New and future developments in microbial biotechnology and bioengineering ali asghar rastegari - Dis

Page 1


https://ebookmass.com/product/new-and-future-developments-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

New and Future Developments in Microbial Biotechnology and Bioengineering: Crop Improvement through Microbial Biotechnology 1st Edition Ram Prasad

https://ebookmass.com/product/new-and-future-developments-inmicrobial-biotechnology-and-bioengineering-crop-improvement-throughmicrobial-biotechnology-1st-edition-ram-prasad/ ebookmass.com

New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications Vijai G. Gupta (Editor)

https://ebookmass.com/product/new-and-future-developments-inmicrobial-biotechnology-and-bioengineering-microbial-secondarymetabolites-biochemistry-and-applications-vijai-g-gupta-editor/ ebookmass.com

New and Future Developments in Microbial Biotechnology and Bioengineering: Phytomicrobiome for Sustainable Agriculture Jay Prakash Verma

https://ebookmass.com/product/new-and-future-developments-inmicrobial-biotechnology-and-bioengineering-phytomicrobiome-forsustainable-agriculture-jay-prakash-verma/ ebookmass.com

Patterning and Cell Type Specification in the Developing CNS and PNS: Comprehensive Developmental Neuroscience 2nd Edition John Rubenstein (Editor)

https://ebookmass.com/product/patterning-and-cell-type-specificationin-the-developing-cns-and-pns-comprehensive-developmentalneuroscience-2nd-edition-john-rubenstein-editor/ ebookmass.com

https://ebookmass.com/product/joined-in-spirit-cre-witch-chroniclessarah-hegger/

ebookmass.com

Core Java vol 1 & 2 for the impatient and effective PACK 12th ed Cay S Horstmann

https://ebookmass.com/product/core-java-vol-1-2-for-the-impatient-andeffective-pack-12th-ed-cay-s-horstmann/

ebookmass.com

Gene Cloning and DNA Analysis 8th Edition T. A. Brown

https://ebookmass.com/product/gene-cloning-and-dna-analysis-8thedition-t-a-brown/

ebookmass.com

Gradient Acceptability and Linguistic Theory Elaine J. Francis

https://ebookmass.com/product/gradient-acceptability-and-linguistictheory-elaine-j-francis/

ebookmass.com

China and the True Jesus: Charisma and Organization in a Chinese Christian Church Melissa Wei-Tsing Inouye

https://ebookmass.com/product/china-and-the-true-jesus-charisma-andorganization-in-a-chinese-christian-church-melissa-wei-tsing-inouye/

ebookmass.com

Cuba, From Fidel to Raúl and Beyond 1st ed.

https://ebookmass.com/product/cuba-from-fidel-to-raul-and-beyond-1sted-edition-vegard-bye/

ebookmass.com

NewandFutureDevelopmentsinMicrobial BiotechnologyandBioengineering

TrendsofMicrobialBiotechnologyforSustainableAgricultureandBiomedicine Systems:DiversityandFunctionalPerspectives

NewandFuture DevelopmentsinMicrobial Biotechnologyand

Bioengineering

TrendsofMicrobialBiotechnologyfor SustainableAgricultureandBiomedicine Systems:DiversityandFunctionalPerspectives

AliAsgharRastegari

DepartmentofMolecularandCellBiochemistry, FalavarjanBranch,IslamicAzadUniversity,Isfahan, IslamicRepublicofIran

AjarNathYadav DepartmentofBiotechnology, AkalCollegeofAgriculture, EternalUniversity, BaruSahib,HimachalPradesh,India

NeelamYadav

VeerBahadurSinghPurvanchalUniversity, Ghazipur,UttarPradesh,India

Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates ©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopying, recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission, furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changesin researchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods, compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/ordamage topersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-820526-6

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: KostasKIMarinakis

EditorialProjectManager: AleksandraPackowska

ProductionProjectManager: BharatwajVaratharajan

CoverDesigner: GregHarris

TypesetbySPiGlobal,India

Contributorsxi

1.Tinymicrobes,bigyields: Microorganismsforenhancing foodcropproductionfor sustainabledevelopment 1

ArchanaSingh,RekhaKumari,AjarNathYadav, ShashankMishra,AshishSachan,and ShashwatiGhoshSachan 1.1Introduction

1.4.1Disease-suppressivesoils8

1.4.2Developmentofdisease suppressiveness8

1.4.3Beneficialrhizospheremicrobes: Modulationofthehostimmune system8 1.5Technicalchallengesandemerging

2.Thecontributionofmicrobial biotechnologytosustainable developmentinagricultureand alliedsectors

P.T.Pratheesh,SunainaLal,RandoTuvikene, SivakumarManickam,andSuryaSudheer

2.4Roleofmicroorganismsinimproving cropproduction 19

2.4.1Biofertilizers20

2.4.2Biopesticides22

2.4.3Bioherbicides23

2.4.4Bioinsecticides23

2.4.5Geneticallymodifiedplantsfor sustainableagriculture24

3.Microbialtechnologiesto enhancecropproductionfor futureneeds

LilianaAguilar-Marcelino, LaithKhalilTawfeeqAl-Ani, GloriaSarahiCastaneda-Ramirez, VirginiaGarcia-Rubio,and JuanJoseOjeda-Carrasco

3.1Introduction

3.2Organicagriculture

3.3Agroecology 30

3.4Microbialconsortia 31

3.4.1Bacteria32

3.4.2Microalgaeandcyanobacteria32

3.4.3Protozoa32

3.4.4Yeast33

3.4.5Filamentousfungi34

3.4.6Ediblemushrooms34

3.5Biofertilizers

3.6Biostimulantsofnaturalorigin 35

3.7Useofagro-industrialwaste 36

3.7.1Agro-industrialwastesas substratesforthegenerationof bioenergies38

3.8Agricultureandclimate change 39

3.9Conclusionandfuture

4.Roleandpotentialapplications ofplantgrowth-promoting rhizobacteriaforsustainable agriculture

PankajK.Rai,ManaliSingh,KumarAnand, SatyajitSaurabh,TanvirKaur,DivjotKour, AjarNathYadav,andManishKumar

4.1Introduction

4.2Plantgrowth-promotingrhizobacterial communities

4.3Microbe-mediatedalleviationofabiotic stressinplants 50

4.3.1Nutrientavailabilityforplant uptake53

4.3.2PGPRproducingplantgrowth regulators53

4.3.3Productionofphytohormones54

4.3.4IronchelationbyPGPR54

4.3.5PGPRproducingVOCs(volatile organiccompounds)54

4.3.6PGPRproducingenzymes54

4.4Formsofplantgrowth-promoting rhizobacteria

4.5PGPRasbiofertilizers

4.6PGPRasbiopesticides

4.7Conclusionandfutureprospects

5.Mechanisticunderstandingofthe

MuraliMohanSharaff,Gangavarapu Subrahmanyam,AmitKumar,and AjarNathYadav

5.1Introduction

5.2Rootmicrobiome

5.3Roleofrootmicrobiomeinteractionsin alleviatinginorganicpollutants 63

5.3.1PGPBstrategiestoremediate metaltoxicity67

5.3.2Microbes-assisted phytoremediationstrategy72

5.3.3Microbialbiosorptionand oxidativestressenzymes73

5.3.4Rhizobium-legumeasamodel73

5.4Roleofrootmicrobiomeinteractionsin alleviatingorganicpollutants

5.5Conclusionsandfutureprospects

6.Plantroot-microberelationship forshapingrootmicrobiome modificationinbenefit agriculture 85

SurendraSarsaiya,ArchanaJain, JingshanShi,andJishuangChen

6.1Introduction 85

6.2Plantrootecologyandmicrobial interactions 86

6.2.1Rootcolonization87

6.2.2Hostreactiontowardorganisms andsoilnetwork88

6.2.3Chemistryandmechanismsof action88

6.2.4Rootreactionstobacterialmajority detectingquorumsignals89

6.2.5Plantrootmicrobialvarietyfor sustainableagriculture89

6.3Plantandsoil-deriveddeterminants affectingmicrobialrootcommunities 91

6.4Researchadvancementonplant root-microberelationships 91

7.Biodiversity,phylogeneticprofiling, andmechanismsofcolonizationof seedmicrobiomes 99

KusamLataRana,DivjotKour, TanvirKaur,RubeeDevi,NeelamYadav, AliAsgharRastegari,andAjarNathYadav

7.1Introduction 99

7.2Isolationandcharacterizationofseed endophyticmicrobes 100

7.2.1Isolationandenumerationofseed endophyticmicrobes100

7.2.2Molecularcharacterizationof seedmicrobiomes101

7.2.3Diversityanddistributionofseed microbiomes101

7.3Endophyticlifestyle:Mechanismsof interactionwithplants 112

7.3.1Relationshipofflower microbiomeswithseed microbiomes113

7.3.2Interactionsbetweenmicrobes androotzone114

7.3.3Interactionsbetweenmicrobes andendosphere114

7.3.4Interactionsbetweenmicrobes andsoil115

7.3.5Microbialcolonization116

7.4Thegenomesofendophyticmicrobiomes 117

7.5Conclusionandfutureprospects 117 Acknowledgments 117 References 117

8.Biotechnologicalapplicationsof seedmicrobiomesforsustainable agricultureandenvironment 127

KusamLataRana,DivjotKour,TanvirKaur, RubeeDevi,NeelamYadav,Gangavarapu Subrahmanyam,AmitKumar,and AjarNathYadav

8.1Introduction 127

8.2Functionalattributesofseed microbiomes 128

8.3Biotechnologicalapplications 129

8.3.1Agriculturalapplications129

8.3.2Bioremediation136

8.4Conclusionsandfutureprospect 137 Acknowledgments

9.Microbialbiofilms:Beneficial applicationsforsustainable agriculture

MozhganGhiasian

9.1Introduction

9.2Plantsurfaces:Complexanddynamic environments

9.3Biofilmsintherhizosphere 146

9.4Biofilmsonseedsandsprouts 147

9.5Biofilmsinepiphyticplantcolonization 147

9.6Agriculturallyimportantmicroorganisms 147

9.7Agriculturallyimportantmicrobial biofilms 148

9.7.1Importanceofbiofilmformationin plantgrowthpromotion148

9.7.2Importanceofbiofilmformationin biocontrol149

9.7.3Importanceofbiofilmas biofertilizers149

9.7.4Importanceofbiofilmformation inbioremediation151

9.7.5Importanceofbiofilmformation innutrientmobilization151

9.8Conclusionandfutureprospect 151 References 152

10.Phytasesfrommicrobesin phosphorusacquisitionforplant growthpromotionandsoilhealth 157

DivjotKour,TanvirKaur,NeelamYadav, AliAsgharRastegari,BijenderSingh, VinodKumar,andAjarNathYadav

10.1Introduction 157

10.2Biodiversityofphytases-producing microbes 158

10.3Microbialphytases 160

10.3.1Productionofphytases160

10.3.2Factorsaffectingphytase production160

10.3.3Purificationofphytases161

10.3.4Propertiesofphytases161

10.3.5Regulationofphytaseformation164

10.4Biotechnologicalapplications 165

10.4.1Phosphorusacquisitionand plantgrowthpromotion165

10.4.2Fishfeed165

10.4.3Poultrynutrition166

10.4.4Pigdiet166

10.4.5Foodindustry166

10.4.6Humannutrition166

10.5Molecularbiology 167

10.5.1Geneexpression167

10.5.2Transgenicswithbacterialand fungalphytases168

10.6Conclusionsandfutureprospects 168 References 169 Furtherreading 176

11.Potassiumsolubilizingand mobilizingmicrobes:Biodiversity, mechanismsofsolubilization,and biotechnologicalimplicationfor alleviationsofabioticstress 177

DivjotKour,KusamLataRana,TanvirKaur, NeelamYadav,SumanKumarHalder, AjarNathYadav,ShashwatiGhoshSachan,and AnilKumarSaxena

11.1Introduction 177

11.2Dynamicsandfunctionsofpotassium 178 11.3Biodiversityandabundanceof K-solubilizingmicrobes 179

11.4MechanismsofK-solubilizationand mobilization 180

11.5Plantgrowthpromotingattributesof K-solubilizers 180

11.5.1K-solubilizersasplantgrowth promoters186

11.5.2OtherPGPattributesof K-solubilizingmicrobes186

11.6Biotechnologicalimplicationfor alleviationsofabioticstress 193

11.6.1Coldstresstoleranceand mitigation193

11.6.2Saltstresstoleranceand mitigation193

11.6.3Waterstresstoleranceand mitigation194

11.7RoleofKSMSasbiofertilizers 194

11.8RoleofKSMSinsoilfertility andhealth 194

11.9Conclusionandfuturescope 195 Acknowledgments 195

References 195

12.Scientifichealthassessmentsin agricultureecosystems—Towards acommonresearchframework forplantsandhuman 203

GanapathyAshok,ChandranViswanathan, GuruvuNambirajan,andKrishnanBaskaran

12.1Introduction 203

12.2Ecosystemhealthandcriteriafor indicatorselection 203

12.3Ecosystemhealthassessment methods 204

12.3.1Holisticapproach204

12.3.2Networkanalysis205

12.3.3Multimetricapproach205

12.3.4Predictivemodelapproach205

12.4Methodsforhuman-coupled ecosystems 206

12.4.1Analyticalhierarchyprocess (AHP)model206

12.4.2Mathematicalmodels206

12.4.3Artificialneuralnetworks206

12.4.4Geneticalgorithms207

12.5Theagroecosystem 207

12.5.1Energyflow208

12.5.2Nutrientcycling208

12.5.3Populationregulating mechanisms208

12.5.4Dynamicequilibrium208

12.5.5Land209

12.5.6Water209

12.5.7Soil209

12.6Agroecosysteminhumanhealth 209

12.7Conclusionandfutureprospects 210 Acknowledgments

13.Cyanobacteria:Aperspective paradigmforagricultureand environment 215

SandeepK.Malyan,SwatiSingh, ArchanaBachheti,MadhviChahar, MitaliKumariSah,Narender,AmitKumar, AjarNathYadav,andSmitaS.Kumar

13.1Introduction 215

13.2Cyanobacteriaandtheirrolein agriculture 215

13.3Roleofcyanobacteriain bioremediation 217

13.4Roleofcyanobacteriainglobal warming 218

13.4.1Atmosphericcarbondioxide sequestrationbycyanobacteria218

13.4.2Methaneemissionsmitigation frompaddysoilsthrough cyanobacteria219

13.5Biofuelproduction 219

13.6Utilizationofcyanobacteriaasfood supplements 220

13.7Conclusionandfutureprospects 220 References 221 Furtherreading 224

14.Theroleofmicrobialsignalsin plantgrowthanddevelopment: Currentstatusandfuture prospects 225

LaithKhalilTawfeeqAl-Ani, TheophileFranzino,LilianaAguilar-Marcelino, FethelZaharHaichar,EdsonLuizFurtado, WaqasRaza,GhulamHussainJatoi,and MubasharRaza

14.1Introduction 225

14.2Signalsbeneficialtoplantmicrobiota 226 14.2.1Enhancementofthemicrobial signalsfortheplantgrowthand development226

14.2.2Enhancementofthemicrobial signalsforinducedofplant defenses228

14.3Theformofrelationshipbetween plantdefenseandplantgrowth 228

14.4Theeffectofsignalsofplant-microbial pathogenonthegrowthand developmentofplantcomparedwith beneficialmicrobes 229

14.4.1Virusesandviroids230 14.4.2Phytoplasma232

14.4.3Bacteria232

14.4.4Fungi233

14.5Conclusionandfutureprospect 234 References 235 Furtherreading 242

15.Microbialbiopesticides: Currentstatusandadvancement forsustainableagricultureand environment 243

NeelamThakur,SimranjeetKaur, PreetyTomar,SeemaThakur,and AjarNathYadav

15.1Introduction 243

15.2Biopesticides 244

15.2.1Botanicals245

15.2.2Biochemical246

15.2.3Microbial248

15.3Biopesticide:Statusofresearch anddevelopment 253

15.3.1StatusinIndia253

15.3.2Biopesticidesworldwide254

15.4Commercialaspectsand applications 254

15.4.1Modeofaction254

15.4.2Modeofactiontakenupby differentmicroorganism256

15.4.3Formulationandproduction257

15.5Limitationsandchallenges 260

15.5.1Useofconventional pesticides261

15.5.2Replacementofchemical pesticides261

15.5.3Efficacyofdifferenttypesof biopesticides263

15.5.4Qualitycontrolof biopesticides264

15.5.5Regulationofbiopesticides264

15.6Roleofbiopesticidesinsustainable developments 268

15.6.1Microbialpesticidesin integratedpestmanagement268

15.6.2Roleinnanotechnology271

15.6.3Roleinsustainable environments272

15.6.4Roleinsustainable agriculture273

15.7Conclusionandfutureaspects 273 References

16.Salinemicrobiome:Biodiversity, ecologicalsignificance,and potentialroleinamelioration ofsaltstress 283

AjarNathYadav,TanvirKaur,DivjotKour, KusamLataRana,NeelamYadav, AliAsgharRastegari,ManishKumar, DibyPaul,ShashwatiGhoshSachan,and AnilKumarSaxena

16.1Introduction 283

16.2Biodiversityandecological significance 284

16.2.1Archaea287

16.2.3Fungi295

16.3Roleofsalt-tolerantmicrobesin cropsimprovements 297

16.3.1BiologicalN2-fixation297

16.3.2Phosphorusandpotassium solubilization300

16.3.3Phytohormonesproduction300

16.3.4ACCdeaminase production300

16.3.5Indirectplantgrowth-promoting attributes301

16.4RoleofPGPmicrobesforthe ameliorationofsaltstress 301

16.5Conclusionsandfuture

17.Globalscenarioandfuture prospectsofthepotential microbiomesforsustainable agriculture 311 AjayKumarandJoginderSingh

17.1Introduction 311 17.2Plant-associatedmicrobes 312

17.3Mechanismofrhizosphere microbesinteraction 314

17.3.1Directmechanisms315

17.3.2Indirectmechanisms316

17.4Quorumsensing 316

17.4.1Mathematicalmodelingof quorumsensinginbacteria316 17.5Biofilm 318

17.5.1Biofilmformation318

17.5.2Factorsinfluencingbiofilm formation319

17.5.3Biofilmgrowthmodel319

17.6Applicationsoftherhizosphere microbiome

17.6.1Bioremediation320

17.6.2Biofuelproductions322

17.6.3Biofertilizers323

17.6.4Biopesticides323

17.6.5Biocontrol324

17.6.6Biodegradation324

17.7Conclusionandfuture

18.Microbialbiotechnologyfor sustainableagriculture:Current researchandfuturechallenges

AjarNathYadav,DivjotKour,TanvirKaur, RubeeDevi,GeetikaGuleria, KusamLataRana,NeelamYadav,and AliAsgharRastegari

Contributors

Numbersinparenthesisindicatethepagesonwhichtheauthors’ contributionsbegin.

LilianaAguilar-Marcelino (29,225),CentroNacionalde Investigacio ´ nDisciplinariaenSaludAnimale Inocuidad,INIFAP,Jiutepec,Morelos,Mexico

LaithKhalilTawfeeqAl-Ani (29,225),Departmentof PlantProtection,CollegeofAgriculture,Universityof Baghdad,Baghdad,Iraq;SchoolofBiologyScience, UniversitiSainsMalaysia,Minden,PulauPinang, Malaysia

KumarAnand (49),DepartmentofBiotechnology, VinobaBhaveUniversity,Hazaribag,India

GanapathyAshok (203),DepartmentofBiotechnology, SreeNarayanaGuruCollege,Coimbatore,TamilNadu, India

ArchanaBachheti (215),DepartmentofEnvironmental Science,GraphicEraUniversity,Dehradun, Uttarakhand,India

KrishnanBaskaran (203),DepartmentofBiochemistry, SreeNarayanaGuruCollege,Coimbatore,TamilNadu, India

GloriaSarahiCastan ˜ eda-Ramirez (29),CentroNacional deInvestigacio ´ nDisciplinariaenSaludAnimale Inocuidad,INIFAP,Jiutepec,Morelos,Mexico

MadhviChahar (215),InstituteofPost-HarvestandFood Science,TheVolcaniCenter,AgriculturalResearch Organization(ARO),RishonLeZion,Israel

JishuangChen (85),BioresourceInstituteforHealthy Utilization,ZunyiMedicalUniversity,Zunyi;College ofBiotechnologyandPharmaceuticalEngineering, NanjingTechUniversity,Nanjing,China

RubeeDevi (99,127,331),DepartmentofBiotechnology, Dr.KSGAkalCollegeofAgriculture,EternalUniversity,BaruSahib,HimachalPradesh,India

TheophileFranzino (225),UniversitedeLyon,UMR5557 LEM,UniversiteLyon1,CNRS,INRA1418,VilleurbanneCedex,France

EdsonLuizFurtado (225),DepartmentofPlantProduction,CollegeofAgronomicScienceFazendaExperimentalLageado,SaoPauloStateUniversity,Sao Paulo,Brazil

VirginiaGarcia-Rubio (29),CentroUniversitarioAmecameca.UniversidadAuto ´ nomadelEstadodeMexico, Amecameca,Mexico

MozhganGhiasian (145),DepartmentofMicrobiology, FalavarjanBranch,IslamicAzadUniversity,Isfahan, Iran

GeetikaGuleria (331),DepartmentofBiotechnology, Dr.KSGAkalCollegeofAgriculture,EternalUniversity,BaruSahib,HimachalPradesh,India

FethelZaharHaichar (225),UniversitedeLyon,UMR 5557LEM,UniversiteLyon1,CNRS,INRA1418, VilleurbanneCedex,France

SumanKumarHalder (177),DepartmentofMicrobiology,VidyasagarUniversity,Midnapore,West Bengal,India

ArchanaJain (85),KeyLaboratoryofBasicPharmacologyandJointInternationalResearchLaboratoryof EthnomedicineofMinistryofEducation,Zunyi MedicalUniversity,Zunyi,China

GhulamHussainJatoi (225),DepartmentofPlant Pathology,FacultyofCropProtection,SindhAgricultureUniversity,TandojamSindh,Pakistan

SimranjeetKaur (243),DepartmentofZoologyand Entomology,AkalCollegeofBasicSciences,Eternal University,Sirmour,India

TanvirKaur (49,99,127,157,177,283,331),Department ofBiotechnology,Dr.KSGAkalCollegeofAgriculture,EternalUniversity,BaruSahib,Himachal Pradesh,India

DivjotKour (49,99,127,157,177,283,331),Department ofBiotechnology,Dr.KSGAkalCollegeofAgriculture,EternalUniversity,BaruSahib,Himachal Pradesh,India

AjayKumar (311),SchoolofBioengineeringandBiosciences,LovelyProfessionalUniversity,Phagwara, Punjab,India

AmitKumar (61,127,215),CentralMugaEriResearch& TrainingInstitute,CentralSilkBoard,MinistryofTextiles,Govt.ofIndia,Jorhat,Assam,India

ManishKumar (49,283),AmityInstituteofBiotechnology,AmityUniversity,Gwalior,MadhyaPradesh, India

SmitaS.Kumar (215),CenterforRuralDevelopmentand Technology,IndianInstituteofTechnologyDelhi,New Delhi,India

VinodKumar (157),QualityAnalysisLab.,Forage Section,CollegeofAgriculture,CCSHaryanaAgriculturalUniversity,Hisar,India

RekhaKumari (1),DepartmentofBio-Engineering,Birla InstituteofTechnology,Ranchi,Jharkhand,India

SunainaLal (17),DepartmentofMolecularMedicine, StJohn’sNationalAcademyofHealthSciences, Bangalore,India

SandeepK.Malyan (215),InstituteofSoil,Water,and EnvironmentalSciences,TheVolcaniCenter,AgriculturalResearchOrganization(ARO),RishonLeZion, Israel

SivakumarManickam (17),DepartmentofChemicaland EnvironmentalEngineering,FacultyofScienceand Engineering,UniversityofNottinghamMalaysia, Semenyih,Malaysia

ShashankMishra (1),BiotechPark,Lucknow,India

GuruvuNambirajan (203),DepartmentofMicrobiology, SreeNarayanaGuruCollege,Coimbatore,TamilNadu, India

Narender (215),DepartmentofSoilScience,Chaudhary CharanSinghHaryanaAgriculturalUniversity,Hisar, Haryana,India

JuanJoseOjeda-Carrasco (29),CentroUniversitario Amecameca.UniversidadAuto ´ nomadelEstadode Mexico,Amecameca,Mexico

DibyPaul (283),DepartmentofEnvironmentalEngineering,KonkukUniversity,Seoul,RepublicofKorea

P.T.Pratheesh (17),NehruArtsandScienceCollege, Coimbatore,India

PankajK.Rai (49),DepartmentofBiotechnology,Invertis University,Bareilly,India

KusamLataRana (99,127,177,283,331),Departmentof Biotechnology,Dr.KSGAkalCollegeofAgriculture, EternalUniversity,BaruSahib,HimachalPradesh, India

AliAsgharRastegari (99,157,283,331),Departmentof MolecularandCellBiochemistry,FalavarjanBranch, IslamicAzadUniversity,Isfahan,Iran

MubasharRaza (225),StateKeyLaboratoryofMycology, InstituteofMicrobiology,ChineseAcademyof Sciences,Beijing,China

WaqasRaza (225),DepartmentofPlantPathology,College ofAgriculture,UniversityofSargodha,Sargodha, Pakistan

AshishSachan (1),DepartmentofLifeSciences,Central UniversityofJharkhand,Ranchi,India

ShashwatiGhoshSachan (1,177,283),Departmentof Bio-Engineering,BirlaInstituteofTechnology,Ranchi, Jharkhand,India

MitaliKumariSah (215),RegionalAgriculturalResearch Station,Parwanipur,Bara,Nepal

SurendraSarsaiya (85),KeyLaboratoryofBasicPharmacologyandJointInternationalResearchLaboratoryof EthnomedicineofMinistryofEducation;Bioresource InstituteforHealthyUtilization,ZunyiMedical University,Zunyi,China

SatyajitSaurabh (49),DepartmentofBioengineering, BirlaInstituteofTechnology,Ranchi,India

AnilKumarSaxena (177,283),ICAR-NationalBureau ofAgriculturallyImportantMicroorganisms,Mau, India

MuraliMohanSharaff (61),DepartmentofBiological Sciences,P.D.PatelInstituteofAppliedSciences, CharotarUniversityofScienceandTechnology, CHARUSATCampus,Changa,Gujarat,India

JingshanShi (85),KeyLaboratoryofBasicPharmacology andJointInternationalResearchLaboratoryofEthnomedicineofMinistryofEducation,ZunyiMedicalUniversity,Zunyi,China

ArchanaSingh (1),DepartmentofBio-Engineering,Birla InstituteofTechnology,Ranchi,Jharkhand,India

BijenderSingh (157),DepartmentofBiotechnology, SchoolofInterdisciplinaryandAppliedLife Sciences,CentralUniversityofHaryana,Mahendergarh, India

JoginderSingh (311),SchoolofBioengineeringandBiosciences,LovelyProfessionalUniversity,Phagwara, Punjab,India

ManaliSingh (49),DepartmentofBiotechnology,Invertis University,Bareilly,India

SwatiSingh (215),DepartmentofEnvironmental Science,GraphicEraUn iversity,Dehradun, Uttarakhand,India

GangavarapuSubrahmanyam (61,127),CentralMuga EriResearch&TrainingInstitute,CentralSilkBoard, MinistryofTextiles,Govt.ofIndia,Jorhat,Assam,India

SuryaSudheer (17),DepartmentofBotany,Instituteof EcologyandEarthSciences,UniversityofTartu,Tartu, Estonia

NeelamThakur (243),DepartmentofZoologyand Entomology,AkalCollegeofBasicSciences,Eternal University,Sirmour,India

SeemaThakur (243),DepartmentofBiotechnology,Dr. KSGAkalCollegeofAgriculture,EternalUniversity, BaruSahib,HimachalPradesh,India

PreetyTomar (243),DepartmentofZoologyandEntomology,AkalCollegeofBasicSciences,EternalUniversity,BaruSahib,HimachalPradesh,India

RandoTuvikene (17),SchoolofNaturalSciencesand Health,TallinnUniversity,Tallinn,Estonia

ChandranViswanathan (203),DepartmentofBiotechnology,SreeNarayanaGuruCollege,Coimbatore, TamilNadu,India

AjarNathYadav (1,49,61,99,127,157,177,215,243, 283,331),DepartmentofBiotechnology,Dr.KSGAkal CollegeofAgriculture,EternalUniversity,BaruSahib, HimachalPradesh;KrishiVigyanKendra,Kandaghat, Solan,India

NeelamYadav (99,127,157,177,283,331),GopiNath P.G.College,VeerBahadurSinghPurvanchalUniversity,Ghazipur,UttarPradesh,India

Tinymicrobes,bigyields:Microorganisms forenhancingfoodcropproductionfor sustainabledevelopment

ArchanaSingha,RekhaKumaria,AjarNathYadavb,ShashankMishrac,AshishSachand andShashwatiGhoshSachana

a DepartmentofBio-Engineering,BirlaInstituteofTechnology,Ranchi,Jharkhand,India, b DepartmentofBiotechnology,Dr.KSGAkalCollegeof Agriculture,EternalUniversity,BaruSahib,HimachalPradesh,India, c BiotechPark,Lucknow,India, d DepartmentofLifeSciences,CentralUniversity ofJharkhand,Ranchi,India

1.1Introduction

Duetotherisingdemandforfoodandfiberatthegloballevel,improvedandsustainableagriculturalpracticesarerequired tocombatadverseclimaticconditions.Theincorporationofsuchsustainablepracticeswouldbepreferableoverclassical practicesforimprovedyieldofagriculturalgoodsfromtheexistingarablelandunderdeterioratingsoilandwaterquality conditions.“Sustainableincreasesinagriculturalproductivityarecriticaltoaddressmultiplesustainabledevelopment goals(SDGs)includingzerohunger(SDG2),nopoverty(SDG1),andgoodhealthandwell-being(SDG3).”According tothesurvey,globalpopulationisexpectedtoexceed9billionby2050.Hence,tomeetthefoodrequirementofsuchlarge population,cropproductivityneedstobeincreasedby70%–100%.Additionally,theseadvancedpracticesactasasaviorof agriculturalproduceagainstnewdevelopingandprevalentpestsandpathogens.‘Phytomicrobiome’isasustainableand effectiveapproachfortheimprovementinbothfarmproductivityandfoodquality(Yadavetal.,2020b,2020c).Theharnessingofnaturalresourcesintheagriculturesectornotonlyimprovesfarmproductivitybutalsopromotesenvironmental andsocialoutcomesinapositivemanner.Inconventionalfarming,widespreaduseofchemical-basedfertilizersandpesticidesisrequiredtoincreaseagriculturalproductivitysubstantially(Kouretal.,2020d; Yadavetal.,2020d).Theapplicationsofsuchchemical-basedstrategyinthefarmingsectorhavecontributedenormouslytofulfillthefoodavailability andpovertymitigationgoals.However,thischemical-basedconventionalfarmingisconsideredenvironmentally unfriendlyduetoextremeandindiscriminateuseofchemicals,whichcausespotentialthreatstoenvironmentwhichin turnhaveanegativeimpactonhumanhealthandfoodsecurity.Theseconventionalchemical-basedapproachesnotonly increasedcropssusceptibilitytowardpests/pathogensbutalsoresultedinfoodcontaminationandcontributedsignificantly tosoildegradationandbiodiversityloss(Tilmanetal.,2002).

Agriculturesectorinthedevelopingcountriesarefacingmajorchallengesassociatedwithyieldenhancementinterms ofqualityandquantityinanenvironmentallyfriendlyandeconomical(noincreaseinfarmingcosts)manner.Itisevident fromearlierreportsthatuseofconventionalagriculturalpracticestomaintainabalancebetweendemandandsupplyis neithereconomicallynorenvironmentallyfeasible.Hence,globalurgeforcomplimentaryandsustainableapproaches tosustainablymeettheglobalfoodsecuritydemandshasledtothedevelopmentofamendedandinnovativesustainable cropproductionmethods.

1.2Microbiometechnology

Themicrobiometechnologyisonesuchwayinwhichtheaidofbeneficialplant-associatedmicrobiomehelpstosustainablyenhancethequalityandquantityoffarmproduceusingminimumresources(Kouretal.,2020a,2020b).Thistechnologyhasthepotentialtominimizetheenvironmentaldistress.Microbiomesarethehost-associatedmicrobial communitieswhichinhabitmultipletissuetypesonthehostsurfacesaswellascolonizebothinter-andintracellularhost habitats(MedinaandSachs,2010; Huttenhoweretal.,2012).Amongdifferentmicrobialcommunities,eubacteriaoften

dominatetheplant-associatedmicrobiomesalongwithotherimportantmicrobiomesincludingfungi,protozoa,archaea, andviruses(MedinaandSachs,2010; Huttenhoweretal.,2012; BonkowskiandClarholm,2012; Hoffmannetal.,2013).

Anenormousdiversityofmicrobialcommunityisassociatedwithplantroots.Thesemicrobescanbeutilizedasthe potentialtooltoalterhostdevelopment,physiology,andsystemicdefenses,whichinturncansignificantlyenhancethe cropgrowthandvigor,enhancetheplantefficiencytoutilizenutrient,andimprovethebiotic/abioticstresstolerance anddiseaseresistance(Kouretal.,2020c; Yadavetal.,2020a).Applicationsofthesemicrobialcommunitiescanbeharnessedinasustainableandeconomicmannertoimprovefarmproductivityandfoodquality.Mutualisticrelationshiphas evolvedbetweenplantsandassociatedmicrobiotawherebothpartnersdevelopedamechanismtobenefitfromtheassociation(Ranaetal.,2020a; Saxenaetal.,2014).

Accordingtotheearlierreportmicrobiomeplaysanimportantroleinshapinghostphenotypesasitactsasaflexible shieldbetweentheeffectsofhost-genotypeinteractionandtheenvironmentaleffects(Ranaetal.,2020b; Saxenaetal., 2015).However,thisassociationhasbeenunintentionallyaffectedbyplantbreedingprogramswhichharmsthekeybeneficialmembersofthecropmicrobiome.Accordingtotheavailableliterature,itisevidentthatplantmicrobiomeplaysan importantroleincropyieldsandfitness(MuellerandSachs,2015).

Plantmicrobiomecanbepotentiallyharnessedtorevolutionizeagricultureandfoodindustriesby(i)thecumulative integrationofcrophealthwithvariousclimate-specificmanagementpracticestoimproveproductivityandquality; (ii)theapplicationofenvironmental-friendlyapproachesforpropereradicationofpestsandpathogensandthusminimizing theunavoidableuseofchemicalpesticideshavingenvironmentalandhealthimplications;(iii)thewidespreadutilizationof naturalresourcesincludingsoilandwaterbyconvenientandefficientmethods(iv)theenhancementoffoodqualitywith minimuminterferenceofchemicalcontaminantsandallergens;and(v)theimprovementofcropfitnessaccordingtothe prevalentextremeweathertherebyminimizinglosses(Kumaretal.,2019; Yadavetal.,2019a). Fig.1.1 representsthe isolationofplantmicrobiomesandtheirbiotechnologicalapplicationforsustainableagriculture.

1.3Rhizosphereversusphytomicrobiomeapproaches

Soilmicrobialcommunitiesareconsideredthegreatestreservoirofbiologicaldiversity(Curtisetal.,2002; Gams,2007; Torsviketal.,2002; Bueeetal.,2009).Thenarrowzoneofsoilwhichismajorlyinfluencedbytheplantrootsecretionsare knownasrhizosphere.Approximately,1011 microbialcellspergramrootwerereportedinthissoilzone(Egamberdieva etal.,2008)andmorethan30,000diversespeciesofprokaryotesandcompriserhizospheremicrobiome(Mendesetal., 2011).Duetolargecollectivegenomeofthemicrobialcommunityascomparedtothatoftheplant,itisdenominatedasthe secondgenomeofplants(Berendsenetal.,2012).Thegroupofmicrobiotaassociatedwithdifferentpartsoftheplant(e.g., root,stem,leaf,flower,seeds)comprisesphytomicrobiome(epiphytic,endophytic,andrhizospheric)(Yadavetal.,2019b, 2019c,2019d,2019e).Microbesassociatedwithrhizosphereofanyplantareknownasrhizosphericmicrobes.Therhizosphereisthezoneofsoilinfluencedbyrootsthroughthereleaseofsubstratesthataffectmicrobialactivity.Anumberof microbialspecieshavebeenreportedtobeassociatedwithplantrhizospherebelongingtothegenera Azospirillum, Alcaligenes, Arthrobacter, Acinetobacter, Bacillus, Paenibacillus,Burkholderia, Enterobacter, Erwinia, Flavobacterium, Methylobacterium,Pseudomonas, Rhizobium,and Serratia (Biswasetal.,2018; Kouretal.,2019a; Saxenaetal., 2016; Yadav,2017,2019; YadavandYadav,2019)(Table1.1).

Theendophyticmicrobesarereferredtothosemicroorganismswhichcolonizeintheinterioroftheplantparts,viz,root, stem,orseedswithoutcausinganyharmfuleffectonhostplant.Endophyticmicrobesenterplantsmainlythroughwounds, naturallyoccurringasaresultofplantgrowthorthroughroothairsandatepidermalconjunctions.Besidesprovidingentry avenues,woundsalsocreatefavorableconditionsforthebacteriabyallowingleakageofplantexudatesthatserveasa nutrientsourceforthebacteria.Theyexistwithinthelivingtissuesofmostplantspeciesbyformingassociationsranging fromsymbiotictoslightlypathogenic.Thesebacteriahavebeenisolatedfromavarietyofplantsincludingwheat(Verma etal.,2014,2015a,2016a),rice(ManoandMorisaki,2007; Naiketal.,2009; Piromyouetal.,2015),maize(Yadav,2017; Yadavetal.,2018),soybean(HungandAnnapurna,2004; Mingmaetal.,2014),pea(Narulaetal.,2013; Tariqetal.,2014), commonbean(Suyaletal.,2015),chickpea(Sainietal.,2015),andpearlmillet(BeatrizSa ´ nchezetal.,2014).Alarge numberofendophyticbacterialspeciesbelongingtodifferentgeneraincluding Achromobacter, Azoarcus, Burkholderia, Enterobacter, Gluconoacetobacter, Herbaspirillum, Klebsiella, Microbiospora, Micromonospora, Nocardioides,Pantoea, Planomonospora, Pseudomonas, Serratia,Streptomyces and Thermomonospora,etc.,havebeensortoutfromdifferent hostplants(Kouretal.,2019b; Ranaetal.,2019; Sumanetal.,2016; Vermaetal.,2017)(Table1.1).Thephyllosphere iscommonnicheforsynergismbetweenbacteriaandplant.Microbesonleafsurfacearemostadaptedmicrobesasthey toleratehightemperature(40–55 °C)andUVradiation.Manybacteriasuchas Agrobacterium, Methylobacterium, Pantoea, and Pseudomonas havebeenreportedinthephyllosphere(Vermaetal.,2014,2015a,2016a,b; Yadav,2009)(Table1.1).

FIG.1.1 Aschematicrepresentationoftheisolation,characterization,identificationandpotentialapplicationofculturableandun-culturablemicrobiomesofcrops. (AdaptedwithpermissionfromVerma,P.,Yadav,A.N.,Kumar,V.,Singh,D.P.,Saxena,A.K.(2017)Beneficialplant-microbesinteractions:Biodiversityofmicrobesfromdiverseextremeenvironmentsanditsimpactforcropimprovement.In:SinghD.P.,SinghH.B.,PrabhaR.(Eds.) Plant-MicrobeInteractionsinAgro-EcologicalPerspectives:Volume2:MicrobialInteractionsandAgro-EcologicalImpacts.SpringerSingapore, Singapore,pp.543–580.https://doi.org/10.1007/978-981-10-6593-4_22.)

TABLE1.1 BeneficialmicrobiomeswithmultifariousPGPattributesunderthediverseabioticstress.

MicrobesStressPIAASidACCReferences

Achromobacterspanius Hightemp++ + Vermaetal.(2016b)

Acinetobacterrhizosphaerae BIHB723Cold++++ Gulatietal.(2009)

Acinetobacter sp.M05Drought+ + Zhangetal.(2017)

Aeromonashydrophila IARI-R-6Cold+++ Yadavetal.(2015a)

Alcaligenesfaecalis Hightemp++ + Vermaetal.(2016b)

Alcaligenes sp.Salinity + Baletal.(2013)

Arthrobactermethylotrophus IARI-HHS1–25Cold++++ Vermaetal.(2015b)

Arthrobacter sp.Salinity++ + Upadhyayetal.(2009)

Arthrobactersulfonivorans IARI-L-16Cold+++ Yadavetal.(2015b)

Azospirillumlipoferum B3Drought++ + Arzaneshetal.(2011)

B.sporothermodurances Salinity+ + Upadhyayetal.(2009)

B.subtilis,IARI-IIWP-2Drought++++ Vermaetal.(2014)

Bacillusaltitudinis Drought+++ Sunaretal.(2015)

Bacillusaltitudinis Hightemp++ + Vermaetal.(2016b)

Bacillusaltitudinis IARI-HHS2–2Cold++ Vermaetal.(2015b)

Bacillusamyloliquefaciens Drought++ + Vardharajulaetal.(2011)

Bacillusamyloliquefaciens Cold++ + Vermaetal.(2015b)

Bacillusamyloliquefaciens IARI-HHS2–30Cold++++ Vermaetal.(2015c)

Bacillusamyloliquefaciens IARI-R-25Cold+++ Yadavetal.(2015a)

Bacillusaquimaris Salinity+ + Upadhyayetal.(2009)

Bacillusaquimaris, IARI-IHD-17Drought+ Vermaetal.(2014)

Bacillusarsenicus Salinity++ + Upadhyayetal.(2009)

Bacillusaryabhattai IARI-HHS1–30Cold++ Vermaetal.(2015b)

Bacillusaryabhattai,IARI-IHD-34Drought+++ Vermaetal.(2014)

Bacilluscereus Cold + Vermaetal.(2015b)

Bacilluscereus Salinity++ + Upadhyayetal.(2009)

Bacillusfirmus IARI-L-21Cold++++ Yadavetal.(2015b)

Bacillusflexus Hightemp+ + Vermaetal.(2016b)

Bacillusflexus Cold+ Vermaetal.(2015b)

Bacillushalodenitrificans PU62Drought++++ Ramadossetal.(2013)

Bacilluslicheniformis Drought++ + Vardharajulaetal.(2011)

Bacilluslicheniformis Hightemp+ Vermaetal.(2016b)

Bacilluslicheniformis BGBA1Drought+++ PahariandMishra(2017)

Bacilluslicheniformis IARI-AL38Cold+++ Yadavetal.(2016)

Bacillusmegaterium Cold++ + Vermaetal.(2015b)

Bacillusmegaterium,IARI-IIWP-9Drought+++ Vermaetal.(2014)

Bacillusmojavensis Hightemp++ Vermaetal.(2016b)

Bacillusmuralis IARI-AR28Cold ++ Yadavetal.(2016)

TABLE1.1 BeneficialmicrobiomeswithmultifariousPGPattributesunderthediverseabioticstress—cont’d

MicrobesStressPIAASidACCReferences

Bacilluspumilus Salinity+ + Upadhyayetal.(2009)

Bacilluspumilus IARI-L-54Cold+++ Yadavetal.(2015b)

Bacillussiamensis Hightemp + Vermaetal.(2016b)

Bacillus sp.Salinity + Baletal.(2013)

Bacillus sp.(PS-12)Drought++ + Hussainetal.(2013)

Bacillus sp.,AW1Drought+ ++ Ranaetal.(2011)

Bacillussubtilis Drought++ + Vardharajulaetal.(2011)

Bacillussubtilis Hightemp++ + Vermaetal.(2016b)

Bacillussubtilis Salinity++ Upadhyayetal.(2009)

Bacillussubtilis IARI-L-69Cold++++ Yadavetal.(2015b)

Bacillusthuringenesis Drought++ + Vardharajulaetal.(2011)

Bacillusthuringiensiss Cold+ + Vermaetal.(2015b)

Bordetellabronchiseptica IARI-HHS2-29 Cold+++ Vermaetal.(2015b)

Brevundimonasdiminuta, AW7Drought+++ Ranaetal.(2011)

Cellulosimicrobiumcellulans IARI-ABL-30Cold++ + Yadavetal.(2015b)

Delftiaacidovorans Hightemp++ + Vermaetal.(2016b)

Delftialacustris Hightemp+ + Vermaetal.(2016b)

Delftia sp.,IARI-IIWP-31Drought+++ Vermaetal.(2014)

Desemziaincerta IARI-L-46Cold+++ Yadavetal.(2015b)

Duganellaviolaceusniger,IIWP-23Drought+++ Vermaetal.(2014)

Enterobacterhormaechei Drought + Niuetal.(2017)

Enterobacter sp.Halophilic++ HingoleandPathak(2016)

Enterobacter sp.Salinity++++ Sarkaretal.(2018)

Exiguobacteriumantarcticum HHS2–49Cold ++ Vermaetal.(2015b)

Flavobacteriumpsychrophilum HHS2–37Cold++++ Vermaetal.(2015b)

Flavobacterium sp.(PS-41)Drought++ + Hussainetal.(2013)

Kocuriakristinae IARI-HHS2–64Cold+++ Vermaetal.(2015b)

Lysinibacillussphaericus IARI-AR11Cold+ + Yadavetal.(2016)

Methylobacteriumextorquens, IIWP-43Drought+++ Vermaetal.(2014)

Methylobacteriummesophilicum Hightemp++ + Vermaetal.(2016b)

Methylobacteriummesophilicum, IIWP-45Drought+++ Vermaetal.(2014)

Methylobacteriumphyllosphaerae Cold+++ Vermaetal.(2015b)

Methylobacteriumradiotolerans, IHD-35Drought+++ Vermaetal.(2014)

Ochrobactrum sp.Salinity + Baletal.(2013)

Paenibacillusamylolyticus,IHD-24Drought+ Vermaetal.(2014)

Paenibacillusdendritiformis,IIWP-4Drought+++ Vermaetal.(2014)

Paenibacillusdurus,IARI-IIWP-40Drought+ + Vermaetal.(2014)

Paenibacillusfavisporus Drought++ Vardharajulaetal.(2011) Continued

TABLE1.1 BeneficialmicrobiomeswithmultifariousPGPattributesunderthediverseabioticstress—cont’d

MicrobesStressPIAASidACCReferences

Paenibacillus sp.,IARI-IHD-15Drought+++ Vermaetal.(2014)

Paenibacillustaichungensis M10Drought+++ Zhangetal.(2017)

Paenibacillustylopili IARI-AR36Cold+++ Yadavetal.(2016)

Pantoeaagglomerans IARI-R-87Cold+++ Yadavetal.(2015a)

Pantoeadispersa 1ACold+++ Selvakumaretal.(2008)

Planococcusrifietoensis Alkalinity+++ Rajputetal.(2013)

Providenciarustigianii IARI-R-91Cold++++ Yadavetal.(2015a)

Providencia sp.,AW5Drought+ ++ Ranaetal.(2011)

Pseudomonasaeruginosa Cold+++ Vermaetal.(2015b)

Pseudomonasbrassicacearum E85Drought+ ++ Aarabetal.(2015)

Pseudomonascedrina IARI-R-53Cold++++ Yadavetal.(2015a)

Pseudomonasentomophila Drought++ + Sandhyaetal.(2010)

Pseudomonasfluorescens Drought + Niuetal.(2017)

Pseudomonasfluorescens Cold++++ Vermaetal.(2015b)

Pseudomonasfluorescens Cold++ + Mishraetal.(2011)

Pseudomonasfluorescens Salinity++ Akhgaretal.(2014)

Pseudomonasfluorescens PPRs4Cold+++ Mishraetal.(2011)

Pseudomonasfluorescens, SorgP4Drought+ + Alietal.(2014)

Pseudomonasfluorescens,153Drought+ + Zabihietal.(2011)

Pseudomonasfragi IARI-R-57Cold++++ Yadavetal.(2015a)

Pseudomonasfuscovaginae,IIWP-29Drought+++ Vermaetal.(2014)

Pseudomonasgeniculata IARI-HHS1–19Cold+++ Vermaetal.(2015b)

Pseudomonasjaponica Hightemp+ Vermaetal.(2016b)

Pseudomonasjessani Cold++ + Mishraetal.(2011)

Pseudomonasjessani PGRs1Cold+++ Mishraetal.(2011)

Pseudomonaskoreensis Cold++ + Mishraetal.(2011)

Pseudomonaskoreensis PBRs7Cold+++ Mishraetal.(2011)

Pseudomonaslini,IARI-IIWP-33Drought+ ++ Vermaetal.(2014)

Pseudomonaslurida Cold++ + Mishraetal.(2011)

Pseudomonaslurida M2RH3Cold+++ Selvakumaretal.(2011)

Pseudomonaslurida NPRs3Cold+++ Mishraetal.(2011)

Pseudomonasmedicona Salinity+ + Upadhyayetal.(2009)

Pseudomonasmigulae Drought + Niuetal.(2017)

Pseudomonasmonteilii,IARI-IIWP-27Drought++++ Vermaetal.(2014)

Pseudomonasmoraviensis IARI-R-132Cold++++ Yadavetal.(2015a)

Pseudomonasplecoglossicida, S1 Drought+++ Rollietal.(2015)

Pseudomonaspoae Hightemp++ + Vermaetal.(2016b)

Pseudomonasputida Drought+ + Zabihietal.(2011)

TABLE1.1 BeneficialmicrobiomeswithmultifariousPGPattributesunderthediverseabioticstress—cont’d MicrobesStressPIAASidACCReferences

Pseudomonasputida Cold++ + Mishraetal.(2011)

Pseudomonasputida IARI-R-131Cold ++ Yadavetal.(2015a)

Pseudomonasputida PGRs4Cold+++ Mishraetal.(2011)

Pseudomonasreactans IARI-ABR-38Cold+++ Yadavetal.(2015a)

Pseudomonas sp.Drought++++ Poonguzhalietal.(2008)

Pseudomonas sp.Cold++ + Mishraetal.(2011)

Pseudomonas sp.Cold++ + Mishraetal.(2011)

Pseudomonas sp.NARs9Cold+++ Mishraetal.(2009)

Pseudomonas sp.PGERs17Cold+++ Mishraetal.(2008)

Pseudomonasstutzeri Drought++ + Sandhyaetal.(2010)

Pseudomonasstutzeri Hightemp++ Vermaetal.(2016b)

Pseudomonasthivervalensis, IHD-3Drought++++ Vermaetal.(2014)

Pseudomonastolaasii IEXbDrought+++ Virueletal.(2011)

Psychrobacterfozii,IIWP-12Drought++++ Vermaetal.(2014)

Psychrobacterfrigidicola IARI-R-127Cold++++ Yadavetal.(2015a)

Rahnella sp.BIHB783Cold++++ Vyasetal.(2010)

Rhodobactersphaeroides Hightemp + Vermaetal.(2016b)

Salmonellabongori Hightemp + + Vermaetal.(2016b)

Sanguibacterantarcticus IARI-L-33Cold++++ Yadavetal.(2015b)

Sanguibactersuarezii IARI-R-7Cold++++ Yadavetal.(2015a)

Serratiamarcescens,IIWP-32Drought+ Vermaetal.(2014)

Sporosarcinaglobispora IARI-AR111Cold + + Yadavetal.(2016)

Staphylococcusaureus 22FDrought+++ Toribio-Jimenezetal.(2017)

Staphylococcussuccinus Hightemp + Vermaetal.(2016b)

Stenotrophomonasmaltophilia HHS1–20Cold++++ Vermaetal.(2015b)

Stenotrophomonas sp.,IIWP-34Drought++ Vermaetal.(2014)

Streptoccoccusthoraltensis 5CR-FDrought++ Toribio-Jimenezetal.(2017)

P:PhosphorusSolubilization;IAA:Indoleaceticacids;Sid:Siderophores;ACC:1-aminocyclopropane-1-carboxylate.

However,phytomicrobiomehasbeengivenlessimportancecomparedtorootmicrobiomeduetosometechnicaldifficultiesassociatedwiththecharacterizationofotherpartsoftheplant(leaf,stem).Also,itischallengingtoamplifyplant tissuelocalizedbacterialmarkergenes(16SrDNA)duetosequencesimilarityofchloroplastandmitochondrialDNAwith Chlorobi/Chloroflexi/Cyanobacteriaphyla(SinghandTrivedi,2017).

However,majorityoftheresearchhasbeeninclinedtowardtherhizospheremicrobiome.Onthewhole,rhizosphereassociatedmicrobesandtheirgeneticelementsformrootmicrobiome.Plantrootsandsoilsareinvolvedininterfaceinteractionswhichlaidthebasisforbothplanthealthandresourceacquisition.Otherdemonstratedapplicationsofrhizosphere microbiomeincludediseaseresistance,nutrientacquisition,andabilitytofitinnovelandextremeenvironmentsbycombatingabioticstresses(SinghandTrivedi,2017).

1.4Effectsoftherootmicrobiomeonplanthealth

1.4.1Disease-suppressivesoils

Duetothestarvingconditionsofthesoilmicroflora,fiercebattleexistsintherhizospheremicrobesfortheacquisitionof plant-derivednutrients(Raaijmakersetal.,2009).Hence,toinfectthehosttissueaswellastoescapetherhizospherebattle zone,mostsoilbornepathogensneedtomaintaincloseassociationwiththehostbyachievingsufficientnumbersandalso needtogrowassaprophytesintherhizosphere.Hence,microbialcommunityassociatedwithinfectioussoilultimately decidesthesuccessofapathogen.Eachsoiltypehasthenaturalabilitytopreventthepathogeninvasionuptoacertain extent.Thiscanfurtherbeconfirmedfromthecommonoccurrenceofdiseaseseverityinthepathogeninoculatedpasteurizedsoilsincomparisontothatofnon-pasteurizedone.Thisphenomenonofdiseasesuppressionoccursduetothe presenceoftotalmicrobialactivityiscoinedasgeneraldiseasesuppression.Further,generaldiseasesuppressiveness canbeeffectivelyenhancedintheconducivesoilthroughorganicamendmentswhichstimulatestheactivityofmicrobial populations.

Anothermosteffectivemechanismofspecificdiseasesuppressivenessisunderdiscussion,inwhichtheabilityofspecificsuppressivenesscanbeintroducedtodiseaseconducivesoilbytheadditionofthesuppressivesoil(0.1%–10%).To studythebioticnatureofspecificdiseasesuppressiveness,pasteurizationofthesoilhasbeenperformedfortheremovalof diseasesuppressiveness(Welleretal.,2002; Garbevaetal.,2004; Raaijmakersetal.,2009; Mendesetal.,2011).

1.4.2Developmentofdiseasesuppressiveness

Somesoilscannaturallyretaintheirabilityofdiseasesuppressivenessforextendedperiodsandpersistsevenwhensoilsare leftbare.Insomecases,monocultureofacropforseveralyearsishelpfulinthedevelopmentofsoilssuppressiveness.In mostplantspecies,phenomenonofselfsuppressivenesspredominatesduetosuccessivemonoculturewhichinducesthe developmentofspecializedplantpathogens(Bennettetal.,2012).Nonetheless,therearesomecommoncropdiseases againstwhichsoilsuppressivenesshasbeenreportedincludingtake-alldiseaseofwheat(Triticumaestivum)causedby Gaeumannomycesgraminis var. tritici,damping-offdiseaseofsugarbeetcausedby Rhizoctonia,Fusariumwiltdisease ofnumerousplantspecies,and Streptomyces speciescausingpotatoscabdisease(Welleretal.,2002; Raaijmakers etal.,2009; Mendesetal.,2011).

Isolationofthemicroorganismsfrommanysuppressivesoilsthatcanconfersuppressivenessfollowedbytheirinoculationintheconductivesoilisahelpfulstrategytoboosttheconductivesoil.Earlierreportsevidencedaphenomenonof ‘take-alldecline’whichisadeclineinthesevereoutbreakof G.graminis var. tritici causingroot-associateddiseasein wheatduetomonocultureofwheatforseveralyears.Thiswidespreadphenomenonoccursduetothepresenceofantifungal compound2,4-diacetylphloroglucinol(DAPG)producedbytheantagonisticfluorescent Pseudomonas spp.(Welleretal., 2002).Additionallyothermicroorganismsincluding Proteobacteria and Firmicutes alongwithfungalmembersof Ascomycota divisionwerereportedtoconfersuppressiveness(Raaijmakersetal.,2009).Accordingtothestudy,rhizosphere microorganismsdevelopedamechanismtocounterasoilbornepathogenbytheproductionoflyticenzymesorantibiotic compounds,competingfor(micro)nutrientsandconsumepathogenstimulatorycompounds(Doornbosetal.,2012; LugtenbergandKamilova,2009).

1.4.3Beneficialrhizospheremicrobes:Modulationofthehostimmunesystem

Apartfromthedeleteriouseffectofpathogensassociatedwiththerhizosphere,evidencesexistforthepresenceofmany beneficialsoilbornemicroorganismsthatcanenhancethedefensivecapacityinabovegroundpartsoftheplant(Zamioudis andPieterse,2012).“Thisinducedsystemicresistance(ISR)isastateinwhichtheimmunesystemoftheplantisprimedfor acceleratedactivationofdefense”(Conrathetal.,2006; Bakkeretal.,2007; PozoandAzcon-Aguilar,2007; VanWees etal.,2008; DeVleesschauwerandHofte,2009).

Inearlierstudies,inductionmechanismofISRinArabidopsis(Arabidopsisthaliana)dueto Pseudomonasfluorescens WCS417(plantgrowth-promotingrhizobacterium)waswellstudied.Locally,thisroot-associated Rhizobacterium WCS417isinvolvedintheapoplasticsecretionofmultiplemoleculesoflowmolecularweightwhichinturnsuppress flagellin-triggeredimmuneresponses(Milletetal.,2010).Althoughplantimmunityisinthesuppressedstatelocally,systemicinitiationoftheirimmunesignalingcascadeisobservedtoprovideresistanceagainstabroadspectrumofpathogens andeveninsects(VanOostenetal.,2008; VanderEntetal.,2009; Pinedaetal.,2010).

1.5Technicalchallengesandemergingsolutions

Microbialproductscanactasthereliableandefficientalternativetoreplaceagriculturalchemicalsandfertilizersfor achievingenhancedcropyields.Manycompanieshaveshowninteresttowardtheuseofbiocontrolorbiofertilizerproducts whichcomprisetheformulationofindividualmicroorganismsaswellastowardthedevelopmentofcarrier-basedinoculantsofbeneficialstrains.Earlierstudieshavedemonstratedtheroleofeconomicallyimportantcropplantsinthe incrementofcropproductionupto10%–20%basedonthelarge-scalefieldtrials(Perez-Jaramilloetal.,2016).Though themicrobialtechnologieshavethehighestpotential,evidencesalsosuggestthefailureofgreenhousetrialsinthefield.

However,duetotheinconsistentandvarianteffectsofmicrobialproductsobtainedduringdifferentfieldtrialsunder differentclimatic/edaphicconditions,majorbottleneckisassociatedwiththelarge-scaleadoptionofthetechnology. Therefore,underfieldconditionsthereshouldbebetterandclearunderstandingoftheinteractionbetweeninoculated strainsandnativemicrobiomesfortheimprovementofselectionprocessandapplicationtechnique(SinghandYadav, 2020).Difficultypersistsinthisstudyduetothecomplexinteractionmechanisminvolvedamongmicrobes,plants,soil, andclimate.However,underthesimplifiedconditions,onlyfewoftheseinteractionshavebeenevidenced.

Theadventofmicrofluidic-basednewtechnologiessuchas‘MicrobiomeonaChip’ishelpfulinstudyingmultitrophic plant-microbiomeinteractionsthroughmultiplexedtreatmentsfollowedbytheincorporationofenvironmentalstimuli,host responses,andthecolonizationofmicrobes(StanleyandVanderHeijden,2017).Inrelevantfieldconditions,such knowledgeisdesirabletomonitorthebeneficialmicrobesbasedontheiractivitiesorassessmentofthenativemicrobiomes and/orthepotentialofinoculantstrainforcolonization.Combinedapplicationsofvarioustechnologiesandfacileformulationswithextendedshelflivesinthefieldconditionswillbeadvantageousintheimprovementofmicrobialproducts efficacy.Astrategyofmodifyingplantmicrobiomesandtraitsbytheintroductionofbeneficialbacteriaintotheprogeny seedsatfloweringstageishelpfulinachievingtheproductiongoal(Mitteretal.,2017).Thisstrategyofbacterialdelivery hasseveraladvantagesoverconventionalapplicationtechniques,forexample,apartfromintroducingbeneficialtraits withinonegeneration,italsoprovidesprotectionagainstcompetitivenativemicroflorafollowedbythesubstantialincrease intheabilityofinoculatedstrainforcolonizationandsurvival.

Survivalpotentialofconsortiaofmultiplecompatiblebeneficialmicrobesarecomparativelybetterthansingle-strain formulationsastheyformstructurednetworkandassociationwiththenaturalmicrobiomeoftherhizospheresoilswhichin turnbenefitsthehost(SinghandTrivedi,2017; Wallenstein,2017).Amongthenaturalmicrobialcommunitiesassociated withrhizosphereandphyllosphere,itispossibletoisolatemajorityofmicrobialspeciesusingvarioussystematicisolation approaches(Baietal.,2015).

1.6Insitumanipulationofmicrobiome

Insitumicrobiomeengineeringisthepowerfultooltoharnessthepotentialofbeneficialmicrobiomefordesiredoutcomes inagriculturesectorandfoodindustries(MuellerandSachs,2015).Incontrasttotheothercurrenttechnologiesinvolving theuseofselectiveantibioticsandprobiotics,thistechnologyprefersmicrobiomemanipulationwithoutculturing(Sheth etal.,2016).Syntheticbiologywillalsodisplayapplicationsintheformulationofcropprobioticsbytheengineeringof novelbutpredictablefunctionsinit.Theseengineeredcropprobioticshavethepotentialtomanipulatethemicrobiomeand/ oritsactivitiesinapredictedmanneruponadditiontoplantandsoils.Forexample,engineeredbacteriahavetheabilityto secretespecificchemicalandcanbeeffectivelyemployedforthemodulationofbothnativemicrobiomesandcropphysiology.Theseengineeredbacterialstrainsstimulatetheactivitiesofotherbeneficialmicrobiometherebyprovidingcrop resistanceagainstresourceandbioticstresses.Withthehelpoftheseoperationaltools,itispossibletobringrevolutionsin agriculturalproductivity.

Theselectionofthemicrobiomesisalsobasedonthegenotypicandphenotypicvariationsinplants.Thisselectionis supportedbythefactthatplanthasthenaturaltraittosupportabeneficialmicrobiome(Wallenstein,2017).Domestication isproposedfortheremovalof‘microbiome-mediatedtrait’therebynecessitatingtheapplicationofgrowthhormones, sprayingofinsecticides,andhighquantitiesofinorganicfertilizersforthemaintenanceofrequiredoutput(PerezJaramilloetal.,2016).Therehasbeenanemerginginteresttowardtheapplicationofoptimizedenvironmentalfriendly microbialbiofertilizersandbiopesticidesinvarioussoilsandcropvarieties.Duringcropbreedingprograms,theunderstandingofbeneficialplant-microbeinteractionswouldbebeneficialtobreed‘microbe-optimizedplants.’Theplant geneticisthebasisforbeneficialplant-microbiomeinteractions.Thoroughunderstandingofplantgeneticconstitution ishelpfultobreedandoptimize‘designerplants,’whichinturnattractandmaintainbeneficialmicrobes(Abhilash etal.,2012).Thesetraitshavebeenexploredbybreedingprograms;however,abetterandthoroughunderstandingof themechanismlyingbehindtheseattractionsofbeneficialmicrobestowardcropsisessential.Itispossibletomodel

microbe-optimizedplantsthroughapproachesofgeneticengineeringandplantbreeding.Thesemicrobe-optimizedplants generaterightexudatesandvolatilesthatmaintaintheattractionofbeneficialmicrobeseitherattherootorontheleafatthe righttime.

Asmentionedearlier,plantshavetheabilitytosecretespecificexudates,whichisnotonlyresponsiblefortheengineeringoftheirownrhizosphereenvironmentbutalsoimprovetheirinteractivepropertywithspecificbeneficialmicrobes aswellasnutrientavailability.Thisstrategyrequiredtheavailabilityofthetargetedmicrobesalongwiththecouplingof otherinoculatedcorrespondingmicrobes(Liuetal.,2016).PreliminaryworksuggestedthekeyroleofmiRNAinregulatingthestructureofrhizospheremicrobiome.Therefore,basicelucidationoftheinteractivemechanismbetweenmiRNA andthemicrobiomeactasavaluabletoolkittotransfermiRNAfromatargetsoiltorecipientsoilsaswellastoengineera definedbeneficialplantmicrobiomefordesirableoutcomes.

Techniqueofplantecologicalengineeringisrequiredforhostmicrobiomemanipulationaswellasforeffective enhancementofdiseasemanagementbymanagingtheintegrationofplantbreedingwithmicrobiomeselection.Inartificial ecosystemselection,differentcropsindifferentsoilsareinoculatedwithbothengineeredplant /soil-optimizedmicrobes. Itisalsoevidencedinearlierstudiesthatimprovedplant-microbeinteractionsaretheresultofdistinctiveabilityofsoil microbiomestoadapttotheircropsovertime(Berendsenetal.,2012).Atop-downapproachofartificialselectionon microbiomeshelpsintheimprovementofplantfitness,thusengineeringevolvedmicrobiomesispreferableforhostfitness (MuellerandSachs,2015).Thisapproachofhost-mediatedmicrobiomeengineeringisdesirablefortheselectionof microbialcommunitiesindirectlybasedontheirevolvedhosttraitsthatinfluencemicrobiomes.

Existingevidencesalsosuggestthecumulativeapplicationsofoptimizedmicrobiomesandphytohormonesfordisease resistanceasphytohormoneshavebeenreportedtoactivatemicrobiomedefenseresponses(Lebeisetal.,2015).Similarly, theroleofoptimizedmicrobiomesasinoculantsisnotonlyhelpfulforearlyorlatefloweringinplantsbutalsoprovides droughtresistancetoplants.Hence,itcanbeinferredthatduetotheapplicationsoftheseinoculants,plantsdevelopthe abilitytoresistseveralabioticstressesbyshowingalterationinfloweringtime(KazanandLyons,2016).

Host-mediatedartificialselectionofmicrobiomesisacheaperandmostpreferablewaytogeneratediseaseresistancein plantsascomparedtotheapplicationsofvariousgeneticallymodifiedorganisms,pesticides,andantibiotics.Furthermore, cross-compatibilityofmicrobiometransferwithphylogeneticallydistinctplantspeciescanbeconfirmedbythedetection ofoverlappingfunctionalcoremicrobiomesindifferentspeciesofplant. Shethetal.(2016) havealsohighlightedthe emergingroleofinsitugenomeengineeringasthehighlyspecificandeffectivetoolkitformicrobiomemanipulation uptoacertainlevel.

1.7Futureoutlook

Inrecentyears,theadventofhigh-throughputtechnologiesin“multiomics”andcomputationalintegrationprovidean insightintoplant-microbiomeinteractionsacrossscales.Thesetechnologiescanclearlybuilduptheconnectionwith thefunctionalgenenetworks/pathwayswiththehelpofindividualsignalmolecules,genesandgenecascades,andproteins. Technologicaladvancementsandadventofstrategieslikemutanttechnology,gene-editingsystems,genesilencing mediatedbyRNAinterference(RNAi),proteomics,andmetaboliteprofilinghavefacilitatedustorevealmechanism ofmicrobe-mediatedstrategiesadoptedbytheplantforitsgrowthpromotionandbiocontrol.Furtheradvancementin theautomationandlarge-scalebioinformaticstoolhaveaugmentedthegenomerepertoireofplant-associatedmicrobes. Thoroughinformationrelatedtothegenomeofplant-associatedmicrobesaswellasmechanisminvolvedintheirinteractionswithhost/environmentareresourcefulfortheresearcherstodiscovernovelandvaluablemicrobialgenesrelated toplantgrowthandproductivity.Theseadvancementslaidthebasisforpowerfulandconceptualframeworktoreveal complexplant-microbiomeinteractionsandalsohighlightedthepossibilitytoimproveplantproductivitythroughthe manipulationofbeneficialgenomiccircuitsofnovelpotentialplants.Accordingtotherecentsurvey,awidespreadcollectionofover250milliongenes(averageof5000genesperorganism)existsinthelibrary.Detailedprospectingofnovel genewouldbebeneficialforbiotechnologicalapplications.Approximately54,000completemicrobialgenomesequences areavailableinpublicdomain.Thedevelopmentofgeneticallyengineeredplantsthroughthecloningofnovelmicrobial geneshelpedtoconferresistanceagainstdiseases,byprovidingtolerancetowardherbicidesandotherstressconditions, whichinturnimprovestheplantyield(MacdonaldandSingh,2014).

However,theapplicationofinnovativegenecloningtechniqueswashelpfulinfewergeneinsertionsandmultiplexing (combinationofafewtargets).Futureresearchshouldfocusontheapplicationofmultigenicapproachinwhichmorethan onegenecanbeincorporatedtocreatetransgenicplants.Also,applicationofnewtoolsandresourcesforthebuildingof syntheticgenomeclustersfrommicrobiomescanalsobeexploredforthecomplexheterologouspathwayintroductioninto plants(Shihetal.,2016).Thisstrategywillbebeneficialfortransferoftraitslikediseaseresistanceandstresstolerance

betweencropplants.Further,therateofnovelgenediscoverycanbeintensifiedbyexploringnewcapabilitiesintrait discovery.

Accordingto BarakateandStephens(2016),aholisticapproachofCRISPR-Cas9-basedforwardgeneticscreenwillbe helpfulinthenearfuturetoelucidateplant-microbiomeinteractionsfollowedbythediscoveryofnovelgenesandtranscend ofindividualgenesforbiotechnologicalapplications.Genomeinformationneedstobeexploredtoexpandourunderstandingtowardnoveltrait-relatedmicrobialmetabolicpathways.Completeelucidationandinvestigationofnewmetabolicpathwayswillbehelpfulintheconstructionandengineeringofmicrobialcellfactorieswhichinturnwillleadto theproductionofdesiredcompoundsathigherlevelthatcanbecharacterizedfurther.Plantcultivationinasustainable mannerrequiresthecumulativecontributionofseveralbacterial-derivedmetabolitesfortheirhealthandgrowth improvement.

Metabolitesplayakeyroleinplanthealthinseveralwayssuchassomemetabolitestriggerthereleaseofsignalmoleculesdirectlyforenhancedplantgrowthwhereasotherscanindirectlycontributetoplantgrowthbyinhibitingplantpathogensorbybuildingupbeneficialmicrobiomearoundtheplant.Hence,toenhanceplant-microbeinteractions,theultimate futuregoalshouldbetheintegrationofsoilamendments,applicationofbiocontrolmicrobe-basedformulations,microbial biofertilizers,optimizedmicrobiomes,andsoil-specificmatchingmicrobe-optimizedcrops.Clearly,majorresearchefforts arerequiredforsustainableimprovementofcropyieldstoaddressfoodsecurityissues.Overall,newsustainablepractices involvingemergingmicrobiomesaswellastheexistingmicrobialtechnologiesaredesirabletoincreaseagriculturalproductivity.Increasingconcernofgrowersandconsumersforfoodsecurityinclinedthemtowardmicrobial-basedsolutions. However,successfulimplementationofthesesustainablepracticesfaceschallenges.Thesepracticesneedtobehighlighted followedbytheupgradationofregulatoryframework(e.g.,productsregistration,safetyrequirements).Transformationof thesustainableagricultureisbasedontheemergingmicrobial-basedsolutions.Successof Homosapiens iscertainlybased ontheagriculture;itispossibletoimplementmultipleSDGswhensuchanapproachisaddressedsystematically.

1.8Concludingannotationsandscenarios

Plant-microbeinteractionintherhizosphereandcomplexmechanismbehindthisneedsdetailedinvestigationasitisstillin itsinfancy.Earlierexperimentalevidencesrevealedimportantroleofrootmicrobiomeinplanthealthandalsosuggested thatitscompositioniscontrolledbytheplantitself.Themechanismbehindtheevolutionaryselectionofthemostfavored plantsmanagesorselectsthebeneficialmicrobiomefortheirreproductivesuccess.Itappearsthatplant-microbeinteraction istheresultofnaturalselectionpressureduetowhichplantscallformicrobialhelpwheneverneeded.Inthenearfuture manysuchselectiveforcesrequiredforshapingplantrootmicrobiomeandtheireffectsonplantshealthwillberevealed, becausetheadventofnext-generationsequencingtechniqueswillcertainlyopenupnovelopportunitiestowardthestudyof existinginterplaybetweenplantanditsassociatedmicroflora.

Hitherto,variousmetagenomicstudiesassociatedwiththerootmicrobiomehaverevealedtheirphylogeneticcompositionwhichinturnprovidesalimitedinsightintotheexistenceofspecificoperationaltaxonomicunits.Furtheradvancement inthefieldoffunctionalmetagenomicsandtranscriptomicswillprovideinformationrelatedtomicrobiome-associated activitiesandfunctions.Eventually,cumulativeapplicationsofalltheseadvancedtechnologiestoupliftcropquality andproductivitydependonthemechani smthroughwhichplantsandmicrobio mescontributetowardthehealthof eachother.

References

Aarab,S.,Ollero,J.,Megı´as,M.,Laglaoui,A.,Bakkali,M.,Arakrak,A.,2015.Isolationandscreeningofinorganicphosphatesolubilizing Pseudomonas strainsfromricerhizospheresoilfromNorthwesternMorocco.Am.J.Res.Commun.3,29–39.

Abhilash,P.C.,Powell,J.R.,Singh,H.B.,Singh,B.K.,2012.Plant–microbeinteractions:novelapplicationsforexploitationinmultipurposeremediation technologies.TrendsBiotechnol.30,416–420.

Akhgar,A.,Arzanlou,M.,Bakker,P.,Hamidpour,M.,2014.Characterizationof1-aminocyclopropane-1-carboxylate(ACC)deaminase-containing Pseudomonas spp.intherhizosphereofsalt-stressedcanola.Pedosphere24,461–468.

Ali,S.Z.,Sandhya,V.,Rao,L.V.,2014.Isolationandcharacterizationofdrought-tolerantACCdeaminaseandexopolysaccharide-producingfluorescent Pseudomonassp.Ann.Microbiol.64,493–502.

Arzanesh,M.H.,Alikhani,H.,Khavazi,K.,Rahimian,H.,Miransari,M.,2011.Wheat(Triticumaestivum L.)growthenhancementby Azospirillum sp. underdroughtstress.WorldJ.Microbiol.Biotechnol.27,197–205.

Bai,Y.,Muller,D.B.,Srinivas,G.,Garrido-Oter,R.,Potthoff,E.,Rott,M.,etal.,2015.FunctionaloverlapoftheArabidopsisleafandrootmicrobiota. Nature528,364–369.

Bakker,P.A.,Pieterse,C.M.,VanLoon,L.,2007.Inducedsystemicresistancebyfluorescent Pseudomonas spp.Phytopathology97,239–243.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.