NEW OPTIMIZATION ALGORITHMS ANDTHEIR APPLICATIONS
Atom-Based, Ecosystem-Basedand Economics-Based
WEIGUOZHAO
Professor,SchoolofWaterConservancyandHydroelectric Power,HebeiUniversityofEngineering,China
LIYINGWANG
Professor,SchoolofWaterConservancyandHydroelectric Power,HebeiuniversityofEngineering,China
ZHENXINGZHANG
Hydrologist,UniversityofIllinoisatUrbanaChampaign,USA
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2021ChinaSciencePublishing&MediaLtd.PublishedbyElsevierInc.AllRights Reserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-323-90941-9
ThisbookwasoriginallypublishedinChinawiththeISBN978-7-03-064198-4
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: GlynJones
EditorialProjectManager: NaomiRobertson
ProductionProjectManager:PrasannaKalyanaraman
CoverDesigner:MilesHitchen
TypesetbySPiGlobal,India
Preface vii Acknowledgmentsix
1.Introduction1
1.1 Optimizationalgorithms1
1.2 Ashortoutlineofoptimizationalgorithms2
1.3 Organizationofthisbook6 References7
2.Atomsearchoptimizationalgorithm13
2.1 Introduction13
2.2 Basicmoleculardynamics15
2.3 Atomsearchoptimization18
2.4 Experimentalresults26
2.5 Conclusions43 References44
3.Engineeringapplicationsofatomsearchoptimization algorithm47
3.1 Introduction47
3.2 Parameterestimationforchaoticsystem47
3.3 Circularantennaarraydesignproblem51
3.4 Spreadspectrumradarpolyphasecodedesign52
3.5 Conclusions56 References57
4.Artificialecosystem-basedoptimizationalgorithm59
4.1 Introduction59
4.2 Artificialecosystem-basedoptimization61
4.3 Resultsanddiscussion68
4.4 Conclusions88 References88
5.Engineeringapplicationsofartificialecosystem-based optimization93
5.1 EngineeringoptimizationusingtheAEOalgorithm93
5.2 Staticeconomicloaddispatchproblem103
5.3 Hydrothermalschedulingproblem111
5.4 Conclusions119 References120
6.Supply-demand-basedoptimization123
6.1 Introduction123
6.2 Supply-demand-basedoptimization124
6.3 Experimentalresultsanddiscussion134
6.4 Conclusions141 References141
7.Engineeringapplicationsofsupply-demand-based optimization143
7.1 Introduction143
7.2 Three-bartrussdesign143
7.3 Cantileverbeamdesign146
7.4 Rollingelementbearingdesign147
7.5 Geartraindesign150
7.6 Conclusions151 References152 Appendix153 Index 163
Preface
Optimizationmeanstosearchforoptimalsolutionseffectivelyandefficientlyfromagivensolutionspaceunderthegivenconstraints,byeither maximizingorminimizingtheobjectivefunction.Metaheuristicoptimizationalgorithms,whicharepowerfultoolsforaddressingthesechallenging optimizationproblems,arebecomingincreasinglypopular.Forthisbook, threenovelintelligentoptimizationtechniques,basedonatomicdynamics, artificialecosystems,andeconomicsweredeveloped,tested,andappliedto practicalengineeringissues.Thebookisorganizedasfollows:
Chapter1 introducesthedevelopmentofintelligentoptimizationalgorithmsandtheiradvantagesanddisadvantages.
Chapter2 introducestheprocessandbasicprinciplesoftheatomsearch optimizationalgorithmandteststhealgorithm.
Chapter3 appliestheatomsearchoptimizationalgorithminengineering issues.
Chapter4 introducestheproposedprocessandbasicprincipleoftheartificialecosystem-basedoptimizationalgorithmandteststhealgorithm.
Chapter5 employstheartificialecosystem-basedoptimizationalgorithm inengineeringapplications.
Chapter6 presentstheinspirationanddescriptionofthesupplydemand-basedoptimization.
Chapter7 demonstratestheapplicationsofthesupply-demand-based optimizationindifferentengineeringcases.
AppendixA listsmathematicalbenchmarkfunctionsusedtotesttheperformanceofvariousalgorithms.
AppendixB listsoptimizationformulationsofvariousengineering problems.
AppendixC providestheMATLABcodesofthreealgorithms. Wehavebeenworkingonintelligentoptimizationalgorithmsformany yearsandhavemadesomeachievements.Thebookiscompiledonthebasis oftheresultsoftheseachievements.
Weappreciatethesupportoftheadministrationandcolleaguesofthe SchoolofWaterResourcesandHydropower,HebeiUniversityofEngineering,China,aswellasprofessorsfromotheruniversities.Wewouldlike toexpressourrespectandgratitudeforthereferencesinthebook.Wealso
acknowledgethepublisherswhopermittedourpaperstobeadoptedand utilizedinthepreparationofthisbook.
Thisbookcanbeusedbytechnicianswhoareengagedincomputingand intelligentalgorithmsandvariousengineeringpracticesthatuseoptimization.Itisalsoagoodreferenceforpostgraduatesandteachersofrelevant specialtiesincollegesanduniversities.
Ourwarmestgratitudeisduetoourfamiliesfortheircontinuedsupport inthecourseofpreparingthisbook.Dr.Zhaoworkedontheideasand papers,whichmotivatedthepreparationofthisbook,inIllinoisStateWater Survey,UniversityofIllinoisatUrbana-Champaign,USA.Preparingthe bookbroughtbackallthebeautifulmemoriesinChampaign,IL.Owing tothelimitationofourknowledge,wearenotabletoeradicateincompletenessorerrorsinthebook.Yoursuggestionswouldbemuchappreciated. Pleasecontactuswithyoursuggestions via thepublisher.
Acknowledgments
AcknowledgmentisgiventoSpringerforpermissiontoreprintmaterial fromthefollowingpaper:
ZhaoW,WangL,ZhangZ.2020.Artificialecosystem-basedoptimization:Anovelnature-inspiredmeta-heuristicalgorithm,NeuralComputingandApplications32:9383–9425.
AcknowledgmentisgiventotheInstituteofElectricalandElectronicEngineers(IEEE)forpermissiontoreprintaportionofthematerialfromthefollowingpaper:
ZhaoW,WangL,ZhangZ.2019.Supply-demand-basedoptimization: Anoveleconomics-inspiredalgorithmforglobaloptimization,IEEE Access7:73182–73206. © [2019]IEEE.
AcknowledgmentisalsogiventoElsevierforpermissiontoreprintmaterial fromthefollowingpapers:
ZhaoW,WangL.2016.Aneffectivebacterialforagingoptimizerfor globaloptimization,InformationSciences329:719–735.
ZhaoW,WangL,ZhangZ.2019.Atomsearchoptimizationandits applicationtosolveahydrogeologicparameterestimationproblem, Knowledge-BasedSystems163:283–304.
Theauthorsaregratefulthatthecopyrightpermissionwasgrantedfromthe abovepublishers.
1.2Ashortoutlineofoptimizationalgorithms
Sincethe1970s,manyoptimizationalgorithmshavebeendevelopedand appliedtodifferentoptimizationproblems.Thesealgorithms,whichmimic naturalorphysicalphenomena,haveprovidedeffectiveandrobusttechniquesforsolvingcomplexoptimizationproblemsinawidespectrumof disciplines.Manymetaheuristicalgorithmswithdifferentinspirationshave beenproposedandsuccessfullyusedinavarietyoffields,whichareroughly classifiedintofourcategories(Hareetal.,2013):evolution-inspired, (M € uhlenbeinetal.,1988; Gongetal.,2013,2014),physics-inspired (Geemetal.,2001),swarm-inspired(Krauseetal.,2013),andhumaninspired(Montieletal.,2007).
Evolution-inspiredalgorithmsareastochastic,population-based approach.Protectingapopulation’sdiversityisveryimportantforthesustainabledevelopmentofthealgorithmsiteratively.Manyevolution-inspired algorithmsmaintainapopulation’sdiversitybymimickingbasicgenetic rules,includingreproduction,mutation, selection,chemotaxis,elimination, andmigration(Passino,2002; Falcoetal.,2012).Thesealgorithmsrandomlyinitializeapopulationevolvedfromsubsequentiterationsandevaluatetheindividualqualityusingafitnessfunction.Geneticalgorithm(GA), originallypresentedby Holland(1975),isawell-knownclassicevolutionary algorithm(EA).AsGAcangenerallyobtainhigh-qualitysolutionsusing mutation,crossover,andselectionsteps,theoriginalversionanditsvariants arewidelyappliedtomanyreal-worldproblems(Gongetal.,2018).Since itsemergence,aseriesofschemesaimingtoenhanceGAhavebeendeveloped.WithincreasingpopularityofGA,anumberofotherevolution-based algorithmsintheliterature,includingevolutionarystrategies(ES)(Beyer andSchwefel,2002),differentialevolution(DE)(Roccaetal.,2011),evolutionaryprogramming(EP)( Justeetal.,1999),andmemeticalgorithms (MA)(Moscatoetal.,2007),havebeenproposed.Additionally,manytypes ofnewEAshavebeenproposedrecently,suchasbacterialforagingoptimization(BFO)(Passino,2002),batalgorithm(BA)(YangandHossein,2012), fruitflyoptimizationalgorithm(FOA)(Pan,2012),monkeykingevolutionary(MKE)(MengandPan,2016),artificialalgaealgorithm(AAA) (Uymazetal.,2015),biogeography-basedoptimization(BBO)(Simon, 2009),yin-yang-pairoptimization(YYPO)(PunnathanamandKotecha, 2016),invasiveweedoptimization(IWO)(MehrabianandLucas,2006), anddynamicvirtualbatsalgorithm(DVBA)(TopalandAltun,2016).
Physics-inspiredalgorithmssimulatephysicallawsintheuniverse, amongwhich,simulatedannealing(SA)(Kirkpatricketal.,1983)isone ofthemostwell-knownalgorithms.SAisinspiredfromtheannealingprocessusedinphysicalmaterialinwhichaheatedmetalcoolsandfreezesintoa crystaltexturewithaminimumamountofenergy.Recently,manynovel physics-inspiredalgorithmshavebeenproposed,suchasgravitationalsearch algorithm(GSA)(Rashedietal.,2009),electromagnetism-likemechanism (EM)algorithm(BirbilandFang,2003),particlecollisionalgorithm(PCA) (SaccoandDeOliveira,2015),vortexsearchalgorithm(VSA)(Doganand € Olmez,2015),waterevaporationoptimization(WEO)(KavehandBakhshpoori,2016),spacegravitationalalgorithm(SGA)(Hsiaoetal.,2005),big bang-bigcrunchalgorithm(BB-BC)(Genc ¸ etal.,2010),galaxybasedalgorithm(GBA)(Shah-Hosseini,2009),bigcrunchalgorithm(BCA)(Kripka andKripka,2008),integratedradiationalgorithm(IRA)(ChuangandJiang, 2007),waterdropsalgorithm(WDA)(Shah-Hosseini,2009),chargedsystemsearch(CSS)(KavehandTalatahari,2010),magneticoptimizationalgorithm(MOA)(MirjaliliandHashim,2012),gravitationfieldalgorithm (GFA)(Zhengetal.,2010),ionsmotionalgorithm(IMA)( Javidyetal., 2015),waterwaveoptimization(WWO)(Zheng,2015),gravitationalinteractionsoptimization(GIO)(Floresetal.,2011),teaching-learning-based optimization(TLBO)(Raoetal.,2012),hystereticoptimization(HO) (Zarandetal.,2002),thermalexchangeoptimization(TEO)(Kavehand Dadras,2017),lightrayoptimization(LRO)(ShenandLi,2009),heattransfersearch(HTS)(PatelandSavsani,2015),spiraloptimizationalgorithm (SOA)(TamuraandYasuda,2011),watercyclealgorithm(WCA) (Eskandaretal.,2012),andcurvedspaceoptimization(CSO) (Moghaddametal.,2012).
Swarm-inspiredalgorithmsmimicthecollectivebehaviorsofselforganizationandshape-formation,beitnaturalorartificial(BeniandWang, 1993).Therearetwoclassicswarm-inspiredalgorithms.Oneisparticle swarmoptimization(PSO)(KennedyandEberhart,1995),whichmimics bird-flockingbehaviors.InPSO,everyagentmovesaroundthesearchspace toimproveitssolution,andtheirpersonalbestpositionsandthegloballybest positionfoundsofararereserved,bywhichtheirpositionsareupdated locallyandsocially.Theotherisantcolonyoptimization(ACO)(Dorigo etal.,1996),whichfollowstheforagingprocessofanantcolony.Essentially, antscommunicatewitheachotherbypheromonetrailsthroughpathformations,whichassisttheminfindingtheshortestpathbetweenthenestand
foodsource.Therearemanynewlydevelopedswarm-inspiredalgorithms, suchasartificialbeecolony(ABC)(AkayandKaraboga,2012),salpswarm algorithm(SSA)(Mirjalilietal.,2017),krillherdalgorithm(KH)(Gandomi andAlavi,2012),tree-seedalgorithm(TSA)(Kiran,2015),socialspider optimization(SSO)(Cuevasetal.,2013),birdmatingoptimizer(BMO) (Askarzadeh,2014),cuckoosearch(CS)(YangandDeb,2019),grasshopper optimizationalgorithm(GOA)(Saremietal.,2017),sine-cosinealgorithm (SCA)(Mirjalili,2016),mothswarmalgorithm(MSA)(Mohamedetal., 2017),dolphinecholocation(DE)algorithm(KavehandFarhoudi,2013), huntingsearch(HS)algorithm(Oftadehetal.,2010),migratingbirdsoptimization(MBO)(Dumanetal.,2012),fireflyalgorithm(FA)(Yang,2010), monkeysearch(MS)algorithm(MucherinoandSeref,2007),andsquirrel searchalgorithm(SSA)( Jainetal.,2018).
Human-inspiredalgorithmsarearecentlydevelopedcategoryinintelligencecomputing.Theymathematicallystimulatesocialactivitiesandideologyinhumanstofindnear-optimalsolutions.Thesocietyandcivilization algorithm(SCA)(RayandLiew,2003)isatypicalrepresentativeof human-inspiredalgorithms.SCAimitatestheintraandsocialinteractions withinaformalsocietyandthecivilizationmodel.Asocietycorresponds toasetofmutuallyinteractingindividualsandacivilizationisasetofallsuch societies.Allindividualsineachsocietyinteractwitheachotherandmake improvementsundertheguidanceofaleaderbelongingtothesamesociety. Meanwhile,eachleaderinteractswithleadersofothersocietiestomigratetoa developedsociety.ThisleadermigrationmechanismhelpsSCAglobally searchpromisingregionsinthevariablespace.Additionally,SCAisadvantageousindealingwithconstrainedoptimizationproblemsowingtotheleader identificationmechanism.Someofotherhuman-inspiredalgorithmsinclude leaguechampionshipalgorithm(LCA)(Kashan,2009),socialgroupoptimization(SGO)(SatapathyandNaik,2016),socialemotionaloptimizationalgorithm(SOA)(Xuetal.,2010),socioevolutionandlearningoptimization algorithm(SELO)(Kumaretal.,2018),ideologyalgorithm(IA)(Huan etal.,2017),andculturalevolutionalgorithm(CEA)(KuoandLin,2013).
Comparedwithevolution-inspiredorphysics-inspiredalgorithms, swarm-inspiredalgorithmshavesomedistinctivecharacteristics.Onthe onehand,partorallofthehistoricalinformationaboutthepopulationneeds tobepreserved,becauseeveryagentdependsontheinformationtodetermine anewpositioninthesearchspaceoversubsequentiterations.However, evolution-inspiredalgorithmsrequiremoreoperators.Swarm-inspiredalgorithmsgenerallyupdatepositionsofthepopulationbyinteractionrulesas
standardformulas.Ontheotherhand,swarm-inspiredalgorithmsgenerally havetwobehaviors:explorationandexploitation(AlbaandDorronsoro, 2005; LynnandSuganthan,2015).Explorationmeanstheabilityofthealgorithmstosearchfornewsolutionsfarfromthecurrentsolutionintheentire searchspace.Exploitationmeanstheabilityofthealgorithmstosearchforthe bestsolutionnearanewsolutionthathasalreadybeenfound.Insuchalgorithms,therangeofeveryagentinthesearchspaceisscaledtoaconsensusin itsneighborhood,andagentsrandomlyexplorethewholesearchspace.Ifan agentoritsneighborsfindagoodregion,thisregionwillbeintensively exploited.Otherwise,theystillextensivelyexploreotherregions,thusindicatingtheirbetterself-adaptationinsearchingtheglobaloptima.Fromthese perspectives,swarm-inspiredalgorithmshavemanyadvantagesoverother algorithms.Manyevolution-inspiredorphysics-inspiredalgorithmshave swarm-inspiredcharacteristics,suchasPSO,ACO,CS,BFO,GSA,andso on.Thesealgorithmsnotonlyreflectthenatureofbiologicalphenomena orphysicallaws,butalsoshareacommoncharacteristicofexplorationand exploitation.Thus,theyaremorecompetitivethanthosewithoutswarminspiredcharacteristics.However,providingaproperbalancebetweenexplorationandexploitationwillleadtoanoptimalperformanceofthealgorithms, soitisoneofthemostimportanttasksinthedevelopmentofanystochastic optimizationalgorithm.
Withthedevelopmentofeconomy,society,andtechnology,agreat numberofcomplexandchallengingoptimizationproblemshaveaccordinglyarisenindifferentfields.Asanillustration,theemergenceofridesharingcompaniesthatoffertransportationondemandonalargescale, togetherwiththeincreasingavailabilityofcorrespondingdemanddatasets, developsanewcomplexoptimizationproblemofeffectivehandlingofthe routingnetwork(Bertsimasetal.,2018).Atpresent,trackingthegrowing interestinaclosed-loopsupplychainbybothpractitionersandacademiais easilypossible.Manyfactors,includingenvironmentallegislation,customer awareness,andtheeconomicalmotivationsoftheorganizations,cantransformclosed-loopsupplychainissuesintoauniqueandvitalsubjectinsupply chainmanagement.Designingandplanningaclosed-loopsupplychainis performedbyaneffectiveoptimizerinareasonabletime(Soleimaniand Kannan,2015).Solvingthelarge-scale,highlynonlinear,nonconvex,nonsmooth,nondifferential,noncontinuous,andcomplexcombinedheatand powereconomicdispatch(CHPED)problemsurgentlyrequiresoptimizationalgorithms(Beigvandetal.,2017).Anotherchallengingoptimization problemistheidentificationofpollutant sourcesforriverpollution
incidents,whicharecausedbyaccidentorillegalemissions(Zhangand Xin,2017).
Althoughanumberofoptimizationalgorithmshavebeenintroducedso far,newoptimizationalgorithmsarestillbeingdevelopedtotackleemerging complexoptimizationproblemstoobtainabetteroutcome.Furthermore, accordingtotheNoFreeLunchTheoremofOptimization(Wolpertand Macready,1997),thereisnooneoptimizationalgorithmperformingthe bestforalltypesofproblems.Thistheoremkeepsthisresearchfieldactive andencouragesrelevantscholarstodevelopnewalgorithmsforbetteroptimization.Basedontheabove,threemetaheuristicalgorithmswithswarm characteristicsincludingatomsearchoptimization,artificialecosystembasedoptimization,andsupply-demand-basedoptimization,havebeen developedandexaminedusingvarioustypesofbenchmarkfunctions,and thenengineeringapplicationshavedemonstratedtheirfeasibilityandeffectivenessintacklingreal-worldproblems(Zhaoetal.,2019).
1.3Organizationofthisbook
Thisbookisorganizedinthefollowingmanner: Thischapterintroducesthedefinitionofoptimization,thedevelopment processandthedetailedprocessestosolvetheproblem.
Chapter2 isorganizedasfollows. Section2.2 presentstheinspirationof anatomsearchoptimizationalgorithm; Section2.3 describesthenovel atomsearchoptimizationalgorithm; Section2.4 givesacomparative studyanddiscussiononthebenchmarkfunctions;andfinally, Section2.5 presentssomeconclusionsandsuggestssomefutureresearch directions.
Chapter3 isorganizedasfollows. Sections3.2and3.3 describetheapplicationofatomsearchoptimizationalgorithmforparameterestimation forachaoticsystemandthecircularantennaarraydesignproblems, whichdemonstratesitsavailabilityandeffectivenessinsolvingreal-world problems. Section3.4 presentsthespreadspectrumradarpolyphasecode designproblemwhichiscomparedwithitscounterparts.Theexperimentalresultssuggestthatatomsearchoptimizationiseffectiveandthat itisapromisingalternativetoPSO,GA,andBFOextensivelyusedin manyreal-worldproblems.
Chapter4 introducesanovelnature-inspiredmetaheuristicoptimization algorithm,namedartificialecosystem-basedoptimization. Section4.2
describesthealgorithmandtheconceptsbehinditindetail.Somemathematicaloptimizationproblemsareutilizedtotestthevalidityoftheproposedoptimizerformdifferentperspectivesin Section4.3. Section4.4 givesaconclusion.
Chapter5 investigatestheapplicationsofartificialecosystem-basedoptimizationtosomeengineeringdesigncasesandthestaticeconomicload dispatchproblemandhydrothermalschedulingproblem.
Chapter6 presentstheinspirationandsupply-demand-basedoptimizationindetail,andthentheexperimentalresultsonasetofmathematical benchmarkfunctionsareanalyzed.
Chapter7 demonstratestheeffectivenessofsupply-demand-basedoptimizationinsolvingfourengineeringproblems.Finallyweconcludethe workandsuggestseveraldirectionsforfutureresearch.
References
Akay,B.,Karaboga,D.,2012.Amodifiedartificialbeecolonyalgorithmforreal-parameter optimization.Inf.Sci.192,120–142.
Alba,E.,Dorronsoro,B.,2005.Theexploration/exploitationtradeoffindynamiccellular geneticalgorithms.IEEETrans.Evol.Comput.9(2),126–142.
Askarzadeh,A.,2014.Birdmatingoptimizer:anoptimizationalgorithminspiredbybird matingstrategies.Commun.NonlinearSci.Numer.Simul.19(4),1213–1228.
Beigvand,S.D.,Abdi,H.,LaScala,M.,2017.Hybridgravitationalsearchalgorithm-particle swarmoptimizationwithtimevaryingaccelerationcoefficientsforlargescaleCHPED problem.Energy126,841–853.
Beni,G.,Wang,J.,1993.Swarmintelligenceincellularroboticsystems.In:RobotsandBiologicalSystems:TowardsaNewBionics?Springer,Berlin,Heidelberg,pp.703–712.
Bertsimas,D.,Jaillet,P.,Martin,S.,etal.,2018.Onlinevehiclerouting:theedgeofoptimizationinlarge-scaleapplications.Oper.Res.,1–20.
Beyer,H.G.,Schwefel,H.P.,2002.Evolutionstrategies-acomprehensiveintroduction.Nat. Comput.1(1),3–52.
Birbil, Ş.I.,Fang,S.C.,2003.Anelectromagnetism-likemechanismforglobaloptimization. J.Glob.Optim.25(3),263–282.
Chuang,C.L.,Jiang,J.A.,2007.Integratedradiationoptimization:inspiredbythegravitationalradiationinthecurvatureofspace-time.In:EvolutionaryComputation,CEC 2007,IEEECongressonIEEE,pp.3157–3164.
Cuevas,E.,Cienfuegos,M.,Zaldı´var,D.,Perez-Cisneros,M.,etal.,2013.Aswarmoptimizationalgorithminspiredinthebehaviorofthesocial-spider.ExpertSyst.Appl. 40(16),6374–6384.
Dogan,B., € Olmez,T.,2015.Anewmetaheuristicfornumericalfunctionoptimization:vortexsearchalgorithm.Inf.Sci.293,125–145.
Dorigo,M.,Maniezzo,V.,Colorni,A.,etal.,1996.Antsystem:optimizationbyacolonyof cooperatingagents.IEEETrans.Syst.ManCybern.B26(1),29–41.
Duan,P.Y.,Li,J.Q.,Wang,Y.,etal.,2018.Solvingchillerloadingoptimizationproblems usinganimprovedteaching–learning-basedoptimizationalgorithm.Optim.Control Appl.Methods39(1),65–77.
Duman,E.,Uysal,M.,Alkaya,A.F.,etal.,2012.Migratingbirdsoptimization:anewmetaheuristicapproachitsperformanceonquadraticassignmentproblem.Inf.Sci.217, 65–77.
Eskandar,H.,Sadollah,A.,Bahreininejad,A.,etal.,2012.Watercyclealgorithm-anovel metaheuristicoptimizationmethodforsolvingconstrainedengineeringoptimization problems.Comput.Struct.110,151–166.
Falco,I.,DellaCioppa,A.,Maisto,D.,etal.,2012.Biologicalinvasion-inspiredmigrationin distributedevolutionaryalgorithms.Inf.Sci.207,50–65.
Flores,J.J.,Lo ´ pez,R.,Barrera,J.,etal.,2011.Gravitationalinteractionsoptimization.In: InternationalConferenceonLearningandIntelligentOptimization.Springer,Berlin, Heidelberg,pp.226–237.
Gandomi,A.H.,Alavi,A.H.,2012.Krillherd:anewbio-inspiredoptimizationalgorithm. Commun.NonlinearSci.Numer.Simul.17(12),4831–4845.
Geem,Z.W.,Kim,J.,Loganathan,G.V.,etal.,2001.Anewheuristicoptimizationalgorithm:harmonysearch.Trans.Simul.76(2),60–68.
Genc ¸,H.M.,Eksin,I.,Erol,O.K.,etal.,2010.Bigbang-bigcrunchoptimizationalgorithm hybridizedwithlocaldirectionalmovesandapplicationtotargetmotionanalysisproblem.In:SystemsManandCybernetics(SMC),2010IEEEInternationalConferenceon. IEEE,pp.881–887.
Gong,D.,Sun,J.,Ji,X.,etal.,2013.Evolutionaryalgorithmswithpreferencepolyhedron forintervalmulti-objectiveoptimizationproblems.Inf.Sci.233,141–161.
Gong,D.,Ji,X.,Sun,J.,Sun,X.,etal.,2014.Interactiveevolutionaryalgorithmswith decision-maker’spreferencesforsolvingintervalmulti-objectiveoptimizationproblems. Neurocomputing137,241–251.
Gong,D.,Sun,J.,Miao,Z.,etal.,2018.Aset-basedgeneticalgorithmforintervalmanyobjectiveoptimizationproblems.IEEETrans.Evol.Comput.22(1),47–60.
Hare,W.,Nutini,J.,Tesfamariam,S.,etal.,2013.Asurveyofnon-gradientoptimization methodsinstructuralengineering.Adv.Eng.Softw.59,19–28.
Holland,J.H.,1975.AdaptationinNaturalandArtificialSystems.UniversityofMichigan Press,AnnArbor,MI.
Hsiao,Y.T.,Chuang,C.L.,Jiang,J.A.,etal.,2005.Anoveloptimizationalgorithm:space gravitationaloptimization,systems,manandcybernetics.In:2005IEEEInternational Conferenceon.IEEE.vol.3,pp.2323–2328.
Huan,T.T.,Kulkarni,A.J.,Kanesan,J.,etal.,2017.Ideologyalgorithm:asocio-inspired optimizationmethodology.NeuralComput.&Applic.28(1),845–876.
Jain,M.,Singh,V.,Rani,A.,etal.,2018.Anovelnature-inspiredalgorithmforoptimization:squirrelsearchalgorithm.SwarmEvol.Comput. https://doi.org/10.1016/j.swevo. 2018.02.013
Javidy,B.,Hatamlou,A.,Mirjalili,S.,etal.,2015.Ionsmotionalgorithmforsolvingoptimizationproblems.Appl.SoftComput.32,72–79.
Juste,K.A.,Kita,H.,Tanaka,E.,etal.,1999.Anevolutionaryprogrammingsolutiontothe unitcommitmentproblem.IEEETrans.PowerSyst.14(4),1452–1459.
Kashan,A.H.,2009.Leaguechampionshipalgorithm:anewalgorithmfornumericalfunctionoptimization.In:2009InternationalConferenceofSoftComputingandPattern Recognition.IEEE2009,pp.43–48.
Kaveh,A.,Bakhshpoori,T.,2016.Waterevaporationoptimization:anovelphysically inspiredoptimizationalgorithm.Comput.Struct.167,69–85.
Kaveh,A.,Dadras,A.,2017.Anovelmeta-heuristicoptimizationalgorithm:thermal exchangeoptimization.Adv.Eng.Softw.110,69–84.
Kaveh,A.,Farhoudi,N.,2013.Anewoptimizationmethod:dolphinecholocation.Adv. Eng.Softw.59,53–70.
Kaveh,A.,Talatahari,S.,2010.Anovelheuristicoptimizationmethod:chargedsystem search.ActaMech.213(3),267–289.
Kennedy,J.,Eberhart,R.,1995.Particleswarmoptimization.In:Proceedingsofthe1995 IEEEInternationalConferenceonNeuralNetworks,pp.1942–1948.
Kiran,M.S.,2015.TSA:tree-seedalgorithmforcontinuousoptimization.ExpertSyst.Appl. 42(19),6686–6698.
Kirkpatrick,S.,Gelatt,C.D.,Vecchi,M.P.,etal.,1983.Optimizationbysimulatedannealing.Science220(4598),671–680.
Krause,J.,Cordeiro,J.,Parpinelli,R.S.,etal.,2013.Asurveyofswarmalgorithmsappliedto discreteoptimizationproblems.In:SwarmIntelligenceandBio-inspiredComputation: TheoryandApplications.ElsevierSci.Technol.Books,pp.169–191.
Kripka,M.,Kripka,R.M.L.,2008.Bigcrunchoptimizationmethod.In:InternationalConferenceonEngineeringOptimization,Brazil,pp.1–5.
Kumar,M.,Kulkarni,A.J.,Satapathy,S.C.,2018.Socioevolution&learningoptimization algorithm:asocio-inspiredoptimizationmethodology.Futur.Gener.Comput.Syst.81, 252–272.
Kuo,H.C.,Lin,C.H.,2013.Culturalevolutionalgorithmforglobaloptimizationsandits applications.J.Appl.Res.Technol.11(4),510–522.
Li,J.Q.,Sang,H.Y.,Han,Y.Y.,etal.,2018.Efficientmulti-objectiveoptimizationalgorithmforhybridflowshopschedulingproblemswithsetupenergyconsumptions. J.Clean.Prod.181,584–598.
Liu,Y.,Gong,D.,Sun,J.,Jin,Y.,etal.,2017.Amany-objectiveevolutionaryalgorithm usingaone-by-oneselectionstrategy.IEEETrans.Cybern.47(9),2689–2702. Lynn,N.,Suganthan,P.N.,2015.Heterogeneouscomprehensivelearningparticleswarm optimizationwithenhancedexplorationandexploitation.SwarmEvol.Comput.24, 11–24.
Mehrabian,A.R.,Lucas,C.,2006.Anovelnumericaloptimizationalgorithminspiredfrom weedcolonization.Ecol.Inf.1(4),355–366.
Meng,Z.,Pan,J.S.,2016.Monkeykingevolution:anewmemeticevolutionaryalgorithm anditsapplicationinvehiclefuelconsumptionoptimization.Knowl.-BasedSyst.97, 144–157.
Mirjalili,S.,2016.SCA:asinecosinealgorithmforsolvingoptimizationproblems.Knowl.BasedSyst.96,120–133.
Mirjalili,S.A.,Hashim,S.Z.M.,2012.BMOA:binarymagneticoptimizationalgorithm.Int. J.Mach.Learn.Comput.2(3),204.
Mirjalili,S.,Gandomi,A.H.,Mirjalili,S.Z.,Saremi,S.,Faris,H.,Mirjalili,S.M.,2017.Salp swarmalgorithm:abio-inspiredoptimizerforengineeringdesignproblems.Adv.Eng. Softw.114,163–191.
Moghaddam,F.F.,Moghaddam,R.F.,Cheriet,M.,etal.,2012.Curvedspaceoptimization: arandomsearchbasedongeneralrelativitytheory.arXiv,1208–2214.preprintarXiv. Mohamed,A.A.A.,Mohamed,Y.S.,El-Gaafary,A.A.M.,Hemeida,A.M.,etal.,2017. Optimalpowerflowusingmothswarmalgorithm.Electr.PowerSyst.Res.142, 190–206.
Montiel,O.,Castillo,O.,Melin,P.,Rodrı´guez-Dı´az,A.,Sepu ´ lveda,R.,2007.Humanevolutionarymodel:anewapproachtooptimization.Inf.Sci.177,2075–2098.
Moscato,P.,Mendes,A.,Berretta,R.,etal.,2007.Benchmarkingamemeticalgorithmfor orderingmicroarraydata.Biosystems88(1),56–75.
Mucherino,A.,Seref,O.,2007.Monkeysearch:anovelmetaheuristicsearchforglobaloptimization.AIPConf.Proc.953(1),162–173.
M € uhlenbein,H.,Gorges-Schleuter,M.,Kr€amer,O.,etal.,1988.Evolutionalgorithmsin combinatorialoptimization.ParallelComput.7(1),65–85.
Oftadeh,R.,Mahjoob,M.J.,Shariatpanahi,M.,etal.,2010.Anovelmeta-heuristicoptimizationalgorithminspiredbygrouphuntingofanimals:huntingsearch.Comput.Math. Appl.60(7),2087–2098.
Pan,W.T.,2012.Anewfruitflyoptimizationalgorithm:takingthefinancialdistressmodelas anexample.Knowl.-BasedSyst.26,69–74.
Passino,K.M.,2002.Biomimicryofbacterialforagingfordistributedoptimizationandcontrol.IEEEControl.Syst.22(3),52–67.
Patel,V.K.,Savsani,V.J.,2015.Heattransfersearch(HTS):anoveloptimizationalgorithm. Inf.Sci.324,217–246.
Punnathanam,V.,Kotecha,P.,2016.Yin-Yang-pairoptimization:anovellightweightoptimizationalgorithm.Eng.Appl.Artif.Intell.54,62–79.
Rao,R.V.,Savsani,V.J.,Vakharia,D.P.,etal.,2012.Teaching–learning-basedoptimization:anoptimizationmethodforcontinuousnon-linearlargescaleproblems.Inf.Sci. 183(1),1–15.
Rashedi,E.,Nezamabadi-Pour,H.,Saryazdi,S.,etal.,2009.GSA:agravitationalsearch algorithm.Inf.Sci.179(13),2232–2248.
Ray,T.,Liew,K.M.,2003.Societyandcivilization:anoptimizationalgorithmbasedonthe simulationofsocialbehavior.IEEETrans.Evol.Comput.7(4),386–396.
Rocca,P.,Oliveri,G.,Massa,A.,etal.,2011.Differentialevolutionasappliedtoelectromagnetics.IEEEAntennasPropag.Mag.53(1),38–49.
Sacco,W.F.,DeOliveira,C.R.E.,2015.Anewstochasticoptimizationalgorithmbasedona particlecollisionmetaheuristic.In:Proceedingsof6thWCSMO,Brazil,pp.1–6.
Saremi,S.,Mirjalili,S.,Lewis,A.,etal.,2017.Grasshopperoptimizationalgorithm:theory andapplication.Adv.Eng.Softw.105,30–47.
Satapathy,S.,Naik,A.,2016.Socialgroupoptimization(SGO):anewpopulationevolutionaryoptimizationtechnique.ComplexIntell.Syst.2(3),173–203.
Shah-Hosseini,H.,2009.Theintelligentwaterdropsalgorithm:anature-inspiredswarmbasedoptimizationalgorithm.Int.J.Bio-Inspir.Comput.1(1–2),71–79.
Shen,J.,Li,Y.,2009.Lightrayoptimizationanditsparameteranalysis.In:Computational SciencesandOptimization,CSO2009,InternationalJointConferenceonIEEE, pp.918–922.
Simon,D.,2009.Biogeography-basedoptimization.IEEETrans.Evol.Comput.12(6), 702–713.
Soleimani,H.,Kannan,G.,2015.Ahybridparticleswarmoptimizationandgeneticalgorithmforclosed-loopsupplychainnetworkdesigninlarge-scalenetworks.Appl.Math. Model.39(14),3990–4012.
Tamura,K.,Yasuda,K.,2011.Primarystudyofspiraldynamicsinspiredoptimization.IEEE Trans.Electr.Electron.Eng.6(S1),S98–S100.
Topal,A.O.,Altun,O.,2016.Anovelmeta-heuristicalgorithm:dynamicvirtualbatsalgorithm.Inf.Sci.354,222–235.
Uymaz,S.A.,Tezel,G.,Yel,E.,etal.,2015.Artificialalgaealgorithm(AAA)fornonlinear globaloptimization.Appl.SoftComput.31,153–171.
Wolpert,D.H.,Macready,W.G.,1997.Nofreelunchtheoremsforoptimization.IEEE Trans.Evol.Comput.1(1),67–82.
Xu,Y.,Cui,Z.,Zeng,J.,2010.Socialemotionaloptimizationalgorithmfornonlinearconstrainedoptimizationproblems.In:InternationalConferenceonSwarm,Evolutionary, andMemeticComputing.Springer,Berlin,Heidelberg,pp.583–590.
Yang,X.S.,2010.Fireflyalgorithm,stochastictestfunctionsanddesignoptimization.Int. J.Bio-Inspir.Comput.2(2),78–84.
Yang,X.S.,Deb,S.,2019.CuckoosearchviaLevyflights,nature&biologicallyinspired computing.In:NaBIC2009,WorldCongressonIEEE,pp.210–214.
Yang,X.S.,Hossein,G.A.,2012.Batalgorithm:anovelapproachforglobalengineering optimization.Eng.Comput.29(5),464–483.
Zarand,G.,Pazmandi,F.,Pa ´ l,K.F.,etal.,2002.Usinghysteresisforoptimization.Phys. Rev.Lett.89(15),150–201.
Zhang,S.P.,Xin,X.K.,2017.Pollutantsourceidentificationmodelforwaterpollutionincidentsinsmallstraightriversbasedongeneticalgorithm.Appl.WaterSci.7(4), 1955–1963.
Zhao,W.,Wang,L.,Zhang,Z.,2019.Atomsearchoptimizationanditsapplicationtosolve ahydrogeologicparameterestimationproblem.Knowl.-BasedSyst.163,283–304. Zheng,Y.J.,2015.Waterwaveoptimization:anewnature-inspiredmetaheuristic.Comput. Oper.Res.55,1–11.
Zheng,M.,Liu,G.,Zhou,C.,etal.,2010.Gravitationfieldalgorithmanditsapplicationin genecluster.AlgorithmsMol.Biol.5(1),32.