Nonlinear optics 4th ed edition boyd - Quickly download the ebook to never miss any content

Page 1


https://ebookmass.com/product/nonlinear-optics-4th-ed-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Two-Dimensional Materials for Nonlinear Optics: Fundamentals, Preparation Methods, and Applications Qiang Wang

https://ebookmass.com/product/two-dimensional-materials-for-nonlinearoptics-fundamentals-preparation-methods-and-applications-qiang-wang/

ebookmass.com

Lifespan development 7th, global Edition Denise Boyd

https://ebookmass.com/product/lifespan-development-7th-global-editiondenise-boyd/

ebookmass.com

Optics of Charged Particles 2nd Edition Hermann Wollnik

https://ebookmass.com/product/optics-of-charged-particles-2nd-editionhermann-wollnik/

ebookmass.com

Betrayed Wolf Mate: Rejected Mate Wolf Shifter Romance (Silver Wolves Black Ops Book 5) Ruby Knoxx

https://ebookmass.com/product/betrayed-wolf-mate-rejected-mate-wolfshifter-romance-silver-wolves-black-ops-book-5-ruby-knoxx/

ebookmass.com

Islam in the Anglosphere: Perspectives of Young Muslims in Australia, the UK and the USA Ihsan Yilmaz

https://ebookmass.com/product/islam-in-the-anglosphere-perspectivesof-young-muslims-in-australia-the-uk-and-the-usa-ihsan-yilmaz/

ebookmass.com

Unfounded: Invictus Securities Book 1 Angela Rush

https://ebookmass.com/product/unfounded-invictus-securitiesbook-1-angela-rush/

ebookmass.com

Sustainable Residential Interiors 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/sustainable-residential-interiors-2ndedition-ebook-pdf/

ebookmass.com

Marketing 7th Edition Levy Grewal

https://ebookmass.com/product/marketing-7th-edition-levy-grewal/

ebookmass.com

Foundations of Materials Science and Engineering 7th Edition William F. Smith Professor

https://ebookmass.com/product/foundations-of-materials-science-andengineering-7th-edition-william-f-smith-professor/

ebookmass.com

Boyfriend Material Alexis Hall

https://ebookmass.com/product/boyfriend-material-alexis-hall/

ebookmass.com

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-811002-7

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: NikkiLevy

AcquisitionsEditor: TimPitts

EditorialProjectManager: JoshuaMearns

ProductionProjectManager: MohanaNatarajan

Designer: VictoriaPearson

TypesetbyVTeX

formyfamily

PrefacetotheFourthEdition.....................................................xv

PrefacetotheThirdEdition......................................................xvii

PrefacetotheSecondEdition.....................................................xix

PrefacetotheFirstEdition.......................................................xxi

Chapter1:TheNonlinearOpticalSusceptibility..................................1

1.1IntroductiontoNonlinearOptics ..............................................1

1.2DescriptionsofNonlinearOpticalProcesses .................................4

1.2.1Second-HarmonicGeneration... .........................................4

1.2.2Sum-andDifference-FrequencyGeneration............................6

1.2.3Sum-FrequencyGeneration..............................................7

1.2.4Difference-FrequencyGeneration........................................8

1.2.5OpticalParametricOscillation.. .........................................9

1.2.6Third-OrderNonlinearOpticalProcesses...............................10

1.2.7Third-HarmonicGeneration..............................................10

1.2.8Intensity-DependentRefractiveIndex...................................11

1.2.9Third-OrderInteractions(GeneralCase)................................11

1.2.10ParametricversusNonparametricProcesses.............................13

1.2.11SaturableAbsorption.....................................................14

1.2.12Two-PhotonAbsorption..................................................15

1.2.13StimulatedRamanScattering.............................................16

1.3FormalDefinitionoftheNonlinearSusceptibility.. ..........................16

1.4NonlinearSusceptibilityofaClassicalAnharmonicOscillator.............20

1.4.1NoncentrosymmetricMedia..............................................21

1.4.2Miller’sRule. .............................................................26

1.4.3CentrosymmetricMedia..................................................27

1.5PropertiesoftheNonlinearSusceptibility ....................................32

1.5.1RealityoftheFields .......................................................33

1.5.2IntrinsicPermutationSymmetry.........................................34

1.5.3SymmetriesforLosslessMedia..........................................34

1.5.4FieldEnergyDensityforaNonlinearMedium..........................35

1.5.5Kleinman’sSymmetry....................................................37

1.5.6ContractedNotation.......................................................38

1.5.7EffectiveValueof d(deff ) ................................................40

1.5.8SpatialSymmetryoftheNonlinearMedium............................41

1.5.9InfluenceofSpatialSymmetryontheLinearOpticalPropertiesofa MaterialMedium..........................................................41

1.5.10InfluenceofInversionSymmetryontheSecond-OrderNonlinear Response ..................................................................42

1.5.11InfluenceofSpatialSymmetryontheSecond-OrderSusceptibility...44

1.5.12NumberofIndependentElementsof χ (2) ijk (ω3 ,ω2 ,ω1 ) ..................45

1.5.13DistinctionbetweenNoncentrosymmetricandCubicCrystalClasses.45

1.5.14DistinctionbetweenNoncentrosymmetricandPolarCrystalClasses..50

1.5.15InfluenceofSpatialSymmetryontheThird-OrderNonlinearResponse50 1.6Time-DomainDescriptionofOpticalNonlinearities...

1.7Kramers–KronigRelationsinLinearandNonlinearOptics.................56

1.7.1Kramers–KronigRelationsinLinearOptics............................56

1.7.2Kramers–KronigRelationsinNonlinearOptics.........................59

2.1TheWaveEquationforNonlinearOpticalMedia............................65

2.2TheCoupled-WaveEquationsforSum-FrequencyGeneration.

2.4Quasi-Phase-Matching(QPM)

2.7.1ApplicationsofSecond-HarmonicGeneration..........................98

2.8Difference-FrequencyGenerationandParametricAmplification..

2.9OpticalParametricOscillators.

2.9.1InfluenceofCavityModeStructureonOPOTuning...................105

2.10NonlinearOpticalInteractionswithFocusedGaussianBeams..............109

2.10.1ParaxialWaveEquation...................................................109

2.10.2GaussianBeams...........................................................110

2.10.3HarmonicGenerationUsingFocusedGaussianBeams.................112

2.11NonlinearOpticsatanInterface...............................................116

2.12AdvancedPhaseMatchingMethods ..........................................121

Chapter3:Quantum-MechanicalTheoryoftheNonlinearOpticalSusceptibility..137

3.1Introduction ....................................................................137

3.2SchrödingerEquationCalculationoftheNonlinearOpticalSusceptibility.138

3.2.1EnergyEigenstates........................................................139

3.2.2PerturbationSolutiontoSchrödinger’sEquation........................140

3.2.3LinearSusceptibility ......................................................142

3.2.4Second-OrderSusceptibility. .............................................144

3.2.5Third-OrderSusceptibility. ...............................................146

3.2.6Third-HarmonicGenerationinAlkaliMetalVapors....................148

3.3DensityMatrixFormulationofQuantumMechanics..

3.3.1Example:Two-LevelAtom...............................................158

3.4PerturbationSolutionoftheDensityMatrixEquationofMotion..

3.5DensityMatrixCalculationoftheLinearSusceptibility .....................161

3.5.1LinearResponseTheory.. ................................................164

3.6DensityMatrixCalculationoftheSecond-OrderSusceptibility....

3.6.1 χ (2) intheLimitofNonresonantExcitation.............................178

3.7DensityMatrixCalculationoftheThird-OrderSusceptibility. ..............179

3.8ElectromagneticallyInducedTransparency...................................184

3.9Local-FieldEffectsintheNonlinearOptics..................................192

3.9.1Local-FieldEffectsinLinearOptics.....................................192

3.9.2Local-FieldEffectsinNonlinearOptics.................................194

Chapter4:TheIntensity-DependentRefractiveIndex.............................203

4.1DescriptionsoftheIntensity-DependentRefractiveIndex...................203

4.2TensorNatureoftheThird-OrderSusceptibility... ..........................209

4.2.1PropagationthroughIsotropicNonlinearMedia........................213

4.3NonresonantElectronicNonlinearities.... ....................................217

4.3.1Classical,AnharmonicOscillatorModelofElectronicNonlinearities.218

4.3.2Quantum-MechanicalModelofNonresonantElectronicNonlinearities218

4.3.3 χ (3) intheLow-FrequencyLimit........................................222

4.4NonlinearitiesDuetoMolecularOrientation .................................223

4.4.1TensorPropertiesof χ (3) fortheMolecularOrientationEffect.........229

4.5ThermalNonlinearOpticalEffects............................................231

4.5.1ThermalNonlinearitieswithContinuous-WaveLaserBeams..........233

4.5.2ThermalNonlinearitieswithPulsedLaserBeams.......................234

4.6SemiconductorNonlinearities .................................................235

4.6.1NonlinearitiesResultingfromBand-to-BandTransitions...............235

4.6.2NonlinearitiesInvolvingVirtualTransitions.............................241

4.7ConcludingRemarks...........................................................243

5.1NonlinearSusceptibilitiesCalculatedUsingTime-IndependentPerturbation Theory..........................................................................249

5.1.1HydrogenAtom...........................................................250

5.1.2GeneralExpressionfortheNonlinearSusceptibilityintheQuasi-Static Limit.......................................................................251

5.2SemiempiricalModelsoftheNonlinearOpticalSusceptibility .............255 ModelofBoling,Glass,andOwyoung ...............................................256

5.3NonlinearOpticalPropertiesofConjugatedPolymers.

5.4Bond-ChargeModelofNonlinearOpticalProperties...

5.5NonlinearOpticsofChiralMedia.............................................264

5.6NonlinearOpticsofLiquidCrystals..........................................266

6.1Introduction ....................................................................273

6.2DensityMatrixEquationsofMotionforaTwo-LevelAtom

6.2.1ClosedTwo-LevelAtom..................................................276

6.2.2OpenTwo-LevelAtom...................................................279

6.2.3Two-LevelAtomwithaNon-RadiativelyCoupledThirdLevel........279

6.3Steady-StateResponseofaTwo-LevelAtomtoaMonochromaticField...280

6.4OpticalBlochEquations.......................................................288

6.4.1HarmonicOscillatorFormoftheDensityMatrixEquations...........291

6.4.2Adiabatic-FollowingLimit...............................................293

6.5RabiOscillationsandDressedAtomicStates... .............................295

6.5.1RabiSolutionoftheSchrödingerEquation..............................296

6.5.2SolutionforanAtomInitiallyintheGroundState......................298

6.5.3DressedStates.............................................................302

6.5.4InclusionofRelaxationPhenomena.....................................305

6.6OpticalWaveMixinginTwo-LevelSystems.................................307

6.6.1SolutionoftheDensityMatrixEquationsforaTwo-LevelAtominthe PresenceofPumpandProbeFields......................................308

6.6.2NonlinearSusceptibilityandCoupled-AmplitudeEquations...........315

Chapter7:ProcessesResultingfromtheIntensity-DependentRefractiveIndex....321

7.1Self-FocusingofLightandOtherSelf-ActionEffects.

7.1.1Self-TrappingofLight....................................................324

7.1.2MathematicalDescriptionofSelf-ActionEffects.......................327

7.1.3LaserBeamBreakupintoManyFilaments..............................328

7.1.4Self-ActionEffectswithPulsedLaserBeams...........................333

7.2OpticalPhaseConjugation.....................................................334

7.2.1AberrationCorrectionbyPhaseConjugation............................336

7.2.2PhaseConjugationbyDegenerateFour-WaveMixing..................338

7.2.3PolarizationPropertiesofPhaseConjugation...........................345

7.3OpticalBistabilityandOpticalSwitching ....................................349

7.3.1AbsorptiveBistability.....

7.3.2RefractiveBistability

7.5PulsePropagationandTemporalSolitons....................................365

7.5.1Self-PhaseModulation....

7.5.2PulsePropagationEquation..............................................368 7.5.3TemporalOpticalSolitons................................................372

8.1.1FluctuationsastheOriginofLightScattering...........................382

8.1.2ScatteringCoefficient.....................................................384

8.1.3ScatteringCrossSection..................................................385

8.2MicroscopicTheoryofLightScattering......................................386

8.3ThermodynamicTheoryofScalarLightScattering....

8.3.1IdealGas...................................................................394

8.3.2SpectrumoftheScatteredLight..........................................395

8.3.3BrillouinScattering.......................................................395

8.3.4StokesScattering(FirstTerminEq.(8.3.36))...........................398

8.3.5Anti-StokesScattering(SecondTerminEq.(8.3.36))..................400

8.3.6RayleighCenterScattering...............................................402

8.4Acoustooptics..................................................................403

8.4.1BraggScatteringofLightbySoundWaves..............................403

8.4.2Raman–NathEffect.......................................................412

Chapter9:StimulatedBrillouinandStimulatedRayleighScattering..............419

9.1StimulatedScatteringProcesses.

9.3.1PumpDepletionEffectsinSBS..........................................431 9.3.2SBSGenerator............................................................433

9.3.3TransientandDynamicalFeaturesofSBS..............................436

9.4PhaseConjugationbyStimulatedBrillouinScattering.

9.5StimulatedBrillouinScatteringinGases.

9.6GeneralTheoryofStimulatedBrillouinandStimulatedRayleighScattering443 9.6.1Appendix:DefinitionoftheViscosityCoefficients.....................454

10.1TheSpontaneousRamanEffect

11.4IntroductiontothePhotorefractiveEffect. ....................................507

11.5PhotorefractiveEquationsofKukhtarevetal........... ......................508

11.6Two-BeamCouplinginPhotorefractiveMaterials...........................511

11.7Four-WaveMixinginPhotorefractiveMaterials.............................518

11.7.1ExternallySelf-PumpedPhase-ConjugateMirror.......................519

11.7.2InternallySelf-PumpedPhase-ConjugateMirror........................519

11.7.3DoublePhase-ConjugateMirror... ......................................520

11.7.4OtherApplicationsofPhotorefractiveNonlinearOptics................521

Chapter12:OpticallyInducedDamageandMultiphotonAbsorption.............523

12.1IntroductiontoOpticalDamage

12.2Avalanche-BreakdownModel.................................................524

12.3InfluenceofLaserPulseDuration...

12.4DirectPhotoionization.........................................................528

12.5MultiphotonAbsorptionandMultiphotonIonization........

12.5.1TheoryofSingle-andMultiphotonAbsorptionandFermi’sGolden Rule........................................................................530

12.5.2Linear(One-Photon)Absorption.........................................532

12.5.3Two-PhotonAbsorption..................................................535

13.3.1Self-Steepening...........................................................548

13.3.2Space–TimeCoupling....

13.3.3SupercontinuumGeneration..............................................551

13.4Intense-FieldNonlinearOptics................................................552

13.5MotionofaFreeElectroninaLaserField

13.7TunnelIonizationandtheKeldyshModel

13.8NonlinearOpticsofPlasmasandRelativisticNonlinearOptics.............560

13.9NonlinearQuantumElectrodynamics.

PrefacetotheFourthEdition

AsIwaswritingthisFourthEditionofmybook NonlinearOptics,Ifoundtheopportunity torecallthehistoryofmyintriguewiththestudyofnonlinearoptics.Ifirstlearnedabout nonlinearopticsduringmysenioryearatMIT.Iwastakingacourseinlaserphysicstaught byDr.AbrahamSzöke.Aspecialtopiccoveredinthecoursewasnonlinearoptics,andProf. Bloembergen’sshortbookonthetopic(NonlinearOptics,Benjamin,1965)wasassignedas supplementalreading.IbelievethatitwasatthatpointinmylifethatIfellinlovewithnonlinearoptics.Iamattractedtononlinearopticsforthefollowingreasons.Thistopicisfoundedon fundamentalphysicsincludingquantummechanicsandelectromagnetictheory.Thelaboratory studyofnonlinearopticsinvolvessophisticatedexperimentalmethods.Moreover,nonlinear opticsspansthedisciplinesofpurephysics,appliedphysics,andengineering.

InpreparingthisFourthEdition,Ihavecorrectedsometyposthatmadetheirwayintothe ThirdEdition.Ialsotightenedupandclarifiedthewordinginmanyspotsinthetext.Inaddition,Iaddednewmaterialasfollows.Iaddedanewchapter,Chapter 14,dealingwiththe nonlinearopticsofplasmonicsystems.InChapter 2 Iaddedanewsectiononadvancedphase matchingconcepts.Theseconceptsincludenoncollinearphasematching,criticalandnoncriticalphasematching,phasematchingaspectsofspontaneousparametricdownconversion,the tiltedpulse-frontmethodforTHzgeneration,andCherenkovphasematching.Thefirstthree sectionsofChapter 13 aswellasSection 13.8 havebeensubstantiallyrewrittentoimprovethe pedagogicalstructure.Anewsection(Section 13.7)hasbeenaddedthatdealswithKeldysh theoryandtunnelingionization.Section 4.6 nowincludesasimplederivationoftheDebye–Hückelscreeningequation.Finally,atthelevelofdetail,Ihaveincludedthefollowingnew figures:Fig. 2.3.4,Fig. 2.10.2,Fig. 5.6.2,Fig. 7.5.2,andFig. 7.5.4.

Igivemygreatthankstothemanystudentsandcolleagueswhohavemadesuggestions regardingthepresentationsgiveninthebookandwhohavespottedtyposandinaccuraciesin

PrefacetotheFourthEdition

theThirdEdition.MythanksgotoZahirulAlam,AkuAntikainen,ErikBélanger,NickBlack, FrédéricBouchard,ThomasBrabec,SteveByrnes,EnriqueCortés-Herrera,IsraelDeLeon, JustinDroba,PatrickDupre,JamesEmery,MartyFejer,AlexanderGaeta,EnnoGiese,Mojtaba Hajialamdari,HenryKapteyn,StefanKatletz,KyungSeungKim,SamuelLemieux,YanhuaLu, SvetlanaLukishova,GiuliaMarcucci,AdrianMelissinos,Jean-MichelMénard,Mohammad Mirhosseini,MargaretMurnane,GeoffreyNew,RuiQi,MarkusRaschke,RazifRazali,Orad Reshef,MatthewRunyon,AkbarSafari,MansoorSheik-Bahae,JohnSipe,ArleeSmith,Phillip Sprangle,AndrewStrikwerda,FredrikSy,andAnthonyVella.Ialsogivemythankstothe manyclassroomstudentsnotmentionedabovefortheirthought-provokingquestionsandfor theiroverallintellectualcuriosity.

Ottawa,ON,Canada

Rochester,NY,UnitedStates

January2,2020

RobertW.Boyd

PrefacetotheThirdEdition

Ithasbeenagreatpleasureformetohavepreparedthelatesteditionofmybookonnonlinear optics.Myintrigueinthesubjectmatterofthisbookisasstrongasitwaswhenthefirstedition waspublishedin1992.

Theprincipalchangespresentinthethirdeditionareasfollows:(1)Thebookhasbeen entirelyrewrittenusingtheSIsystemofunits.Ipersonallyprefertheeleganceofthegaussian systemofunits,whichwasusedinthefirsttwoeditions,butIrealizethatmostreaderswould prefertheSIsystem,andthechangewasmadeforthisreason.(2)Inaddition,alargenumber ofminorchangeshavebeenmadethroughoutthetexttoclarifytheintendedmeaningandto maketheargumentseasiertofollow.Iamindebtedtothecountlesscommentsreceivedfrom studentsandcolleaguesbothinRochesterandfromaroundtheworldthathaveallowedme toimprovethewritinginthismanner.(3)Moreover,severalsectionsthattreatentirelynew materialhavebeenadded.Applicationsofharmonicgeneration,includingapplicationswithin thefieldsofmicroscopyandbiophotonics,aretreatedinSubsection2.7.1.Electromagnetically inducedtransparencyistreatedinSection3.8.Somebriefbutcrucialcommentsregarding limitationstothemaximumsizeoftheintensity-inducedrefractive-indexchangearemade inSection4.7.Theuseofnonlinearopticalmethodsforinducingunusualvaluesofthegroup velocityoflightarediscussedbrieflyinSection3.8andinSubsection6.6.2.Spectroscopybased oncoherentanti-StokesRamanscattering(CARS)isdiscussedinSection10.5.Inaddition,the appendixhasbeenexpandedtoincludebriefdescriptionsofboththeSIandgaussiansystems ofunitsandproceduresforconversionbetweenthem.

Thebookinitspresentformcontainsfartoomuchmaterialtobecoveredwithinaconventionalone-semestercourse.Forthisreason,Iamoftenaskedforadviceonhowtostructurea coursebasedonthecontentofmytextbook.Someofmythoughtsalongtheselinesareasfollows:(1)Ihaveendeavoredasmuchaspossibletomakeeachpartofthebookself-contained.

PrefacetotheThirdEdition

Thus,thesophisticatedreadercanreadthebookinanydesiredorderandcanreadonlysections ofpersonalinterest.(2)Nonetheless,whenusingthebookasacoursetext,Isuggeststarting withChapters1and2,whichpresentthebasicformalismofthesubjectmaterial.Atthatpoint, topicsofinterestcanbetaughtinnearlyanyorder.(3)SpecialmentionshouldbemaderegardingChapters3and6,whichdealwithquantummechanicaltreatmentsofnonlinearoptical phenomena.Thesechaptersareamongthemostchallengingofanywithinthebook.These chapterscanbeskippedentirelyifoneiscomfortablewithestablishingonlyaphenomenologicaldescriptionofnonlinearopticalphenomena.Alternatively,thesechapterscanformthe basisofaformaltreatmentofhowthelawsofquantummechanicscanbeappliedtoprovide detaileddescriptionsofavarietyofopticalphenomena.(4)Fromadifferentperspective,Iam sometimesaskedformyadviceonextractingtheessentialmaterialfromthebook—thatis,in determiningwhicharetopicsthateveryoneshouldknow.Thisquestionoftenarisesinthecontextofdeterminingwhatmaterialstudentsshouldstudywhenpreparingforqualifyingexams. Mybestresponsetoquestionsofthissortisthattheessentialmaterialisasfollows:Chapter1 initsentirety;Sections2.1–2.3,2.4,and2.10ofChapter2;Subsection3.5.1ofChapter3; Sections4.1,4.6,and4.7ofChapter4;Chapter7initsentirety;Section8.1ofChapter8;and Section9.1ofChapter9.(5)Finally,Ioftentellmyclassroomstudentsthatmycourseisin somewaysasmuchacourseonopticalphysicsasitisacourseonnonlinearoptics.Isimplyusetheconceptofnonlinearopticsasaunifyingthemeforpresentingconceptualissues andpracticalapplicationsofopticalphysics.Recognizingthatthisispartofmyperspectivein writing,thisbookcouldbeusefultoitsreaders.

Iwanttoexpressmythanksonceagaintothemanystudentsandcolleagueswhohavegiven meusefuladviceandcommentsregardingthisbookoverthepastfifteenyears.Iamespecially indebtedtomyowngraduatestudentsfortheassistanceandencouragementtheyhavegivento me.

Rochester,NewYork

October,2007

RobertBoyd

PrefacetotheSecondEdition

Inthetenyearssincethepublicationofthefirsteditionofthisbook,thefieldofnonlinear opticshascontinuedtoachievenewadvancesbothinfundamentalphysicsandinpractical applications.Moreover,theauthor’sfascinationwiththissubjecthasheldfirmoverthistime interval.Thepresentworkextendsthetreatmentofthefirsteditionbyincludingaconsiderable bodyofadditionalmaterialandbymakingnumeroussmallimprovementsinthepresentation ofthematerialincludedinthefirstedition.

Theprimarydifferencesbetweenthefirstandsecondeditionsareasfollows.

TwoadditionalsectionshavebeenaddedtoChapter1,whichdealswiththenonlinearopticalsusceptibility.Section1.6dealswithtime-domaindescriptionsofopticalnonlinearities,and Section1.7dealswithKramers–Kronigrelationsinnonlinearoptics.Inaddition,adescription ofthesymmetrypropertiesofgalliumarsenidehasbeenaddedtoSection1.5.

ThreesectionshavebeenaddedtoChapter2,whichtreatswave-equationdescriptionsof nonlinearopticalinteractions.Section2.8treatsopticalparametricoscillators,Section2.9treats quasi-phase-matching,andSection2.11treatsnonlinearopticalsurfaceinteractions.

TwosectionshavebeenaddedtoChapter4,whichdealswiththeintensity-dependentrefractiveindex.Section4.5treatsthermalnonlinearities,andSection4.6treatssemiconductor nonlinearities.

Chapter5isanentirelynewchapterdealingwiththemolecularoriginofthenonlinearopticalresponse.(Consequentlythechapternumbersofallthefollowingchaptersareonegreater thanthoseofthefirstedition.)Thischaptertreatselectronicnonlinearitiesinthestaticapproximation,semiempiricalmodelsofthenonlinearsusceptibility,thenonlinearresponseof conjugatedpolymers,thebondchargemodelofopticalnonlinearities,nonlinearopticsofchiralmaterials,andnonlinearopticsofliquidcrystals.

PrefacetotheSecondEdition

InChapter7onprocessesresultingfromtheintensity-dependentrefractiveindex,thesectiononself-actioneffects(nowSection7.1)hasbeensignificantlyexpanded.Inaddition, adescriptionofopticalswitchinghasbeenincludedinSection7.3,nowentitledopticalbistabilityandopticalswitching.

InChapter9,whichdealswithstimulatedBrillouinscattering,adiscussionoftransient effectshasbeenincluded.

Chapter12isanentirelynewchapterdealingwithopticaldamageandmultiphotonabsorption.Chapter13isanentirelynewchapterdealingwithultrafastandintense-fieldnonlinear optics.

TheAppendiceshavebeenexpandedtoincludeatreatmentofthegaussiansystemofunits. Inaddition,manyadditionalhomeworkproblemsandliteraturereferenceshavebeenadded.

Iwouldliketotakethisopportunitytothankmymanycolleagueswhohavegivenmeadvice andsuggestionsregardingthewritingofthisbook.Inadditiontotheindividualsmentionedin theprefacetothefirstedition,IwouldliketothankG.S.Agarwal,P.Agostini,G.P.Agrawal, M.D.Feit,A.L.Gaeta,D.J.Gauthier,L.V.Hau,F.Kajzar,M.Kauranen,S.G.Lukishova,A.C.Melissinos,Q-H.Park,M.Saffman,B.W.Shore,D.D.Smith,I.A.Walmsley, G.W.Wicks,andZ.Zyss.IespeciallywishtothankM.KauranenandA.L.GaetaforsuggestingadditionalhomeworkproblemsandtothankA.L.Gaetaforadviceonthepreparationof Section13.2.

PrefacetotheFirstEdition

Nonlinearopticsisthestudyoftheinteractionofintenselaserlightwithmatter.Thisbookis atextbookonnonlinearopticsatthelevelofabeginninggraduatestudent.Theintentofthe bookistoprovideanintroductiontothefieldofnonlinearopticsthatstressesfundamentalconceptsandthatenablesthestudenttogoontoperformindependentresearchinthisfield.The authorhassuccessfullyusedapreliminaryversionofthisbookinhiscourseattheUniversity ofRochester,whichistypicallyattendedbystudentsrangingfromseniorstoadvancedPhD studentsfromdisciplinesthatincludeoptics,physics,chemistry,electricalengineering,mechanicalengineering,andchemicalengineering.Thisbookcouldbeusedingraduatecourses intheareasofnonlinearoptics,quantumoptics,quantumelectronics,laserphysics,electrooptics,andmodernoptics.Bydeletingsomeofthemoredifficultsections,thisbookwouldalso besuitableforusebyadvancedundergraduates.Ontheotherhand,someofthematerialin thebookisratheradvancedandwouldbesuitableforseniorgraduatestudentsandresearch scientists.

Thefieldofnonlinearopticsisnowthirtyyearsold,ifwetakeitsbeginningstobethe observationofsecond-harmonicgenerationbyFrankenandcoworkersin1961.Interestinthis fieldhasgrowncontinuouslysinceitsbeginnings,andthefieldofnonlinearopticsnowranges fromfundamentalstudiesoftheinteractionoflightwithmattertoapplicationssuchaslaser frequencyconversionandopticalswitching.Infact,thefieldofnonlinearopticshasgrown soenormouslythatitisnotpossibleforonebooktocoverallofthetopicsofcurrentinterest.Inaddition,sinceIwantthisbooktobeaccessibletobeginninggraduatestudents,Ihave attemptedtotreatthetopicsthatarecoveredinareasonablyself-containedmanner.Thisconsiderationalsorestrictsthenumberoftopicsthatcanbetreated.Mystrategyindecidingwhat topicstoincludehasbeentostressthefundamentalaspectsofnonlinearoptics,andtoincludeapplicationsandexperimentalresultsonlyasnecessarytoillustratethesefundamental

PrefacetotheFirstEdition

issues.ManyofthespecifictopicsthatIhavechosentoincludearethoseofparticularhistoricalvalue.

Nonlinearopticsisnotationallyverycomplicated,andunfortunatelymuchofthenotational complicationisunavoidable.Becausethenotationalaspectsofnonlinearopticshavehistoricallybeenveryconfusing,considerableeffortismade,especiallyintheearlychapters,to explainthenotationalconventions.Thebookusesprimarilythegaussiansystemofunits,both toestablishaconnectionwiththehistoricalpapersofnonlinearoptics,mostofwhichwere writtenusingthegaussiansystem,andalsobecausetheauthorbelievesthatthelawsofelectromagnetismaremorephysicallytransparentwhenwritteninthissystem.Atseveralplacesin thetext(seeespeciallytheappendicesattheendofthebook),tablesareprovidedtofacilitate conversiontoothersystemsofunits.

Thebookisorganizedasfollows:Chapter1presentsanintroductiontothefieldofnonlinearopticsfromtheperspectiveofthenonlinearsusceptibility.Thenonlinearsusceptibilityis aquantitythatisusedtodeterminethenonlinearpolarizationofamaterialmediuminterms ofthestrengthofanappliedoptical-frequencyelectricfield.Itthusprovidesaframeworkfor describingnonlinearopticalphenomena.Chapter2continuesthedescriptionofnonlinearopticsbydescribingthepropagationoflightwavesthroughnonlinearopticalmediabymeansof theopticalwaveequation.Thischapterintroducestheimportantconceptofphasematching andpresentsdetaileddescriptionsoftheimportantnonlinearopticalphenomenaofsecondharmonicgenerationandsum-anddifference-frequencygeneration.Chapter3concludesthe introductoryportionofthebookbypresentingadescriptionofthequantummechanicaltheory ofthenonlinearopticalsusceptibility.Simplifiedexpressionsforthenonlinearsusceptibility arefirstderivedthroughuseoftheSchrödingerequation,andthenmoreaccurateexpressions arederivedthroughuseofthedensitymatrixequationsofmotion.Thedensitymatrixformalismisitselfdevelopedinconsiderabledetailinthischapterinordertorenderthisimportant discussionaccessibletothebeginningstudent.

Chapters4through6dealwithpropertiesandapplicationsofthenonlinearrefractiveindex. Chapter4introducesthetopicofthenonlinearrefractiveindex.Properties,includingtensor properties,ofthenonlinearrefractiveindexarediscussedindetail,andphysicalprocessesthat leadtothenonlinearrefractiveindex,suchasnonresonantelectronicpolarizationandmolecular orientation,aredescribed.Chapter5isdevotedtoadescriptionofnonlinearitiesintherefractiveindexresultingfromtheresponseoftwo-levelatoms.Relatedtopicsthatarediscussedin thischapterincludesaturation,powerbroadening,opticalStarkshifts,Rabioscillations,and dressedatomicstates.Chapter6dealswithapplicationsofthenonlinearrefractiveindex.Topicsthatareincludedareopticalphaseconjugation,selffocusing,opticalbistability,two-beam coupling,pulsepropagation,andtheformationofopticalsolitons.

Chapters7through9dealwithspontaneousandstimulatedlightscatteringandtherelated topicofacoustooptics.Chapter7introducesthisareabypresentingadescriptionoftheoriesof spontaneouslightscatteringandbydescribingtheimportantpracticaltopicofacoustooptics.

Chapter8presentsadescriptionofstimulatedBrillouinandstimulatedRayleighscattering. Thesetopicsarerelatedinthattheybothentailthescatteringoflightfrommaterialdisturbances thatcanbedescribedintermsofthestandardthermodynamicvariablesofpressureandentropy. AlsoincludedinthischapterisadescriptionofphaseconjugationbystimulatedBrillouin scatteringandatheoreticaldescriptionofstimulatedBrillouinscatteringingases.Chapter9 presentsadescriptionofstimulatedRamanandstimulatedRayleigh-wingscattering.These processesarerelatedinthattheyentailthescatteringoflightfromdisturbancesassociatedwith thepositionsofatomswithinamolecule.

ThebookconcludeswithChapter10,whichtreatstheelectroopticandphotorefractiveeffects.Thechapterbeginswithadescriptionoftheelectroopticeffectanddescribeshowthis effectcanbeusedtofabricatelightmodulators.Thechapterthenpresentsadescriptionofthe photorefractiveeffect,whichisanonlinearopticalinteractionthatresultsfromtheelectrooptic effect.Theuseofthephotorefractiveeffectintwo-beamcouplingandinfour-wavemixingis alsodescribed.

Theauthorwishestoacknowledgehisdeepappreciationfordiscussionsofthematerialin thisbookwithhisgraduatestudentsattheUniversityofRochester.Heissurethathehaslearned asmuchfromthemastheyhavefromhim.Healsogratefullyacknowledgesdiscussionswith numerousotherprofessionalcolleagues,includingN.Bloembergen,D.Chemla,R.Y.Chiao, J.H.Eberly,C.Flytzanis,J.Goldhar,G.Grynberg,J.H.Haus,R.W.Hellwarth,K.R.MacDonald,S.Mukamel,P.Narum,M.G.Raymer,J.E.Sipe,C.R.Stroud,Jr.,C.H.Townes, H.Winful,andB.Ya.Zel’dovich.Inaddition,theassistanceofJ.J.MakiandA.Gamlielinthe preparationofthefiguresisgratefullyacknowledged.

Chapter1

TheNonlinearOpticalSusceptibility

1.1IntroductiontoNonlinearOptics

Nonlinearopticsisthestudyofphenomenathatoccurasaconsequenceofthemodificationof theopticalpropertiesofamaterialsystembythepresenceoflight.Typically,onlylaserlight issufficientlyintensetomodifytheopticalpropertiesofamaterialsysteminthismanner.The beginningofthefieldofnonlinearopticsisoftentakentobethediscoveryofsecond-harmonic generationbyFrankenetal.(1961),shortlyafterthedemonstrationofthefirstworkinglaser byMaimanin1960.∗ Nonlinearopticalphenomenaare“nonlinear”inthesensethattheyoccur whentheresponseofamaterialsystemtoanappliedopticalfielddependsinanonlinearmanner onthestrengthoftheappliedopticalfield.Forexample,second-harmonicgenerationoccurs asaresultofthepartoftheatomicresponsethatscalesquadraticallywiththestrengthofthe appliedopticalfield.Consequently,theintensityofthelightgeneratedatthesecond-harmonic frequencytendstoincreaseasthesquareoftheintensityoftheappliedlaserlight.

Inordertodescribemorepreciselywhatwemeanbyanopticalnonlinearity,letusconsider howthedipolemomentperunitvolume,orpolarization ˜ P(t),ofamaterialsystemdependson thestrength ˜ E(t) ofanappliedopticalfield.† Inthecaseofconventional(i.e.,linear)optics,the inducedpolarizationdependslinearlyontheelectricfieldstrengthinamannerthatcanoften bedescribedbytherelationship

∗ Itshouldbenoted,however,thatsomenonlineareffectswerediscoveredpriortotheadventofthelaser.The earliestexampleknowntotheauthoristheobservationofsaturationeffectsintheluminescenceofdyemolecules reportedbyG.N.Lewisetal.(1941).

† Throughoutthetext,weusethetilde(~)todenoteaquantitythatvariesrapidlyintime.Constantquantities, slowlyvaryingquantities,andFourieramplitudesarewrittenwithoutthetilde.See,forexample,Eq.(1.2.1). NonlinearOptics. https://doi.org/10.1016/B978-0-12-811002-7.00010-2 Copyright©2020ElsevierInc.Allrightsreserved.

wheretheconstantofproportionality χ (1) isknownasthelinearsusceptibilityand 0 isthe permittivityoffreespace.∗ Innonlinearoptics,theopticalresponsecanoftenbedescribedasa generalizationofEq.(1.1.1)byexpressingthepolarization

P(t) asapowerseriesinthefield strength ˜ E(t) as

Thequantities χ (2) and χ (3) areknownasthesecond-andthird-ordernonlinearopticalsusceptibilities,respectively.Forsimplicity,wehavetakenthefields ˜ P(t) and ˜ E(t) tobescalar quantitiesinwritingEqs.(1.1.1)and(1.1.2).InSection 1.3 weshowhowtotreatthevectornatureofthefields;insuchacase χ (1) becomesasecond-ranktensor, χ (2) becomesathird-rank tensor,andsoon.InwritingEqs.(1.1.1)and(1.1.2)intheformsshown,wehavealsoassumed thatthepolarizationattime t dependsonlyontheinstantaneousvalueoftheelectricfield strength.Theassumptionthatthemediumrespondsinstantaneouslyalsoimplies(throughthe Kramers–Kronigrelations† )thatthemediummustbelosslessanddispersionless.Weshallsee inSection 1.3 howtogeneralizetheseequationsforthecaseofamediumwithdispersionand loss.Ingeneral,thenonlinearsusceptibilitiesdependonthefrequenciesoftheappliedfields, butunderourpresentassumptionofinstantaneousresponsewetakethemtobeconstants.

Weshallreferto P (2) (t) = 0 χ (2) E 2 (t) asthesecond-ordernonlinearpolarizationandto P (3) (t) = 0 χ (3) E 3 (t) asthethird-ordernonlinearpolarization,andsoonforhigher-order terms.Weshallseelaterinthissectionthatphysicalprocessesthatoccurasaresultofthe second-orderpolarization ˜ P (2) aredistinctfromthosethatoccurasaresultofthethird-order polarization ˜ P (3) .Inaddition,weshallshowinSection 1.5 thatsecond-ordernonlinearopticalinteractionscanoccuronlyinnoncentrosymmetriccrystals—thatis,incrystalsthatdo notdisplayinversionsymmetry.Sinceliquids,gases,amorphoussolids(suchasglass),and evenmanycrystalsdisplayinversionsymmetry, χ (2) vanishesidenticallyforsuchmaterials, andconsequentlysuchmaterialscannotproducesecond-ordernonlinearopticalinteractions. Ontheotherhand,third-ordernonlinearopticalinteractions(i.e.,thosedescribedbya χ (3) susceptibility)canoccurforbothcentrosymmetricandnoncentrosymmetricmedia.

Weshallseeinlatersectionsofthisbookhowtocalculatethevaluesofthenonlinearsusceptibilitiesforvariousphysicalmechanismsthatleadtoopticalnonlinearities.Forthepresent, wemakeasimpleorder-of-magnitudeestimateofthesizeofthesequantitiesforthecommon caseinwhichthenonlinearityiselectronicinorigin(see,forinstance,Armstrongetal., 1962). Onemightexpectthatthelowest-ordercorrectionterm ˜ P (2) wouldbecomparabletothelinear

∗ Exceptwhereotherwisenoted,weusetheSI(MKS)systemofunitsthroughoutthisbook.Theappendixtothis bookpresentsaprescriptionforconvertingamongsystemsofunits.

† See,forexample,LandauandLifshitz(1960)Section62orthediscussioninSection 1.7 ofthisbookfora discussionoftheKramers–Kronigrelations.

response P (1) whentheamplitudeoftheappliedfield E isoftheorderofthecharacteristic atomicelectricfieldstrength Eat = e/(4π 0 a 2 0 ),where e isthechargeoftheelectronand a0 = 4π 0 2 /me 2 istheBohrradiusofthehydrogenatom(here isPlanck’sconstantdivided by2π ,and m isthemassoftheelectron).Numerically,wefindthat Eat = 5.14 × 1011 V/m. Wethusexpectthatunderconditionsofnonresonantexcitationthesecond-ordersusceptibility χ (2) willbeoftheorderof χ (1) /Eat .Forcondensedmatter χ (1) isoftheorderofunity,andwe henceexpectthat χ (2) willbeoftheorderof1/Eat ,orthat

Similarly,weexpect χ (3) tobeoftheorderof χ (1) /E 2 at ,whichforcondensedmatterisofthe orderof

Thesepredictionsareinfactquiteaccurate,asonecanseebycomparingthesevalueswith actualmeasuredvaluesof χ (2) (see,forinstance,Table 1.5.3)and χ (3) (see,forinstance,Table 4.3.1).

Forcertainpurposes,itisusefultoexpressthesecond-andthird-ordersusceptibilitiesin termsoffundamentalphysicalconstants.Asjustnoted,forcondensedmatter χ (1) isofthe orderofunity.Thisresultcanbejustifiedeitherasanempiricalfactorcanbejustifiedmore rigorouslybynotingthat χ (1) istheproductofatomicnumberdensityandatomicpolarizability. Thenumberdensity N ofcondensedmatterisoftheorderof (a0 ) 3 ,andthenonresonant polarizabilityisoftheorderof (a0 )3 .Wethusdeducethat χ (1) isoftheorderofunity.Using theexpressionfor E quotedabove,wesimilarlyfindthat χ (2) (4π 0 )3 4 /m2 e 5 and χ (3) (4π 0 )6 8 /m4 e 10 .SeeBoyd(1999)forfurtherdetails.

Themostusualprocedurefordescribingnonlinearopticalphenomenaisbasedonexpressingthepolarization P(t) intermsoftheappliedelectricfieldstrength E(t),aswehavedone inEq.(1.1.2).Thereasonwhythepolarizationplaysakeyroleinthedescriptionofnonlinear opticalphenomenaisthatatime-varyingpolarizationcanactasthesourceofnewcomponents oftheelectromagneticfield.Forexample,weshallseeinSection 2.1 thatthewaveequationin nonlinearopticalmediaoftenhastheform

(1.1.5)

where n istheusuallinearrefractiveindexand c isthespeedoflightinvacuum.Wecan interpretthisexpressionasaninhomogeneouswaveequationinwhichthepolarization ˜ P NL associatedwiththenonlinearresponseactsasasourcetermfortheelectricfield E .Since ∂ 2 ˜ P NL /∂t 2 isameasureoftheaccelerationofthechargesthatconstitutethemedium,this

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.