerosols)orgases(suchasgreenhousegases)totheatmosphere thataredetrimentaltothewell-beingofhumanbeingsandotherlivingorganisms andcausedamagetotheozoneandclimate.Someexamplesoftheseharmfulsubstancesincludechlorofluorocarbon(CFC),ammonia,nitrogenoxide(NOx),carbon monoxide(CO),exhaustfumes(soot)etc.Airpollutioncanbeclassifiedunderindoorandoutdoorairpollution.

Airpollutionisoneofthebiggestriskfactorsintheworldasitcausesupto5 milliondeathseachyearandisthecauseof9%ofdeathsaroundtheworld.In somedevelopedcountries,deathrateshavebeenonadeclineduetothecontrol andreductionmeasuresofindoorairpollutionsuchasimprovingproperventilation, reducingtheuseofafireplace.Also,thereductionofoutdoorpollutionthroughthe enactmentoflawsanddecreesthathasstrictimplicationsonindustrialemissions, anthropogenicemissions,andemissionsfromunconventionalsourcessuchas sewage.Theunconventionalsourcesarethenewareaofresearchasitisfoundto emitdangerousbioaerosolsintotheenvironment.Mostofthebioaerosolsarepathogenic.Theanthropogenicemissionsisthemostcommon,anditcanappearasone ofthefollowing.

Burningoffossilfuels:Mostoftheairpollutiontakesplaceduetotheburningof fossilfuels.Overtheyears,theburningoffossilfuelshasbeenalmostinevitable becausefossilfuelshavebeenoneofthemajorsourcesofenergy,electricity,and powergeneration.IntheUnitedStates,fossilfuelconsumptionhasnearlytripled withinthelast50years.Whenthesefuelsareburnt,theyreleaseharmfulgases suchascarbonmonoxide,i.e.,agreenhousegaswhichisunhealthytolivingorganisms.Thoughthereisanewcrusadeundertheaegisofsustainabledevelopment

goalsforthepromotionofcleanenvironmentthroughtheadoptionofrenewableenergysources,theuseoffossilfuelisstillontheincreaseduetomanyfactorssuch internationalpolitics,governmentalinadequacies,corruption,andexistingemploymentsrelatingtofossilfuel(Fig.2.1).

CombustionoffossilfuelsisconsideredamajorsourceoftheincreasedCO2. TheamountofCO2 producedperequivalentenergyunitvariesdependingonthe fuel-gasproduceslessthanoil,andoilproduceslessthancoal(Fig.2.2).There areothersourcesofCO2 productionasidefromfossilfuelaspresentedin Fig.2.2

Asidefromtheairpollutionfromfossilfuel,thepollutantsinfuelincludemercury,arsenic,andsulfurincoal;sulfur,vanadium,andnickelinoil;andsulfuringas. Thesepollutantsintheformofheavymetalsareanextendeddangeroffossilfuel burning.

Wildfire:Climatechangeiscausinganincreaseinforestwildfires.Thesewildfireshaveahighcontributioninpollution.Wildfirescouldalsobecausedbyburning offarmstubble.Whenthesefiresareignited,theycausesmogandthesesmogcould leadtodifficultyinbreathing(Fig.2.3).

FIGURE2.1

Fossilfuelconsumption(RitchieandRoser,2017).

FIGURE2.2

Carbondioxideemission(RitchieandRoser,2017).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.