Nuclear safety 2nd ed edition petrangeli - The ebook with rich content is ready for you to download

Page 1


https://ebookmass.com/product/nuclear-safety-2nd-ed-editionpetrangeli/

Instant digital products (PDF, ePub, MOBI) ready for you

Safety Management Systems in Aviation 2nd Edition

https://ebookmass.com/product/safety-management-systems-inaviation-2nd-edition/

ebookmass.com

Process Safety Calculations 2nd Edition Renato Benintendi

https://ebookmass.com/product/process-safety-calculations-2nd-editionrenato-benintendi/

ebookmass.com

Introduction to Nuclear Science 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/introduction-to-nuclear-science-2ndedition-ebook-pdf/

ebookmass.com

https://ebookmass.com/product/%e4%bc%8a%e5%b7%9d%e6%84%9b%e6%a2%a8-

a5%e3%81%a6%e2%99%a1%e3%80%8d-lemon-photobook-%e4%bc%8a%e5%b7%9d%e6%84%9b%e6%a2%a8/ ebookmass.com

(Original PDF) Health The Basics 13th Edition by Rebecca

https://ebookmass.com/product/original-pdf-health-the-basics-13thedition-by-rebecca-j-donatelle/ ebookmass.com

Why Study Religion? Richard B. Miller

https://ebookmass.com/product/why-study-religion-richard-b-miller/

ebookmass.com

National Success in Elite Sport: Exploring the Factors that Lead to Success Nadim Nassif

https://ebookmass.com/product/national-success-in-elite-sportexploring-the-factors-that-lead-to-success-nadim-nassif/

ebookmass.com

Bionanotechnology: Emerging Applications of Bionanomaterials Ahmed Barhoum

https://ebookmass.com/product/bionanotechnology-emerging-applicationsof-bionanomaterials-ahmed-barhoum/

ebookmass.com

Someday Away Sara Elisabeth

https://ebookmass.com/product/someday-away-sara-elisabeth/

ebookmass.com

Outcomes Beginner Student's Book Mike Sayer

https://ebookmass.com/product/outcomes-beginner-students-book-mikesayer/

ebookmass.com

Consultant,FormerlyENEA,Italy

FormerlyUniversityofPisa,Italy

GianniPetrangeli

Butterworth-HeinemannisanimprintofElsevier

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermission inwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’ s permissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthan asmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-818326-7

ForInformationonallButterworth-Heinemannpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: BrianRomer

AcquisitionEditor: MariaConvey

EditorialProjectManager: JoannaCollett

ProductionProjectManager: SruthiSatheesh

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

4.3

4.2.4ExampleofaCategory4Accident:MainSteamLineBreak......................54

4.2.5ExampleofaCategory4Accident:SuddenExpulsionofaControl RodFromtheCore........................................................................................56

4.2.6ExampleofaCategory4Accident:BreakoftheLargestPipe ofthePrimarySystem(LargeLOCA)..........................................................59

4.2.7ExampleofaCategory4Accident:FuelHandlingAccident......................61 4.2.8AreaAccidents...............................................................................................62

5.1

5.2 FuturePlants:ExtremeandPracticableSolutions..................................................71

5.3 SevereAccidentManagement:ThePresentStateofStudiesand Implementations.......................................................................................................75

5.4 DataonSevereAccidents........................................................................................76 5.5 DescriptionsofSomeTypicalAccidentSequences................................................76

5.5.1LossofStationElectricPowerSupply(TE 5 Transient 1 Loss ofElectricalSupply)......................................................................................76

5.5.2LossofElectricPowerWithLossofCoolantAccident(LOCA) FromthePumpSeals(SE 5 SmallLOCA 1 LossofElectricPower)........79

5.5.3InterfacingSystemsLOCA(V).....................................................................79

5.5.4LargeLOCAWithFailureoftheRecirculation(ALFC).............................80

5.5.5SmallLOCAWithFailureoftheRecirculation...........................................81

5.6 “SourceTerms”forSevereAccidents.....................................................................81

6.1 TheMostInterestingReleasesforSafetyEvaluations...........................................85

6.2 DispersionofReleases:Phenomena........................................................................87

6.3 ReleaseDispersion:SimpleEvaluationTechniques...............................................91

6.4 FormulaeandDiagramsfortheEvaluationofAtmosphericDispersion...............93

6.5 CalculationofAtmosphericDispersionbyComputerFluidDynamicsCodes......99

CHAPTER7HealthConsequencesofReleases

7.1 ThePrinciplesofHealthProtectionandSafety....................................................103

7.2 SomeQuantities,Terms,andUnitsofMeasureofHealthPhysics......................103

7.3 TypesofEffectsofRadiationDosesandLimits..................................................105

7.4 EvaluationoftheHealthConsequencesofReleases............................................106

7.4.1EvaluationofInhalationDosesFromRadioactiveIodine..........................106

7.4.2EvaluationofDosesDuetoSubmersioninaRadioactiveCloud..............106

7.4.3EvaluationoftheDosesofRadiationFromCaesium-137Deposited ontheGround(“Ground-Shine”Dose).......................................................107

7.4.4EvaluationoftheDoseDuetoDepositionofPlutonium ontheGround..............................................................................................107

7.4.5IndicativeEvaluationofLongDistanceDosesforVerySerious AccidentstoNuclearReactors....................................................................107

7.4.6DirectRadiationDoses................................................................................107

14.1.3FailureProbabilityofNuclearVessels......................................................153

14.1.4VesselMaterialEmbrittlementduetoNeutronIrradiation......................158

14.1.5PressurizedThermalShock.......................................................................160

14.1.6TheReactorPressureVesselofThreeMileIsland2...............................160

14.1.7GeneralPerspectiveontheEffectofSevereAccidents onthePressureVessel...............................................................................161

14.1.8RecommendationsforthePreventionofHypotheticalAccidents

14.2.1EvolutionoftheRegulatoryPositions.......................................................165

14.2.2ProblemsIndicatedbyExperience............................................................166

14.2.3LeakDetectioninWaterReactors............................................................168

14.2.4ResearchProgramsonPiping....................................................................169

29.2 RiskConceptsandEvaluationsinNuclearInstallationSafety.............................323

29.3 ResidualRisk:TheConceptofLoss-of-LifeExpectancy.....................................326

29.4 RiskFromVariousEnergySources......................................................................326

29.5 RisktoVariousHumanActivities.........................................................................327

29.6 AretheRiskAnalysesofNuclearPowerPlantsCredible?..................................327 29.7

Appendix1:TheChernobylAccident..............................................................................................335 Appendix2:CalculationoftheAccidentPressureinaContainment.............................................343 Appendix3:TableofSafetyCriteria................................................................................................

Appendix4:DoseCalculations.........................................................................................................373 Appendix5:SimplifiedThermalAnalysisofanInsufficientlyRefrigeratedCore.........................385 Appendix6:EuropeanRequirementsRevisionE,2016..................................................................389 Appendix7:NotesonFractureMechanics.......................................................................................413 Appendix8:USGeneralDesignCriteria.........................................................................................421 Appendix9:IAEACriteria...............................................................................................................435 Appendix10:PrimaryDepressurizationSystems............................................................................437 Appendix11:Thermal-HydraulicTransientsofthePrimarySystem..............................................445 Appendix12:TheAtmosphericDispersionofReleases..................................................................461 Appendix13:RegulatoryFrameworkandSafetyDocuments.........................................................467 Appendix14:USNRCRegulatoryGuidesandStandardReviewPlan...........................................477 Appendix15:SafetyCage................................................................................................................493 Appendix16:CriteriafortheSiteChart(Italy)...............................................................................499 Appendix17:TheThreeMileIslandAccident................................................................................503 Appendix18:OtherExamplesofPracticalUseofThisBook........................................................519 Websites.............................................................................................................................................563 Index..................................................................................................................................................565

Preface

Ihavewrittenthisbookbecauseofmyfirmbeliefthatitisnecessarytotrytogatherandtopreserveinwrittenform,andfromoneperspective,theaccumulatedmemoryandexperienceinthe fieldofnuclearsafetyandradiationprotection.Thisisparticularlyimportantforcountrieswhere nuclearenergyexploitationhasbeenstopped,butwhereitmighthavetoberesumedinfuture.The mainaccentofthisbookisonNuclearSafety.

Fromanotherpointofview,manyareasdevelopedinnuclearsafetystudiesareofinterestin thesafetyofprocessplantstooand,therefore,itisworthwhilewritingaboutthem.Giventhisperspective,Ihavetriedtocollecttheideas,thedata,andthemethodswhich,inmanydecadesofprofessionalworkinseveralcountries,inmyopinionarethemostusefulforevaluationof“integrated system”oftheplantsafety.

Ihaveemphasizedthecompletesite plantsystemmorethansingledetails,sothedataandthe methodsdiscussedarenotthoseappliedinthemanyspecializeddisciplinesdevotedtothein-depth studyofsafetybutarethoserequiredforoverall,firstapproximation,assessments.Inmyopinion, suchassessmentsarethemostusefulonesforthedetectionofmanysafety-relatedproblemsina plantandforthedraftingofacompletepictureofthem.Themoreaccurateandprecisethemethods are,themoreessentialitisintheoptimizationphaseofplantdesignandofitsoperationalparameters.Specialistsinreactorengineering,thermalhydraulics,radiationprotection,andstructural responseissuesmay,therefore,besurprisedtoreadthatsimplemethodsandshortcutssuggested hereareveryuseful,asmyexperienceandthatofother“generalists”suggestions.

Inaddition,thisbookaimstocoversomegeneralandsomeunusualtopics,suchastheoverall conditionstobecompliedwithbya“safe”plant,thetransboundaryconsequencesofaccidentsto plantsortospecificactivities,theconsequencesofterroristacts,andsoon.

Onsomecrucialissuestheviewsoftheworld’snuclearspecialistsarenotthesame,forexample,theviewsinWesterncountriescomparedwiththoseinformersoviet-bloccountriesonthepreChernobylapproachtonuclearsafetyinEasternEurope:theWestconsideredthesovietapproach tobearelativelylenientone,whilethesovietsthoughtthattheyconcentratedonpreventionof accidentsratherthanonthemitigationofthem.Inthesecasesthetexttriestobeobjectiveandto quotethe“Eastern”viewbesidesthe“Western”one,leavingfutureengineersandtechnicaldevelopmentstodecideonthisissue.

Exceptwhereexplicitlyindicated,thetextreferstothepressurizedwaterreactor.Extrapolation tootherkindsofplantsis,however,possible.

Thetextcomplieswithinternationallyrecognizedsafetystandards,andinparticularwith InternationalAtomicEnergyAgency(IAEA)requirements.

OnoccasionsIhavedigressed,innotes,fromthemainthrustofthetext.Ihavedonethisfor severalreasons:manynotesrelatefactsthatqualifyorjustifywhatiswritteninaprecedingparagraph;someofthemarenumericalexamplesaddedforclarification,whileothersaresimplecommentsandpersonalreflectionsonthesubject.Thesenotesaresetattheendofeachchapter.

Ihaveprovidedalistofreferencesattheendofeachchapter;howeverachapter(Additional references)listssomeorganizationsthatoffer“institutional”references[IAEA,Organizationfor EconomicCooperationandDevelopment(OECD),andUnitedStatesNuclearRegulatory Commission(USNRC)thatisoneoftherichestsourcesofpublicationsamongtheregulatory

bodies].Manyofthesereferencescanbeconsultedandevendownloadedfromthewebsiteslisted intheWebsiteschapter.

Calculationsheetsmentionedinthetextmaybedownloadedfromthepublisher’swebsite (http://dx.doi.org/10.17632/4hc54vnzx6.2);thewaytousethemisdescribedinthetext.

Finally,Iwishtounderlinethatallmyexperiencesuggeststome,aftermanypositiveandnegativelessonslearned,thattoday’snuclearplantscanbecompletelysafeandthatsignificantaccidentscanbeavoided.Thisis,however,onlytrueontheconditionthatsafetyobjectivesare carefullypursuedbytheorganizationsinvolvedintheplants;inthisarena,asitwillbeshown, evenorganizationsapparentlyveryfarfromanyspecificplantmustbe,uptoacertainextent, included(e.g.,thebodiesresponsibleforthegeneralenergystrategyofacountryandthe“media”).

Thissituationdoesnotexcludethatfuturenuclearplantsshouldbe“cheaperandsafer”than today’snuclearplants.TheorganizationWENRA(seeSection1.2.4)hasverycourageouslyputan accentontheneedthatfutureplantsbesaferthanpresentonesbydesign:along-awaitedstatement bymanyprofessionalsinterestedinnuclearsafety.Ipersonally,amongothers,askedtheparticipantstoaclosedmeetingofatopEuropeanOrganizationstothinkovertheoverwhelmingbenefit ofastatementlikethisinthe1980s,eventakingintoaccountthepossiblewronguseofitbysome sectorsofpublicopinionandpress.Itmustberemembered,indeed,thatexistingsafeplantsbenefit fromtheaccumulatedoperationalexperienceandensuingmodificationstoplantfeaturesandtheir operation:thisisanaddedsafetyvaluewhich,forfuturedifferenttypesofplants,mustbeovercompensatedbyanincreaseofsafetythroughdesign.

Ialsostresstheneedthatfutureplantsbecheaperthanpresentones:fromthesafetypointof view,thisfeaturewillmakeplantsurveillanceandsafety-usefulmodificationseasiertoacceptby investors(seeChapter18:NuclearSafetyCriteria).

IamconfidentthatfromthelistofGenerationIVreactorspresentlyunderstudy (Section1.2.4),oneplantwiththeabove-listedcharacteristicswillemerge.Veryrecently,some facts(see NuclearNews,2019 forCanada)seemtoindicatethestartofaninvestor’sinterestin GenerationIVreactors(MOLTENSALTREACTORandHTGR)beyondtheresearchactivities goingoninmanyorganizationsworldwide.

Ingeneralterms,cheaperandsafernuclearreactorsshouldhavethefollowinggood“fundamentals”or“basiccharacteristics”:

•Reducedinternalpressureofcomponents

•Reducedpresenceofhighlycorrosivefluids

•Reducedpresenceofflammablematerials

•Self-shutdowninthecaseofdangerousdisturbances

•Intrinsicallysafesiting(reduceddangerofdestructiveearthquakes,inundations,andslides)

Thechoiceofafuture,cheaperandsafer,reactortype,moreover,shouldnotbeinfluenced(as itmightbe)bytheintertwinedrelationbetweenpeacefulusesofnuclearenergyandmilitaryuses ofit(Uekoetter,2012;McPhee,1974).Inparticular,Thorium-fuelledreactorsshouldnotbe penalized.

Thisissueisnotdealtwithinthisbookforthelackofreliableandpublicnumericaldata. However,inthelightofpastexperienceandchoices,thisissueisimportant.

Iwillbeverygratefultomyreadersforanysuggestionconcerninganyimprovementstothe textandalsocorrectionstothemistakeswhicharecertainlypresentinit.Iamfullyaware,in

particular,ofthesubjectivenatureofthechoiceofthematerial:thesubjectofnuclearsafety,as doesthatconcerningthesafetyofprocessplantsingeneral,hasbecome,overtime,adiscipline comprisingmanyspecificratherautonomoussubsections.Itisnoteasy,therefore,tochoosethe materialtobeincludedinageneraltextlikethisone;inthis,practicalexperienceofwhatisnecessarywhiledoingassessmentworkofplantshasbeenmyguide.

REFERENCES

McPheeJ.,1974.TheCurveofBindingEnergy(Chapters19 22). NuclearNews,ANS(AmericanNuclearSociety),issueApril2019,International,page33.

Uekoetter,F.,2012.Fukushimaandthelessonsofhistory:remarksonthepastandfutureofnuclearpower. Source:RCCPerspectives,No.1,EuropeAfterFukushima:GermanPerspectivesontheFutureNuclear Power.RachelCarsonCenter,pp.9 32.

INTRODUCTION

1

1.1 OBJECTIVES

Theobjectivesofnuclearsafetyconsistinensuringthesitingandtheplantconditionsneedto complywithadequateprinciples,suchastheinternationallyacceptedhealth,safety,andradioprotectionprinciples.Inparticular,theplantatthechosensiteshallguaranteethatthehealthofthe populationandoftheworkersdoesnotsufferadverseradiationconsequencesmoreseverethanthe establishedlimitsandthatsucheffectsbethelowestreasonablyobtainable[theALARA(aslowas reasonablyachievable)Principle]inalloperationalconditionsandincaseofaccidents.

Theseobjectivesarefrequentlysubdividedintoa generalobjective,a radiationprotection objective,anda technicalobjective,forexample,intheInternationalAtomicEnergyAgency (IAEA)criteria(see www.iaea.org).

The generalnuclearsafetyobjective (IAEAFundamentalSafetyPrinciplesSF-1,2006)isto protectindividuals,society,andtheenvironmentfromharmbyestablishingandmaintainingeffectivedefencesagainstradiologicalhazardsinnuclearinstallations.

The radiationprotectionobjective istoensurethatinalloperationalstatesradiationexposure withintheinstallationorduetoanyplannedreleaseofradioactivematerialfromtheinstallationis keptbelowprescribedlimitsandALARA,andtoensuremitigationoftheradiologicalconsequencesofanyaccidents.

The technicalsafetyobjective istotakeallreasonablypracticablemeasurestopreventaccidents innuclearinstallationsandtomitigatetheirconsequencesshouldtheyoccur;toensurewithahigh levelofconfidencethat,forallpossibleaccidentstakenintoaccountinthedesignoftheinstallation,includingthoseofverylowprobability,anyradiologicalconsequenceswouldbeminorand belowprescribedlimits;andtoensurethatthelikelihoodofaccidentswithseriousradiologicalconsequencesisextremelylow.

Thetargetforexistingpowerplantsconsistentwiththe technicalsafetyobjective hasbeen definedbytheInternationalNuclearSafetyAdvisoryGroup(advisortotheIAEADirector General)asalikelihoodofoccurrenceofseverecoredamagethatisbelowabout10 4 eventsper plantoperatingyear.Implementationofallsafetyprinciplesatfutureplantsshouldleadtothe achievementofanimprovedgoalofnotmorethanaboutl0 5 sucheventsperplantoperatingyear. Severeaccidentmanagementandmitigationmeasuresshouldreducetheprobabilityoflargeoffsite releasesrequiringshort-termoffsiteresponsebyafactorofatleast10.

Ithastobeobservedthattheseprinciples,whileindicatingtheneedforstrictcontrolofradiationsources,donotprecludetheexternalreleaseoflimitedamountsofradioactiveproductsnorthe limitedexposureofpeopletoradiation.Similarly,theobjectivesrequiretodecreasethelikelihood andtheseverityofaccidents,buttheyrecognizethatsomeaccidentscanhappen.Measureshaveto

NuclearSafety.DOI: https://doi.org/10.1016/B978-0-12-818326-7.00001-9 © 2020ElsevierLtd.Allrightsreserved.

betakenforthemitigationoftheirconsequences.Suchmeasuresincludeonsiteaccident managementsystems(procedures,equipment,operators)andoffsiteinterventionmeasures. Thegreaterthepotentialhazardofarelease,thelowermustbeitslikelihood.

Thechaptersofthisbook,exceptthefewofthemnotconcernedwiththesafetyofnuclear installations,dealwiththewaysforpracticallyachievingtheseobjectives.

1.2 ASHORTHISTORYOFNUCLEARSAFETYTECHNOLOGY

1.2.1

THEEARLYYEARS

Thefirstreactor,the“Fermipile”CP1(orChicagoPile1,builtin1942)wasprovidedwithrudimentarysafetysystemsinlinewiththesenseofconfidenceinspiredbythecharismaticfigureof EnricoFermiandhisopinionconcerningtheabsenceofanydangerfromunforeseenphenomena. Thesafetysystems(Fig.1.1)areasfollows:

Spectator

Detector Recorder

ZIP rod

57 layers of uranium and graphite

Cadmium rod

THE FIRST REACTOR December 2, 1942

FIGURE1.1

DrawingoftheCP1pile.Scram—thistermmeans“fastshutdownofareactor”:variousexplanationshavebeen proposedforitsorigin.ThemostcreditedoneassumesthatitderivesfromtheabbreviatednameoftheCP1 safetyrodwhichcouldbeactuatedbyanaxe.Intheoriginaldesignsketchesofthepile,thepositionofthe operatoroftheaxewasindicatedby“SCRAM,”theabbreviationof“SafetyControlRodAxMan.”The designatedoperatorwasthephysicistNormanHilberry,subsequentlyDirectoroftheArgonneLaboratory.His colleaguesusedthename“MisterScram.”

CourtesyProf.RaymondMurray.

Cadmium solution
(Samuel Allison)
(Enrico Fermi)
(George Weil) Ax man
(Norman Hilberry)

•Gravity-drivenfastshutdownrods(onewasoperatedbycuttingaretainingropewithanaxe).

•Asecondaryshutdownsystemmadeofbucketscontainingacadmiumsulfatesolution,whichis agoodneutronabsorber.Thebucketswerelocatedatthetopofthepileandcouldbeemptied ontoitshouldtheneedarise.

Comparedwiththesetofsafetysystemssubsequentlyconsideredessential,anemergencycoolingsystemwasmissingasdecayheatwaspracticallyabsentaftershutdown,andtherewasnocontainmentsystem(exceptforacurtain!)providedastheamountoffissionproductswasnot significant.

Otherreactorsweresoonbuilt,forbothmilitaryandcivilpurposes,andsincetheywereconstructedonremotesites(e.g.,Hanford,Washington);theydidnotneedcontainmentsystems.

Inthelightofsubsequentapproachesusedinreactorsafety,probably,inthisfirstperiod,notall thenecessaryprecautionsweretaken;however,itisnecessarytoconsiderthespecifictimeandcircumstancespresent(aworldwarinprogressorjustfinished,statusofradiationprotectionknowledgenotyetsufficientlyadvanced,etc.).1

Inthe1980sand1990s,arevisionofthe“simplified”approachusedforthesefirstreactors (mainlydevotedtoplutoniumproduction)wasmade.Theywere,asaconsequence,eithershut downormodified.Inparticular,thefollowingcharacteristicsorproblemswereremovedorsolved:

•theopencyclecoolingofthereactorsandnonpressure-resistantcontainments;

•thedisposalofradioactivewasteusingunreliablemethods,suchasthelocationofradioactive liquidsinsimpleundergroundmetallictankswhichweresubjecttotheriskofcorrosionandof consequentleaks;and

•thestorageofspentfuelelementsinleakingpoolsofwater.

1.2.2 FROMTHELATE1950STOTHETHREEMILEISLANDACCIDENT

Sincetheearly1960sandevenbefore,intheWest,thecriterionoflocatingpowerreactorsina leakproofandpressure-resistantcontainmentvesselwasestablishedandconsolidated.Inthose caseswhereasignificantreleaseofradioactiveproductscouldbepossible,thedesignpressureof thecontainmentwaschosenontheassumptionthatalltheprimary(andpartofthesecondary)hot water(forawaterreactor)wasreleasedfromthecoolingsystems.

Indeed,sincethe1950s,theUS“ReactorSafeguardsCommittee,”setupbytheAtomicEnergy Commission(AEC)withthetaskofdefiningtheguidelinesfornuclearsafety,hadindicatedthat foranoncontainedreactor,alowpopulationzoneshouldbeprovided.Thisdistance, R,hadtobe equal,atleasttothatgivenby Eq.(1.1)

where Pth isthethermalpowerofthereactorinkilowatts.

Fora3000MWreactor(theusualsizetoday),thisexclusiondistanceisequaltoapproximately 30km,whichisequaltothedistanceevacuatedaftertheChernobylaccident(Bourgeoisetal., 1996).Evidently,thereferencedosesfortheshort-termevacuationwereroughlythesameforthe twocases.Anexclusiondistanceofthismagnitudeposesexcessiveproblemstositing,evenina countryendowedwithabundantlandsuchastheUnitedStates;thereforethedecisionofadoptinga containmentispracticallyacompulsoryone.

Thefirstreactorwithleakproofandpressure-resistantcontainmentwastheSR1reactor(West Milton,NewYork,builtinthe1950s).Builttoperformtestsforthedevelopmentofreactorsfor militaryshippropulsion;thisreactorwascooledbysodiumandthecontainmentwasdesignedfor thepressurecorrespondingtothecombustionofthesodiumescapingfromahypotheticalleakin thecoolingcircuit.

InWesterncountries,moreover,itwasrequiredthatthewholerefrigerationprimarycircuit shouldbelocatedcompletelyinsidethecontainment,sothat,eveninthecaseofacompleterupture ofthelargestprimarysystempipe,alltheescapedfluidwouldbeconfinedinthecontainment envelope.Thedesignpressureofthecontainmentforwaterreactors(startingwiththeShippingport, Pa,reactor,moderatedandcooledbypressurizedwater)wasderivedonthebasisoftheassumption ofthecompletereleaseoftheprimarywater.

InEasternEurope,thesecriteriawereappliedtoalesserdegree,asitwasacceptedthatthe pressurevesselalonewouldbelocatedwithinthecontainment(theruptureoflargepipeswasconsideredsufficientlyunlikelytojustifythisassumption)andthattheleakproofcontainmentcharacteristicneednotbeverystringent.Thusatthesecond AtomsforPeace conferenceinGenevain 1964,theWesternvisitorswereimpressedbutsurprisedbythemodeloftheNovovoronezhreactor, whichshowedonlyonesmallcontainmentenclosurearoundthereactorpressurevesselandwas locatedinabuildingthatfromtheoutsideresembledabigpublicofficebuilding.Stillmanyyears afterward,theRussianreactorsoftheVVER230series,althoughprovidedwithcomplete “Western-style”containment,hadaleakageratefromthecontainmentoftheorderof25%each day(tobecomparedwithfiguresoftheorderof0.2%eachdayfromtypicalWestern containments).2

Apartfromdifferencesofapproachbetweenworldregions,inthisperiodoftimeandinallthe countrieswithnuclearreactors,thesystemsinstalledintheplantsaccordingtotherequirementsof thesafetybodiesandhavingthesolepurposeofaccidentmitigation,werefrequentlythesubjectof heateddebates;inparticular,theemergencycorecoolingsystemsandthecontainmentsystems wereoftendiscussed.

Moreprecisely,theopinionsontheaccidentassumptionsevolvedintheWestweredivided. Thereferencesituationsforthereasonablyconceivableaccidentswerechosenbythejudgmentof expertcommittees.Thesesituationsincludedtheworst“credible”events(suchasthecompleteseveranceofthelargestprimarypipe).Theassumptionsconcerningtheinitiatingeventwereaccompaniedbysimultaneousconservativeassumptionsconcerningmalfunctionsinsafetysystems,suchas a“singlefailure”consistinginthefailure,simultaneouswiththeinitiatingevent(pipefailureand soon),ofoneactivecomponentofoneofthesafetysystemsdevotedtoemergencysafetyfunctions duringtheaccident(waterinjectionsystem,reactorshutdownsystem,andsoon).3

Ononeside,themorecautiousexperts,generallymembersofpublicsafetycontrolbodies, manyscholarsandmembersofnongovernmentalorganizationsforthedefenceofpublicrights, supportedtheneedforkeepingtheseconservativeassumptions;ontheotherside,moreoptimistic people(membersofmanufacturingindustriesandofelectricutilities)maintainedthattheabovementionedaccidentassumptionsentailedatruewasteofresources(thosenecessarytoprovide nuclearplantswithhugecontainmentbuildingsandpowerfulsafetysystems).Ithastobenoted thatthe“optimists”werebynomeansimprudentorreckless:asincereconvictionexistedinthe industrythatthecurrentaccidentassumptionswerenotwellfounded.4

Thecontrastbetweentheoptimistsandthepessimistswasexacerbatedbytheforeseeablecircumstancethatnotallofthelogicalconsequencesoftheinitiallyadoptedaccidentassumptions werefromthestartcleartotechnicalpeople.Asanexample,asfarastheeffectivenessofemergencycorecoolingsystemsisconcerned,itwasnotunderstoodfromthestartthatZircaloyfuel cladding(stainlesssteelbehavesinasimilarway)couldreactwithwaterinanautocatalyticwayat relativelylowtemperaturesandcouldreleaselargequantitiesofhydrogen.Neitherwasitunderstoodfromthestartthatthesamecladdingcouldswellbeforerupturingandcouldoccupythespace betweenfuelrods,preventingtheflowofcoolingwater.Theexistenceofthesephenomenawas demonstratedbystudiesandbytestsperformedbytheAEContheSemiscalefacilityattheUS NationalLaboratoryofIdahoFallstowardtheendofthe1960s,whenmanyUSreactorshad alreadybeenorderedandwerebeingdesignedorbuilt.

Similarly,atthebeginningofthe1970s,thepossibilitywasdemonstratedthatthebreakofa pipecoulddamageothernearbypipesorotherplantcomponents,startingachainofruptures (knownasthe“pipewhip”effect).

Allofthesediscoveries,madelateinthedesignandprocurementphasesofUSreactors,persuadedthecontrolbodiestostipulatethattheinherentsafetysystemsbeimprovedinordertotake themintoaccount.Otherrequestsforimprovementconcernedtheresistanceoftheplantstonatural phenomenaortoman-madeevents,inordertoreachabalanceddefencespectrumagainstallofthe realisticallypossibleaccidents;insuchawaythedefenceagainstnewphenomenabecameanalogs tothedefenceagainstthealreadyconsideredphenomenahavingacomparableorlowerprobability. Theserequestsforimprovement(“backfitting”)extendedtheconstructiontimesoftheplants, togetherwiththeircosts.

Itcanbeunderstoodthattheindustry,whichalreadyconsideredtheinitiallyadoptedaccident assumptionstobeexcessive,stronglyopposedtheseaggravatingrequests.Aspreviouslysaid,upto theThreeMileIsland(TMI)accident,notallnucleartechnicalexpertsbelievedinthereasonablenessofthecurrentaccidentassumptionsandintheneedtopursuethemwithlogicalrigorand,in thelightoftheup-to-datescientificknowledge,uptotheirextremeconsequences.5

Theincreaseincostsasaconsequenceofthecontinuousrequestsforplantimprovementswas stronglyincontrastwiththeinitialindustrialexpectations,whichwereconciselysummarizedby thethenchairmanoftheAEC,LewisStrauss,whofamouslystatedthatnuclearenergywould become“toocheaptometer.”Inthisperiod,theexpression“ratcheting”wascreatedtodescribe

Pressure channel
Isolation valve
Emergency injection line
Normal cooling line
FIGURE1.2
Sketchforadiscussiononabreakinapressuretubereactor.

theactionofthecontrolbodiesinthefieldoftheimprovementoftheplantsconcurrentlywiththe indicationsoftheprogressingstudiesandresearch.

Thiscontinuousprocessofimprovementproduced,whereitwasperformed,verysafebutalso verycostlyandrathercomplicatedplants.Indeed,theplantsweresubjecttoaseriesofsafetyfeatureadditionstoasubstantiallyunchangedbasicdesign.

InthisperiodadiverseapproachtoplantsitingdevelopedandwasconsolidatedintheUnited StatesandinWesternEurope.IntheUnitedStates,theplantsitingcriteria,asfarasdemographic aspectswereconcerned,weresubstantiallydecoupledfromthedesignfeaturesoftheplant.Onthe contrary,inEurope,criteriaforthesite plantcomplexwereadopted.TheUSsitecriteria(exceptfor seismicproblemsandforotherexternalnaturalorman-madeevents)canbesummarizedasfollows:

•Theexistenceofan“exclusionzone”aroundtheplant,wherenodwellingsorproductive settlementsexist,withaccessunderthecompletecontroloftheplantmanagement.

•Theexistenceofa“lowpopulationzone”aroundtheplant,whichcouldbequicklyevacuated (withinhours)incaseofaccidenttotheplant.

•Theradioactiveproductsreleasefromthecoretotheplantcontainmentconventionally establishedasafunctionoftheplantpoweronly:theTechnicalInformationDocument14844 (TID)release(DiNunnoetal.,1962).

•Adoselimitof250mSV(25rem)totalbodyandof3Sv(300rem)forthethyroid(children) within2hoursaftertheaccidentattheborderoftheexclusionzone.6

•Doselimitsequaltotheprecedingonesforthewholeaccidentdurationattheexternalborderof thelowpopulationzone.

Theexclusionzonewasestablishedataradiusof800 1000maroundtheplantandthelow populationzoneatroughly5kmfromtheplant(USCodeofFederalRegulations,2004a).

Theconventionalreleasefromthecorewasasfollows:

•Foriodine-131:50%ofthecoreinventory,ofwhich50%onlyisavailableinthecontainment forexternalrelease(depositionandplateoutintheprimarycircuit).

•Theiodineavailableforexternalreleaseis91%elemental,5%particulate,and4%organic iodide(methyliodide).

•Noblegasesaretotallyreleasedtothecontainment.

Independentcriteriawerethenestablishedforthedesignoftheplant.

Inthisapproach,thedecisionabouttheadequacyofaproposedsitecouldbetakenonlyonthe basisoftheplantpowerleveland,possibly,onthespecificcharacteristicsofitsfissionproduct removalsystems(tobeevaluatedandpossiblyvalidatedonacase-by-casebasis).

Incontrast,inEurope,thesiteselectioncriteriausuallyconsiderthesite plantcomplex. Thereforeforexample,ifaplantwiththeusualsafetysystemscouldnotbelocatedonaspecific sitebecauseaccidentdosesexceededthereferencelimits,itwaspossibletomaketheplant acceptableforthesamesitebytheimprovementofthesystemsforfuelintegrityprotectionincase ofaccidents.

Thedoselimitsvariedsomewhatbetweenvariouscountries,buttheywereoftheorderof 5mSv(500mrem,effectivedose)tothecriticalgroupofthepopulationoutsidetheexclusionzone foreverycredibleaccident(designbasisaccidents);someincreaseofthislimituptothelevelof tensofmillisievertforsinglespecificaccidentscouldalsobeaccepted.Inordertoevaluatethe

consequencesoftheseaccidents,then,noconventionalfigureforthereleasesisused(suchasthe TIDfigures).Onthecontrary,conservativebutmorerealisticassumptionsareadopted;typically, theiodinereleasedinthecontainmentisassumedequaltotheinventoryinthefuel cladinterface, equalto1% 5%ofthetotalcoreinventory,insteadoftheTID50%.

InEurope,theneedtotakeaccountofthespecificplantfeaturesfortheevaluationofthe acceptabilityofthesitearisesfromthemuchhigherpopulationdensityinEuropeincomparison withthatoftheUnitedStates(approximately200inhabitantspersquarekilometerand30per squarekilometer,respectively).Itisthereforemuchmoredifficulttofindlowpopulationsitesin Europe.

ThedifferentpopulationdensitiesinEuropeandtheUnitedStateshavealsobroughtaboutdifferencesinaccidentemergencyplans:intheUnitedStates,theprovisionofacompleteevacuation ofthepopulationwithin16kmoftheplantinafewhoursisadopted,whileinEuropethemaximumcomparabledistanceisequalto10km.Itisindeeddifficulttoassuretheevacuationofpopulationcenterswithtens,hundreds,orthousandsofinhabitants.Heretoo,thecountries’differences indemographicconditionshavetobecompensatedbyadditionalplantfeatures(generally,theuse ofdoublecontainmentprovidedwithintermediatefiltrationsystemsandtheuseofelevatedstacks).

ThepracticeintheFarEast(Japan,SouthKorea)issimilartotheEuropeanone.

Thesedifferencesinthefundamentalapproachtosafetyamongvariouscountrieshavealways beenthoughtbythegeneralpublictobeaweaknessofthenuclearindustry,therebyaffectingtheir acceptanceofnuclearenergy.Thesedifferenceshavealwaysbeenasourceofconfusioninthe mindofthepublicand,therefore,theyaggravatethepublicdistrustinthesafetyofthisenergy source.Manyattemptshavebeenmade,intheinternationalandcommunityarenaswherenuclear safetyisdiscussed(IAEA,OECD,EU),toadoptunifiedcriteria(seeChapter18:NuclearSafety Criteria).Theaimofagreeingoncommoncriteriahasbeenreachedonlyattheexpenseofunificationatahigherlogicallevel,thereforeleavinguntouchedthedifferencespreviouslydescribed,for example,leavingtothefreedomofeachcountrythedefinitionofacceptabledistancesordoses.

InthisperioduptotheTMIaccident,threeotherfactsinfluencednuclearsafetytechnology: defenceagainstnonnaturalexternalevents;thepreparationoftheRasmussenreport,WASH1400; andtheintroductionofqualityassurance(QA)indesign,construction,andoperationofplants.

Thefirstofthese,thedefenceagainstnonnaturalexternalevents,wouldnotdeservespecific mentionanddiscussion,exceptthatitsmotivationhaschangedwithtime.Forexample,theinitial officialincentiveforthereinforcementofplantstructuresandcomponentsofmanyreactorsconsistedinthedefenceagainsttheaccidentalfallofanaircraft,while,subsequently,itwasprovided todefendagainstsabotageperformedbytheuseofaircraft,butalsobyexplosivesofvariouskinds. Ineffect,thestrengtheningofstructuresandcomponentswasinitiallymadeinGermanyasaconsequenceofthehighnumberofcrashesoftheLockheed Starfighter fighterplaneinthe1960s. Subsequently,withtheonsetofterroristactivityinthe1970s,theneedarosetodefendnuclear plantsagainsthypotheticalexternalattacksconductedwiththeuseofprojectilesandofexplosives. Atthispoint,itwasdiscoveredthattheGermanprotectionagainsttheplanecrashcouldalsoenvelopeasufficientnumberofsabotageeventsbasedontheuseofexplosives.Thereforeasmanypeoplepreferrednottomentionthesesabotageprotectionsexplicitly,thecorrespondingprovisions werenamedintheofficialdocumentsas“protectionagainstplanecrash.”

Plantprotectionagainstthevariouseffectsoftheimpactbyafighteraircraft(weighingabout 20t)wasadoptedatleastinGermany,Belgium,Switzerland,andItaly,whereasinothercountries

theprotectionagainstthefallofasmallersportsaircraftwaschosen,frequentlyonlyifjustifiedby theproximityofanairport.Nocountryexplicitlyadoptedtheprotectionagainsttheimpactofa wide-bodiedairlineroftheJumboJettype(weighingabout350t),whichwouldbefarmoreonerous(possiblyrequiringtheundergroundlocationofplants).Itwascalculatedthattheprotection againstthefallofafighteraircraftincludedtheprotectionagainstthefallofalargeairlinertooif theimpacttakesplacewithlessdamagingcharacteristics(lowerspeedofimpact,shallowerangle ofimpact,andsoon)thanthosewhichwouldcausetheworststructuralconsequences(see Chapter17,ResistancetoExternalImpact,formoreonaircraftimpact.)

Thesecondinfluence,theRasmussenreport,firstpublishedin1975,wassponsoredbythe NuclearRegulatoryCommission(NRC—thesuccessortotheAECincontrolofpeacefulapplicationsofnuclearenergyandtheregulatorybodyonnuclearsafetymatters)withtheaimofoutlining anoverallpictureofalltheconceivableaccidentsandoftheirprobabilities,inordertoidentifythe riskconnectedtoanuclearplant.Itwasthefirsttimeastudythatincludedallconceivableaccidentshadbeenmade.Itincludedlessprobablescenariostoo,suchasthecatastrophicexplosionof areactorpressurevesselandanestimateoftheprobabilityofeachofthem.Itshouldbeunderstood thattheprobabilitydataconcerningthemostunlikelyphenomenaarescarceorevenabsentgiven theimpossibilityofstudyingthesephenomenabyexperimentaltestsandthescarcityofapplicable real-lifedata.Insomeways,quantifyingtheseeventsinareportwasabolddecision,but,oncethe objectiveofthestudywasdecidedupon,nobodyquestionedthefeasibilityofit.Subsequently, oncethereportwaspublished,criticismensued:somepeoplesaidthatitwasinscrutable,others criticizedthecompletenessofthedatabase,andotherscriticizedtheinconsistencyoftheexecutive summarywiththemainreport.Inthesecond,andfinal,editionsomeevidentinsufficiencieswere corrected,butsomeofthecriticismsremainedunresolved.Whoeveritwaswhostartedariskstudy ofthefirstcars,ofthefirstrailwaytrainsorofthefirstairplanes,wouldhavemetthesamedifficulties.However,withthepassingoftime,thereporthasremainedafundamentalreferenceforany safetyandriskevaluation.Nobodycouldsupportthevalidityoftheabsolutequantitativeriskevaluationscontainedinit,but,atthesametime,thevalidityofthisstudyandofthesimilarones whichfollowedisuniversallyacknowledgedasfarastherelativeprobabilityestimatesareconcernedfordetectionofweakpointsinaspecificdesign.Insubstance,theRasmussenreportand similarstudiesarepossiblejudgmentinstrumentsinthenuclearsafetyfield,althoughtheycannot beusedalone.Soundengineeringevaluations,basedonoperatingexperience,evenindifferentbut similarfields,andonresearchresults,arethenecessarycomplementtotheprobabilistic evaluations.

Inthehistoryofnuclearsafetytechnology,theRasmussenreportdidnotsolelyrepresenta methodologicaladvancement.Severeaccidents(thoseaccidentsmoreseriousthanthoseuptothen consideredcredible)wereincluded,especiallyaftertheTMIaccident,inthedesignconsiderations fornuclearplants.

Finally,thestartoftheapplicationofQAinnuclearengineeringhastobementioned. Accordingtothismanagementsystem,thequalityofaproductisguaranteedbythecontrolofthe productionprocesses,morethanbythecontroloftheproductsthemselves.Certainlythisrepresents remarkableprogresstowardtheachievementofproductsbettercomplyingwiththeirspecifications; however,theimplementationofthissystemrequiresasignificanteffortinthefieldofactivityplanningandofthemanagementofthedocumentation,entailingacorrespondingcostburden.

1.2.3 FROMTHETHREEMILEISLANDACCIDENTTOTHECHERNOBYLACCIDENT

InMarch1979,duringaratherfrequentplanttransient,avalveontopofthepressurizerofthe TMIplant(Pennsylvania,UnitedStates)remainedstuckopen,givingrisetoacontinuouslossof coolant.Inanextremelyconciseway,anopeninginthatposition(althoughthisfacthadnotbeen sufficientlystudiedandpublicizedinthetechnicalliterature)generatedovertimeasituationofa voidreactorpressurevesselandofafullpressurizer.

Thisaccidentdemonstratedthattheattitudeofmanytechnicalpeopletowardnuclearsafetywas carelessandoptimistic.Itcouldalsobeconcludedthatbad“surprises”causedbyanuclearplant couldbeavoidedonlyattheexpenseofastrongchangeintheirmindsettowardsafetyitself.

Theseconclusionsweresharedbypracticallyalltechnicalpeopleandallovertheworld.Some optimistsstillexisted,however.Theywereconvincedthatalltheblamefortheaccidenthadtobe placedontheoperatorswhohadnotcorrectlydiagnosedtheplantconditionsintime,andthatall theproblemscouldbesolvedbytheuseofmorestringentlyscreenedoperators.

Itcanbesaidthatthisaccidentcompletelychangedtheattitudeoftheindustrytowardsafetyin alltheOECDcountries.Theprovisionoffeaturespreviouslyconsideredtobepointlessbysome (suchasthepresenceofaleakproof,pressureresistantcontainment)wasacknowledgedasvalidin thelightofthepossibilityofunforeseeableevents.Twoorganizationswerecreatedforthe exchangeofinformationonoperationaleventsatnuclearplantsandforthepromotionofexcellence inthenuclearsafetyfield:theInstituteofNuclearPowerOperationsintheUnitedStatesandthe WorldAssociationofNuclearOperators(WANO)internationally.IntheUnitedStates,withinthe NRC,aspecificofficewascreated(AnalysisandEvaluationofOperationalData)fortheanalysis andthedisseminationofoperatingexperience.Longlistsof“lessonslearned”werepreparedanda “TMIActionPlan”compiledwhichcontainedalargenumberofspecificprovisionsagainstthe possiblerepetitionofsimilaraccidentsinthefuture.Theimplementationoftheseprovisionscost eachplantanamountofmoneyrangingbetweenseveralmilliondollarsandseveraltensofmillions ofdollars.Aboveall,twoconceptswereunderlinedandreinforced:theconceptof defenceindepth andtheconceptof safetyculture.

Accordingtoanumberofexperts,inparticularfromtheformerUSSR,theattitudeoftheindustrytowardsafetyalsochangedinEasternEuropeaftertheTMIaccident:alreadyinearly1980s, RussiandesignersofVVERreactorsproposedanumberofmeasuresforsafetyimprovements.

The defenceindepth initiativeisaconceptmeaningthatmany,mutuallyindependent,levelsof defenceagainsttheinitiationandtheprogressionofaccidentsarecreated.Thevariouslevels includephysicalbarriers,suchasthefuelcladding,theprimarysystem,andthecontainment.Five levelsaredefined:goodplantdesign,controlsystems,emergencysystems,accidentmanagement, andemergencyplans.

The safetyculture conceptisdefinedasthesetofconvictions,knowledge,andbehaviorin whichsafetyisplacedatthehighestlevelinthescaleofvaluesineveryactivityconcerningthe useofnuclearenergy.7

Theresultoftheseinitiatives,togetherwiththeRasmussenreportandtheTMIaccidentconvincedmanycountriestopayattentiontosevereaccidents.Severeaccidentoccurrencewasintroducedasaconsiderationinthedesignandoperationofplants.

A severeaccident isdefinedasoneexceedinginseveritythe DesignBasisAccidents,whichare thoseagainstwhichplantsafetysystemsaredesignedinsuchawaythat:

•Thecoredoesnotexceedthelimitsofirreversibledamageofthefuel(e.g.,1200 Cmaximum temperatureand17%localoxidationofthecladdings)(USCodeofFederalRegulations, 2004b).

•Theexternalreleasesdonotexceedthemaximumtolerableones,accordingtothenational criteriainforce.

Inmanycasesitisconsidered,asanaccidentprogressivelyworsens,thatthelimitforwhichit becomes“severe”istheattainmentof1200 Cinthefuelcladdingsinceataboutthistemperature theprogressionofthewater claddingexothermicreactionbecomesautocatalyticandproceedsata highrate.TheIAEAdefinitionforsevereaccidentsis“accidentconditionsmoreseverethana designbasisaccidentandinvolvingsignificantcoredegradation”(IAEA,SafetyofNuclearPlants: Design,SSR-2/1).

AlltheOECDcountries(butalsoothers)agreedontheadvisabilityofstudyingandofimplementing severeaccidentmanagementtechniques ontheirplants.Theseprovideequipmentand emergencyproceduresforsevereaccidentswhich,intheextremecaseofreachingasituationclose toasevereaccident,preventitsoccurrenceor,atleast,preventitfromworsening.Examplesoftypicalequipmentandproceduresforsevereaccidentsarethefollowing:

•portableelectricenergygenerators,transportablefromtheplanttoanotheronthesamesiteor onadifferentsite;

•procedurestosupplyelectricenergytotheessentialloads,incaseoftotallossofelectric power;and

•proceduresforthevoluntarydepressurizationoftheprimarysystemincaseoflossofthehigh pressureemergencyinjectionsystems,andsoon.

Bythe1980s,practicallyalltheplantsintheOECDareawereequippedwith SevereAccident ManagementPlans tovariousdegreesofcompleteness.Somecountrieshaveprogressedfurther thanothers,instigatingrealplantmodificationsasameansofimplementingtheir Accident ManagementPlans. France,Germany,andSweden(andothers)haveinstalledfilteredcontainment ventingsystemsdesignedtoavoidtheruptureofthecontainmentincaseofasevereaccident entailingtheslowoverpressurizationofthebuildingbeyonditsstrengthlimits(thissituationcould happenineveryaccidentscenariowithoutsufficientcoolingofthecoreandofthecontainment). Othercountries,suchastheUnitedStates,concludedthatthesesystemswerenotneeded,onthe basisofacost benefitanalysis.

InItaly,asetofcriteriaweredeveloped,the“95% 0.1%criterion,”accordingtowhich,by theinstallationofappropriatesystems(includingafilteredventingsystemforatleastonereactor),areleaseofiodinehigherthan0.1%ofthe coreinventorycouldbeavoidedwithaprobabilityhigherthan95%,conditionaluponcoremelt(definedasattainmentofacladdingtemperature higherthan1200 C).Obviously,nosingleeventsofverylowprobabilitywereconsidered,such asapressurevesselexplosionduetoamechanic aldefect.Asimilarcriterionwasadoptedin Sweden.

Amongtheproposalsatthistimewasonethatconcernedapreventativesystemforthevoluntarydepressurizationoftheprimarysysteminpressurizedwaterreactors(PWRs)andforthepassiveinjectionofwaterintotheprimarysystemforabout10hours.Thiscorerescuesystemcould decreasethecoremeltprobabilitybyafactorofatleast10.Thesystemwasproposedasa

modificationofthedesignchosenfortheItalianUnifiedNuclearDesign,butwasnotconsidered necessarybythedesignersatthattime.Afewyearslater,thedesignersappliedit,withmodifications,tothepassivereactorAP600.Anotherreactordesign(thistimeGerman)hasasimilarsystem.Thevoluntaryprimarysystemdepressurizationhassubsequentlybeenadoptedbyallthemore modernPWRdesigns,suchastheEuropeanPressurizedReactor(EPR)andtheSystem80.

1.2.4 THECHERNOBYLACCIDENTANDAFTER

Inmyopinionandtheopinionofotherexperts,thereweretwoprimarycausesoftheChernobyl tragedy.Thefirstwasthatalthoughtheplantwascertainlyverygoodfromaproductionpointof view,ithadbeendesignedwithexcessiveoptimismasfarassafetywasconcerned.Indeed,in someoperatingconditions(lowpower,lowsteamcontentinthepressuretubes)thereactorwas veryunstable,inthesensethatanincreaseinpoweroralossofcoolanttendedtoincreaseitsreactivity,increasingthepowerautocatalytically.Inthisway,thedestructionofthereactorandofthe plantcouldbeinitiated.Moreover,withcompletelyextractedcontrolrods(asituationforbiddenby theoperatingprocedures),thepotentialinstabilitywasmoresevereand,additionally,theuseofthe scramactedasanacceleratorandnotasabrakeinthefirstmomentsoftherodmovement(an “invertedscram”).

Thesecondfatalcircumstancewasthattheoperatorswereworking,onthatnightinApril1986, inaconditionoffrantichurryforvariousreasons.

Althoughthisreactorhadbeenprovidedwithleakproofandpressureresistantcontainmentasa resultoftheprevailingchangesinattitudealreadydiscussed,thecontainmentdidnotincludeasignificantportionofthereactoritself(aremarkabledesigndecision).Inparticular,thefuelchannel headsweredirectlyputinanormalindustrialbuilding.Acompletelyuncontainedaccident,therefore,happened.Thereasonsfortheadversedesigncharacteristicsmayhavebeenfinancial(but expertopiniondiffers).

Thegenerallessontobelearnedisalwaysthe same:noweakpointscompromising,safety mustbeleftinaplant.Humanerrors,asintheca sesofTMIandChernobyl,willsucceedinfindingthemandwillcausedisastersandfatalitie s.Idonotbelieve,assomeantinuclearpeople maintain,that“ifanaccidentcanhappen,soonerorlateritwillhappen”;however,experience indicatesthataccidentpossibili tymustbeseriouslyconsideredduringallthephasesofthelifeof anuclearplant.8

However,forthesakeofcompleteness,ithastobesaidthattheChernobyl-typereactorswere notwellknownintheWesternworld.Thepertinentinformationwaskeptsomewhatconfidential becausethisreactorcouldpotentiallybeusedforplutoniumproductionandthereforeitwasinterestingfromamilitarypointofview.9

AconfidentialsafetyanalysisofanRBMKreactor,similartotheChernobylone,wasperformedsomeyearsbeforetheaccidentbyaEuropeandesigncompany.Itconcludedthatthisreactor,inmanyrespects,didnotmeetthesafetystandardsinuseintheWesternworld.Copiesofthis safetyanalysiswerecirculatedamongtheexpertsaftertheChernobylaccident.

TheChernobylaccident,withitsconsequences(bothlocalandafar)hadnotmuchtoteachthe Westernnuclearsafetyengineersasthereactor’sshortcomingswereallaccuratelyknownand avoidedintheirdesigns.10

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.