New optimization algorithms and their applications: atom-based, ecosystem-based and economics-based

Page 1


https://ebookmass.com/product/new-optimization-algorithms-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Metal Oxide-Based Nanofibers and Their Applications Esposito V.

https://ebookmass.com/product/metal-oxide-based-nanofibers-and-theirapplications-esposito-v/

ebookmass.com

Biopolymer-based Formulations: Biomedical and Food Applications 1st Edition Kunal Pal (Editor)

https://ebookmass.com/product/biopolymer-based-formulationsbiomedical-and-food-applications-1st-edition-kunal-pal-editor/

ebookmass.com

Cognitive Behavior and Human Computer Interaction Based on Machine Learning Algorithms Sandeep Kumar

https://ebookmass.com/product/cognitive-behavior-and-human-computerinteraction-based-on-machine-learning-algorithms-sandeep-kumar/

ebookmass.com

His Masked Marriage (The Omega Brides Book 3) Natalie Highland

https://ebookmass.com/product/his-masked-marriage-the-omega-bridesbook-3-natalie-highland/

ebookmass.com

Nontraditional Activation Methods in Green and Sustainable Applications: Microwaves; Ultrasounds; Photo-, Electroand Mechanochemistry and High ... (Advances in Green and Sustainable Chemistry) 1st Edition Bela Torok (Editor)

https://ebookmass.com/product/nontraditional-activation-methods-ingreen-and-sustainable-applications-microwaves-ultrasounds-photoelectro-and-mechanochemistry-and-high-advances-in-green-andsustainable-chemistry-1st-e/ ebookmass.com

Journalism and Truth in an Age of Social Media James E. Katz

https://ebookmass.com/product/journalism-and-truth-in-an-age-ofsocial-media-james-e-katz/ ebookmass.com

Adolescence and Emerging Adulthood: A Cultural Approach (Arnett & Jensen Development Series) 6th Edition – Ebook

PDF Version

https://ebookmass.com/product/adolescence-and-emerging-adulthood-acultural-approach-arnett-jensen-development-series-6th-edition-ebookpdf-version/ ebookmass.com

Leibniz’s naturalized philosophy of mind First Edition. Edition Jorgensen

https://ebookmass.com/product/leibnizs-naturalized-philosophy-of-mindfirst-edition-edition-jorgensen/

ebookmass.com

Transnational Solidarity in Times of Crises : Citizen Organisations and Collective Learning in Europe 1st ed. Edition Christian Lahusen

https://ebookmass.com/product/transnational-solidarity-in-times-ofcrises-citizen-organisations-and-collective-learning-in-europe-1st-ededition-christian-lahusen/

ebookmass.com

The League of Nations and the East Asian Imperial Order, 1920–1946 1st ed. Edition Harumi Goto-Shibata

https://ebookmass.com/product/the-league-of-nations-and-the-eastasian-imperial-order-1920-1946-1st-ed-edition-harumi-goto-shibata/ ebookmass.com

NEW OPTIMIZATION ALGORITHMS ANDTHEIR APPLICATIONS

NEW OPTIMIZATION ALGORITHMS ANDTHEIR APPLICATIONS

Atom-Based, Ecosystem-Basedand Economics-Based

WEIGUOZHAO

Professor,SchoolofWaterConservancyandHydroelectric Power,HebeiUniversityofEngineering,China

LIYINGWANG

Professor,SchoolofWaterConservancyandHydroelectric Power,HebeiuniversityofEngineering,China

ZHENXINGZHANG

Hydrologist,UniversityofIllinoisatUrbanaChampaign,USA

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ChinaSciencePublishing&MediaLtd.PublishedbyElsevierInc.AllRights Reserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-323-90941-9

ThisbookwasoriginallypublishedinChinawiththeISBN978-7-03-064198-4

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: GlynJones

EditorialProjectManager: NaomiRobertson

ProductionProjectManager:PrasannaKalyanaraman

CoverDesigner:MilesHitchen

TypesetbySPiGlobal,India

Preface vii Acknowledgmentsix

1.Introduction1

1.1 Optimizationalgorithms1

1.2 Ashortoutlineofoptimizationalgorithms2

1.3 Organizationofthisbook6 References7

2.Atomsearchoptimizationalgorithm13

2.1 Introduction13

2.2 Basicmoleculardynamics15

2.3 Atomsearchoptimization18

2.4 Experimentalresults26

2.5 Conclusions43 References44

3.Engineeringapplicationsofatomsearchoptimization algorithm47

3.1 Introduction47

3.2 Parameterestimationforchaoticsystem47

3.3 Circularantennaarraydesignproblem51

3.4 Spreadspectrumradarpolyphasecodedesign52

3.5 Conclusions56 References57

4.Artificialecosystem-basedoptimizationalgorithm59

4.1 Introduction59

4.2 Artificialecosystem-basedoptimization61

4.3 Resultsanddiscussion68

4.4 Conclusions88 References88

5.Engineeringapplicationsofartificialecosystem-based optimization93

5.1 EngineeringoptimizationusingtheAEOalgorithm93

5.2 Staticeconomicloaddispatchproblem103

5.3 Hydrothermalschedulingproblem111

5.4 Conclusions119 References120

6.Supply-demand-basedoptimization123

6.1 Introduction123

6.2 Supply-demand-basedoptimization124

6.3 Experimentalresultsanddiscussion134

6.4 Conclusions141 References141

7.Engineeringapplicationsofsupply-demand-based optimization143

7.1 Introduction143

7.2 Three-bartrussdesign143

7.3 Cantileverbeamdesign146

7.4 Rollingelementbearingdesign147

7.5 Geartraindesign150

7.6 Conclusions151 References152 Appendix153 Index 163

Preface

Optimizationmeanstosearchforoptimalsolutionseffectivelyandefficientlyfromagivensolutionspaceunderthegivenconstraints,byeither maximizingorminimizingtheobjectivefunction.Metaheuristicoptimizationalgorithms,whicharepowerfultoolsforaddressingthesechallenging optimizationproblems,arebecomingincreasinglypopular.Forthisbook, threenovelintelligentoptimizationtechniques,basedonatomicdynamics, artificialecosystems,andeconomicsweredeveloped,tested,andappliedto practicalengineeringissues.Thebookisorganizedasfollows:

Chapter1 introducesthedevelopmentofintelligentoptimizationalgorithmsandtheiradvantagesanddisadvantages.

Chapter2 introducestheprocessandbasicprinciplesoftheatomsearch optimizationalgorithmandteststhealgorithm.

Chapter3 appliestheatomsearchoptimizationalgorithminengineering issues.

Chapter4 introducestheproposedprocessandbasicprincipleoftheartificialecosystem-basedoptimizationalgorithmandteststhealgorithm.

Chapter5 employstheartificialecosystem-basedoptimizationalgorithm inengineeringapplications.

Chapter6 presentstheinspirationanddescriptionofthesupplydemand-basedoptimization.

Chapter7 demonstratestheapplicationsofthesupply-demand-based optimizationindifferentengineeringcases.

AppendixA listsmathematicalbenchmarkfunctionsusedtotesttheperformanceofvariousalgorithms.

AppendixB listsoptimizationformulationsofvariousengineering problems.

AppendixC providestheMATLABcodesofthreealgorithms. Wehavebeenworkingonintelligentoptimizationalgorithmsformany yearsandhavemadesomeachievements.Thebookiscompiledonthebasis oftheresultsoftheseachievements.

Weappreciatethesupportoftheadministrationandcolleaguesofthe SchoolofWaterResourcesandHydropower,HebeiUniversityofEngineering,China,aswellasprofessorsfromotheruniversities.Wewouldlike toexpressourrespectandgratitudeforthereferencesinthebook.Wealso

acknowledgethepublisherswhopermittedourpaperstobeadoptedand utilizedinthepreparationofthisbook.

Thisbookcanbeusedbytechnicianswhoareengagedincomputingand intelligentalgorithmsandvariousengineeringpracticesthatuseoptimization.Itisalsoagoodreferenceforpostgraduatesandteachersofrelevant specialtiesincollegesanduniversities.

Ourwarmestgratitudeisduetoourfamiliesfortheircontinuedsupport inthecourseofpreparingthisbook.Dr.Zhaoworkedontheideasand papers,whichmotivatedthepreparationofthisbook,inIllinoisStateWater Survey,UniversityofIllinoisatUrbana-Champaign,USA.Preparingthe bookbroughtbackallthebeautifulmemoriesinChampaign,IL.Owing tothelimitationofourknowledge,wearenotabletoeradicateincompletenessorerrorsinthebook.Yoursuggestionswouldbemuchappreciated. Pleasecontactuswithyoursuggestions via thepublisher.

Acknowledgments

AcknowledgmentisgiventoSpringerforpermissiontoreprintmaterial fromthefollowingpaper:

ZhaoW,WangL,ZhangZ.2020.Artificialecosystem-basedoptimization:Anovelnature-inspiredmeta-heuristicalgorithm,NeuralComputingandApplications32:9383–9425.

AcknowledgmentisgiventotheInstituteofElectricalandElectronicEngineers(IEEE)forpermissiontoreprintaportionofthematerialfromthefollowingpaper:

ZhaoW,WangL,ZhangZ.2019.Supply-demand-basedoptimization: Anoveleconomics-inspiredalgorithmforglobaloptimization,IEEE Access7:73182–73206. © [2019]IEEE.

AcknowledgmentisalsogiventoElsevierforpermissiontoreprintmaterial fromthefollowingpapers:

ZhaoW,WangL.2016.Aneffectivebacterialforagingoptimizerfor globaloptimization,InformationSciences329:719–735.

ZhaoW,WangL,ZhangZ.2019.Atomsearchoptimizationandits applicationtosolveahydrogeologicparameterestimationproblem, Knowledge-BasedSystems163:283–304.

Theauthorsaregratefulthatthecopyrightpermissionwasgrantedfromthe abovepublishers.

CHAPTER1 Introduction

1.1Optimizationalgorithms

Optimizationalgorithmsareincreasinglypopularinintelligentcomputing andarewidelyappliedtoalargenumberofreal-worldengineeringproblems.Theirpopularityderivesfromthefollowingaspects.First,allofthese optimizationtechniqueshavesomefundamentaltheoriesandmathematical modelsthathavebeenprovedtobereasonable,whichcomefromthereal worldandareinspiredbyalltypesofphysicalphenomenaorbiological behaviors(Kirkpatricketal.,1983; KennedyandEberhart,1995).Thetheoriesabouttheseoptimizationalgorithmsaresimpleandeasytounderstand. Second,theseoptimizationalgorithmscanbethoughtofasablackbox.This meansthatgivenasetofinputs,thesealgorithmscaneasilyprovideasetof outputsforanyoptimizationproblem.Theyareveryflexibleandversatile becauseonecanchangethestructuresandparametersofthealgorithmsto obtainbettersolutions.Third,metaheuristicalgorithmscaneffectivelyavoid localoptima,whichisveryvaluableforaddressingengineeringproblems whicharetypicallyconsideredasmultimodalfunctions.Inaddition,one candeveloptheirvariantsbyabsorbingthemeritsofotheralgorithmsto improvetheaccuracyofsolutionswithinareasonabletime.Fourth,the metaheuristicoptimizationalgorithmscantackledifferenttypesofproblems including,butnotlimitedto,single-objectiveandmultiobjectiveproblems, low-dimensionalandhigh-dimensionalproblems,unimodalandmultimodalproblems,anddiscreteandcontinuousproblems(Liuetal.,2017; Lietal.,2018; Duanetal.,2018; Zhaoetal.,2019).

1.2Ashortoutlineofoptimizationalgorithms

Sincethe1970s,manyoptimizationalgorithmshavebeendevelopedand appliedtodifferentoptimizationproblems.Thesealgorithms,whichmimic naturalorphysicalphenomena,haveprovidedeffectiveandrobusttechniquesforsolvingcomplexoptimizationproblemsinawidespectrumof disciplines.Manymetaheuristicalgorithmswithdifferentinspirationshave beenproposedandsuccessfullyusedinavarietyoffields,whichareroughly classifiedintofourcategories(Hareetal.,2013):evolution-inspired, (M € uhlenbeinetal.,1988; Gongetal.,2013,2014),physics-inspired (Geemetal.,2001),swarm-inspired(Krauseetal.,2013),andhumaninspired(Montieletal.,2007).

Evolution-inspiredalgorithmsareastochastic,population-based approach.Protectingapopulation’sdiversityisveryimportantforthesustainabledevelopmentofthealgorithmsiteratively.Manyevolution-inspired algorithmsmaintainapopulation’sdiversitybymimickingbasicgenetic rules,includingreproduction,mutation, selection,chemotaxis,elimination, andmigration(Passino,2002; Falcoetal.,2012).Thesealgorithmsrandomlyinitializeapopulationevolvedfromsubsequentiterationsandevaluatetheindividualqualityusingafitnessfunction.Geneticalgorithm(GA), originallypresentedby Holland(1975),isawell-knownclassicevolutionary algorithm(EA).AsGAcangenerallyobtainhigh-qualitysolutionsusing mutation,crossover,andselectionsteps,theoriginalversionanditsvariants arewidelyappliedtomanyreal-worldproblems(Gongetal.,2018).Since itsemergence,aseriesofschemesaimingtoenhanceGAhavebeendeveloped.WithincreasingpopularityofGA,anumberofotherevolution-based algorithmsintheliterature,includingevolutionarystrategies(ES)(Beyer andSchwefel,2002),differentialevolution(DE)(Roccaetal.,2011),evolutionaryprogramming(EP)( Justeetal.,1999),andmemeticalgorithms (MA)(Moscatoetal.,2007),havebeenproposed.Additionally,manytypes ofnewEAshavebeenproposedrecently,suchasbacterialforagingoptimization(BFO)(Passino,2002),batalgorithm(BA)(YangandHossein,2012), fruitflyoptimizationalgorithm(FOA)(Pan,2012),monkeykingevolutionary(MKE)(MengandPan,2016),artificialalgaealgorithm(AAA) (Uymazetal.,2015),biogeography-basedoptimization(BBO)(Simon, 2009),yin-yang-pairoptimization(YYPO)(PunnathanamandKotecha, 2016),invasiveweedoptimization(IWO)(MehrabianandLucas,2006), anddynamicvirtualbatsalgorithm(DVBA)(TopalandAltun,2016).

Physics-inspiredalgorithmssimulatephysicallawsintheuniverse, amongwhich,simulatedannealing(SA)(Kirkpatricketal.,1983)isone ofthemostwell-knownalgorithms.SAisinspiredfromtheannealingprocessusedinphysicalmaterialinwhichaheatedmetalcoolsandfreezesintoa crystaltexturewithaminimumamountofenergy.Recently,manynovel physics-inspiredalgorithmshavebeenproposed,suchasgravitationalsearch algorithm(GSA)(Rashedietal.,2009),electromagnetism-likemechanism (EM)algorithm(BirbilandFang,2003),particlecollisionalgorithm(PCA) (SaccoandDeOliveira,2015),vortexsearchalgorithm(VSA)(Doganand € Olmez,2015),waterevaporationoptimization(WEO)(KavehandBakhshpoori,2016),spacegravitationalalgorithm(SGA)(Hsiaoetal.,2005),big bang-bigcrunchalgorithm(BB-BC)(Genc ¸ etal.,2010),galaxybasedalgorithm(GBA)(Shah-Hosseini,2009),bigcrunchalgorithm(BCA)(Kripka andKripka,2008),integratedradiationalgorithm(IRA)(ChuangandJiang, 2007),waterdropsalgorithm(WDA)(Shah-Hosseini,2009),chargedsystemsearch(CSS)(KavehandTalatahari,2010),magneticoptimizationalgorithm(MOA)(MirjaliliandHashim,2012),gravitationfieldalgorithm (GFA)(Zhengetal.,2010),ionsmotionalgorithm(IMA)( Javidyetal., 2015),waterwaveoptimization(WWO)(Zheng,2015),gravitationalinteractionsoptimization(GIO)(Floresetal.,2011),teaching-learning-based optimization(TLBO)(Raoetal.,2012),hystereticoptimization(HO) (Zarandetal.,2002),thermalexchangeoptimization(TEO)(Kavehand Dadras,2017),lightrayoptimization(LRO)(ShenandLi,2009),heattransfersearch(HTS)(PatelandSavsani,2015),spiraloptimizationalgorithm (SOA)(TamuraandYasuda,2011),watercyclealgorithm(WCA) (Eskandaretal.,2012),andcurvedspaceoptimization(CSO) (Moghaddametal.,2012).

Swarm-inspiredalgorithmsmimicthecollectivebehaviorsofselforganizationandshape-formation,beitnaturalorartificial(BeniandWang, 1993).Therearetwoclassicswarm-inspiredalgorithms.Oneisparticle swarmoptimization(PSO)(KennedyandEberhart,1995),whichmimics bird-flockingbehaviors.InPSO,everyagentmovesaroundthesearchspace toimproveitssolution,andtheirpersonalbestpositionsandthegloballybest positionfoundsofararereserved,bywhichtheirpositionsareupdated locallyandsocially.Theotherisantcolonyoptimization(ACO)(Dorigo etal.,1996),whichfollowstheforagingprocessofanantcolony.Essentially, antscommunicatewitheachotherbypheromonetrailsthroughpathformations,whichassisttheminfindingtheshortestpathbetweenthenestand

foodsource.Therearemanynewlydevelopedswarm-inspiredalgorithms, suchasartificialbeecolony(ABC)(AkayandKaraboga,2012),salpswarm algorithm(SSA)(Mirjalilietal.,2017),krillherdalgorithm(KH)(Gandomi andAlavi,2012),tree-seedalgorithm(TSA)(Kiran,2015),socialspider optimization(SSO)(Cuevasetal.,2013),birdmatingoptimizer(BMO) (Askarzadeh,2014),cuckoosearch(CS)(YangandDeb,2019),grasshopper optimizationalgorithm(GOA)(Saremietal.,2017),sine-cosinealgorithm (SCA)(Mirjalili,2016),mothswarmalgorithm(MSA)(Mohamedetal., 2017),dolphinecholocation(DE)algorithm(KavehandFarhoudi,2013), huntingsearch(HS)algorithm(Oftadehetal.,2010),migratingbirdsoptimization(MBO)(Dumanetal.,2012),fireflyalgorithm(FA)(Yang,2010), monkeysearch(MS)algorithm(MucherinoandSeref,2007),andsquirrel searchalgorithm(SSA)( Jainetal.,2018).

Human-inspiredalgorithmsarearecentlydevelopedcategoryinintelligencecomputing.Theymathematicallystimulatesocialactivitiesandideologyinhumanstofindnear-optimalsolutions.Thesocietyandcivilization algorithm(SCA)(RayandLiew,2003)isatypicalrepresentativeof human-inspiredalgorithms.SCAimitatestheintraandsocialinteractions withinaformalsocietyandthecivilizationmodel.Asocietycorresponds toasetofmutuallyinteractingindividualsandacivilizationisasetofallsuch societies.Allindividualsineachsocietyinteractwitheachotherandmake improvementsundertheguidanceofaleaderbelongingtothesamesociety. Meanwhile,eachleaderinteractswithleadersofothersocietiestomigratetoa developedsociety.ThisleadermigrationmechanismhelpsSCAglobally searchpromisingregionsinthevariablespace.Additionally,SCAisadvantageousindealingwithconstrainedoptimizationproblemsowingtotheleader identificationmechanism.Someofotherhuman-inspiredalgorithmsinclude leaguechampionshipalgorithm(LCA)(Kashan,2009),socialgroupoptimization(SGO)(SatapathyandNaik,2016),socialemotionaloptimizationalgorithm(SOA)(Xuetal.,2010),socioevolutionandlearningoptimization algorithm(SELO)(Kumaretal.,2018),ideologyalgorithm(IA)(Huan etal.,2017),andculturalevolutionalgorithm(CEA)(KuoandLin,2013).

Comparedwithevolution-inspiredorphysics-inspiredalgorithms, swarm-inspiredalgorithmshavesomedistinctivecharacteristics.Onthe onehand,partorallofthehistoricalinformationaboutthepopulationneeds tobepreserved,becauseeveryagentdependsontheinformationtodetermine anewpositioninthesearchspaceoversubsequentiterations.However, evolution-inspiredalgorithmsrequiremoreoperators.Swarm-inspiredalgorithmsgenerallyupdatepositionsofthepopulationbyinteractionrulesas

standardformulas.Ontheotherhand,swarm-inspiredalgorithmsgenerally havetwobehaviors:explorationandexploitation(AlbaandDorronsoro, 2005; LynnandSuganthan,2015).Explorationmeanstheabilityofthealgorithmstosearchfornewsolutionsfarfromthecurrentsolutionintheentire searchspace.Exploitationmeanstheabilityofthealgorithmstosearchforthe bestsolutionnearanewsolutionthathasalreadybeenfound.Insuchalgorithms,therangeofeveryagentinthesearchspaceisscaledtoaconsensusin itsneighborhood,andagentsrandomlyexplorethewholesearchspace.Ifan agentoritsneighborsfindagoodregion,thisregionwillbeintensively exploited.Otherwise,theystillextensivelyexploreotherregions,thusindicatingtheirbetterself-adaptationinsearchingtheglobaloptima.Fromthese perspectives,swarm-inspiredalgorithmshavemanyadvantagesoverother algorithms.Manyevolution-inspiredorphysics-inspiredalgorithmshave swarm-inspiredcharacteristics,suchasPSO,ACO,CS,BFO,GSA,andso on.Thesealgorithmsnotonlyreflectthenatureofbiologicalphenomena orphysicallaws,butalsoshareacommoncharacteristicofexplorationand exploitation.Thus,theyaremorecompetitivethanthosewithoutswarminspiredcharacteristics.However,providingaproperbalancebetweenexplorationandexploitationwillleadtoanoptimalperformanceofthealgorithms, soitisoneofthemostimportanttasksinthedevelopmentofanystochastic optimizationalgorithm.

Withthedevelopmentofeconomy,society,andtechnology,agreat numberofcomplexandchallengingoptimizationproblemshaveaccordinglyarisenindifferentfields.Asanillustration,theemergenceofridesharingcompaniesthatoffertransportationondemandonalargescale, togetherwiththeincreasingavailabilityofcorrespondingdemanddatasets, developsanewcomplexoptimizationproblemofeffectivehandlingofthe routingnetwork(Bertsimasetal.,2018).Atpresent,trackingthegrowing interestinaclosed-loopsupplychainbybothpractitionersandacademiais easilypossible.Manyfactors,includingenvironmentallegislation,customer awareness,andtheeconomicalmotivationsoftheorganizations,cantransformclosed-loopsupplychainissuesintoauniqueandvitalsubjectinsupply chainmanagement.Designingandplanningaclosed-loopsupplychainis performedbyaneffectiveoptimizerinareasonabletime(Soleimaniand Kannan,2015).Solvingthelarge-scale,highlynonlinear,nonconvex,nonsmooth,nondifferential,noncontinuous,andcomplexcombinedheatand powereconomicdispatch(CHPED)problemsurgentlyrequiresoptimizationalgorithms(Beigvandetal.,2017).Anotherchallengingoptimization problemistheidentificationofpollutant sourcesforriverpollution

incidents,whicharecausedbyaccidentorillegalemissions(Zhangand Xin,2017).

Althoughanumberofoptimizationalgorithmshavebeenintroducedso far,newoptimizationalgorithmsarestillbeingdevelopedtotackleemerging complexoptimizationproblemstoobtainabetteroutcome.Furthermore, accordingtotheNoFreeLunchTheoremofOptimization(Wolpertand Macready,1997),thereisnooneoptimizationalgorithmperformingthe bestforalltypesofproblems.Thistheoremkeepsthisresearchfieldactive andencouragesrelevantscholarstodevelopnewalgorithmsforbetteroptimization.Basedontheabove,threemetaheuristicalgorithmswithswarm characteristicsincludingatomsearchoptimization,artificialecosystembasedoptimization,andsupply-demand-basedoptimization,havebeen developedandexaminedusingvarioustypesofbenchmarkfunctions,and thenengineeringapplicationshavedemonstratedtheirfeasibilityandeffectivenessintacklingreal-worldproblems(Zhaoetal.,2019).

1.3Organizationofthisbook

Thisbookisorganizedinthefollowingmanner: Thischapterintroducesthedefinitionofoptimization,thedevelopment processandthedetailedprocessestosolvetheproblem.

Chapter2 isorganizedasfollows. Section2.2 presentstheinspirationof anatomsearchoptimizationalgorithm; Section2.3 describesthenovel atomsearchoptimizationalgorithm; Section2.4 givesacomparative studyanddiscussiononthebenchmarkfunctions;andfinally, Section2.5 presentssomeconclusionsandsuggestssomefutureresearch directions.

Chapter3 isorganizedasfollows. Sections3.2and3.3 describetheapplicationofatomsearchoptimizationalgorithmforparameterestimation forachaoticsystemandthecircularantennaarraydesignproblems, whichdemonstratesitsavailabilityandeffectivenessinsolvingreal-world problems. Section3.4 presentsthespreadspectrumradarpolyphasecode designproblemwhichiscomparedwithitscounterparts.Theexperimentalresultssuggestthatatomsearchoptimizationiseffectiveandthat itisapromisingalternativetoPSO,GA,andBFOextensivelyusedin manyreal-worldproblems.

Chapter4 introducesanovelnature-inspiredmetaheuristicoptimization algorithm,namedartificialecosystem-basedoptimization. Section4.2

describesthealgorithmandtheconceptsbehinditindetail.Somemathematicaloptimizationproblemsareutilizedtotestthevalidityoftheproposedoptimizerformdifferentperspectivesin Section4.3. Section4.4 givesaconclusion.

Chapter5 investigatestheapplicationsofartificialecosystem-basedoptimizationtosomeengineeringdesigncasesandthestaticeconomicload dispatchproblemandhydrothermalschedulingproblem.

Chapter6 presentstheinspirationandsupply-demand-basedoptimizationindetail,andthentheexperimentalresultsonasetofmathematical benchmarkfunctionsareanalyzed.

Chapter7 demonstratestheeffectivenessofsupply-demand-basedoptimizationinsolvingfourengineeringproblems.Finallyweconcludethe workandsuggestseveraldirectionsforfutureresearch.

References

Akay,B.,Karaboga,D.,2012.Amodifiedartificialbeecolonyalgorithmforreal-parameter optimization.Inf.Sci.192,120–142.

Alba,E.,Dorronsoro,B.,2005.Theexploration/exploitationtradeoffindynamiccellular geneticalgorithms.IEEETrans.Evol.Comput.9(2),126–142.

Askarzadeh,A.,2014.Birdmatingoptimizer:anoptimizationalgorithminspiredbybird matingstrategies.Commun.NonlinearSci.Numer.Simul.19(4),1213–1228.

Beigvand,S.D.,Abdi,H.,LaScala,M.,2017.Hybridgravitationalsearchalgorithm-particle swarmoptimizationwithtimevaryingaccelerationcoefficientsforlargescaleCHPED problem.Energy126,841–853.

Beni,G.,Wang,J.,1993.Swarmintelligenceincellularroboticsystems.In:RobotsandBiologicalSystems:TowardsaNewBionics?Springer,Berlin,Heidelberg,pp.703–712.

Bertsimas,D.,Jaillet,P.,Martin,S.,etal.,2018.Onlinevehiclerouting:theedgeofoptimizationinlarge-scaleapplications.Oper.Res.,1–20.

Beyer,H.G.,Schwefel,H.P.,2002.Evolutionstrategies-acomprehensiveintroduction.Nat. Comput.1(1),3–52.

Birbil, Ş.I.,Fang,S.C.,2003.Anelectromagnetism-likemechanismforglobaloptimization. J.Glob.Optim.25(3),263–282.

Chuang,C.L.,Jiang,J.A.,2007.Integratedradiationoptimization:inspiredbythegravitationalradiationinthecurvatureofspace-time.In:EvolutionaryComputation,CEC 2007,IEEECongressonIEEE,pp.3157–3164.

Cuevas,E.,Cienfuegos,M.,Zaldı´var,D.,Perez-Cisneros,M.,etal.,2013.Aswarmoptimizationalgorithminspiredinthebehaviorofthesocial-spider.ExpertSyst.Appl. 40(16),6374–6384.

Dogan,B., € Olmez,T.,2015.Anewmetaheuristicfornumericalfunctionoptimization:vortexsearchalgorithm.Inf.Sci.293,125–145.

Dorigo,M.,Maniezzo,V.,Colorni,A.,etal.,1996.Antsystem:optimizationbyacolonyof cooperatingagents.IEEETrans.Syst.ManCybern.B26(1),29–41.

Duan,P.Y.,Li,J.Q.,Wang,Y.,etal.,2018.Solvingchillerloadingoptimizationproblems usinganimprovedteaching–learning-basedoptimizationalgorithm.Optim.Control Appl.Methods39(1),65–77.

Duman,E.,Uysal,M.,Alkaya,A.F.,etal.,2012.Migratingbirdsoptimization:anewmetaheuristicapproachitsperformanceonquadraticassignmentproblem.Inf.Sci.217, 65–77.

Eskandar,H.,Sadollah,A.,Bahreininejad,A.,etal.,2012.Watercyclealgorithm-anovel metaheuristicoptimizationmethodforsolvingconstrainedengineeringoptimization problems.Comput.Struct.110,151–166.

Falco,I.,DellaCioppa,A.,Maisto,D.,etal.,2012.Biologicalinvasion-inspiredmigrationin distributedevolutionaryalgorithms.Inf.Sci.207,50–65.

Flores,J.J.,Lo ´ pez,R.,Barrera,J.,etal.,2011.Gravitationalinteractionsoptimization.In: InternationalConferenceonLearningandIntelligentOptimization.Springer,Berlin, Heidelberg,pp.226–237.

Gandomi,A.H.,Alavi,A.H.,2012.Krillherd:anewbio-inspiredoptimizationalgorithm. Commun.NonlinearSci.Numer.Simul.17(12),4831–4845.

Geem,Z.W.,Kim,J.,Loganathan,G.V.,etal.,2001.Anewheuristicoptimizationalgorithm:harmonysearch.Trans.Simul.76(2),60–68.

Genc ¸,H.M.,Eksin,I.,Erol,O.K.,etal.,2010.Bigbang-bigcrunchoptimizationalgorithm hybridizedwithlocaldirectionalmovesandapplicationtotargetmotionanalysisproblem.In:SystemsManandCybernetics(SMC),2010IEEEInternationalConferenceon. IEEE,pp.881–887.

Gong,D.,Sun,J.,Ji,X.,etal.,2013.Evolutionaryalgorithmswithpreferencepolyhedron forintervalmulti-objectiveoptimizationproblems.Inf.Sci.233,141–161.

Gong,D.,Ji,X.,Sun,J.,Sun,X.,etal.,2014.Interactiveevolutionaryalgorithmswith decision-maker’spreferencesforsolvingintervalmulti-objectiveoptimizationproblems. Neurocomputing137,241–251.

Gong,D.,Sun,J.,Miao,Z.,etal.,2018.Aset-basedgeneticalgorithmforintervalmanyobjectiveoptimizationproblems.IEEETrans.Evol.Comput.22(1),47–60.

Hare,W.,Nutini,J.,Tesfamariam,S.,etal.,2013.Asurveyofnon-gradientoptimization methodsinstructuralengineering.Adv.Eng.Softw.59,19–28.

Holland,J.H.,1975.AdaptationinNaturalandArtificialSystems.UniversityofMichigan Press,AnnArbor,MI.

Hsiao,Y.T.,Chuang,C.L.,Jiang,J.A.,etal.,2005.Anoveloptimizationalgorithm:space gravitationaloptimization,systems,manandcybernetics.In:2005IEEEInternational Conferenceon.IEEE.vol.3,pp.2323–2328.

Huan,T.T.,Kulkarni,A.J.,Kanesan,J.,etal.,2017.Ideologyalgorithm:asocio-inspired optimizationmethodology.NeuralComput.&Applic.28(1),845–876.

Jain,M.,Singh,V.,Rani,A.,etal.,2018.Anovelnature-inspiredalgorithmforoptimization:squirrelsearchalgorithm.SwarmEvol.Comput. https://doi.org/10.1016/j.swevo. 2018.02.013

Javidy,B.,Hatamlou,A.,Mirjalili,S.,etal.,2015.Ionsmotionalgorithmforsolvingoptimizationproblems.Appl.SoftComput.32,72–79.

Juste,K.A.,Kita,H.,Tanaka,E.,etal.,1999.Anevolutionaryprogrammingsolutiontothe unitcommitmentproblem.IEEETrans.PowerSyst.14(4),1452–1459.

Kashan,A.H.,2009.Leaguechampionshipalgorithm:anewalgorithmfornumericalfunctionoptimization.In:2009InternationalConferenceofSoftComputingandPattern Recognition.IEEE2009,pp.43–48.

Kaveh,A.,Bakhshpoori,T.,2016.Waterevaporationoptimization:anovelphysically inspiredoptimizationalgorithm.Comput.Struct.167,69–85.

Kaveh,A.,Dadras,A.,2017.Anovelmeta-heuristicoptimizationalgorithm:thermal exchangeoptimization.Adv.Eng.Softw.110,69–84.

Kaveh,A.,Farhoudi,N.,2013.Anewoptimizationmethod:dolphinecholocation.Adv. Eng.Softw.59,53–70.

Kaveh,A.,Talatahari,S.,2010.Anovelheuristicoptimizationmethod:chargedsystem search.ActaMech.213(3),267–289.

Kennedy,J.,Eberhart,R.,1995.Particleswarmoptimization.In:Proceedingsofthe1995 IEEEInternationalConferenceonNeuralNetworks,pp.1942–1948.

Kiran,M.S.,2015.TSA:tree-seedalgorithmforcontinuousoptimization.ExpertSyst.Appl. 42(19),6686–6698.

Kirkpatrick,S.,Gelatt,C.D.,Vecchi,M.P.,etal.,1983.Optimizationbysimulatedannealing.Science220(4598),671–680.

Krause,J.,Cordeiro,J.,Parpinelli,R.S.,etal.,2013.Asurveyofswarmalgorithmsappliedto discreteoptimizationproblems.In:SwarmIntelligenceandBio-inspiredComputation: TheoryandApplications.ElsevierSci.Technol.Books,pp.169–191.

Kripka,M.,Kripka,R.M.L.,2008.Bigcrunchoptimizationmethod.In:InternationalConferenceonEngineeringOptimization,Brazil,pp.1–5.

Kumar,M.,Kulkarni,A.J.,Satapathy,S.C.,2018.Socioevolution&learningoptimization algorithm:asocio-inspiredoptimizationmethodology.Futur.Gener.Comput.Syst.81, 252–272.

Kuo,H.C.,Lin,C.H.,2013.Culturalevolutionalgorithmforglobaloptimizationsandits applications.J.Appl.Res.Technol.11(4),510–522.

Li,J.Q.,Sang,H.Y.,Han,Y.Y.,etal.,2018.Efficientmulti-objectiveoptimizationalgorithmforhybridflowshopschedulingproblemswithsetupenergyconsumptions. J.Clean.Prod.181,584–598.

Liu,Y.,Gong,D.,Sun,J.,Jin,Y.,etal.,2017.Amany-objectiveevolutionaryalgorithm usingaone-by-oneselectionstrategy.IEEETrans.Cybern.47(9),2689–2702. Lynn,N.,Suganthan,P.N.,2015.Heterogeneouscomprehensivelearningparticleswarm optimizationwithenhancedexplorationandexploitation.SwarmEvol.Comput.24, 11–24.

Mehrabian,A.R.,Lucas,C.,2006.Anovelnumericaloptimizationalgorithminspiredfrom weedcolonization.Ecol.Inf.1(4),355–366.

Meng,Z.,Pan,J.S.,2016.Monkeykingevolution:anewmemeticevolutionaryalgorithm anditsapplicationinvehiclefuelconsumptionoptimization.Knowl.-BasedSyst.97, 144–157.

Mirjalili,S.,2016.SCA:asinecosinealgorithmforsolvingoptimizationproblems.Knowl.BasedSyst.96,120–133.

Mirjalili,S.A.,Hashim,S.Z.M.,2012.BMOA:binarymagneticoptimizationalgorithm.Int. J.Mach.Learn.Comput.2(3),204.

Mirjalili,S.,Gandomi,A.H.,Mirjalili,S.Z.,Saremi,S.,Faris,H.,Mirjalili,S.M.,2017.Salp swarmalgorithm:abio-inspiredoptimizerforengineeringdesignproblems.Adv.Eng. Softw.114,163–191.

Moghaddam,F.F.,Moghaddam,R.F.,Cheriet,M.,etal.,2012.Curvedspaceoptimization: arandomsearchbasedongeneralrelativitytheory.arXiv,1208–2214.preprintarXiv. Mohamed,A.A.A.,Mohamed,Y.S.,El-Gaafary,A.A.M.,Hemeida,A.M.,etal.,2017. Optimalpowerflowusingmothswarmalgorithm.Electr.PowerSyst.Res.142, 190–206.

Montiel,O.,Castillo,O.,Melin,P.,Rodrı´guez-Dı´az,A.,Sepu ´ lveda,R.,2007.Humanevolutionarymodel:anewapproachtooptimization.Inf.Sci.177,2075–2098.

Moscato,P.,Mendes,A.,Berretta,R.,etal.,2007.Benchmarkingamemeticalgorithmfor orderingmicroarraydata.Biosystems88(1),56–75.

Mucherino,A.,Seref,O.,2007.Monkeysearch:anovelmetaheuristicsearchforglobaloptimization.AIPConf.Proc.953(1),162–173.

M € uhlenbein,H.,Gorges-Schleuter,M.,Kr€amer,O.,etal.,1988.Evolutionalgorithmsin combinatorialoptimization.ParallelComput.7(1),65–85.

Oftadeh,R.,Mahjoob,M.J.,Shariatpanahi,M.,etal.,2010.Anovelmeta-heuristicoptimizationalgorithminspiredbygrouphuntingofanimals:huntingsearch.Comput.Math. Appl.60(7),2087–2098.

Pan,W.T.,2012.Anewfruitflyoptimizationalgorithm:takingthefinancialdistressmodelas anexample.Knowl.-BasedSyst.26,69–74.

Passino,K.M.,2002.Biomimicryofbacterialforagingfordistributedoptimizationandcontrol.IEEEControl.Syst.22(3),52–67.

Patel,V.K.,Savsani,V.J.,2015.Heattransfersearch(HTS):anoveloptimizationalgorithm. Inf.Sci.324,217–246.

Punnathanam,V.,Kotecha,P.,2016.Yin-Yang-pairoptimization:anovellightweightoptimizationalgorithm.Eng.Appl.Artif.Intell.54,62–79.

Rao,R.V.,Savsani,V.J.,Vakharia,D.P.,etal.,2012.Teaching–learning-basedoptimization:anoptimizationmethodforcontinuousnon-linearlargescaleproblems.Inf.Sci. 183(1),1–15.

Rashedi,E.,Nezamabadi-Pour,H.,Saryazdi,S.,etal.,2009.GSA:agravitationalsearch algorithm.Inf.Sci.179(13),2232–2248.

Ray,T.,Liew,K.M.,2003.Societyandcivilization:anoptimizationalgorithmbasedonthe simulationofsocialbehavior.IEEETrans.Evol.Comput.7(4),386–396.

Rocca,P.,Oliveri,G.,Massa,A.,etal.,2011.Differentialevolutionasappliedtoelectromagnetics.IEEEAntennasPropag.Mag.53(1),38–49.

Sacco,W.F.,DeOliveira,C.R.E.,2015.Anewstochasticoptimizationalgorithmbasedona particlecollisionmetaheuristic.In:Proceedingsof6thWCSMO,Brazil,pp.1–6.

Saremi,S.,Mirjalili,S.,Lewis,A.,etal.,2017.Grasshopperoptimizationalgorithm:theory andapplication.Adv.Eng.Softw.105,30–47.

Satapathy,S.,Naik,A.,2016.Socialgroupoptimization(SGO):anewpopulationevolutionaryoptimizationtechnique.ComplexIntell.Syst.2(3),173–203.

Shah-Hosseini,H.,2009.Theintelligentwaterdropsalgorithm:anature-inspiredswarmbasedoptimizationalgorithm.Int.J.Bio-Inspir.Comput.1(1–2),71–79.

Shen,J.,Li,Y.,2009.Lightrayoptimizationanditsparameteranalysis.In:Computational SciencesandOptimization,CSO2009,InternationalJointConferenceonIEEE, pp.918–922.

Simon,D.,2009.Biogeography-basedoptimization.IEEETrans.Evol.Comput.12(6), 702–713.

Soleimani,H.,Kannan,G.,2015.Ahybridparticleswarmoptimizationandgeneticalgorithmforclosed-loopsupplychainnetworkdesigninlarge-scalenetworks.Appl.Math. Model.39(14),3990–4012.

Tamura,K.,Yasuda,K.,2011.Primarystudyofspiraldynamicsinspiredoptimization.IEEE Trans.Electr.Electron.Eng.6(S1),S98–S100.

Topal,A.O.,Altun,O.,2016.Anovelmeta-heuristicalgorithm:dynamicvirtualbatsalgorithm.Inf.Sci.354,222–235.

Uymaz,S.A.,Tezel,G.,Yel,E.,etal.,2015.Artificialalgaealgorithm(AAA)fornonlinear globaloptimization.Appl.SoftComput.31,153–171.

Wolpert,D.H.,Macready,W.G.,1997.Nofreelunchtheoremsforoptimization.IEEE Trans.Evol.Comput.1(1),67–82.

Xu,Y.,Cui,Z.,Zeng,J.,2010.Socialemotionaloptimizationalgorithmfornonlinearconstrainedoptimizationproblems.In:InternationalConferenceonSwarm,Evolutionary, andMemeticComputing.Springer,Berlin,Heidelberg,pp.583–590.

Yang,X.S.,2010.Fireflyalgorithm,stochastictestfunctionsanddesignoptimization.Int. J.Bio-Inspir.Comput.2(2),78–84.

Yang,X.S.,Deb,S.,2019.CuckoosearchviaLevyflights,nature&biologicallyinspired computing.In:NaBIC2009,WorldCongressonIEEE,pp.210–214.

Yang,X.S.,Hossein,G.A.,2012.Batalgorithm:anovelapproachforglobalengineering optimization.Eng.Comput.29(5),464–483.

Zarand,G.,Pazmandi,F.,Pa ´ l,K.F.,etal.,2002.Usinghysteresisforoptimization.Phys. Rev.Lett.89(15),150–201.

Zhang,S.P.,Xin,X.K.,2017.Pollutantsourceidentificationmodelforwaterpollutionincidentsinsmallstraightriversbasedongeneticalgorithm.Appl.WaterSci.7(4), 1955–1963.

Zhao,W.,Wang,L.,Zhang,Z.,2019.Atomsearchoptimizationanditsapplicationtosolve ahydrogeologicparameterestimationproblem.Knowl.-BasedSyst.163,283–304. Zheng,Y.J.,2015.Waterwaveoptimization:anewnature-inspiredmetaheuristic.Comput. Oper.Res.55,1–11.

Zheng,M.,Liu,G.,Zhou,C.,etal.,2010.Gravitationfieldalgorithmanditsapplicationin genecluster.AlgorithmsMol.Biol.5(1),32.

CHAPTER2

Atomsearchoptimization algorithm

2.1Introduction

Naturecontainsboundlesssecretsthatarerichandfantastic.Itbringsagreat dealofinspirationtopeoplewhocangreatlycontributetosocialdevelopment.Intelligentalgorithms(IA),dealingwithdifficultproblemsinscience andengineering,isanimportantbranchinspiredfromnature.Sincethe 1970s,avarietyofnature-inspiredoptimizationalgorithmshavebeenput forwardandappliedtomanyreal-worldproblems(Zhangetal.,2008; Poli etal.,2010; Ayman,2011; KourakosandMantoglou,2013; Zhaoand Wang,2016),allofwhichconsistoftwobasiccharacteristics.

First,thealgorithmsmimicevolvingpropertiesandthelivinghabitof biologicalsystems.Therearethreecommonalgorithms.Thegeneticalgorithm(GA)(Holland,1975)isawell-knownclassicoptimizationalgorithm whichcangenerallyobtainhigh-qualitysolutionsusingmutation,crossover,

andselectionsteps,anditisagoodglobaloptimizationapproach.Particle swarmoptimization(PSO)(KennedyandEberhart,1995)mimicsthesocial behaviorsofaflockofbirds.InPSO,everyagentmovesaroundthesearch spacetoimproveitssolution,andtheirpersonalbestpositionsandthegloballybestpositionfoundsofararereservedbywhichtheirpositionsare updatedlocallyandsocially.Antcolonyoptimization(ACO)(Dorigo etal.,1996),anotherwell-knownoptimizationmethod,simulatestheforagingbehaviorsofrealantcolonies.Essentially,antscommunicatewitheach otherbypheromonetrailsthroughpathformation,whichassiststhemto findtheshortestpath,signifyinganear-optimumsolution.Withtheir increasingpopularity(Laietal.,2016; ShahabinejadandSohrabpour, 2017; ThilakandAmuthan,2018),quiteanumberofothersimilaralgorithmshavebeendeveloped,includingevolutionarystrategies(ES)(Beyer andSchwefel,2002),differentialevolution(DE)(Roccaetal.,2011),evolutionaryprogramming(EP)( Justeetal.,1999),memeticalgorithm(MA) (Moscatoetal.,2007),bacterialforagingoptimization(BFO)(Passino, 2002),biogeography-basedoptimization(BBO)(Simon,2009),cuckoo search(CS)algorithm(YangandDeb,2009),artificialbeecolony(ABC) (KarabogaandAkay,2007),andfruitflyoptimizationalgorithm(FOA) (Pan,2012).Itisworthmentioningherethatotherheuristicapproaches inspiredfromsocio-behaviorsalsohavethischaracteristic,theyinclude thesocietyandcivilizationalgorithm(SCA)(RayandLiew,2003),league championshipalgorithm(LCA)(Kashan,2009),social-emotionaloptimizationalgorithm(SOA)(Xuetal.,2010),teaching-learning-basedoptimization(TLBO)(Raoetal.,2012),culturalevolutionalgorithm(CEA)(Kuo andLin,2013),soccerleaguecompetitionalgorithm(SLCA)(Moosavian andRoodsari,2014),socialgroupoptimization(SGO)(SatapathyandNaik, 2016),ideologyalgorithm(IA)(Huanetal.,2017),andsocio-evolutionand learningoptimization(SELO)algorithm(Kumaretal.,2018).

Thesecondbasiccharacteristicofnature-inspiredalgorithmsisthatsome ofthemareenlightenedfromphysicallawsofdifferentsubstances,among which,simulatedannealing(SA)(Kirkpatricketal.,1983)isoneofthemost well-knownalgorithms.Thiswasinspiredbytheannealingprocessusedin physicalmaterialsinwhichaheatedmetalcoolsandfreezesintoacrystal texturewithaminimumofenergy.AlongwithDE,therearemanyother similaralgorithmsdevelopedandsuccessfullyperformedincluding electromagnetism-likemechanism(EM)(BirbilandFang,2003)basedon theattraction-repulsionmechanismofelectromagnetism,centralforceoptimization(CFO)(Formato,2007)andgravitationalsearchalgorithm(GSA)

(Rashedietal.,2009)bothinspiredbyNewton’sgravitationallaw,hystereticoptimization(HO)(Pa ´ l,2006)inspiredfromdemagnetizationprocess, bigbang-bigcrunch(BB-BC)(ErolandEksin,2006)inspiredfromthe hypothesisofcreationanddestructionprocessesoftheuniverse,andwind drivenoptimization(WDO)(Bayraktaretal.,2013)basedontheearth’s atmosphericmotion.Despitetheemergenceofmanynewoptimization approaches,thereisnosingleapproachwhichcanperformthebestforall typesofproblems(WolpertandMacready,1997).

2.2Basicmoleculardynamics

Atomsearchoptimization(ASO)(Zhaoetal.,2019)isinspiredbybasic moleculardynamics.Fromthemicroperspective,adefinitionof “matter”basedonitsphysicalandchemicalstructureis:matterismade upofmolecules(Barker,1870).Amoleculeisthesmallestunitofachemical compound,anditexhibitsthesamechemicalpropertiesasthoseofthatspecificcompound.Amoleculeiscomposedofatomsheldtogetherbycovalent bondsthatvarygreatlyintermsofcomplexityandsize.Henceallsubstances aremadeofatomsandallatomshavemassandvolume(Kenkeletal.,2000; WalkerandKing,2005). Fig.2.1 showsthecompositionofwatermolecules,eachofwhichismadeupoftwohydrogenatomsandoneoxygen atom,jointlyheldbytwocovalentbonds.Inanatomicsystem,alltheatoms interactwitheachotherandareinconstantmotion,whetherinthestate(s) ofgas,liquid,orsolid.Theyareverycomplexintermsoftheirstructureand microscopicinteractions.Becauseanatomicsystemistypicallycomposedof

Fig.2.1 Watermoleculesandtheircomposition.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.