Nuclear engineering : a conceptual introduction to nuclear power joyce - Quickly download the ebook

Page 1


Bound by Love (The Alliance, Book 10) Brenda K. Davies

https://ebookmass.com/product/bound-by-love-the-alliancebook-10-brenda-k-davies/

ebookmass.com

Shattered Gods Box Set: Books 1-3 Fox

https://ebookmass.com/product/shattered-gods-box-set-books-1-3-fox/

ebookmass.com

Just One Crush Carly Phillips

https://ebookmass.com/product/just-one-crush-carly-phillips/

ebookmass.com

Mike Meyers’ CompTIA A+ Guide the Managing and Troubleshooting PCs. Fifth Edition (Exams 220-901 & 220-902) Mike Meyers

https://ebookmass.com/product/mike-meyers-comptia-a-guide-themanaging-and-troubleshooting-pcs-fifth-editionexams-220-901-220-902-mike-meyers/

ebookmass.com

A History of the Social Sciences in 101 Books Cyril Lemieux (Editor)

https://ebookmass.com/product/a-history-of-the-social-sciencesin-101-books-cyril-lemieux-editor/

ebookmass.com

MalcolmJoyce

Butterworth-HeinemannisanimprintofElsevier

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

# 2018ElsevierLtd.Allrightsreserved.

PortraitscourtesyofGrahamLowe,artistandillustrator, www.grahamloweartist.com

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromany useoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-08-100962-8

ForinformationonallButterworth-Heinemannpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: KateyBirtcher

AcquisitionEditor: StevenMerken

EditorialProjectManager: PeterJardim

ProductionProjectManager: MohanaNatarajan

CoverDesigner: MariaInesCruz

TypesetbySPiGlobal,India

FUNDAMENTALCONCEPTS

1.1 SUMMARYOFCHAPTERANDLEARNINGOBJECTIVES

Theaimofthischapteristointroducethefundamentalconceptsassociatedwithnuclearengineering thatsupportthedetailexploredinthechaptersthatfollow.Extensivedetailisavoidedinpreferencetoa focusonthefoundationprinciplesassociatedwith,forexample,theorderofmagnitudeofquantitative aspectsofthefield,thedefinitionoftermsusedlaterinthebookandthegeneralaspectsassociatedwith nuclearreactordesign.Theconceptsandprinciplesselectedatthisstagearegivenfurtherelaboration laterinthetext;theyconstitutefeaturesthatintheauthor’sexperiencepervadethenuclearengineering disciplineirrespectiveofthespecificaspectofthefieldinwhichtheytendtoarise.Thesubjects discussedinthischapteralsorepresentconceptsthatareratherspecifictonuclearengineeringand donotalwaysariseinthestudyoftheother,moregeneralbranchesofengineering.Manyofthese stemfromthedisciplinesofnuclearphysicsandradiochemistrybutnonethelessarisefrequentlyin nuclearengineering.

Theobjectivesofthischapterareto:

•introducethemaindistinctionsof nuclearengineering overotherengineeringdisciplines

•reviewthestructureofthe atom andintroducetheconceptofthe atomicnucleus

•discusstheinterplaybetweenthe Coulombforce thatexistsbetweentheprotonsinthenucleusand the strongnuclearforce thatholdsthenucleustogether

•describethe extremeproperties ofthenucleusintermsofitsdensityandtheminisculespaceit occupiesinnature

•introducethe chartofthenuclides,whatthisrepresentsandthepropertiesofthenucleusthatit highlights

•provideacomprehensivedescriptionoftheconceptofthe genericnuclearreactor andits componentsincluding fuel, cladding, coolant and moderator

•introducetheconceptofthe reactorcycle andthedistinctionof direct and indirect cycles

thepropertiesofthesematerials;wheresaidmaterialislivingtissuetheeffectofionisingradiationcan causeittobehavedifferentlyoreventokillthecellsofwhichitiscomprised.However,itisimportant toappreciatethatforthevastmajorityofnuclearprocessesandoperations,theradiationenvironment experiencedbypeopleworkinginitbearsnodifferencetonaturalbackgroundlevelsofradiation. Thesecomprisethosesourcesthatweareallsubjectto,largelyunavoidably,largelyasaresultof radiationemittedfromnaturallyradioactivemineralspresentintheEarth’scrustandfromsources inouterspace.

Onefurtherimportantdistinctionisthatwhileatomicprocessesofradiationemission,suchas fluorescenceandphosphorescencerarelyhavelifetimeslongerthanafewminutesorhours,nuclear radiationcanbeassociatedwiththedecayofatomicnucleithatspanenormousrangesinlifetime,from picosecondsthroughtomanybillionsofyears.Notwithstandingthepossibilityoftransmutinglonglivedradioactiveisotopesintootherswithshorterlifetimesthatwewilldiscussin Chapter15,itis notpossibletochangethelifetimeofaradioactivesubstance.Forthisreason,manyrequirements innuclearengineeringareassociatedwiththemanagementofradioactivematerialstoensurethatpeopleareprotectedfromtheriskofharm,whileweharnessthepotentialofthesematerialsforthebenefit ofcivilisation.

ThephenomenathatastonishedRutherfordlittlemorethanahundredyearsagooccurredwhena minoritybutnonethelessasignificantnumberof α particlesweredetectedbeingreflectedfromathin metalfoil.Heissaidtohaveremarkedthatitwasasifhehad‘fireda15-in.shellatapieceoftissue paperanditcameback’.Thisdemonstratedthatalmostallofthemassoftheatom,andthusthevast majorityofallofthemassofvisiblematter,mustbeconcentratedinasmallanddense nucleus.This wasingreatcontrasttothemorediluteanddispersedarrangementthathadbeenwidelypostulated atthattimebutwhichhadnotbeenprovenoutright.Fromtheextensiveresearchthatfollowed Rutherford’sobservationbasedonnuclearscattering,itwaspossibletoinferthedimensionsofthe nucleus.Thisledtothemodeloftheatomthatisnowaccepteduniversallyandthathasbeenthebasis formuchscientificdiscoveryandrelatedengineeringthatfollowedinthe20th century.

1.4.2 THENUCLEUS

Thenucleusiscomposedofanapproximatelyequalnumberof protons and neutrons andthese areknowncollectivelyas nucleons.Theexceptionisthecaseofhydrogen,thelightestisotopeofthe lightestelement,whichhasanucleuscomposedofjustoneproton.Protonsarepositivelycharged,and neutrons(astheirnamesuggests)areneutral;eachchemical element isdistinguishedbythecorrespondingnumberofprotons,andthiscorrespondstotheatomicnumber.Each isotope ofagivenelement hasthesamenumberofprotonsbutdiffersintermsofthenumberofneutronsitpossesses.Anatom comprisesanucleussurroundedbyanumberofelectronsequalinnumbertothatoftheprotonsinthe nucleus.Thechargeandmassdataforneutrons,protons,electronsandphotonsaregivenin Table1.1.

Table1.1FundamentalPropertiesoftheMajorSubatomicParticles

FIG.1.2

Aschematicdiagramofthe 7Liatom,bywayofexample,toillustrateatomiccomposition.Thescaleofthe nucleusasdepictedismagnifiedbyafactorofapproximately10,000torenderitvisible.Note:electronsare shownasdiscreteentitieswhereastheyarebetterapproximatedasdiffusechargeclouds,withprotonsshownas blackandneutronswhiteforthepurposesofthisschematicillustration.Diagramnottoscale.

Sincetheprotonshavelikecharges,theyaresubjecttotheforceof Coulombrepulsion actingto forcethemapart;thisformofthe electromagneticforce isgenerallyweakerattheshortrangesassociatedwiththedimensionofthenucleusthantheforcethatbindsthenucleustogether.Thelatter, knownasthe strongnuclearforce, isoneofthefourfundamentalforces(alongwithgravitation andtheweakinteraction)butwhichisattractiveatdimensionsoftheorderofthesizeofthenucleus, typicallyofradius r where r < 10 15 m.Forthecaseofisotopesthatarenotsusceptibletoradioactive decay,thesenucleiexistinastateofstableequilibrium.Inthisstate,theprotonsarerepulsedbyone anotherbutthenucleusisheldtogetherasawholebythecohesive,strongforce.Aschematicillustrationofalithiumatomisgivenin Fig.1.2

Rutherford’sdiscoverythatmatterisconcentratedintominisculenucleiremainsprofoundbecause itchallengesoureverydayexperienceofthedensityofmatterthatwearefamiliarwith.Theobservationofnucleiofadiameterof,say,10 15 msuggestedsomethingverydifferentindeed.Giventhesize oftheatomoftheorderof10 10 mandgiventhemassoftheelectronof9.11 10 31 kg,itisclearthat thedensityofthenuclearmaterialthatconstitutes99.95%oftheatomicmassbutonly 1/100,000 oftheatomicdimensionmustbeextremelyhigh,thatis,oftheorderof 1018 kgm 3.Substances withthehighestdensitieswitnessedinourday-to-dayexperiencesareoftheorderof104 kgm 3 (e.g.forthecaseofleadortungsten),andhence,itisclearthatthedensityofnuclearmaterialis extremelyhigh.Fromthisobservation,wecanconcludethatthestrongnuclearforceisindeedvery strongbecauseitactstokeeptheprotonsandneutronsinsuchatightbundle.Also,itisshortranged notactingmuchfurtherbeyondthedimensionsofthenucleusitself.

Inadditiontothedensity,thenatureofsolidmatterimpliedbythescaleofthenucleusisalsoalittle counter-intuitive.Iftheatomicnucleuswererepresentedonthispagetobethesizeoftheheadofapin, theelectronssurroundingitthatconstitutethesizeoftheatomwouldbe 100mfromthepositionfrom whichyouarereading,ifrepresentedonthesamescale.Itisclearfromthisobservationthatthevast majorityofmatter,thatis,99.999999999999%,isactuallyfreespace.

ionisingradiation.Onthisbasis,asingleelectron(withachargeofmagnitudeof1.6 10 19 c)acceleratedthrough1Vwouldacquireanenergyof1eVcorrespondingto1.6 10 19 J.Thenormalisation providedbydividingthroughbytheenergyacquiredbyanelectronacceleratedby1Vmakesfora mucheasiercomparisonofenergiesatthesescaleswithouttheneedforconstantreferencetomany ordersofmagnitude.Italsoreducesthepotentialformistakesinjugglingmanyverysmallnumbers incalculations.

Inthecontextofnuclearengineering,energiesinthe‘eV’domainareactuallyatthelowerendof thegeneralrangewetendtoencounter;energiesinthekeVrangeareoftenconsideredintermediate whileintheMeVrangetheywouldbeconsideredatthemiddle-to-higherendoftheenergyspectrum.

Letusconsiderthecaseoftheradioactiveisotopepotassium-40(40K).Thisisotopedecayssovery slowlythatmuchofitstillpresentnaturallyintheEarth’scrustfromtheformationoftheuniversesome 13.8billionyearsago.Itistakenupbythefoodweeatinharmlessquantitiesfeaturinginourdiet particularlyviaitsnaturaloccurrenceinbananas.The 40Knucleusofthisisotopedecaysviaanumber oftransitionsbetweenquantisedenergylevels,whichresultsintheemissionofelectromagnetic radiationinthehigh-frequencyrangeintheformof γ rays.Thephotonsassociatedwiththisexhibit arelativelysmallnumberofdiscreteenergiesintherange50keVthroughtoafewMeV.Wewillfocus specificallyonthe1491keVtransitionforthepurposesofthisexample.The1491keVtransitionhasan equivalentenergyinSIunitsasper,

whichhighlightstheextremelysmallscaleoftheenergiesofnuclearradiationrelativetowhatweare usedtoatamacroscopiclevel.

1.4.5 NUCLEARBINDINGENERGY

Furthertotheearlierdiscussionofthestrongnuclearforceanditscriticalroleinholdingthenucleus together,energyisrequiredtoovercomethisforcetobreakupthenucleus.Takentoitslogicalextreme, theenergyrequiredtodisassemblethenucleusintoitsconstituentneutronsandprotonsisknownasthe nuclearbindingenergy.Itmightappearquiteasophisticatedtasktomeasurethisenergyifitwere necessarytoseparateagivennucleususing,forexample,aparticleaccelerator.However, theenergythatbindsthenucleustogetherismanifestasadifferenceinmassbetweenthesumof itsconstituentparts(themassoftheneutronsandprotons)andthemassoftheboundnucleus.This differenceisknownasthe massdefect andcanbedeterminedviaEinstein’sfamousrelationship betweenenergyandmassgiveninEq. (1.4)

Wereturntothisimportantconceptinmoredetailin Chapter3.

1.5 THEGENERICNUCLEARREACTOR

Therearemanydifferenttypesofnuclearreactor:justasfortheheatenginesthatcamebeforethem, suchassteamenginesandcombustionengines,thereareavarietyofprocessesandarrangementsby whichtheenergyfromnuclearfissioncanbeharnessed.Toaidourunderstandingofthiswideandoften

contrastingfieldofengineering,itisillustrativetofirstconsidera genericnuclearreactordesign,while notbeingspecificaboutthematerials,cyclesandprocessesuntillaterchapters.

Anuclearreactormightbedefinedthus:‘apparatusinwhichanuclearfissionchainreactioncanbe initiated,sustainedandcontrolledforgeneratingheatortheproductionofusefulradiation’.Hence, inthedefinitionofanuclearreactor,theemphasisisclearlyon control,sincewithoutthis,thevery highenergydensityaffordedbyanuclearreactioncannotbedissipatedinaformandataratethat isuseful.However,thereaderwillalsonotethatwedonotrestrictourselvestotheproductionof electricity, perse,sincetherearemanyreactorsinusethatarenotdedicatedtopowerproduction, asweretheveryfirstreactorsystems,butthatareusedforresearchandmaterialsapplications.Also, notethatareferencetoscaleisnotimpliedbecausenuclearreactorscanvarywidelyintermsofsize dependingontheapplicationforwhichtheyhavebeendesigned.

Inthemostsimpleofterms,anuclearreactoriscomposedof fuel,inwhichheatisgeneratedasa resultofaself-sustainingnuclearchainreaction,anda coolant thatisnecessarytotransporttheheat awayfromthefuelsothatthisenergycanbeusedtoperformusefulwork.Oftenamaterialisalso includedtoreducetheenergyoftheneutronssustainingthereactionbecausethismakesiteasierto sustainthereactioninrelativelydilutequantitiesofuranium;thissubstanceisknownasa moderator. Insomereactordesigns,themoderatorandthecoolantarethesamesubstance.

Thereadershouldnotethatinourdescriptionofthegenericnuclearreactor,andinreferencetoit laterinthechaptersthatfollow,wedonotrefertothecontrolmechanisms,emergencyinstrumentation systems,coolantpumps,pressurisers,driers,condensersandsoon.Whilethesecomponentsareextremelyimportanttotheoperationofspecificreactordesigns,theoperationandarrangementofthem istoospecifictobeincludedinapreliminary,genericoverviewatthispoint.Forthepurposesofthis genericbasis,itisassumedthat:

(1) Themoderatorandcoolantare separatesubstances andnotoneandthesame,althoughthelatter arrangementisapopularandverysuccessfuldesignvariantthatweshallconsiderlaterinthistext.

(2) Thereactorisa heterogeneous designsuchthatthefuelisseparatedintorelativelynarrowelements anddistributeduniformlythroughoutthemoderatorandcoolantsystems.Thisisacommonfeature ofallofthelow-enrichmentpowerreactorsystemsthatmakeuptheworld’sfleetofnuclearpower generatingsystemsasillustratedschematicallyin Fig.1.4.

FIG.1.4

Amuchsimplified,schematicdiagramofagenericnuclearreactordesign.

pressure,flowrateandsoforth.Sincereactorsexploitinglightwaterasbothcoolantandmoderator havebecomethemostwidespreadthroughouttheworld,thecorrespondingcladdingofchoicehas centredonzirconiumalloyasthisisusedinthesedesigns.Thismaterialisrelativelyresistanttocorrosionintheseenvironmentswherelightwaterisusedatelevatedtemperaturesandpressureswhile providingthefunctionslistedabove.Withthepotentialforadvancedreactordesignsoperatingat highertemperaturesandthermodynamicefficienciesinthefuture,researchcontinuesintothedevelopmentofcladdingmaterialscompatiblewiththeseoperatingconditions.

1.5.3 COOLANT

Inourgenericreactorsystem,weincludetheconceptofa coolant asitisusuallynecessarytotransport theheatfromthereactortoaplacewhereitcanbeusedtoperformworkoratleastsothatitcanbe dissipatedsafely.Thismightincludebeingusedtogenerateelectricity,propulsionorboth.Insome reactorsthatareoperatedforresearchpurposes,suchasformaterialstestingortheproductionof medicalisotopes,theheatisnotusuallyusedforaspecificpurposealthoughitisalwaysnecessary toconfigurethesystemsothattheheatistransferredfromthefuel.Thiscanbeeitherpassiveoractive, withthelatternecessaryinoperatingpowerreactorswheretheyieldofheatisverysignificant.

Again,asforthecaseoffuelcladding,therequirementsofacoolantinanuclearreactorarereadily defined.Itshould:

•notencouragecorrosionoffuelcladdingandotherreactorcomponents

•havegoodmasstransportproperties

•haveahighspecificheatcapacity

•notbeprohibitivelyexpensive

•bereadilyavailableinsignificantquantities

Avarietyofmediahavebeenusedascoolantsthroughouttheyearsofreactordevelopment.Amongthe mostcommonincludeair,lightwater,heavywaterandcarbondioxide.Further,avarietyofrathermore exoticmaterialshavebeenusedincludingliquidsodium,mixturesofsodiumandpotassium,liquid lead,leadandbismuthandheliumgas,predominantlyforfastreactorapplications.Itisnoteworthy thatmanyreactorsystemdesignsarebasedontheuseoftwocoolantsoreventhree,asweshallconsiderbelowwhenweintroducetheconceptofthereactorcircuit;suchanarrangementallowsonecoolantstreamtobeisolatedfromanother.Thecoolantsofchoicedonothavetobesamesubstance.

1.5.4 MODERATOR

Inmostnuclearreactors,asubstanceknownasthe moderator isalsousuallyrequired.Thispartofthe reactorsystemisnecessarybecausethefissionnuclearreactionthatisexploitedintheproductionof nuclearenergyismuchmorelikelytooccurforneutronenergiesthatarereduced,especiallyforfuels wherethequantityof 235Uisrelativelylow.Theneutronsusedtopropagateandsustainthefission reactionusuallyarisefromfissioneventswithenergiesmuchhigherthanthislevel(typicallyafactor of108 higherthanisdesirableinmostcases).Themoderatorisnecessarytoslowtheseneutronsdown sothattheprobabilityofthemcausingafissionreactionisincreased.Itperformsthisfunctionbyprovidingamatrixwithwhichtheneutronsinteractandimparttheirexcessenergytoitsatomicstructure.For reasonsdiscussedin Chapter6,theidealpropertiesofamoderatorincludethatitmustcompriselight

elements,itmustscatterneutronseffectivelyanditshouldnotabsorbthemtotoogreatanextent.Itis advantageousifitischeap,abundantandbenign,thatis,notflammable,chemicallyreactiveor corrosive.

1.5.5 REACTORCIRCUIT

Thecoreofanuclearreactorcomprisesthenuclearfuelandtherearerelativelyfewmovingparts. However,apower-generatingnuclearreactorisoftenarelativelycomplexthermohydraulicsystem inwhichavarietyofliquidsareused,asperthedescriptionspertainingtocoolingandmoderation describedabove.Further,althoughitisnotalwaysdesired,itcanbefeasibleforthephaseofthese liquidstochangewiththeoperationofthereactor.Thiscanresultinmixed-phaseflow,thatis,a mixtureofliquidandgasinthereactorsystem.Therearefrequentlysignificantextremesinterms oftemperature,pressureandradiationlevelsthatneedtobeaccommodated,especiallyforexample duringstart-upandshutdownofthereactor.

Justastherearemanydifferentvariantsofcombustionengineandelectricmotor,thereareseveral alternativenuclearreactorcircuitdesigns.Someweredevelopedasprototypesandtakennofurther beyondinitialfeasibilityortestingwhileothershavebecomeverysuccessfulandareinwidespread usethroughouttheworldtoday.AfurtherimportantfactorinnuclearengineeringisthattheSecond WorldWarplayedanindelibleroleinthedevelopmentofnucleartechnology.Thehistoricalcontext thatfollowedthishasinfluencednationaltrendsintermsoffavouredtypesofreactorcircuitincontrast withanother,forexample,duetofactorssuchastheavailabilityoftechnologies,materialsandproductionfacilitiesderivedinspecificcountriesatatimeofheightenedsecrecy.Sincenuclearreactors arerelativelylong-livedfacilitieswithsomeoperatingbeyond50years,thishistoricalbackgroundstill exertsalegacyweseetoday,albeitoftenindecommissioningoftheseearlyplant.Bycontrast,the currenteraexhibitsagreaterdegreeofdesigndiversificationasreactorsystemshavebeendeveloped oncommercialtermsandlicensedinternationally.

Ingeneral,reactorcircuitsarereferredtointermsofbeingeither direct or indirect systems,withthe emphasisherebeingonhowthesystemisconfiguredtoallowthecoolanttocomeintocontactwiththe reactorcore.Coolantsnecessarilyhavetobereadilytransportableandthereforeareusuallyeither liquidsorgases.Thisisnotanessentialrequirementformoderatorsandsoouremphasisinthecontext ofreactorcircuitsisusuallyonthetransportmechanismforthecoolant.Thetwoalternativereactor circuittypesareshownin Fig.1.5

Directreactorcircuitsarethoseinwhichthecoolantthatisincontactwiththecoreisalsothatwhich isusedtoderiveusefulwork(mostoftentodriveturbinestogenerateelectricity).Incontrast,indirect circuitsusuallyemploytwoormorecoolantcircuitsthatarephysicallyseparatedfromoneanotherand a heatexchanger isusedtotransferheatfromonetotheother.Thecircuitthatisincontactwiththecore isusuallyreferredtoasthe primary circuitwiththe secondary circuitbeingthatwhichisusedtodrive thepowertake-offsystem;thesecondaryisoftenreferredtoasthe feedwatersystem or feedwaterloop inindirectcycles.

Asignificantadvantageofthedirectsystemisthatagreatdealoftheengineeringinfrastructure necessaryforindirectcircuitsisnotneeded,suchastheprocesspipework,pumpsandheatexchangers. Thiscanrenderdirect-cycleplantcheaperandquickertobuildthanindirectsystems,notwithstanding arangeofotherdesignfactorsthatmightinfluencecost.Asignificantadvantageofindirectreactor circuitsisthatthecoolantincontactwiththenuclearfuel(albeitviathefuelcladding)isphysically

Schematicillustrationsofthetwoalternativereactorcircuitdesigns:direct(A)andindirect(B)systems.The primarycircuitintheindirectsystemisshowntotheleftandthesecondarycircuitisshowntotheright.

separatefromthecoolantthatdrivesthepowergenerationsystem.Thus,intheeventofcladdingfailing oranaccidentinwhichthereisariskthatirradiatedfuelisexposedtothecoolantintheprimarycircuit, theextentofcontaminationbyradioactivematerialsfromthecoreislimitedtojusttheprimarycircuit. Theindirectcyclealsohasbenefitsfromadecommissioningperspectivesincerequirementsrelating toradioactivecontaminationarerestrictedtowhatisoftenreferredtoasthe‘nuclearisland’,for example,thereactor,wastetransportfacilitiesandsoon.Therestofthenonnuclearsitecanusually bedismantledrelativelyquicklyandeasily,withamuchreducedriskofexposure,simplifiedregulatoryadministrationandreducedquantitiesofradioactiveinfrastructurefordisposal.Directreactor circuitshavethedisadvantageofusuallyrequiringhighlypurifiedreactorcoolanttoreducethepotentialforcontaminationvianeutronactivationofmineralsinthecoolantthatisincontactwiththecore. Bothdirectandindirecttypesofreactorsystemareinoperationandconstructionacrossthe worldtoday.

(A)
(B)
Turbine
Turbine
Heat exchanger
FIG.1.5

1.6 ELEMENTARYNUCLEARPHYSICSCONCEPTS

1.6.1 CONVENTIONSFORTHEEXPRESSIONOFMASS

Tomakecomparisonacrosstherangeofisotopicpropertiesasstraightforwardaspossible,isotopic massisexpressedintermsof atomicmassunits (u).Thisisbasedonthedefinitionofa 12Catomhaving amassof12uandthus1ubeingone-twelfththemassofa 12Catom.Giventhatamoleisthenumberof atomsin12gof 12C,where1molisAvogadro’snumber(6.023 1023),1u ¼ 1.66 10 27 kg.

Itisimportanttospecifytheunitswhendealingwithisotopicmasses,thatis, 238Uhasan isotopic mass of238.0507u,whichisequivalenttoamassof3.95 10 25 kg.Theisotopicoratomicmass shouldnotbeconfusedwiththe molarmass;thelatteristhemassofamoleoftheisotopeinquestion. AfurtherconventionisusedtoexpressmassintheequivalentformintermsofMeV/c2 viawhere1 atomicmassunitfollowsasbeingequivalentviaEq. (1.4), mu ¼ 931 5MeV=c2 toonedecimalplace.

1.6.2 INTRODUCTORYCONCEPTSOFRADIOACTIVITY

Inthisshortsection,asummaryoftheacceptedterminologyisprovidedtosetthesceneforthechapters thatfollow.Whereappropriate,specificterminologyisintroducedatthestartofthesectionwhereit ariseslaterinthetext.

Thedistinctionofnuclearengineeringoverotherstrandsoftheengineeringdisciplineisthatthe substancesandmaterialsthatareusedandprocessedareoften radioactive.Thisimpliesthatthey havethepropensitytowards radioactivedecay;thisisanaturalprocessbywhichmattergainsgreater stability.Insodoing,atomsofonetypecanchangeintoatomsofanother.Forsuchacase,werefer totheisotopicspeciesbeforedecayasthe parent andthatwhichfollowsasthe daughter.Itisalso possibleforagivenisotopetotransitionfromanexcitednuclearstatetoalowerexcitedstatewithout changingitscomposition.Radioactivedecayusuallyresultsintheemissionof ionisingradiation. Thiscancomprise electromagneticradiation (usuallyofatypeknownas γ rays)andsubatomicparticlessuchas β particles (electrons),neutronsbutalso α particles (theatomicnucleiofhelium atoms).Often,thedaughterproductisalsounstabletowardsradioactivedecay.Thisconstitutes thestartofwhatisknownasa decaychain.Stablematerialscanbemaderadioactivebytheinteractionofradiationuponthemviaaprocesscalled activation;themostrelevantexampleofthisphenomenoninthecurrentcontextisthatresultingfromtheinteractionofneutronswithmatterthatis knownas neutronactivation.

Withreferencetotheexampleofneutronactivation,thelikelihoodthatnuclearreactionsofthis type,thatis,onecausedbytheinteractionofaneutronresultinginachangeintheisotopiccomposition ofthematterthatisexposed,isdependentontheenergyoftheneutronandthesusceptibilityofthe specificisotopewithwhichtheneutronisinteracting;somereactionsaremorelikelythanothers.This isusuallyquantifiedintermsofaparameterknownasthe crosssection,andthisisaveryimportant conceptinnuclearengineering.Thecrosssectionisequaltotherateatwhichagiveninteractiontakes placedividedbytheproductoftherateatwhichneutronsareincidentwiththenumberofnucleiinthe

materialinwhichtheinteractionistakingplace.Itisthusthemicroscopicprobabilitythatagivennucleuswillundergoaspecifiedinteractionwithaneutron.Henceitiscalledthe microscopiccrosssection andisdiscussedinmoredetailin Chapter4.

Incontrasttooureverydayexperienceswithmuchoftheworldaroundus,manyoftheproperties associatedwithmatteratthenuclearscaleare quantised,suchasenergy,charge,angularmomentum andsoon.Consequently,wetendnottomeasurecontinuoustrendsofbehaviourbutratherweobserve individualquanta,suchas photons beingthequantaof γ radiation.Similarly, quantummechanics governsbehaviouratthisscalewithchangesoftengovernedbyaquantisedstructureofstatesthatmatter canoccupy,particularlyintermsof excitation

Itfollowsthatmostsubatomicphenomenacannotbeanticipatedwithcertainty.Rather,theyare understoodandmeasuredintermsofthe probability ofthemoccurring.Theprobabilityofradioactive decayisapropertyofthespecificisotopeinquestion.Thereforethe rateofdecay isdirectlyproportionaltothe amountofsubstance thatispresent;themoreentitieswiththesameprobabilityofdecay thatthereareinagivensamplethegreatertheprobabilitythatoneofthem will decay.Thetimetaken fortheamountofasubstancetodecaytoanamount1/e isknownasthe lifetime.

Amorewidespreadmeasureofthepropensityofasubstancetodecayisthe half-life,whichisthe timetakenforaquantityofradioactivematerialtodecaybyhalf.Therateofdecayofagivenquantity ofradioactivesubstanceisknownasthe activity,andthisismeasuredintermsofthenumberof disintegrationspersecond or Becquerels (Bq).Thisquantitywhennormalisedtothemassofsubstanceis knownasthe specificactivity andismeasuredinunitsofBqg 1.Historically,analternativeunitfor activitywasdefinedandisstillusedcorrespondingtotheequivalentspecificactivityofnaturalradium, andthisiscalledthe Curie (Ci).OneCurieisequalto3.7 1010 Bq.

CASESTUDIES

CASESTUDY1.1:CALCULATINGTHEDENSITYOFNUCLEARMATERIAL

Giventheatomicmassofcarbon(12C)is12uandthatitsnucleushasaradiusof10 15m,itispossibletoestimatethe densityofnuclearmaterialforthecaseofcarbon.

Assumingthe 12Cnucleusisspherical,thevolume V is:

Themass mC of1atomof 12Cis

Hence,thedensity ρ isasfollows:

Toputthisintofamiliarcontext,wecouldestimatethemassof1mm3 of‘nuclear’carbon.Thiswouldbe m ¼ 5 1018 10 9 ¼ 5 109 kg or5milliontonnes.

PROBLEMS

(1) Giventheatomicmassofuranium(238U)is238.0289uandthatithasanuclearradiusof 7.5 10 15m,calculatethedensityofthenucleusof 238U.Hence,estimatethemassofafuelpellet ofdiameter10mmandheight8mmifitwerepossibleforittobecomprisedentirelyofuranium withthecompositionofitsnucleus.

(2) Caesium-137decaysvia β decaytoanexcitedstateofbarium-137,whichdecayssubsequentlyvia theemissionofasingle γ rayhavinganenergyof662keV.Convertthisenergytojoules.How many 137Cs γ rayswouldneedtobeabsorbedby1kgofwatertoraiseitstemperatureby1°Cifits specificheatcapacityis4.2kJkg 1 °C 1?

(3) ExplainwhytheChartoftheNuclidesisshapedinthewayitis.Fromaconsiderationofthechart, wouldyouexpectanuclidewithamass A 200tohavemoreneutronsthanprotonsorviceversa? Justifyyouranswerbyexplainingyourchoice.

(4) Describethedifferencebetweenanuclearreactordesignthatexploitsa direct cycleasopposedto onethatexploitsan indirect cycle.Whataretheadvantagesoftheindirectcycle?

(5) Fromyourappreciationoftheperformancerequirementsofthefuelcladdingandcoolant, highlightthreepropertiesofthesecomponentsofagenericreactorsystemthatareessentialtothe rolethattheyperform.

HISTORICALCONTEXT 2

2.1 SUMMARYOFTHECHAPTERANDLEARNINGOBJECTIVES

Theadoptionoftechnologicaladvancementsonaglobalscalerarelyoccursbasedpurelyonthetechnicalmeritsofagivenengineeringsolution.Mostimportantly,criticalmattersassociatedwiththepotentialimpactonsafety,healthandtheenvironmentplayasignificantandimportantrole,asdoes economics.Inmanycases,historicaldevelopmentsandparticularlyinvestmentsderivedfrommilitary imperativescaninfluencetechnologicaldevelopmentssignificantly,andcanaccelerateresearchin areasthatbringwiththemimportantbenefitstoalliedfieldsofendeavour.

Commercialnuclearpowerisanimportantexampleofthisdevelopmentprocess,butthereare others:RudolfDiesel’svisionofasimpleandflexibleenginerunningonbiofuelswasintegratedinto thedesignofthefirstsubmarinessoonafterhisdeathwhilenow,albeitrunningonfossilfuel,this inventionconstitutesthemostcommoninternalcombustionengineonEarth.Historyplaysanimportantroleinthewayinwhichengineeringsystemsareadopted.Inthischapter,thehistoryassociated withthecurrentstatusofnuclearenergyintheworldissummarised.Theaimofthischapteristo provideacontextforthemoretechnicallyfocussedchaptersthatfollow,andtoprovidethenecessary backgroundforthelaterchaptersassociatedwithnuclearsafety,regulation,acceptabilityand economics.

Theobjectivesofthischapterareto:

•summarisetheoriginofnuclearpowerasasourceofenergy,particularlyfission-basednuclear powerbothinnaturalandman-madeforms

•introduceuraniumasanelementingeneraltermswithahistorythatpredatesitsuseinelectricity production,andtodescribeitsearlyuses

•provideasummaryofthepioneeringscientificdiscoveriesthatledtotherealisationthata controlledandsustainednuclearchainreactionmightbeharnessedfortheproductionofenergy

•describethedevelopmentandoperationofthefirstnuclearreactor

•summarisetheimpactofthemilitaryinfluenceonthedevelopmentofnuclearenergy,particularly thatoftheSecondWorldWar,butalsooftheColdWarthatfollowed

•describethehistoricalcontextbehindthedevelopmentofalternativenuclearfuelsandfuelcycles

•reviewthecurrentreactorclassificationsystem

2.2 HISTORICALCONTEXT:ENRICOFERMI1901–

EnricoFermi’sscientificachievementsspansomeofthemostprominentdiscoveriesinthedevelopmentofnuclearenergy.Forexample,hediscoveredthatradioactivitycouldbeinducedwithneutrons andthatslowneutronsweremoreeffectiveatthisthanfastneutrons.Forthishewasawardedthe NobelPrizein1938.Hepostulatedtheextentoftheenergyreleasedbyfissionandsubsequently ledthedevelopmentoftheworld’sfirstself-sustainingnuclearreactionandreactorattheUniversity ofChicago.Hepioneeredthe six-factorformula asthebasisforunderstandingneutronpopulationsin self-sustainingreactions,whichstillformstheintroductorybasisforunderstandingthisphenomenon today(Fig.2.1).

However,Fermi’sinfluenceextendsbeyondtheengineeringofnuclearfission:Heformulated theframeworkdescribingstatisticalbe haviourcentraltoquantummechanics( Fermi -Diracstatistics)applicabletoparticlesreferredtoas fermions .Beyondhisaccomplishmentswithneutrons,he madeimportantcontributionstoourunderstandingof β decay,postulatingtheexistenceoftheneutrinolongbeforeitwasobservedexperimentallyandhencethe weakinteraction .Inthis,he conceivedthebasisforoneofthefourknownfundamentalinteractionmechanisms.Following hispioneeringworkinItaly,FermiimmigratedtotheUnitedStatesafterreceivingtheNobelPrize, asraciallegislationatthattimeimplicatedthe freedomofhisfamily.HisresearchintheUnited Stateswastocontinuetobeveryimportantinsha pingthepassageofworldhistory,particularly inwartime.

EnricoFermi.

FIG.2.1

2.5 EARLYUSESOFURANIUM

Relativetotheeraoftheworld’snaturalreactors,ittookmankindquitealongtimetoharnessuranium forpowerproduction.Discoveredmuchearlierin1789,uraniumwasputtootherusesmorethana centurybeforeitspropertiesofradioactivityandnuclearfissionwerediscovered.Intheformofmined mineraldepositsofautunite,coffinate,pitchblende,torberniteanduraninite,uraniumwasoneofthe severaldensemetalsthatcameunderwhatwasrelativelyintensiveminingattheendofthe19th century,alongwithleadandbismuth.Althoughthesmallminesassociatedwiththerecoveryofthese metalsarenotcomparableinscalewiththemuchlargeroperationsthatwouldservethenuclear-power industryinthe20th century,significantquantitiesofthesematerialsoftheorderofseveralhundred tonneswererecoveredfromthem.

Theprimarypurposeofuraniumminedupuntilthe1930swasasanadditivetoglassandceramic glazes;withitsvarietyofvalencepossibilitiesuraniumwasaneffectivecolourantasdepictedbythe exampleofassociatedglasswarein Fig.2.3.Asthevacuumelectronicsrevolutionbegantodevelop, uraniumwasalsousedasoneoftheseveralmetallicadditivesthatenabledeffectiveglass-to-metal sealstobemadeforthevacuumelectronicsdevicesusedinearlyradiosandtransmitters.

Latterly,afterthediscoveryofradiumbyMarieCuriein1898,itwasthesameuranium-containing mineraldepositsthatservedasthefeedstockforthematerialusedinthepioneeringdiscoveriesthat followed.Aradium-basedindustrydevelopedquicklytosupportitsusesinluminousdialsusedin watchesandaircraftinstruments.Radiumwasalsousedinearly,sometimesunfoundedmedicalapplications.Overtime,asthesignificanceoftheradiotoxicityofradiumanditsrelatedisotopesand decayproductswasbetterunderstood,itsusefellalmostentirelyoutoffavour.Inmanycases,its

FIG.2.3

Aphotographofseveralexamplesofglasscolouredwithuranium,underultravioletlight(reproducedunder limitedworldwidelicencefromOakRidgeAssociatedUniversities(ORAU), https://www.orau.org/ptp/collection/ consumer%20products/vaseline.htm).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.