New and future developments in microbial biotechnology and bioengineering: microbial secondary metab

Page 1


NewandFutureDevelopmentsinMicrobial BiotechnologyandBioengineering:Microbial SecondaryMetabolitesBiochemistryand ApplicationsVijaiG.Gupta(Editor)

https://ebookmass.com/product/new-and-future-developmentsin-microbial-biotechnology-and-bioengineering-microbialsecondary-metabolites-biochemistry-and-applications-vijai-ggupta-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

New and Future Developments in Microbial Biotechnology and Bioengineering. Aspergillus System Properties and Applications 1st Edition Vijai G. Gupta

https://ebookmass.com/product/new-and-future-developments-inmicrobial-biotechnology-and-bioengineering-aspergillus-systemproperties-and-applications-1st-edition-vijai-g-gupta/ ebookmass.com

New and Future Developments in Microbial Biotechnology and Bioengineering: Crop Improvement through Microbial Biotechnology 1st Edition Ram Prasad

https://ebookmass.com/product/new-and-future-developments-inmicrobial-biotechnology-and-bioengineering-crop-improvement-throughmicrobial-biotechnology-1st-edition-ram-prasad/

ebookmass.com

New and Future Developments in Microbial Biotechnology and Bioengineering Ali Asghar Rastegari

https://ebookmass.com/product/new-and-future-developments-inmicrobial-biotechnology-and-bioengineering-ali-asghar-rastegari/

ebookmass.com

Governance and Multiculturalism: The White Elephant of Social Construction and Cultural Identities 1st ed. 2020 Edition Catherine Koerner

https://ebookmass.com/product/governance-and-multiculturalism-thewhite-elephant-of-social-construction-and-cultural-identities-1sted-2020-edition-catherine-koerner/ ebookmass.com

Abiotic and Biotic Stresses in Soybean Production: Soybean Production Volume 1 1st Edition Mohammad Miransari

https://ebookmass.com/product/abiotic-and-biotic-stresses-in-soybeanproduction-soybean-production-volume-1-1st-edition-mohammad-miransari/

ebookmass.com

Computer Network Security 1st Edition Ali Sadiqui

https://ebookmass.com/product/computer-network-security-1st-editionali-sadiqui/

ebookmass.com

COVID-19: The Essentials of Prevention and Treatment JieMing Qu

https://ebookmass.com/product/covid-19-the-essentials-of-preventionand-treatment-jie-ming-qu/

ebookmass.com

Le Pacte de l'étrange John Connolly [Connolly

https://ebookmass.com/product/le-pacte-de-letrange-john-connollyconnolly/

ebookmass.com

Sleep Through Insomnia Brandon R. Peters

https://ebookmass.com/product/sleep-through-insomnia-brandon-rpeters-3/

ebookmass.com

https://ebookmass.com/product/the-enterprise-linux-administratorjourney-to-a-new-linux-career-1st-edition-kenneth-hitchcock/

ebookmass.com

NEWANDFUTUREDEVELOPMENTSINMICROBIAL BIOTECHNOLOGYANDBIOENGINEERING

NEWANDFUTURE DEVELOPMENTSIN MICROBIAL BIOTECHNOLOGYAND BIOENGINEERING

MicrobialSecondaryMetabolites BiochemistryandApplications

ERAChairofGreenChemistry,DepartmentofChemistryandBiotechnology, SchoolofScience,TallinnUniversityofTechnology,Tallinn,Estonia

ANITA PANDEY

CenterforEnvironmentalAssessment&ClimateChange, G.B.PantNationalInstituteofHimalayanEnvironment&SustainableDevelopment, (AnAutonomousInstituteofMinistryofEnvironment,Forest&ClimateChange) Kosi-Katarmal,Almora,Uttarakhand,India

Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2019ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchas theCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions . ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenoted herein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changes inresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods, compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/or damagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-444-63504-4

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionEditor: KostasMarinakis

EditorialProjectManager: KelseyConnors

ProductionProjectManager: PoulouseJoseph

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

ListofContributors

Mohd.Aamir LaboratoryofMycopathologyandMicrobialTechnology,CentreofAdvancedStudyinBotany,Instituteof Science,BanarasHinduUniversity,Varanasi,India

MohdMusheerAltaf DepartmentofLifeScience,InstituteofInformationManagement&Technology,Aligarh,India

ElianaA.Alves DepartmentofChemicalEngineering,FederalUniversityofSantaMaria,SantaMaria,Brazil

AakritiBhandari GeneticsandTreePropagationDivision,ForestResearchInstitute,Dehradun,India

AasifMajeedBhat MicrobialBiotechDivision,CSIR-IndianInstituteofIntegrativeMedicine,Srinagar,India

MadhusmitaBorthakur MicrobiologyLaboratory,DepartmentofBiotechnology&Bioinformatics,North-EasternHill University,Shillong,Meghalaya,India

AliZineddineBoumehira FacultyofScience,UniversityofAlgiers,Algiers,Algeria;UniversityofSciencesandTechnology HouariBoumediene,FSB,LBCM,Algiers,Algeria

ThiarlesBrun DepartmentofChemicalEngineering,FederalUniversityofSantaMaria,SantaMaria,Brazil

VinaySinghChauhan DepartmentofBiotechnology,BundelkhandUniversity,Jhansi,India

EduardoJ.Chica FacultyofAgriculturalSciences,UniversityofCuenca,Cuenca,Ecuador

BalasubramanianCibichakravarthy MolecularMicrobiologyLab,DepartmentofBiotechnology,BharathiarUniversity, Coimbatore,India

Ta ´ ssiaC.Confortin DepartmentofChemicalEngineering,FederalUniversityofSantaMaria,SantaMaria,Brazil

KashyapKumarDubey BioprocessEngineeringLaboratory,DepartmentofBiotechnology,CentralUniversityofHaryana, Mahendergarh,Haryana,India

ManishKumarDubey LaboratoryofMycopathologyandMicrobialTechnology,CentreofAdvancedStudyinBotany, InstituteofScience,BanarasHinduUniversity,Varanasi,India

GauravRajDwivedi Department&SchoolofEnvironmentalSciences,BabasahebBhimRaoAmbedkarUniversity, Lucknow,India;MicrobiologyDepartment,ICMR-RegionalMedicalResearchCentreBhubaneswar,Bhubaneswar,India

HeshamA.El-Enshasy InstituteofBioproductDevelopment,UniversitiTeknologiMalaysia(UTM),Skudai,Malaysia;City ofScientificResearchandTechnologyApplications,NewBurgAlArab,Alexandria,Egypt

VijaiKumarGupta ERAChairofGreenChemistry,DepartmentofChemistryandBiotechnology,SchoolofScience,Tallinn UniversityofTechnology,Tallinn,Estonia

HocineHace ` ne FacultyofScience,UniversityofAlgiers,Algiers,Algeria;UniversityofSciencesandTechnologyHouari Boumediene,FSB,LBCM,Algiers,Algeria

GopinathHalder DepartmentofChemicalEngineering,NationalInstituteofTechnology,Durgapur,India

QaziParvaizHassan MicrobialBiotechDivision,CSIR-IndianInstituteofIntegrativeMedicine,Srinagar,India

AbdEl-LatifHesham DepartmentofGenetics,FacultyofAgriculture,AssiutUniversity,Assiut,Egypt

ThingujamIndrama DepartmentofBiotechnology,InstituteofBioresourcesandSustainableDevelopment,Imphal,India

S.R.Joshi MicrobiologyLaboratory,DepartmentofBiotechnology&Bioinformatics,North-EasternHillUniversity,Shillong, Meghalaya,India

DesRajKashyap DepartmentofMicrobiologyandImmunology,IndianaUniversitySchoolofMedicine-NW,Gary,IN, UnitedStates

RobinkaKhajuria DepartmentofBiotechnology,HarlalInstituteofManagementandTechnology,GreaterNoida,Uttar Pradesh,India

MohdSajjadAhmadKhan DepartmentofBasicSciences,BiologyUnit,HealthTrack,ImamAbdulrahmanBinFaisal University,Dammam,KingdomofSaudiArabia

DivjotKour DepartmentofBiotechnology,AkalCollegeofAgriculture,EternalUniversity,BaruSahib,Sirmour,India

RaquelC.Kuhn DepartmentofChemicalEngineering,FederalUniversityofSantaMaria,SantaMaria,Brazil

AnilKumar DepartmentofBiotechnology,TIFAC-COREBuilding,ThaparInstituteofEngineeringandTechnology,Patiala, India

ArvindKumar DepartmentofBiochemistry,FacultyofScience,VeerBahadurSinghPurvanchalUniversity,Jaunpur,India

DhirendraKumar MicrobialProcessDevelopmentLaboratory,UniversityInstituteofEngineeringandTechnology, MaharshiDayanandUniversity,Rohtak,Haryana,India;DepartmentofBotany,ChaudharyBansiLalUniversity,Bhiwani, Haryana,India

PunitKumar MicrobialProcessDevelopmentLaboratory,UniversityInstituteofEngineeringandTechnology,Maharshi DayanandUniversity,Rohtak,Haryana,India

LucianaLuft DepartmentofChemicalEngineering,FederalUniversityofSantaMaria,SantaMaria,Brazil

MarcioA.Mazutti DepartmentofChemicalEngineering,FederalUniversityofSantaMaria,SantaMaria,Brazil

MukeshMeena LaboratoryofMycopathologyandMicrobialTechnology,CentreofAdvancedStudyinBotany,Instituteof Science,BanarasHinduUniversity,Varanasi,India;DepartmentofBotany,UniversityCollegeofScience,Mohanlal SukhadiaUniversity,Udaipur,Rajasthan,India

P.K.Mishra DepartmentofChemicalEngineeringandTechnology,IndianInstituteofTechnology(BHU)Varanasi, Varanasi,India

MadhumantiMondal DepartmentofChemicalEngineering,NationalInstituteofTechnology,Durgapur,India

RamNaraian DepartmentofBiotechnology,MushroomTraining&ResearchCentre(MTRC),FacultyofScience,Veer BahadurSinghPurvanchalUniversity,Jaunpur,India

GunapatiOinam DepartmentofBiotechnology,InstituteofBioresourcesandSustainableDevelopment,Imphal,India

SolaiRamatchandiranePrabagaran MolecularMicrobiologyLab,DepartmentofBiotechnology,BharathiarUniversity, Coimbatore,India

P.WRamteke DepartmentofBiologicalSciences,SamHigginbottomUniversityofAgricultureTechnology&Sciences (FormerlyAllahabadAgriculturalInstitute),Allahabad,India

KusamLataRana DepartmentofBiotechnology,AkalCollegeofAgriculture,EternalUniversity,BaruSahib,Sirmour,India

AliAsgharRastegari DepartmentofMolecularandCellBiochemistry,FalavarjanBranch,IslamicAzadUniversity,Isfahan, Iran

ManojRaturi GeneticsandTreePropagationDivision,ForestResearchInstitute,Dehradun,India

BalwantRawat DepartmentofAgricultureandForestry,GraphicEraHillUniversity,Dehradun,India

JanhviMishraRawat BotanyDivision,ForestResearchInstitute,Dehradun,India

M.SudhakaraReddy DepartmentofBiotechnology,TIFAC-COREBuilding,ThaparInstituteofEngineeringand Technology,Patiala,India

AabidManzoorShah MicrobialBiotechDivision,CSIR-IndianInstituteofIntegrativeMedicine,Srinagar,India

ShachiShah EnvironmentalStudies,SchoolofInterdisciplinaryandTransdisciplinaryStudies,IndiraGandhiNational OpenUniversity,NewDelhi,India

Shikha Department&SchoolofEnvironmentalSciences,BabasahebBhimRaoAmbedkarUniversity,Lucknow,India

SabaSiddiqui IntegralUniversity,Lucknow,India

BhanumatiSingh DepartmentofBiotechnology,BundelkhandUniversity,Jhansi,India

ShaliniSingh SchoolofBioengineeringandBiosciences,LovelyProfessionalUniversity,Phagwara,India

BrijeshSinghSisodia DepartmentofBiochemistry,RegionalAyurvedaInstituteofFundamentalResearch,(UnderCCRAS, MinistryofAYUSH,Govt.ofIndia),Pune,India;Biochemistrylaboratory,RegionalAyurvedaResearchInstituteforDrug Development,Gwalior,MadhyaPradesh,India

StefaniS.Spannemberg DepartmentofChemicalEngineering,FederalUniversityofSantaMaria,SantaMaria,Brazil

ManishSrivastava DepartmentofPhysics&Astrophysics,UniversityofDelhi,NewDelhi,India

NehaSrivastava DepartmentofChemicalEngineeringandTechnology,IndianInstituteofTechnology(BHU)Varanasi, Varanasi,India

NazaninTataeiSarshari DepartmentofMolecularandCellBiochemistry,FalavarjanBranch,IslamicAzadUniversity, Isfahan,Iran

OnkarNathTiwari CentreforConservationandUtilizationofBlueGreenAlgae,DivisionofMicrobiology,Indian AgriculturalResearchInstitute,NewDelhi,India

IzelmarTodero DepartmentofChemicalEngineering,FederalUniversityofSantaMaria,SantaMaria,Brazil

RamSanmukhUpadhyay LaboratoryofMycopathologyandMicrobialTechnology,CentreofAdvancedStudyinBotany, InstituteofScience,BanarasHinduUniversity,Varanasi,India

M.Vasundhara DepartmentofBiotechnology,TIFAC-COREBuilding,ThaparInstituteofEngineeringandTechnology, Patiala,India

SiddarthanVenkatachalam MarineNaturalProductsResearchLab,DepartmentofBiochemistryandMicrobiology,Rhodes University,Grahamstown,SouthAfrica;ArcticDivision,NationalCentreforPolarandOceanResearch,Vasco-Da-Gama, Goa,India

V.Venkatramanan EnvironmentalStudies,SchoolofInterdisciplinaryandTransdisciplinaryStudies,IndiraGandhi NationalOpenUniversity,NewDelhi,India

AjarNathYadav DepartmentofBiotechnology,AkalCollegeofAgriculture,EternalUniversity,BaruSahib,Sirmour,India

NeelamYadav GopiNathP.G.College,VBSPUniversity,Deoli-Salamatpur,Ghazipur,UttarPradesh,India

LuisAndre ´ sYarza ´ bal UnitofHealthandWellbeing,CatholicUniversityofCuenca,Cuenca,Ecuador;SchoolofBiology, FacultyofSciences,UniversityofLosAndes,Me ´ rida,Venezuela

AndleebZehra LaboratoryofMycopathologyandMicrobialTechnology,CentreofAdvancedStudyinBotany,Instituteof Science,BanarasHinduUniversity,Varanasi,India

MicrobiologyLaboratory,DepartmentofBiotechnology&Bioinformatics,North-EasternHillUniversity,

1.1INTRODUCTION

ThereisgeologicalevidenceoftheexistenceofmushroomsfromthefossilrecordofthelowerCretaceous periodabout130millionyearsago [1].Anthropologicalobservationsprovideevidenceoftheuseofmushrooms asasourceoffoodormedicinesbyhuntersorbyfoodgatherers.Mushroomswerenamed“theplantofimmortality”bytheancientEgyptians,some4600yearsago,asitwasadeliciouscuisinefavoredbytheroyals.Thefirst everreportofitsconsumptionasaroyaldishwaswrittenbyaGreekphilosopher,Theophrastus,duringthe period372 287BC.Mushroomsarewidelyacceptedasapalatablefoodsinceancienttimeinvariouscountries includingGreece,Russia,China,MexicoandLatinAmerica.MushroomsarrivedinIndiathroughthenorthwest viaAfghanistantoenterintothefamouscivilization,theIndusValley [2].AryansthroughouttheInduscivilizationputforwardmushroomsastheplantsin“RigVeda”withhallucinogenicpropertiesandtheywereusedin variousreligiousrituals.Inancientera,poisonousmushroomswereknowntobeas“soma”,wherethetribeof theIndusvalleywasseeninharvestingandsellingapoisonous Amanitamuscaria forvariousritutals [3].The extractfrompoisonousmushroomsalsoknowntobeas“Somarasa”wasusedforvarioustraditionalritualsto inducetheimmunesysteminanimmuno-compromisedindividualandalsohelpedingettingthelost.Thiswas somewhatresponsiblefortheearlyruinofthecivilization.Mushroomswasusedashallucinogenandalsofor blackmagicintheancienttimeduetoitssuddenappearanceafterrainwithoutproperbudorfruitingbody.

Thewordmushroomwasnamedafterthecultivationofthecommonbuttonmushroom, Agaricusbisporus, withastem(stalk),anumbrellashapecap(pileus),andgills(lamellae)underneaththecap.Theterm“macrofungi”wasfirstcoinedforBasidiomycotaandAgaricomycotawithadefinedfruitingbodythatcanbeeither

epigeousorhypogeousandiseasilyvisibletothenakedeye [4].Beingdiverse,theChineserefertomushrooms asthe“KingofthePlanet,”whiletheJapaneserefertothesameas“TheDiamondoftheForest.”Fungihas gaineditsimportanceinhistorybythedocumentationofdesserttruffle(Terfeziaarnenari)intheBibleasthe “BreadofHeaven”andalsoasthe“MannaoftheIsraelites” [5] Formitopsisofficinalis, abrownrottenfungus,is knownasthe“BreadofGhosts”bytheindigenouspeopleofthePacificNorthwestanduseittomarkthegrave ofShamenandareknowntotreatillnessescausedbysupernaturalpowers.Theybelieveinmushroomsporophoreforitsspiritcatchingabilities.Apartfromitsspiritualbeliefs,fewmushroomslike Exobasidiumvaccinii (EarsofGhost)areknowntoinfectstem,leaves,andflowersofEricaceousplantandsubsequentlyformbasidia coveredgillswhichareconsumedbytheindigenouscoastalgroupsofPacificNorthwestwhoconsideredthem tobeberries [6].Burk [7] reportedthespiritualandreligioususeofpuffballmushroomsbythepeopleofNorth Americawhobelievedthattheyhavetheabilitytowardoffghosts.InAsiathemycophilicsocietiesareassociatedwiththeindigenouspeopleofNortheastIndia,WesternGhats,andNorthwestIndiaandChina.Thelocal inhabitantscollectmushroomsfromtheirneighboringlocalities,meadows,andforestsforconsumptionandsell themtoearnrevenuefortheirfamilyduringthemonsoonseasonwhenotherforestnonwoodproductsare unavailableinthemarket.Amongthevariousspeciesofmushroomswhicharecommonlyconsumedbythepeopleare Termitophilous spp.,whichinclude T.microcarpus, T.aurantiacus, T.eurhizus, T.clypeatus,and T.Tyleranus [8].AfewindigenoustribesofNortheastIndia,suchasKhasisofMeghalaya,useatraditionaltechniquecalled “narsuh”forcookingmushrooms,wheretheyheatthetipofasmallironrodandplaceitinthemiddleofthe bowlcontainingacookedmushroom.Theybelievethattheheatreleasedfromthetipisresponsiblefordestroyingorabsorbingthepoisonousharmfulsubstancesfromthemushrooms [9].Thefruitingbodiesarewashedand boiledwithafewclovesofgarlic.Iftheclovesofgarlicturnblackincolor,theybelievethatthemushroomsare poisonousinnature,otherwisetheyaresafetoconsume.

Withregardstotheirtoxicity,thereisahistoryofrelevantpracticalobservationsrelatingtothepoisonousscenariosofmushrooms.TheperilousnatureofmushroomsisobservedinvariouspartsofIndia,mostprevalently intheNorth-Easternzonewherethemajorityofthepopulationdependsonforestproductsduringthemonsoon andpostmonsoonseasons.Therehavebeentragediesofmushroompoisoningfrequentlyreportedandafew instancesin2016werereported,suchasonApril6,8,and13wherethedeathtollrosetomorethan10afterthe consumptionofwildmushroomsinMawsawavillageofMawsynramandNongpriangofSohra,Meghalaya, India [10].OnApril22,2016,adeathtollofsixfrommushroompoisoninginRongdongvillageofSijuinGaro HilldistrictofMeghalaya,Indiawasreported [11].Thetoxiccomponentsareknowntobepresentinthefruiting capsofmushrooms [12]

Keepinginmindtheirpoisonousnature,mushroomspeciesareknownalsotoaccumulatenonpoisonous diversesecondarymetabolites,includingpolyphenols,alkaloids,terpenes,flavonoid,phenols,andsteroids.Ithas beenestimatedthattherearemorethan140,000mushroomswithsofaronly10%beingknown [4,13].Beingrich inproteincontent,theycanbeusedasasourceofproteinsupplementtoreducethegapofmalnutritionindevelopingcountriesandarecultivatedworldwide.Europeansareknowntohavecultivatedmushroomsincavesduringthe16thand17thcenturiesandtheChinesewereknowntoartificiallycultivatethemushroomsafew thousandyearsago.ThecultivationofmushroomsinIndiawasfirststartedin1940bySuandSeth [14] Mushroomsareknowntoconverttheagriculturalandforestcompostintoausefulcompostingbedandreduce thelevelofxenobioticsintheenvironment.

1.2MUSHROOMANDITSTAXONOMY

Thepreliminaryidentificationofmushroomstodistinguishdifferentstrainsisbasedonbothmorphological featuresduringfieldobservationandbythemicroscopicfeaturesoftheirspores,pileus,stipe,volva(ifpresent), andhost.Butthestudyofmorphologicalandmicroscopicfeatureshasleftmanyunsolveddilemmasbecauseof thepaucityofmorphologicalfeaturestogetherwiththeabsenceofphylogenicanalysis [15].Epigeneticfactors havemadethemorphologicalfeaturesunstablebothintra-andinterspeciesmakingithighlyincongruentwith themoleculardata,thusmakingthelattertheconfirmatoryidentification [16].Theupgradingofvariousstatisticalmethodsalongwithbioinformaticstoolshasmadetheevaluationoftheevolutionarycladeofaspecieseasier. Themolecularapproachhasbeenattemptedbyamplificationofspecifichypervariablegenelocibypolymerase chainreaction(PCR)orbyrestrictiondigestionofaspecificgenesequenceusingrestrictionfragmentlengthpolymorphism.ThestructuralgenesequencerRNAisknownforitswell-conservedregionsateithergenusorspecies 2

level.SophylogeneticanalysisformushroomisbasedonthepolymeraseamplificationofaconservedITSregion whichconsistsofITS1-5.8S-ITS2locatedbetweentherRNAgeneoftherDNAcistron [17 20].Alongwiththe nucleargene,certainproteingenes(tef1, rpb1, rpb2)havealsobeenconsideredaspowerfultoolsinthestudyof theevolutionarytraitsofthefungi [21,22].ThesequenceofafewconservedribosomalDNA(nSSUandnLSUr DNA)andmtDNA(COI)segmentsarealsobeingusedintheanalysisoffungalsystematicstudies.

Anarbitrarymarker-basedDNAprobetechniqueisalsoadvantageoustoidentifymushrooms,wherebythe polymerizedampliconsarerevealedbyelectrophoresisandarecharacterizedbydirectsequencing.Butabarcode toidentifythepoisonousstrainsfromtheirediblecounterpartsisyettobeanalyzedanddevelopedforrapid identificationofthevarieties.

Fewmushroomsmightbemorphologicalalikebutonemightpossessthetoxiccompoundwhileotherdoesnot. Theethniccommunitiesareoftenseenwithafallacytocharacterisethemushroomsbasedontheirpalynological, sporologicalandmorphologicaltraitwhichareinadequate.Butageneticmushroombarcodeisyettobeidentifiedwhichcanbeusedasamoleculartooltoidentifythenatureofthetoxicityofamushroom.Afewmushroomsinthegenus Psilocybe,thatis, P.semilanceata and P.cubensis,areknowntoproducehallucinogeniceffects whilethemorphologicallysimilar P.merdaria and P.montana inthesamegenusdonotproducesuchmetabolites [23].Afewofthehighlyfatalmushroomsfromthegenus Lepiota aremorphologicallysimilartotheediblemushroom Macrolepiota. Themushroomtoxinsarediverseandarecategorizedasamanitoxins,phallotoxins,monomethylhydrazine,orellanine,muscarine,ibotenicacid,muscimol,coprine,psilocybin,andpsilocin [24].The natureofthetoxicityofasinglespeciesalsodependsonthehabitatandvariousepigeneticfactors,thepreparationandconsumptiontechniques,orgeneticresistivityamongtheethnictribe.Forexample, Gomphusfloccosus,a poisonousmushroom,iswellknownforcausingaseveregastrointestinaldisorderintheUnitedStatesbutis knownasbeingedibleamongtheethnicgroupsofMeghalaya,Indiawithoutanysucheffects.

RapidmoleculartoolsalongwiththePCRamplificationofITS1locuswoulddifferentiatethehallucinogenic mushrooms Panaeolus and Psilocybe basedontheirpolymorphiclengthoftheregion [19,20].Acontradictory observationtotheabovestudywasreportedbyNugentandSaville [25],whereafewhallucinogenicmushrooms ofNorthAmericanspecieswereexaminedbasedonPCRamplificationofboththeITSregionofrDNA(ITS1) andalargeribosomalsubunitofthenucleolarRNA(nLSUrRNA).Theyconcludedthatthehighlypolymorphic ITSspandoesnotmatchwiththemorphologicalfeaturebutnLSUrRNAformsclustersanddifferentiatesthehallucinogenicfromnonhallucinogenicisolatesofdistantclades.

Ahighlytoxic Amanita mushroomencodes α-amanitin,anamatoxin(AMA1),andphallacidin,aphallotoxin (PHA1),whichareknowntobesynthesizedonribosomesandcanbestudiedbydesigningregion-specificprimers [26].Inastudytogetastandardbarcodeforpoisonousmushrooms,Qingetal. [27].reportedtheuseof threemarkers—thelargesubunitnuclearribosomalRNA(nLSU),theinternaltranscribedspacer(ITS),andthe translationelongationfactor1alpha(tef1α)—inapoisonous Amanita sp.ofChinaandconcludedthattef1α and nLSUcanbeproposedasbarcodesforthepoisonous Amanita,whileITScanbeusedasaprimarybarcodefor theidentificationofmushroomswithoutdifferentiatingthepoisonouscladefromtheedibleone.

1.3THETOXINSANDTHEIRPERILOUSCONNECTIONS

Toxicityfrommushroomsgenerallyoccursaftertheingestionofapoisonousvarietywhichisoftenmisidentifiedasanediblevarietybyamateurmushroomhunters.Theseverityofthepoisoningdependsonvariousfactors withtheconcentrationofthetoxinbeingthemostsevereone.Geographicaldemography,theamountconsumed, habitat,growthconditions,andthegeneticconstituentsoftheindividual,includingtheage,aremostlytherelevantfactorsformushroomtoxicity.Itisoftenseenthatthemushroomingestionresultsinhigherseverityinan olderpersonthanthatofchildrenorhealthyyoungadults.Apartfromthese,otherfactorsrelatedtomushroom toxicityarethecookingtechniquesandmethodofconsumption.Oftenitisobservedthatconsumptionofmushroomswithalcoholcausesahigherincidenceofpoisoning.Themostcommonexampleistheinkcapmushroom, Coprinopsisatramentaria.Whenconsumedalongwithalcohol,apoisonousmushroomresultsin“disulfiram”syndromeandlaterleadstoamyocardialattack. Coprinopsisatramentaria isknowntosecreteacyclopropylglutamine compound,coprine,andanactivemetabolite,1-aminocyclopropanol,whichblockstheenzymeacetaldehyde dehydrogenaseresponsibleforthebreakdownofacetaldehyde,anintermediateofalcoholinthebody [28,29]

Thetoxinsinmushroomsaregeneralizedbasedonthetargetedorganspecificity,mushroomphysiologywhere geographicalhabitatisalsoconsideredasavariant,theamountoftoxinconsumed,theseason,andthetimefrom

ingestiontotheonsetofsymptoms.Themostlethalamongallthemushroomtoxinsisacyclopeptide,theamanitin. Therearefouramanotoxins,thatis, α-amanitin, β-amanitin, γ-amanitin,and ε-amanitin,themostlethalbeing the α-amanitinfoundinthedeathcapofseveral Amanita sp., Galerina sp.,and Lepiota sp. α-Amanitinis knowntoinhibitRNApolymeraseIIandproteinsynthesis.Mostlypresentinthedeathcapof Amanitus sp.,it getseasilyabsorbedinthegastrointestinaltractandcausesseveregastrointestinaldisordersincludingnausea, vomiting,diarrhea,andhepatocellulardisorders.Apartfromthecommonlethaltoxinamanitin,gyromitrin (amonomethylhydrazine),orellanine,muscarine,coprin,ibotenicacid,andmyotoxinarealsoconsideredlethal basedontheamountconsumed.Gyromitrinisanunstablevolatilehydrazinecompoundwhichbreaksdownto formmonomethylhydrazinewhichisacarcinogen.Afewofthe Gyromitra sp.areedibleandcanleadtosevere fatalsymptomsbytheinhalationofthetoxiccompoundwhilecooking [30].Itisalsoinvolvedincertainhepatocellulardamageincludinghepaticnecrosisandjaundice.ThenextofthemushroomtoxinsisOrellaninefromthe Cortinariaceaefamily.ThefirstepidemiologyfromOrellaninewasobservedinPolandduringthe1950swhere morethan100peoplebecameillduetotheconsumptionof Cortinariusorellanus [31].Orellaninemainlyinterferes withtherenalsystemandcausesfattyliverandvariousothernephriticdisorders.Symptomsdonotappearimmediatelyafterconsumption.Itdependsontheindividualgeneticresistivitywhichcanlastfrom2 3daysto3weeks andincludessymptomslikeflu,nausea,vomiting,andheadacheleadingtorenalfailure [32] Inocybe and Clitocybe sp.areknowntoproduceatoxiccompoundmuscarinewhichisalsofoundintraceamountsin Boletus sp., Lactarius sp.,and Russula sp.MuscarineisknowntomimicacetylcholineandbindstotheneurotransmitteracetylcholinereceptorandinteractswithGproteintoinhibitadenylcyclaseanddecreasecyclicadenosinemonophosphate(cAMP).Symptomsofthistoxininvolveexcessivesweating,diarrhea,miosis,abdominalcramps,and salivationwhichareseenwithinanhourofconsumptionandlastforupto24hours.Themuscarineproducing mushroomsinclude Clitocybedealbata,whichisoftenmisidentifiedwithanedible Marasmiusoreadus. Anagonistto glutamateistheibotenateortheibotenicacidwhichisacommontoxinin Amanita sp.Itmostlyaffectsthenervous systemandeffectsareobservedwithin30 180minutesofconsumption.Charcoaltreatment,alongwiththedrug atropine,isoftenadministeredtothepatientafteribotenateconsumption [33].Ahallucinogeniccompoundpsilocybininthegenus Psilocybe isconvertedtopsilocininthebodyafewhoursafterconsumptionandresultsinthe alterationofthemind,includingsuicidalthoughts,psychosis,andconvulsions [34 37].Apartfromthese,afew toxinslikebolesatineandarabitol(sugaralcohol)arenonlethalandcauselesssevereabdominaldisordersand nausea.Thesearefoundinanediblemushroom,Oyster.Itsadverseeffectsdependontheageofandgeneticvariabilityamongtheconsumers.

Outof283speciesofmushrooms,100areknowntobehighlypoisonousandareoftenaccidentallyconsumed [38].Ninety-fivepercentofmushroompoisoningisduetothemisidentificationoflocalpoisonousoneswhich morphologicallymimicanediblevariety.Duringtheonsetofthemonsoonwhenthemushroomspeciestendto produceafruitingbody,accidentalmushroompoisoningisoftenacommonphenomenon.Mushroomsareoften gatheredbasedontraditionalethnomycologicalknowledgewhichisoftenpropoundingamyth.Thereisaneed toeducatethemassesandforresearchtohaveagreateremphasisonthelocalvarietyofthemushroomto discriminatethetoxiconesfromtheedibleones.

1.4PROSPECTSANDCONCERNSINTERMSOFHUMANHEALTH

Indiaisadiverseagroclimaticlandwithanincreasingpopulationandagronomicwaste,andthusthedemand forachemical-freefunctionalfoodwithpotentialhealthbenefitsisatapeak.Mushroomproductionisglobally acceptabletoconsumers,alongwithenvironmentalsustainability,asitdoesn’tcompeteforfarmlandsinceituses agriculturalwasteasitsbedtogrow.Itinducesdiversificationoftheagronomicfarmasitpromotesrecyclingof theagrowasteincludingperiodicindustrialwaste.Mushroomsupplementationtothedietcanbridgeproteinmalnutritionandcanimprovethesocioeconomicconditionsofthepopulation.Ediblemushroomsusuallyhaveasignificantlyhigherrateofcrudeprotein,digestiblecarbohydrate,dietaryfiberswhichactasprebioticstoenhancethe growthofbeneficiarymicrobesinthecolon,vitamins,andmineralswithatraceamountofsaturatedlipids.

Beingrichinantioxidant,mushroomsaresaidtoboos timmunity,inhibitthegrowthoftumors,lowerthe riskofcancer,detoxifythebody,andreduceinflammation.Thecommonoystermushroomisknownto decreasethelevelofcholesterol.Mushroomssuchasthebuttonmushroom, A.bisporus,mostlypossessergosterolinsteadofcholesterol,whichinthepresenceofsunlightbreaksaparttoformvitaminD2.Mushroomsare consideredtobeanimportantsourceofvitaminCandvitaminB.Mushroomshavebeenusedasfolk

medicinesforthousandsofyears.Theyarerichinactivepolysaccharides(β-glucans),whichupregulatethe immunesystemandactasscavengersoffreeradicals .Thepresenceofpolysaccharidesalsomakesthema potentanticancerousdrug.Phenolicsintheformsofflavonoids,phenolicacid,lignans,tannins,andterpenoids aresomeofthemajorcomponentsofmushroommetabolite sexhibitingantioxidantactivities.Phenoliccompoundsareknownasfreeradicalinhibitors;oxygenscavengerswhichinhibitthelipidoxidationinvivo [39] Thepresenceofafewsecondarymetabolitesinmushrooms, includingterpenes,alkaloids,steroids,andquinolones,makesthematargetsourcefornovelantimicrobialcompounds.Thetraditionalutilizationofmushrooms isseenamongtheethnictribesofSouthAsiancountries, throughtheirantineoplasticsandimmunoregulatory propertiesandtheyareconsidered asminipharmaceuticalfactories [40] .Fleshyfruitingbodymushroomscan beusedasapotentsourceofbiopharma ceuticalproductsduetotheirexcessivepolysaccharidesandtriterpenoids.Forthedevelopingcountries,theycanserveasagoodsubstituteforproteinmalnutrition [41].Astudy byChang [42] reportedthat2000mushroomsareedible,ofwhich20arecommerciallycultivatedandfourto fiveareindustriallycultivated.

1.5MUSHROOMSASDIETARYSUPPLEMENTS

Mushroomshavebeenusedasafooditemsincetimeimmemorial [43].Mushroomsareconsideredasthe world’slargestuntappedresourcesofdietarysupplements(Tables1.1and1.2 ).Theirconsumptionhas increasedduetothepresenceofhighamountsofproteincontentandtraceminerals [51,52].Incomparison withothereatables,includingfruit,vegetables,an dlegumes,mushroomsorbasidiomycetescanprovetobe betterasarichsourceofcertaindietaryfactorsthatcanbebeneficialtohumanhealthandgrowth [53].They areconsideredasahealthyfoodcontainingessentialfattyacidsandbeinglowinthenumberofcaloriesand highintheconcentrationofprotein,fats,andminerals [54].Aswildmushroomsareconsideredtohavegreater proteincontentthancommer ciallyavailablemushrooms,severalreportshaverevealedthattheyareusedin thediettocombatvariousdiseases [1] .ForadevelopingcountrylikeIndia,theycanserveasagoodsubstitute forproteinmalnutrition [41].Mushroomswithfleshyfruitingbodiescanbeusedasagoodsourceofbiopharmaceuticalproductsastheycontainp olysaccharidesandtriterpenoids [43] .Variousstudieshaveshownthat aftercooking,thenutritionalvaluewaslessindried sampleascomparedtothefreshlycollectedmushroom samples [55].Ingeneral,mushroomscontain90%waterand10%dryweight [56].InastudybyOrgundana andFagade [57],mushroomswerereportedtocontainabout16.5%drymatter,theapproximatecomposition ofthecrudeproteinis14.6%,crudefiberis7.4%,andcompositionoffatandoilisaround4.48%.Though mushroomsarecommerciallyusedasasourceofnutri tionalsupplement,theyhaveanadverseeffectonthe healthofhumansastheyarealsoconsideredasasourceofhumanpoisoningandareassociatedwithvarious carcinogenesesinanimalexperiments [53] .Amongthevarioushigherspeciesofbasidiomycetes,Agaricaceae arewidelyconsumedworldwide.Manypolysaccharid esandprotein-basedpolysaccharidesisolatedfrom Agaricaceaehaveantitumoractivityandspeci ficornonspecificimmuneresponseactivity [55,58 60].The

TABLE1.1 EssentialAminoAcidper100gofProteinsFromDifferentSources AminoacidMycoprotein(g)Egg(g)Milk(g)Wheat(g)Reference

[44]; http://www.mycoprotein.org

[44]; http://www.mycoprotein.org

[44]; http://www.mycoprotein.org

[44]; http://www.mycoprotein.org

[44]; http://www.mycoprotein.org

TABLE1.2 NutritionalCompositioninMushroomFruitingBodyg/100g(%ofDryMatter)

SpeciesCrudeproteinLipidCarbohydratesFiberReference

Armillariamellea

Auriculariapolytrica

[45]

Boletusaereus 26.92.13417.0 [49]

Bolusanthusspeciosus 28.12.928.621.0 [49]

Cantharelluscibarius 34.17 53.71.40

Tricholomaflavovirens 18.12.037.0 [46]

Tricholomaterreum

dietaryfibercontentofmushroomsisduetothepolysacch aridesandtriterpenoidscontainedinthem.Thecell wallsofmushroomcontainamixtureoffibrillarandmatrixcomponentswhichcomprisechitin,thepolymerof β 1 4linkages N -acetyl-glucosamineandpolysaccharidesof1 3linkageof β- D -glucansandmannans,respectively.Mushroomsbearmainlywater-insoluble dietaryfiberswhichincludebothchitinand β-glucans. Underunfavorableenvironmentalconditions,mushroom sregeneratespecialstructuresknownassclerotia, whicharecompactmyceliumstructuresbearingchitinand β-glucanswith β 1 3backbonesand1 6linked

sidebranches,andduetothistheyareconsideredtobeanovelsourceofthisdietarycomponentashuman enzymescannotdigestthem [43].

1.6PROTEINCOMPOSITION

Mushroomsarerichinproteincomponentscomprisingmostlytheessentialaminoacidcomponentslysine, histidine,arginine,threonine,andtryptophan,whicharecommonlynotpresentincereals.Thecomponentof lysinehasbeenreportedasamostabundantessentialaminoacidandmethionineandtryptophanaretheleast abundantaminoacids.Thecontentoffreeaminoacidislow,comprisingonly1%ofthedryweightofmushroom,thuslimitingthenutritionallevelbutparticipatinginthetasteofthemushroom [61].Theproteincomponentofamushroomdependsonitsgrowthsubstratum,thelevelofnitrogen,itslocation,thesizeofthepileus, andvariesamongspeciesandwithitsharvestingtime [62].Immatureprimordiacontaingreateramountsofproteinthanmatureprimordia,asreportedin A.bisporus and Pleurotus spp. [63].Thecompositiondoesnotchange duringovendryingofmushroomsto40 Cbutasignificantreductioninthecompositioncanbevisualizedupon boilingoffreshmushroom [61].Proteinproductionefficiencyformushroomsisabouttwicethatofcabbageand asparagus,4timesthatoforange,and12timesthatofapples [42].Onthebasisofdryweight,mushroomscontain65%proteinascomparedto25.2%inmilk,20%forporkmeat,4%forbeef,39.1%insoybean,7.3%inrice, and13.2%inwheat [42,64].AnearlystudybyRose [44] comparedthepresenceofallessentialaminoacidsfor thegrowthofmammaliancells,andrevealedthatthecompositionofaminoacidsinmushroomsisadequate exceptforphenylalanineandmethionine.Thepalatabletasteofthemushroomisenhancedbythepresenceof asparticandglutamicacidwhicharemonosodiumglutamate-likecomponents [65].Ithasbeenreportedby BauerPetrovska [66] thatthemeanlevelofproteinfractionssuchasalbumins,prolamines,globulins,glutenins, glutenin-likematerial,andprolamine-likematerialarelikelytobe24.8%,5.7%,11.5%,11.5%,7.4%,and5.3%, respectively.Proteinsandpeptidesproducedbymushroomspossessinterestingbiologicalactivities,suchaslectin,anantimicrobialprotein,laccases,ribonucleases,ribosomeinactivatingprotein,andfungalimmunomodulatoryprotein [67].

Awiderangeofbioactivecompoundshasbeenisolatedfrommushroomswhichincludeprotein—polysaccharide complexes,proteins,polysaccharides,etc. [47,48].Amongthese,themostspecificislectinprotein,whichisa glycoproteinthatcanbindtocellsurfacecarbohydrateswiththeabilityofcellagglutination.Theyexhibit antiproliferativeactivitytowardtumorcelllines,specificallytohumanleukemicTcells,breastcancerMCF7 cell,andhepatomaHepG2cells,andcanrecognizehumanbloodgroupAdeterminantcarbohydrates [67] ThesacredmushroomReishi(Ganoderma sp.)containsapolysaccharide, β-glucan,whichcanstimulateor modulatetheleveloftheimmunesystembyactivatingTcellsandmacrophages,aswellasactivatingimmunoglobinlevelswhichcancombatandrespondagainstforeigncells [49].Thecrystalstructureoflectinprotein wasfirstdeterminedbyCiocietal. [50] asaregularseven-bladedbeta-propelerfoldwithanN-terminal regionbeingstuckintothecentralcavityaroundapseudosevenfoldaxis.Ribosomeinactivatingprotein enzymeswhicheliminateoneormoreadenosineresiduesfromrRNAinactivateribosomesandinhibitthe proliferationofHIV-1reversetranscriptaseactivity [68].

Anotherisolatedbioactivecompoundfrommushroomsislaccase.Thisisamulticopperoxidasewhichhas beenimplicatedininhibitingHIV-1reversetranscriptase,andtheproliferationofhepatomaHepG2cellsand MCF7tumorcells [69].Fungalimmunomodulatingproteinswereisolatedfromvariousmushrooms,including Ganoderma sp., Russulapaludosa, Pleurotuscitrinopileatus, Grifolafrondosa,and Antrodiacamphorate [70 77],with variousimmunomodulating,antitumor,andantiviralactivities.AnovelSe-containingproteinSe-GL-P(36kDa) isolatedfrom Ganodermalucidum usingammoniumsulfateprecipitationindicatedtheincorporationofselenium intheproteinintheformofselenocysteineandselenomethionineandhadapositiveresponsetowardinhibiting themultiplicationoftumorcells [70].Variousotherproteinshavebeenisolated,includingtrichoginproteinfrom Tricholomagiganteum withantifungalactivityagainst Mycospaerellaarachidicola and Fusariumoxysporum [78].A reportbyChangetal. [79] assessedtheutilizationoftwoproteins, Agaricusbisporus lectinfrom A.bisporus and immunomodulating Agaricuspolytricha proteinfrom Auriculariapolytricha,thatshowedgoodstabilityafter thermal,freezing,acid,alkali,anddehydrationtreatments,thusindicatingtheproteinstobe stableimmunostimulantsforfood,health,andpharmaceuticalapplications [79].The14-3-3proteins,afamilyof conservedregulators(firstnamedin1967basedonitsfractionnumbersinDEAEcellulosechromatography anditspositionaftergelelectrophoresiswithamolecularmassof28.8kDa),canactaspotentialcandidates

foraphylogeneticrelationshipbecauseoftheirhighlyconservedsequenceswithsimilaracidicpIsandcantake partinvariousbiologicalprocesseswithfewerdeletions [80].Afewwereisolatedfrommushroomslike Sparassia crispa and Hericiumerinaceum.

1.7LIPIDCOMPOSITION

Fattyacidsareconsideredtoplayamajorroleinthefunctionoftheimmunesystemandinbalancingofhormonallevels [81].Inbasidiomycetes,thelipidcontentrangesfrom0.6%to18.4%(w/w) [82].Thefattyacidprofileofmushroomsisrelativelyhigherinbasidiomycetes,rangingfromsaturatedpalmiticacid(16:0)tooleicacid (18:1, Δ9c)andlinoleicacid(18:2, Δ9c,12c),whicharepresentinthemembraneofbasidiomycetes [82] Mushroomsaremostlydominatedbythepresenceofunsaturatedfattyacids.However,alowproportionofoleic acidischaracterizedbythemushroomspecies Agaricus spp.and Cantharelluscibarius [61]. Boletus speciesare knownfortheirhigherconcentrationsofmonoenicacid.Theconcentrationsofoleicacidarehigherin Boletusedulis, Boletuspiperatus, Boletussubglabripes, Boletuserythropus, Boletussubtomentosus,and Boletusvariipes,asreported byHanusetal. [81].Fromtheabovementioned Boletus species,thepolarlipids,includingphospholipidsand betaine,showeddiacylglyceryltrimethylhomoserineandphosphatidylcholineasmajorpolarlipidsofvarying concentrationsfrom72%to93%ofthetotalamountofpolarlipids.Neutrallipidcontentrangesfrom0.7%to 9.4%andtherangeofpolarlipidcontentinthecaseof Agaricus sp.rangesfrom2.4%to11.8% [82].Thenumber ofpolarlipidsaccountsformorethan50%oftotallipids.Unsaturatedfattyacidsaccountforanaverageof74.4% oftotalfattyacids.Theratiosofunsaturatedtosaturatedfattyacid(U:S)rangesfrom1.61for Lycoperdonpyriforme to5.36for B.edulis. DavidoffandKom [83] reportedthepresenceofisomercis-11ofheptadecenoicacidinthe basidiomycetes.Elaidicacid(18:1,D9t),acommonfattyacidinmilkfatandinthetissuesofruminantanimals andoccasionallyinseedoilsarefoundinafewbasidiomycetesasreportedbyPfeufferandSchrezenmeir [84]. Fromthehumannutritionalpoint,long-chainpolyunsaturatedlinoleicacidand α-linolenicacidareimportant forbasalmetabolisminhumansandmushroomsareknowntocontainallthesenutritionalvalues.Overall,the lowvalueoflipidcontentinbasidiomycetesisduetoalowproportionofdesirablen-3fattyacids.

1.8CARBOHYDRATESANDFIBERCONTENT

Thepolysaccharideofmushroomsisglycogenasopposedtothatofstarchinplants.Mannitol,glucose,and α,α-trehalose(α-D-glucopyranosyl-(1-1)-α-D-glucopyranoside)arethemainrepresentativesofmonosaccharides. Carbohydratesusuallyaccountfortheprevailingcomponentoffruitingbodies.However,thecontentsoftrehaloseandglucoseinthefruitingbodyofmushroomsarelow,intheorderof100pergramofdrymatter.In A.bisporus thesynthesisofmannitolismediatedbyNADPH-dependentmannitoldehydrogenaseusingfructose asitssubstrate.Itfunctionsasanosmolyte,whichgetsaccumulatedatahigherconcentrationinthefruiting body,whileaftersporulationitsamountdecreasesdrastically.Trehalosealsoservesasareservecarbohydratein A.bisporus,gettingsynthesizedinthemyceliumandlatertranslocatedtothefruitingbody [85].Mannitolconcentrationalsovarieswidelyamongbasidiomycetes.Theconcentrationisfoundtobeof1.0%,6.5%,and13.7%for drymatterof Tricholomaportentosum, Agaricusarvensis,and Lactariusdeliciosus,respectively [86] and0.8%,0.2%, 11.7%,and13.9%ofdrymatterof Lepistanuda, Lycoperdonperlatum , Ramariabotrytis,and C.cibarius,respectively [61].Theamountsoftrehaloseandmannitolgetreducedconsiderablywhileboilingthefreshmushrooms,while freezinganddryingresultinonlylimitedlosses [86].In C.cibarius,trehaloseandargininearethemostimportant compoundsforcarbonassimilation [86].Chitinisawater-insolublestructuralpolysaccharidethataccountsfor upto80% 90%ofdrymatterinthecellwallsofmushroom.Thechitincontentofdrymatterasreportedfrom eightsamplesof Boletus spp.rangedfrom6.8%to10.2% [55].Chitinbeingindigestibleforhumansapparently decreasestheavailabilityofothermushroomcomponents.

Informationondietaryfibercontentinwildgrowingmushroomshasbeenverylimited. Boletus spp.is reportedtocontain4.2% 9.2%and22.4% 31.2%ofdrymatterforsolubleandinsolublefibers,respectively [43,87].Cheung [88] determinedthehemicellulosesandpecticsubstancesinbasidiomycetes [88].Informationon chitinandfiberchangesduringdifferentpreservationandcookingremedyhasbeenlacking.Greatattentionhas recentlybeengiventothefibercontentofmushrooms,the β-glucanswhichactasahealth-promotingfactor [49].

Arecentstudyreportedthattwomushroomcarbohydratesinhibitbreastcancercellgrowthbyenhancingthe immunefunction [89].

1.9MINERALCOMPOSITION

Wildmushroomsareassumedtoaccumulatealargeamountofbothmacro-andmicrominerals.Mineralcontentvariesamongdifferentspeciesofbasidiomycetes.Researchon11differentmushroomspeciesshowedthe levelofpotassiumconcentrationin Tricholomasaponaceum tobearound39.8mg/g,whichislowerinthecaseof Laccarialaccata and Candidarugosa,being30.2and28.9mg/g,respectively [90].Seleniumcontentinthetubesand gillsofmushroomsarequitehigh.Seleniumactsasanantioxidantandisalsorequiredforthebiosynthesisof selenoenzymes,whichincludeglutathioneperoxidase,thioredoxinreductases,SelenoproteinW,SelenoproteinP, andiodothyronine5’-deiodinases.Seleniumcontentinmushroomsrangesfromapproximately5 μg/gin Lycoperdon spp.toabout200 μg/gin Albatrelluspes-caprae. KingBolete(B.edulis)isconsideredtocontainanaverageconcentrationofapproximately20 μg/gofselenium,whereasPinewoodKingBolete(Boletuspinicola)containsanaverageof40 μg/gbasedonitsdryweight.ThefruitingbodyofLuridBolete(Boletusluridus), Lepista luscina andParasolMushroom(Macrolepiotaprocera)contained,respectively,49,91,and47 μg/gofseleniumin crudemushrooms [91].Potassiumisnotdistributedevenlywithinfruitingbodies,theconcentrationseemstobe highestinthecapfollowedbythestipe,thesporeformingpart,andfinallythespores.Itseemstobehigherby 20-to40-foldsinthefruitingbodiesthantheremainingparts [92].Followingpotassium,thesecondmostabundantmajorelementinmushroomfruitingbodiesisphosphorus,whichrangesfrom5to10g/kgofdrymatter [61].Areportshowedahighamountofcalciumconcentrationof1.600mg/gin Craterellustubaeformis followed by10.50mg/gin Laccarialaccatta [90].Sodiumconcentrationisrelativelylowerinmushroomspecies,ranging from100to400mg/kgofdrymatter [61];asaresulttheyhavebeenconsideredgoodforpatientswithhypertension.Fewmushroomsincluding F.officinalis offerchlorineintheformofcoumarine,including6-chloro-4-phenyl2H-chromen-2-oneandethyl6-chloro-2-oxo-4-phenyl-2H-chromen-3-carboxylate [93].Asperthereportof RudawskaandLeski [94],totalsulfurcontentin Amanitarubescens and Xerocomuschrysenteron isfoundtobe between900and4400mg/kgdrymatter,respectively [94].Mushroomsareconsideredtocontainhighamounts oftraceelements,includingcadmium,mercury,lead,copper,andantimony,intheirfruitingbodies [95]. Agaricus spp.accumulatesahighlevelofmercuryandcadmiumuptoarangeof130mgofcadmiumperkgof dryweightofthefruitingbody [96].Othermercuryaccumulatorsinclude L.perlatum, Lepista sp.,and Macrolepiota sp. [96].Chromiumandnickelconcentrationsarehigherin L.deliciosus witharound4.51mg/kgof dryweight,and Tricholomaterreum has9.9mg/kgofdryweight [97].Mushroomsarealsoknownaszincaccumulators. Lactarius sp.isknownforitshigherconcentrationofzincwhichrangesfrom55.7to158mg/kgonthe basisofitsdryweight.Thegillsof Clitocybealexandri areconsideredtocontainahighamountofcopperwhich rangesfrom26.3to95.9mg/kgonitsdryweightbasis.Theconcentrationofironseemstobeslightlyhigherin Volvariellaspeciosa,rangingfrom220to7162mg/kg [98].

DuringtheChernobylaccident,mushroomfruitingbodies(radiotrophicfungi)wereseentoaccumulatehuge amountsoftoxicheavymetals [99].Ithasbeenreportedthatthenaturalradionuclide 40Kaccumulatesgreatlyin mushroomsandtheaccumulationfactorrangesfrom20to40 [92].However,the Boletus groupisconsideredto containahighamountofseleniumcontent [61].Theheavymetalradiocesiumisalsofoundtoagreaterextentin mushroomsinconiferousforestthanindeciduousforest [92]

1.10CONCLUSION

Variouswildmushroomshavebeentraditionallyusedasasourceoffoodandmedicinesincetheancientera. However,largesectionsofthepopulationarestillunawareofthepositiveaspectsofmushroomsduetofragmentaryandpoorinformationabouttheirbioavailabilityandtoxicity.Theidentificationofthemushroomscanhelp themushroomshuntersforeasydetectionofthetoxiconefromtheirediblecounterpart.Withtheexcessivenutritionalpotencyofmushrooms,theyareconsideredtobenanofactoriesandthemushroomindustrycouldbea thrivingactivityworldwide.Butduetolackofknowledge,trainedmanpower,andinadequatemarketpricesupport,therehavebeenmajorhindrancestothisactivity.Further,alargenumberofpoisonousmushroomsresembletheirnontoxiccounterparts.Soitisofutmostnecessitytodifferentiatetheirtoxicnaturewhichwillhelpin

thefurtherdevelopmentoftheirbiologicalandtherapeuticapplicationsandopenvistasfortheirbioprospection anduseforhumanbenefits.Thisisexpectedtoopenthescopefortheirapplicationsinhealthpromotion,dietary feeding,andsustainableincomegeneration.Thedearthofinformationaboutthenutritionalandantioxidant propertiesofwildmushroomisoneofthemainreasonsholdingbackthewildmushroomindustry,sothereis anurgentneedtobioprospecttheirnutritivevaluesworldwide.

References

[1] B.A.Wani,R.H.Bodha,A.H.Wani,Nutritionalandmedicinalimportanceofmushrooms,J.Med.Plants.Res.4(24)(2010)2598 2604.

[2]S.M.Reddy,Diversityandapplicationsofmushrooms,in:B.Bahaduretal.(Ed.),PlantBiologyandBiotechnologyPlantDiversity, Organization,FunctionandImprovement,vol.I,pp.231 261.

[3] C.Heinrich,MagicMushroomsinReligionandAlchemy,ParkStreetPress,2002,p.221.

[4] S.T.Chang,P.G.Miles,Mushrooms:Cultivation,NutritionalValue,MedicinalEffectandEnvironmentalImpact.,CRCPress,1989, p.480.

[5] D.N.Pegler,Usefulfungioftheworld:thepoorman’strufflesandArabiaandMannaofthe Israelities,Mycologist.16(2002)8 9.

[6] M.S.Nicholson,Somespiritualisticusesofmushrooms,Fungi.2(2)(2009)26 27.

[7] W.Burk,PuffballusagesamongNorthAmericanIndians,J.Ethnobiol.3(1)(1983)55 62.

[8] B.Kumari,N.S.Atri,R.C.Upadhyay,Culinarystatusandsociobiologyof Termitophilous and Lepiotoid mushroomsofNorthWestIndia, WorldJ.Agric.Sci.8(4)(2012)415 420.

[9] P.Khaund,S.R.Joshi,WildediblemacrofungalspeciesconsumedbytheKhasitribeofMeghalaya,India,IJNPR.4(2)(2013)197 204.

[10]Mushroompoisoningcase:tollrisestofive. TheShillongTimes (2016,April13).

[11]Mushroomtragedyclaims3more;tollrisesto6. TheEasternToday,VoiceofthePeriphery (2016,April22).Mycoprotein.org, http://www. mycoprotein.org.

[12] J.Sharma,M.Malakar,E.Sandiguria,J.Das,AnexpressivestudyofmushroompoisoningcasesinLakhimpurdistrictofAssam, IJOART.2(9)(2013)82 88.

[13] O.V.Oyetayo,MedicinalusesofmushroomsinNigeria:towardsfullandsustainableexploitation,AfrJ.Tradit.Complement.Altern. Med.8(3)(2011)267 274.

[14] K.M.Thomas,T.S.Ramakrishan,I.L.Narsimhalu,Paddystrawmushroom,MadrasAgric.J.31(1943)57 59.

[15] D.S.Hibbett,M.Binder,J.F.Bischoff,etal.,Ahigher-levelphylogeneticclassificationofthefungi,Mycol.Res.111(2007)509 547.

[16] B.Feng,J.Xu,G.Wu,N.K.Zeng,Y.C.Li,B.Tolgor,etal.,DNAsequenceanalysesrevealabundantdiversity,endemismandevidence forAsianoriginoftheporcinimushrooms,PLoSOne7(5)(2012)e37567.

[17] Y.Q.Chen,B.Hu,F.Xu,W.Zhang,H.Zhou,L.H.Qu,GeneticvariationofCordycepssinensis,afruit-body-producingentomopathogenic speciesfromdifferentgeographicalregionsinChina,FEMSMicrobiol.Lett.230(2004)153 158.

[18] K.S.Kim,Y.S.Lee,Rapidaccuratespecies-specificdetectionofPhytophthorainfestansthroughanalysisofITSregionsinitsrDNA,J. Microbiol.Biotechnol.10(2000)652 655.

[19] J.C.Lee,M.Cole,A.Linacre,Identificationofmembersofgenera Panaeolus and PsilocybebyaDNAtest.Apreliminarytestforhallucinogenicfungi,ForensicSci.Int.112(2000)123 133.

[20] Y.M.Lee,Y.K.Choi,B.R.Min,PCR-RFLPandsequenceanalysisoftherDNAITSregioninthe Fusarium spp,J.Microbiol.38(2000) 66 73.

[21] T.D.Bruns,A.E.Arnold,K.W.Hughes,Fungalnetworksmadeofhumans:UNITE,FESIN,andfrontiersinfungalecology,NewPhytol. 177(2008)586 588.

[22] T.J.White,T.Bruns,S.Lee,J.W.Taylor,AmplificationanddirectsequencingoffungalribosomalRNAgenesforphylogenetics,in:M.A. Innis,D.H.Gelfand,J.J.Sninsky,T.J.White(Eds.),PCRProtocols:AGuidetoMethodsandApplications.,AcademicPressInc, NewYork,1990,pp.315 322.

[23] A.Zuber,M.Kowalczyk,A.Sekula,P.Mleczko,T.Kupiec,Methodsusedinspeciesidentificationofhallucinogenicandotherpoisonous mushroomsinforensicinvestigations,Probl.ForensicSci.86(2011)151 161.

[24]Botany.hawaii.edu. http://www.botany.Hawaii.edu.

[25] K.G.Nugent,B.J.Saville,Forensicanalysisofhallucinogenicfungi:aDNA-basedapproach,ForensicSci.Int.140(2004)147 157.

[26] H.E.Hallen,H.Luo,J.S.Scott-Craig,J.D.Walton,Genefamilyencodingthemajortoxinsoflethal Amanita mushrooms,Proc.Natl.Acad. Sci.104(48)(2007)19097 19101.

[27] C.A.Qing,T.Li-Ping,Y.Zhu-Liang,DNAbarcodingofeconomicallyimportantmushrooms:acasestudyonlethalAmanitasfrom China,PDR.34(6)(2012)614 622.

[28] H.Marchner,O.Tottmar,Acomparativestudyontheeffectsofdisulfiram,cyanamideand1-aminocyclopropanolontheacetaldehyde metabolisminrats,ActaPharmacol.Toxicol.43(3)(1978)219 232.

[29]D.R.Benjamin,Mushrooms:PoisonsandPanaceas:AHandbookforNaturalists,MycologistsandPhysicians.W.H.Feemanand Company(Eds.),NewYork,1995.

[30] J.F.Ammirati,J.A.Traquair,P.A.Horgen,PoisonousMushroomsofCanada:IncludingOtherInedibleFungi,Fitzhenry&Whitesidein CooperationWithAgricultureCanadaandtheCanadianGovernmentPublishingCentre,SupplyandServicesCanada,Markham, Ontario,1985,pp.119 120.

[31] B.H.Rumack,D.G.Spoerke,HandbookofMushroomPoisoning:DiagnosisandTreatment.,CRCPress,1994,p.250.

[32] R.G.Kilner,D’Souza,D.B.G.Oliveira,A.M.MacPheelain,D.R.Turner,J.B.Eastwood,Acuterenalfailurefromintoxicationby Cortinariusorellanus:recoveryusinganti-oxidanttherapyandsteroids,NDT14(11)(1999)2779 2780.

[33] R.C.Louis,Hallucinogenicmushroomtoxicity,MedScape.(2015).Retrieved30April.

[34] C.Hyde,P.Glancy,P.Omerod,D.Hall,G.S.Taylor,Abuseofindigenouspsilocybinmushrooms:anewfashionandsomepsychiatric complications,Br.J.Psychiatry.132(6)(1978)602 604.

[35] R.B.Mack,Phenomenallyphunnyphungi—psilocybintoxicity,NewcastleMed.J.44(10)(1983)639 640.

[36] T.Passie,J.Seifert,U.Schneider,H.M.Emrich,Thepharmacologyofpsilocybin,Addict.Biol.7(4)(2002)357 364.

[37] N.R.Peden,S.D.Pringle,J.Crooks,Theproblemofpsilocybinmushroomabuse,Hum.Exp.Toxicol1(4)(1982)417 424.

[38]V.BhartiWildmushroompoisoning:delayedtreatmentleadsto100%mortality,saysstudy. HindustanTimes (2015,March29).

[39] I.Palacios,M.Lozano,C.Moro,M.D’Arrigo,M.A.Rostagno,J.A.Martinez,etal.,Antioxidantpropertiesofphenoliccompoundsoccurringinediblemushroom,FoodChem128(3)(2011)674 678.

[40] M.E.Valverde,T.Herna ´ ndez-Pe ´ rez,O.Paredes-Lo ´ pez,Ediblemushrooms:improvinghumanhealthandpromotingqualitylife,Int.J. Microbiol.(2015).ArticleID376387,14pp.

[41]Kredics,L.G.Jimenez,S.Naeimi,D.Czifra,P.Urban,L.Manczinger,etal.,Achallengetomushroomgrowers:thegreenmoulddisease ofcultivatedchampignons,in:A.Mendez-Vilas(Ed.),CurrentResearch,TechnologyandEducationTopicsinAppliedMicrobiologyand MicrobialBiotechnology,2010,pp.295 305.

[42] S.T.Chang,Futuretrendsincultivationofalternativemushrooms,MushroomJ.215(1990)422 423.

[43] P.C.K.Cheung,Mini-reviewonediblemushroomsassourceofdietaryfiber:preparationandhealthbenefits,FoodSci.Hum.Wellness. 22(2013)1 5.

[44] W.C.Rose,Thenutritivesignificanceoftheaminoacidsandcertainrelatedcompounds,Science.86(1937)298 300.

[45] B.C.Lu,D.Y.Jeng,Meiosisin Coprinus.VII.TheprekaryogamyS-phaseandthepostkaryogamyDNAreplicationin,C.lagopus.J.Cell Sci.17(1975)461 470.

[46] I.Uno,M.Yamaguchi,T.Ishikawa,Theeffectoflightonfruitingbodyformationandadenosine3’,5’cyclicmonophosphatemetabolism in Coprinusmacrorhizus,Proc.Natl.Acad.Sci.71(1974)479 483.

[47] I.C.F.R.Ferreira,L.Barros,R.M.Abreu,Antioxidantsinwildmushrooms,Curr.Med.Chem.16(2009)1543 1560.

[48] D.N.Quang,T.Hashimoto,Y.Asakawa,Inediblemushrooms:agoodsourceofbiologicallyactivesubstances,Chem.Rec.6(2005) 79 99.

[49] S.P.Wasser,Medicinalmushroomsasasourceofantitumorandimmunomodulatingpolysaccharides,Appl.Microbiol.Biotechnol.60 (2002)258 274.

[50] G.Cioci,E.P.Mitchell,V.Chazalet,H.Debray,S.Oscarson,M.Lahmann,etal.,Beta-propellercrystalstructureof Psathyrellavelutina lectin:anintegrin-likefungalproteininteractingwithmonosaccharidesandcalcium,J.MolBiol.357(5)(2006)1575 1591.

[51] W.M.Breene,Nutritionalandmedicinalvalueofspecialtymushrooms,J.FoodProt.53(1990)883 894.

[52] T.B.Ng,Areviewofresearchontheproteinboundpolysaccharide(polysaccharopeptide,PSP)fromthemushroom Coriolusversicolor (Basidiomycetes:Polyporaceae),Gen.Pharmacol.30(1)(1998)1 4.

[53] L.R.Ribeiro,D.M.F.Salvadori,Dietarycomponentsmaypreventmutation-relateddiseasesinhumans,Mutat.Res.544(2003)195 201.

[54] M.Blackwell,Thefungi:1,2,3 5.1millionspecies?Am.J.Bot.98(3)(2011)426 438.

[55] P.Manzi,S.Marconi,A.Aguzzi,L.Pizzoferrato,Commercialmushrooms:nutritionalqualityandeffectofcooking,FoodChem.84 (2004)201 206.

[56] E.W.Crisan,Sands,Anutritionalvalue,in:S.T.Chang,W.A.Hayes(Eds.),TheBiologyandCultivationofEdibleMushrooms,Academic press,NewYork,1978,pp.172 189.

[57]Orgundana,O.Fagade,ThenutritivevalueofsomeNigerianediblemushrooms,in:MushroomScienceXI,ProceedingsoftheEleventh InternationalScientificCongressontheCultivationofEdibleFungi,Australia,1981,pp.123 131.

[58] U.Kues,J.D.Granado,R.Hermann,R.P.Boulianne,K.Kertesz-Chaloupkova,M.Aebi,The A matingtypeandbluelightregulateall knowndifferentiationprocessesinthebasidiomycete Coprinuscinereus,Mol.Gen.Genet.260(1998)81 91.

[59] M.F.Madelin,Theinfluenceoflightandtemperatureonfruitingof Coprinuslagopus Fr.inpureculture,Ann.Bot.20(1956)467 480.

[60] D.Moore,Developmentalgeneticsof Coprinuscinereus:geneticevidencethatcarpophoresandsclerotiashareacommonpathwayofinitiation,Curr.Genet.3(1981)145 150.

[61] P.Kalac,ChemicalcompositionandnutritionalvalueofEuropeanspeciesofwildgrowingmushrooms:areview,FoodChem.113(2009) 9 16.

[62] A.J.Kakon,B.K.ChoudhuryMd.,S.Saha,Mushroomisanidealfoodsupplement,J.DhakaNationalMed.Coll.Hos18(1)(2012)58 62.

[63] H.S.Garch,P.K.Khanna,G.L.Soni,Nutritionalimportanceofmushrooms,in:S.T.Chang,J.A.Buswell,S.W.Chiu(Eds.),Mushroom BiologyandMushroomProducts,ProceedingsoftheFirstInternationalCongress,TheChineseUniversityPress,HongKong,1993, pp.227 236.

[64] N.S.Atri,S.K.Sharma,R.Joshi,A.Gulati,A.Gulati,Aminoacidcompositionoffivewild PleurotusspecieschosenfromNorthWest India,Eur.J.Biol.Sci.4(1)(2012)31 34.

[65] X.M.Wang,J.Zhang,L.H.Wu,Y.L.Zhao,T.Li,J.Q.Li,etal.,Amini-reviewofchemicalcompositionandnutritionalvalueofedible wild-grownmushroomfromChina,FoodChem.151(2014)279 285.

[66] B.BauerPetrovska,ProteinfractioninedibleMacedonianmushrooms,Eur.FoodRes.Technol.212(2001)469 472.

[67] X.Xu,H.Yan,J.Chen,X.Zhang,Bioactiveproteinsfrommushrooms,Biotechnol.Adv.29(2011)667 674.

[68] J.H.Wong,H.X.Wang,T.B.Ng,Marmorin,anewribosomeinactivatingproteinwithantiproliferativeandHIV-1reversetranscriptase inhibitoryactivitiesfromthemushroom Hypsizigusmarmoreus,Appl.Microbiol.Biotechnol.81(4)(2008)669 674.

[69] G.Q.Zhang,Y.F.Wang,X.Q.Zhang,T.B.Ng,H.X.Wang,Purificationandcharacterizationofanovellaccasefromtheediblemushroom Clitocybemaxima,ProcessBiochem.45(5)(2010)627 633.

[70] M.Du,L.Zhao,C.R.Li,G.H.Zhao,X.S.Hu,PurificationandcharacterizationofanovelfungiSe-containingproteinfromSe-enriched Ganodermalucidum mushroomanditsSedependentradicalscavengingactivity,Eur.FoodRes.Technol.224(5)(2007)659 665.

[71] P.V.Jeurink,C.L.Noguera,H.F.J.Savelkoul,H.J.Wichers,Immunomodulatorycapacityoffungalproteinsonthecytokineproductionof humanperipheralbloodmononuclearcells,Int.Immunopharmacol.8(8)(2008)1124 1133.

[72] H.X.Wang,T.B.Ng,Ganodermin,anantifungalproteinfromfruitingbodiesofthemedicinalmushroom Ganodermalucidum,Peptides 27(1)(2006)27 30.

[73] S.Maiti,S.K.Bhutia,S.K.Mallick,A.Kumar,N.Khadgi,T.K.Maiti,Antiproliferativeandimmunostimulatoryproteinfractionfromediblemushrooms,Environ.Toxicol.Pharmacol.26(2)(2008)187 191.

[74] J.N.Chen,Y.T.Wang,J.S.B.Wu,Aglycoproteinextractedfromgoldenoystermushroom Pleurotuscitrinopileatus exhibitinggrowthinhibitoryeffectagainstU937leukemiacells,J.Agric.FoodChem.57(2009)6706 6711.

[75] Y.L.Lin,Y.C.Liang,Y.S.Tseng,H.Y.Huang,S.Y.Chou,R.S.Hseu,etal.,Animmunomodulatoryprotein,LingZhi-8,inducedactivation andmaturationofhumanmonocytederiveddendriticcellsbytheNF-kappaBandMAPKpathways,J.LeukocyteBiol.86(4)(2009) 877 889.

[76] F.Sheu,P.J.Chien,K.Y.Hsieh,K.L.Chin,W.T.Huang,C.Y.Tsao,etal.,Purification,cloning,andfunctionalcharacterizationofanovel immunomodulatoryproteinfrom Antrodiacamphorate (bittermushroom)thatexhibitsTLR2-dependentNF-kappaBactivationandM1 polarizationwithinmurinemacrophages,J.Agric.FoodChem.57(10)(2009)4130 4141.

[77] N.Kodama,S.Mizuno,H.Nanba,N.Saito,Potentialantitumoractivityofalow-molecularweightproteinfractionfrom Grifolafrondosa throughenhancementofcytokineproduction,J.Med.Food.13(1)(2010)20 30.

[78] Y.X.Guo,H.X.Wang,T.B.Ng,Isolationoftrichogin,anantifungalproteinfromfreshfruitingbodiesoftheediblemushroom Tricholoma giganteum,Peptides.26(4)(2005)575 580.

[79] H.H.Chang,P.J.Chien,M.H.Tong,F.Sheu,Mushroomimmunomodulatoryproteinspossesspotentialthermal/freezingresistance, acid/alkalitoleranceanddehydrationstability,FoodChem.105(2)(2007)597 605.

[80] K.Horie,R.Rakwal,M.Hirano,J.Shibato,H.W.Nam,Y.S.Kim,etal.,Proteomicsoftwocultivatedmushrooms Sparassiacrispa and Hericiumerinaceum providesinsightsintotheirnumerousfunctionalproteincomponentsanddiversity,J.ProteomeRes.7(2008) 1819 1835.

[81] L.M.Hanus,I.Shkrob,V.M.Dembitsky,LipidsandfattyacidsofwildediblemushroomsofthegenusBoletus,J.FoodLipids.15(2008) 370 383.

[82] K.Pedneault,P.Angers,A.Gosselin,R.J.Tweddell,Fattyacidcompositionoflipidsfrommushroomsbelongingtothefamily Boletaceae, Mycol.Res110(2006)1179 1183.

[83] F.Davidoff,E.D.Kom,Fattyacidandphospholipidcompositionofthecellularslimemold, Dictyosteliumdiscoideum: theoccurrenceof previouslyundescribedfattyacids,J.Biol.Chem.238(1963)3199 3209.

[84] M.Pfeuffer,J.Schrezenmeir,Impactoftransfattyacidofruminantorigincomparedwiththosefrompartiallyhydrogenated vegetableoilsonCHDrisk,Int.DairyJ.16(11)(2006)1383 1388.

[85] A.Patyshakuliyeva,E.Jurak,A.Kohler,A.Baker,E.Battaglia,W.deBruijn,etal.,Carbohydrateutilizationandmetabolismishighlydifferentiatedin Agaricusbisporus,BMCGenomics.14(2013)663 676.

[86] L.Barros,J.S.Morais,I.C.F.R.Ferreira,EffectsofconservationtreatmentandcookingonthechemicalcompositionandantioxidantactivityofPortuguesewildediblemushrooms,J.Agric.FoodChem.55(2007)4781 4788.

[87] J.I.Rangel-Castro,E.Danell,P.E.Pfeffer,A 13C-NMRstudyofexudationandstorageofcarbohydratesandaminoacidsintheectomycorrhizalediblemushroom Cantharelluscibarius,Mycologia.94(2)(2002)190 199.

[88] P.C.K.Cheung,Dietaryfibrecontentandcompositionofsomeediblefungideterminedbytwomethodsofanalysis,J.Sci.FoodAgric. 72(1997)255 260.

[89] S.C.Jeong,S.R.Koyyalamudi,Y.T.Jeong,C.H.Song,G.Pang,Macrophageimmunomodulatingandantitumoractivitiesofpolysaccharidesisolatedfrom Agaricusbisporus whitebuttonmushrooms,J.Med.Food.15(2012)58 65.

[90] F.A.Ayaz,H.Torun,A.Colak,E.Sesli,M.Millson,R.H.Glew,Macroandmicroelementcontentsoffruitingbodiesofwild-ediblemushroomsgrowingintheEastBlackSearegionofTurkey,FoodNutr.Sci.2(2011)53 59.

[91] J.Falandysz,Seleniuminediblemushrooms,J.Environ.Sci.Health,PartC.26(2008)256 299.

[92] R.Seeger,Contentofpotassiuminhigherfungi,ZeitschriftfurLebensmittelUntersuchungundForschung.167(1978)23 31 (inGerman).

[93] C.H.Hwang,B.U.Jaki,L.L.Klein,D.C.Lankin,J.B.McAlpine,J.G.Napolitano,etal.,Chlorinatecoumarinsfromthepolyporemushroom Fomitopsisofficinalis andtheiractivityagainst Mycobacteriumtuberculosis,J.Nat.Prod76(10)(2013)1916 1922.

[94] M.Rudawska,T.Leski,Macro-andmicroelementcontentsinfruitingbodiesofwildmushroomsfromNoteckaforestinwest-central Poland,FoodChem.92(2005)499 506.

[95] J.Vetter,Arseniccontentofsomeediblemushroomspecie,Eur.FoodRes.Technol.219(2004)71 74.

[96] M.Lodenius,M.Herranen,Influenceofachloralkaliplantonthemercurycontentsoffungi,Chemosphere.10(1981)313 318.

[97] J.Vetter,E.Berta,Mercurycontentofsomewildediblemushrooms,FoodRes.Technol.205(1997)316 320.

[98] J.Vetter,Chromiumandnickelcontentofsomecommonediblemushroomspecies,ActaAliment.26(1997)163 170.

[99] M.Isiloglu,F.Yilmaz,M.Merdivan,Concentrationoftraceelementsinwildediblemushrooms,FoodChem.73(2009)169 175.

2 GeneticManipulationofSecondaryMetabolites Producers

AliAsgharRastegari1,AjarNathYadav2 andNeelamYadav3

1DepartmentofMolecularandCellBiochemistry,FalavarjanBranch,IslamicAzadUniversity,Isfahan,Iran

2DepartmentofBiotechnology,AkalCollegeofAgriculture,EternalUniversity,BaruSahib,Sirmour,India

3GopiNathP.G.College,VBSPUniversity,Deoli-Salamatpur,Ghazipur,UttarPradesh,India

OUTLINE

2.1Introduction13

2.2GeneticEngineeringoftheSecondaryMetabolic PathwayinPlants14

2.2.1FlavonoidsandAnthocyanins:Biosynthesis andRegulatoryGenes15

2.2.2Alkaloids15

2.2.3Terpenoids16

2.2.4CarboxybenzeneFormatives17

2.3SecondaryMetabolitesinActinomycetesby MetabolicEngineering18

2.3.1PrecursorEngineeringofCarbohydrateand FattyAcidMetabolism18

2.3.2TechnologyRegulatingSystems23

2.3.3EngineeringBiosyntheticStructuralGenes24

2.4The Aspergillusnidulans MAPKModuleand SecondaryMetabolism25

2.4.1DevelopmentModularControls25 2.5ConclusionsandFutureScope27 Acknowledgment27 References27

2.1INTRODUCTION

Thenumerousstepsinvolvedinthesecondarymetabolismofplantsplayasanintermediarybetweeninplant andecosysteminteractionsinvolvinginsects,plantmicroorganisms,andherbs [1,2].Thesecondarymetabolites containanaturallyoccurringcomponents,suchasphytoproteinsandphytolexins,toprotecttheplantsfrom insectsorotheranimalsthatmayotherwiseeatthem.Secondarymetabolitesmakeasignificantportionofhuman diet(flavor,color,andscent),andherbalcolorsarealsoobtainedfromvariousplantsandflowers.Furthermore, somesecondaryplantmetabolitesareusedtoproducedrugs,colors,insecticides,flavors,andperfumes.Inaddition,secondarymetabolismisanimportantstepinplantreproduction.Thelowdevelopmentofplantcultivation fortheproductionofsecondarymetabolitescausingusingofgene-splicing,andthisanencouragingapproachin thefield [2].Filamentousfungiproduceavariationofsmallmoleculestermedsecondarymetaboliteswhichare usedtoproducedrugssuchaspenicillinantibiotics,cholesterol-loweringdruglovastatin,andimmunosuppressantcyclosporine,aswellasrobustmycotoxinssuchasaflatoxinandfumonisin.Secondarymetaboliteshave playedamainkeyenvironmentalroleincreatingterritory,protection,communication,andprevention [3].

Thereareasmanyasabout23,000reportedsecondarymetabolitesbiologicallyproducedbymicroorganisms, ofwhichonly150areusedinpharmaceutical,agricultural,orotherfields.About45%ofallbiologicallyactive microbialmetabolitesareknown,and80%oftheseknowncompoundsareusedinpracticalapplications.More than10,000ofthesecompoundsareextractedfromactinomycetes.Approximately7600compoundsareproduced by Streptomyces specieswhichfallsunderactinomycetes [4].Drugsareproducedbychemicalsynthesisorsemiindustrialprocessesforcommercialuses.Thesemicrobialstrainsrequiresophisticatedproductionmethodsto separatethecompoundsthroughfermentation.Duetothesereasons,theproductioncostsinvolvedintheisolationandextractionofthesecompoundsarehigh,resultinginalimitedextractionofsecondarymetabolitesfrom thenaturallyavailablefungi.Itclearlyshowsthatthecostcannotbeloweredunlesstheproductionisincreased anditactuallyincreasesifanewcompoundisprocessed.Afterthediscoveryofantibioticsin1940,theexcessive productionofpharmaceuticalswasthebasisfortheincreaseinmicroorganismfermentation.Processesusingthe usual“mutate-and-screen”methodwasadvancedforpenicillinstrains,andthecurrentproductionofpenicillin from Penicilliumchrysogenum stands1000timesmorethan70g/l,whichwhichwasearlieronly60mg/l.The proteinproductionof Pseudomonasdenitrificans,100,000timesthemoresoluble,ofvitaminB2ofthrough Ashbya gossypii,andthisis40,000timesmoresolublethanthewater-solublevitamins,andthisisanotherwaytoheal withtheusageofmicrobestrains [5,6]

Geneticengineeringofsecondarymetabolitesisawaytoincreaseorreducethequantityofaspecificcompoundoragroupoftargetcompounds [7 11].Therearemorethanafewapproachestoreducetheproduction ofsomeunwanted(groupof)combination(s).ByreducingthelevelofcompatibleRNAtemplatesthroughantisensemethods,crystallizationorribonucleicacidinterpositionprocedures,orthroughtheexcessiveexpression ofantibodies,contrarytotheenzymaticstageinthepathway,canbeeliminated.Thechangeofcolorofflowers hasbeeneffectivelyachievedbyantisensegenemethod [12].Fluxdeviationtoacompetitivepathwayorincrease incatabolismarethenextgoalstobeachieved.Transferringpathwaystootherplantspeciesornaturalplantspeciesormicroorganismsareoftenthegoaltocumulatetheefficacyofspecificcompounds.Moreover,newcompoundsthatareyettobediscoveredfollowtwogeneralapproachestoincreasetheproductionofthese compounds.Initially,oneormoregeneswereusedtoovercomethespecificstepslimitingthespeedofthepathway,blockingcompetitivepathways,andreducingcatabolism.Thesecondapproachattemptstocontrolthemultiplebiosynthesisgenestoaltertheexpressionofregulatorygenes.Thischapteremphasestherecenteffortsto classifythegenesaccountableforthebiologicalproductionofnaturalproductsandtodeterminethecomplicated mechanismsofbiosynthesis.

2.2GENETICENGINEERINGOFTHESECONDARYMETABOLICPATHWAYIN PLANTS

Thefirstgeneticengineeringwasusedintheflavonoidandanthocyaninsynthesisastheirbiosynthesispathwayswerewellknownandtheconsequencescouldbesimplydetectedwithvariationsinthecoloroftheflower [8,9,13].Thevariousexperimentscarriedoutinvolvedexcessiveexpressionofdiversepathwaysofgenes,for instance,toproducenewflowercolorsusingnewplantcompounds.Duetotheirantioxidantnature,external surfacesinfoodadditivesandplantpigmentshaveastructurebasedonorsimilartothatofflavonewhicharea significanceroleindiet.Theterpenoidindolealkaloidpathwayisthenextgoalofgene-splicinglaborssince about15ofthealkaloidsofterpenoidandterpenoidindolealkaloidsareofindustrialsignificance,includingantitumoralkaloids,vinblastine,vincristine,andcamptothecin.Analternativeimperativedruggroupisanimportant secondaryplantmetabolite,consistingisoquinolinealkaloids,whichincludesignificantdrugssuchasmorphine andcodeine.Majorityofsecondarysubstancesareterpenoidsbyfar.Followingthecurrentfindingsofthe2-Cmethyl-D-erythritol-4-phosphate(MEP)taskinplastidialterpenoidbiosyntheses,suchasredfat-solublepigments andmonoterpenesandditerpenes,numerousgeneswereduplicatedinthispathway [14 17].Fat-solublered pigmentsaresignificantcolorantsandantioxidantsinmud,foods,andfruits,themostsignificantofwhichis vitaminAfrom β-carotene [18].Salicylicacid(SA)isamajornaturalproductconsideredtobeproducedasaconsequenceofresistancetothesystemafterstimulatingtheplantwithplantpathogens.Althoughthisisnotproven scientifically,ithaslongbeensupposedtobecomposedofphenylalanine.Cyanogenicglucosidesaretheproductsofacomprehensivepathwayofbiosynthesisofsecondarymetabolitesinheterologousplantspeciesby expressingbiosynthesisgenesofcyanogenicglucosidefrom sorghum bicolorin Arabidopsis [19].Theextract containscyanogeneticglycosidedhurrinwhichishydrolyzedvia β-glucosidasebytissueloss.

2.2.1FlavonoidsandAnthocyanins:BiosynthesisandRegulatoryGenes

Theredflavonoidpigmentfoundinplantshasanantioxidantproperty,andtosynthesizetheplantpigments havingastructurebasedonorsimilartothatofflavoneindietisthenextgoal.Alotofattemptsbeingmade withtomatoplantinthisregard.Chalconeisomerase(CHI),theprimarycatalystofflavonoid,playsanimportant roleinflavonolproduction [20].ExcessiveexpressionofPetuniaCHIgenecauseda78-foldincreaseinflavonoid intomatopeel.Afterwardprocessingthesetomatoes,a21-foldflavonolincreasewasgainedintomatopaste relatedtoun-transgenicrules.Excludingtheflavonoids,neithertransgenicherbsnorthetransgenictomatocan producesimilarresultsfromtheirindividualcontrols.Isoflavonesarefoundtoactasphytoalexinsinlegumes, whichmeansthatthebiogenesisfromthoseantimicrobialcompositionsisproducedviamicrobialinfections. ThesecompoundsaremadeintoArabidopsis,tobaccoplantsandcorn,whichisgenerallynotabletocombine thesecompoundswithexcessiveexpressionofisoflavonesynthase,thecytochromeP450catalyst [21,22].Thegenesisofisoflavonesfollowsthephenylpropanoidroutewhichresultsinextraenhancementofisoflavonebiosynthesisinheterologousplantspecies.Insteadofcontrollingnumerouspathwaysforgeneexpressioninsinglegene pathways,thetranscripteffectscanbeusedasasubstitute.

Inthecornnucleus,redflavonoidpigmentbiogenesisiscontrolledbytwotranscriptionagents,RandC1.The Rproteinisproducedbytheoriginalhelix loop helixproteincodedfromthevertebralproto-oncogenec-MYC, whiletheC1proteinishomologoustoproto-oncogenecMYB.Fullproteinintakeofflavonoidswasobtainedby overexpressingthetranscripteffectsofRandC1ininvitroculturedcorncell [23].Inadditiontotheexpression ofthetranscriptionfactorsofcornC1andR,thechalconesynthasegenestriggeredthebeginningofredflavonoidpigmentbiogenesisandexpandeddefiancetofungusinrice [24].In Arabidopsis,anMYB-typetranscript agent(PAP1)wasrecognizedthatproducedtheoverexpressiontocauseplantstohaveconcentratedpurplepigmentsduringdevelopment [25].Transcripteffectsmayalsoactasinhibitorsinnormalproducebuildup. EliminatingtheMYB4genesontheMYBelementin Arabidopsis,causedbyincreasedsurfaceofsinapateesters ontheleaf,increasedtheUV-Birradiationtolerance [26].Similarly,excessiveexpressionoftobaccofromthe MYBFaMYB1proteinfromstrawberriesprimesledtoareductioninflowerpigmentationandadecreaseinthe levelofredflavonoidpigmentandflavonolcompositions,demonstratedinthecropofthestrawberry,FaMYB1 wasrepressedintheflavonepigmentsroutefunctions [27].Suchconsequencesshowthatoptimumpathtechnologywithtranscriptioncontrollersneedspreciseinformationfromthecontrolroute.

2.2.2Alkaloids

2.2.2.1CrystallineandNitrogenousCompounds:BiogenesisandRegulatoryFactors

Alargeclassoforganiccompounds,includingcrystallineterpenesandnitrogenouscompoundsarethecandidatesforgene-splicing,outofwhicharound15crystallineterpenesandnitrogenouscompoundsareindustry critical,suchasantitumoralkaloids,(e.g.,thecytotoxiccompoundusedincancer,cisplatin,andcamptothecin). Suchnitrogenouscompoundscontributionapathimportantintoreasonablestrictosidine,andofwhichopinion, thatnumerouspathsofplantspeciesproducingalkaloidsareseparated.Thecodingsequenceoftryptophan decarboxylase(TDC),aswellasstrictosidinesynthase(STR),hasbeenwidelyconsideredinthecultivationof Catharanthusroseus cells [28].Excessiveexpressionof TDC instantlycausestryptaminelevelstogohigh,butnot tothatofalkaloids;highlevelsofalkaloidshavebeenaddressedin STR [29] TDC and/or STR arealsoexpressed innonalkaloid-producingplants [30,31].Nutritionoftransgenictobaccocellswithsecologanin [31,32] leadsto theproductionofstrictosidine,buttheglycoalkaloidproducedinitsplaceiskeptinthevacuoleastheindole alkaloidin C.roseus.Thisshowstheimportanceofthephysiologicalaspectsofsecondarymetabolismalongwith biosynthesis.Consequently,genesnotonlygeneratetheenzymesthatbreakdownthebiosyntheticstages,but alsoalterthepHandtransportroutes.Cellculture Weigelia “Styriaca”,formedbybiosynthesisofsecologanin, excessiveexpressionof TDC and STR genes,producesasmallquantityofajmalicineandserpentine.Thisshows thatthebiosynthesisofIndolealkaloidsinnonalkaloid-producingderivativesispossiblethroughtheexpression ofoneormoreheterologouspathwaygenes [31].Althoughbothgeneswereintegratedintoall150analyzed tobaccoplants,in26%oftheplantsbothtransgeneswereshutdown,atboth41%eitheroneofthetwogenes wereextinguishedandinbothgenes,33%expressed.

Thereisnospecificconnectionamongnumerousmergedproceedingsandcollecteddegreesoftranscription. Withintransgenicweedplants,24to110-foldchangesweredetectedintryptophandecarboxylaseandstrictosidinesynthaseactions.Thesecondtranscriptionalactivators,ORCA2andORCA3,exposednumerousregulatory stagesintheplantbiosynthesisoforganiccompoundsin C.roseus [33 35].Nevertheless,theexcessiveexpression

ofORCA3didnotincreasetheproductionofalkaloids,becausethe G10H genedoesnotcontrolthecodingofan electrontransferagentP450catalystwhichprecipitatesinthebiosynthesisofsecologanin.Athreetimesincrementinalkaloidsproductioncomparedtocontrolcellswasobservedonlyafterfeedingthesecologaninprecursor inloganin [35].BothORCA2andORCA3arecomplicatedintermsoftheexpressionofjasmonateinthereaction ofthealkaloidbiosynthesisgenesofterpenoidandalkaloids [33 35].Thefactistheydonotrein G10H,although thejasmonate-responseisgenetic [36],whichshowsthatanotherjasmonate-responsivetranscriptionalactivator reinsadivisionfrompathgene.Thistrainingpiececlearlyshowsthattheregulatorgenecanincreasethestate fromaseriesofcatalyststoapath,anditisessentialtoavoidtheexcessiveexpressionofeachgeneinadistinct pathway.

2.2.2.2IsoquinolineofNitrogenousOrganicCompoundsofPlant

Thedrugsetisthesecondmajorsubstancesofaplant,forexample,isoquinolineofnitrogenousorganiccompoundsthatcontainsignificantnarcoticdrugssuchasopium.Numerousroutesofthisalkaloidhavebeen explainedleadingtoamethodformetaboloustechnology.Yamadaetal. [37] assumedthatexcessiveexpression ofacatalystatthesiteofdivisionmustresultinexpandedflowviaadamagedarm.Withinthisbarbarianbiogenesis,acatalyst(S)-Scoulerine9-O-methyltransferase(SMT)takesthecontrolofthecoptisine:berberineextra columbamineinto Coptisjaponica cell [37].Excessiveexpressionfromthegeneleadstoanincreaseof20%in enzymeactivity,withtotalberberineandcolumbaminefrom79%oftotalalkaloidscontentinwildcellsto91% intransgeniccells.Theseexplanationsdemonstratethatthecurrentatadivisionpointcanbedifferentby metabolicengineering.Excessiveexpressionof C.japonica-SMTgeneinaplantcellof Eschscholziacalifornica,plant containingthisenzyme,hascausedtheproductionofcolumbamine,whichwasnotusuallyfoundinthisspecies, whichcanprovetobeanewmethodtocreatenewcompoundsintheplant(i.e.,combinatorialbiochemistry).As alikelywaytoproducenewalkaloids,the Thalictrumtuberosum O-methyltransferaseantitoxinwasintendedto changeheterodimericcatalystsbychangingsubstratesofhomodimers [38].

2.2.2.3TropaneAlkaloidsandPyrrolidineAlkaloids

Tropanewasthedrugstudiedindetailwithregardtothisgenetictechnologyofalkaloids [39] .Especially, analterationfromarsenictoscopolamineisveryprecious,whichwasthemainobjectofthisanalysis.An H6- β-hydroxylase(H6H)enzymecatalyzesthealteration. Withthisexcessiveexpressionofthatencodedfactor,H6H,inthecultivationofgenus Hyoscyamusmuticus hairroots,canincreasethesedativeandhypnotic surfacesbyabout100times.Onthecontrary,tocontrolthis,apoisonouscompoundwaspresentinhenbane forthemainnitrogenousorganiccompoundoftheplant [40] .Thissurfaceofhyoscyamine(around10times superiortothatofpreoperativemedicationintransgenicheritage)wassimilarintransgenicaswellascellularcells.Manyrecentattemptsweremadetoinc reasethefluxthroughbiosynthesispathways [37] .The putrescineN-methyltransferase(PMT)t obaccogeneincreasedsignificantlyin Atropabelladonna and Nicotiana sylvestris ,respectively,andthegenerationfromtropanealkaloid,amorepungentliquidmadebyreduction ofnitrogenousorganiccompounds,increasedquantifia bly.Inothernitrogenousorganiccompoundsorganizationbymethylputrescinetakestheprimaryroleineliminatingamineformedfromarginineduringputrefactionofthispoolofmetabolitepolyamidesynthe sis.AlthoughthehumbleincreaseinPMTactionwas foundtobeonly3.3-foldinthe A.belladonna strains,noincreaseinalkaloidlevelswasobservedandexcept thelevelofmethylputrescine.Insome N.sylvestris transgenicplants,thePMTactivityrises4 8times,while inothersitisreferredtoascosuppression.Transgeniclevelsshowa40%increaseinnicotine,whileincollaborationwithco-suppression,thelevelofnic otinewasonlytwopercentofthewildtype.

2.2.3Terpenoids

2.2.3.1Theessentialoilsofplantsandsimplederivatives

Alargeclassoforganiccompounds,includingterpenesexistedviadistantthatlargesetfromthesecond metabolite.Lookingthelatestdiscoveryoftheroleofthe(2 R,3 R)-2,3,4-trihydroxy-3-methylbutyldihydrogen phosphate(MEP)inthebiosynthesisofplastidialterpenoids,suchasthecarotenoidsandmonoterpenesand diterpenes,severalgenesofthispathwayhavebeencloned [14 44].CorrectingtheMEProutemaypossiblyhelp theusers.Forexample,thecosuppressorsequenceofnucleotides,complementaryapproach,wouldnoteliminate theelectrontransferagentsP450catalystwithinthenicotine-richleafepidermisofaplantglandandwillhelpto increasedefiancetowardbugs [41].Cembranoidrangechangesbya10-foldincreaseinunsaturatedmolecules

composedoflinkedisopreneunitscembratriene-olaswellasreducingthecembratriene-dioloxidationeffect.In anotherinstance,excessiveexpressionofthechimericalisoprenoidbiosynthesisfactorinsweetwormwood showedthattheincreaseofflowinonesynthesispathofcysticboneidresultsinatwotothreetimesincreased antimalarialactivity [42].Intomatoes,theexcessiveexpressionofS-linaloolsynthasetransgenesisincreasedthe monoterpenoidflavorcompoundS-linalool,comparedtocontrolplants,althoughnochangeswereobservedin otherlevelsofterpenoids [43].Gene-splicingcapabilitiesforfatformationwereinvestigatedinspearmint [16]. Theexcessgenecodingfor1-deoxy-D-xylulose5-phosphatereductoisomerase(DXR)inspearmintcausedherbs tohaveanincreasedXDRactivitybytwotofourtimes [15].Thisplanthasanaturalphenotypeandshowed approximately50%increaseinessentialoil(monoterpenoid)production.Growthandproductionofmonoterpenoiddecreasedinplantsfoundtoberesistanttocosuppression.Increasingthelevelofmentholinmintoilcan leadtopenetrationbycuttingoneofthecompetitivebranchesinthemonoterpenoidmetabolicnetworkto menthofuran [15].Anattemptismadetoavoidabranchthatremovesthepulegonechannelfromthepathwayof thementholrouteusingtheantisensegenefromthementhofuransynthaseeruptionclause.

2.2.3.2Carotenoids

Forvariousreasons,thepathwayforcarotenoidbiosynthesisistheextremelyengaginggoalofgene-splicing. Thefat-solubleredpigmentsexistasanessentialcolorinmuds,foods,fruits,andinhibitsoxidations;moreover, thefinalandmostimportantretinolispresentin β-redplantpigment.Theretinolinsufficiencyiscommon. Prefacefrom β-redplantpigmentsynthesistoessentialrice,withtheexcessiveexpressionofprephytoenediphosphatesynthase(originatingfromnarcissus),3,4-didehydrolycopene-forming,andcarotenoidbeta-end grouplyasetakesplace,thereforeacriticalsuccess [44].Anintroductionof β-carotenebiosynthesisintoriceis essential,withtheexcessiveexpressionofphytoenesynthase(causedbynarcissus),phytoenedesaturaseand lycopene β-cyclase,sothusansuccessiscritical [45].Intomatoes,contentof β-carotenehasbeenincreasedby theexpressionofa40-carbonintermediateinthebiosynthesisofcarotenoidsintofruitplasticizers.Hence,the wholeamountofcarotenoids,includingastraightresultbythislycopenecatalyst,isreduced [46].Anumberof fat-solubleredpigmentcatalystswereregulated.Decreaseinthenumberofthesepigmentlevelsislikelyaresult oftherestraintoffeedbacksomewhereinthepathway.Thedemonstrationofa40-carbonintermediatebymicrobialsynthaseinthebiosynthesisofcarotenoidsinglossyredfruitageincreasedtwotothreetimesthewholered fat-solublepigments.Othersurfacesbyplastidialtwotoomanythousandsofisopreneunitswerenotartificial andthisactivityfromdifferentcatalystswasnotontheparticularpath.Thisoverexpressionof3,4-didehydrolycopene-forming(βLcy)genewithaspecificpromoterexpandedthedirectproductionoftheenzyme, β-carotene, intomatoseventimes.Introducingthealgaefactorthatconverts β-redplantpigmenttoanenzymeinboth thepentosephosphatepathwayinorganismsandtheCalvi ncycleofphotosynthesis,producesketo-carotenoid inchromoplasts,especiallyinnectars.Thetotalleve lofcarotenoidsinthefloweroftransgenicplantsis increased [2]

2.2.4CarboxybenzeneFormatives

2-Hydroxybenzoicacid(2HA)isavitalsignalingparticleinherbswithcomplicatedsystematicdefianceend exposedtoherbpathogenicgerms.Althoughthisindicationisinsufficient,ithaslongbeensupposedtobecollectedofphenylalanine.Lately,ithasbeenrevealedthatSAisshapedinreplytopathogenicinfectionsisformed fromchorismateviaconversiontoisochorismatebyisochorismatesynthase(ICS).Microorganismsareproduced bySAthroughchorismatebychangingtoisochorismateequipment,andafterbeingseparatedfromthepyruvate group,itisproducedbythesalicylate-forming(SF)orsochorismatepyruvatelyase(IPL).Herbsthatdemonstrate excessivemicrobialcatalysts(ICSplusSF)invacuolesshowanaturalmorphologicaltype,yetraisethedefense ofthevirusandfungousbugs [2].The2HAorSAlevelwasincreased1000-foldcomparedwithwild-typeplants, butgrowthwasnotaffected.Thisinstantcatalyst,SF,lookslikeastepthatlimitsthecreationofthe2HA.The fusedproteinhasbeenconstructedbytwobacterialenzymesandwasintroducedtoArabidopsis [47].Plants withacytosolicenzymehadathreetimeshigher2HAlevelsbuta20-foldincreaseafterexpressionintheplastids.Theseplantsobviouslydisplayedareductioningrowth,whichmaybearesultoftheabsenceofisochorismicacidduetocreationofphylloquinone.Withthisactivityofweedproduction,thetransgenicproducerofSA islimited,thereforeICSproducestheexcessisochorismatefor2HAandphylloquinonebiosynthesis.The 4-hydroxybenzoate(4HB),similarto2HA,preservetheexistingshapethrough(S)-2-amino-3-phenylpropanoic acideitherstraightofchorismicacid.Hydeetal.[52]introducedthemicrobialubiCgeneencodingthat

chorismatepyruvatelyaseinto Lithospermumerythrorhizon hairyrootcultures,whichnormallyproducenaphthoquinoneshikoninbyphenylalaninepathway.Neveroverproductioninnaphtoquinoneswasobserved,even though4HBwasincorporatedfrombothpathways.

2.2.4.1Phytoanticipins(α-Hydroxynitrile-TypeAglyconeandofaSugarMoiety)

Theinstancebyanexpressionfromonecomprehensivemetabolism,thesynthesispathintotheheterologous herbkindtakesplace,providingclosetoexpressingbiosynthesisgenesofphytoanticipinsofgreatmilletinside rockcress [19].Thegenusoffloweringplantscoversphytoanticipins(S)-4-Hydroxymandelnitrile-β-D-glucopyranoside,hydrolyzedthrough β-D-glucosidasewithwebharm.Thisexpressionofnitriletakesplaceindefensive pestsandinsecticides.Dhurrinisproducedviatyrosinethroughtheactivityoftwomultifunctionalcytochrome P450enzymes(CYPs)andapreciseUDPG-glucosyltransferase.Theexcessiveexpressionofthefirstenzyme (CYP79A1)intheArabidopsisrouteincreasestotheformationof p-hydroxybenzoicacid,whichisnotnaturalfor thisplant [49,50].TherockcressherbsoverexpressoneormoregenusoffloweringplantcytochromeP450 geneticsproducenumerousglycosidesthatarederivedfromglucoseof4-hydroxybenzoate,shapedsincecyanide decay,yetnot(S)-4-Hydroxymandelnitrile-β-D-glucopyranoside.Speciously,nobodybythatseveralOligo1,4Æ 1,4glucantransferasehappenedintorockcresswerecapableofproducep-hydroxymandelonitrileglucosylateto methoddhurrin.Excessiveexpressionglucosyltransferaseofaspecialgenusoffloweringplantsinsidegrouping bythesesecondcytochromeP450geneticscausedthegenerationoforigininsiderockcress.Therockcress,agene thatproducesdhurrin,releasesuperiorgradesaboutnitrilebecauseofwebharm,whichproposesthis (S)-4-Hydroxymandelnitrile- β-D-glucopyranosidetakesplacehydrolyzedthroughinternal β-D-glucosidase.The sheettissuesofgeneticmaterialintowhichDNArockcressherbsweredeniedthroughthe Phyllotretanemorum caterpillarbythisinsectprotruderoot,aswellastheeatinglarvae,diedinthegeneticmaterialintowhichDNA leafage.Highlevelsofaforeignmetabolitewerethusproducedinaplantspecieswithoutnegativeeffectson growthandwithpositiveeffectsonresistanceagainstpests.

2.3SECONDARYMETABOLITESINACTINOMYCETESBYMETABOLICENGINEERING

Microbesexistinnumerousnarcoticsanddrugsincludingadditives,anticancercomposites,immunosuppressants,antibiotics,medicationswhichareindicatedforthetreatmentofparasiticdiseases,andinactivecatalyst mixes.Metabolousmanufacturing,toincreaseproduction,needstoaccessthemetabolicallystreams,through presentinghereditaryvariationsthroughoutthegeneticengineering,intothemethodsuchsustainsubordinate metabolites.Inaddition,thedevelopmentofmoderntechnologiessuchasDNAsequencing,transcriptionprofiling,genomics,proteomics,metabolomics,transcriptomics,andmetaboliteprofilinghascreatednewopportunitiestoengineermicroorganismsfortheproductionofnaturalproductsinhighyields [6].Instancesofthe approachesaboutsuchadvancesexistdefinedbelow,thatsummarizedin Table2.1 andaswellasaschemain [6] isshown(see Fig.2.1).

2.3.1PrecursorEngineeringofCarbohydrateandFattyAcidMetabolism

Theaccessibilityofbiosynthesisforerunnerstakespla cetheessentialinfluenceinthiseffectivenessabout auxiliarysubstances.Primarymetabolismisthesupplierforthoseprecursorsthataregenerallyformed throughthecatabolismofvariouscarbonsubstratessuch asfattyacids,monosaccharidesorproteins.Theidentificationandgeneticmanipulationofkeyenzymesreg ulatingcarbonfluxthroughthemetabolicnetworkof thecentralcarbonmetabolismcanleadtoanincreasein theavailabilityofaparticularprecursorasshownin Figs.2.1and2.2 .

Inthiscarbohydratemetabolism,glycolysisandhexosemonophosphateshunt(HMSorPPP)pathsexist, presentedin Fig.2.1 .AneffortwasmadetogeneticallymanipulatetheprimarystagesoftheEmbdenMeyerhofandPPPpathwaystoincreasethegenerationby β-lactamdrug,actinuronidine,aswellas(2Z,5Z)-3methoxy-5-pyrrol-2-ylidene-2-[(5-undecyl-1H-pyrrol-2-yl)methylidene]pyrrole.Thisglycolicpath,witha speciesofgram-positivebacteriumnotableforproduc ingclavulanicacid,ishereditarilyencodedthrough gap one,and gaptwo isencodedasGAPDHalteredbytriosephosphate(TPorG3P)to1,3-Bisphosphoglycericacid (1,3-PGAor1,3-BPG).Meanwhile,TPand(S)-2-Amino-5-guanidinopentanoicacidexistintothissynthesisvia the β-lactamdrug,theTPbuildupinsideconjugatedhiatus alterationincreasesalongwiththenoteworthy

TABLE2.1 IncreaseinProductionofSecondaryMetabolitesProducedbyActinomycetesAchievedbyMetabolicEngineering

Fredericamycin S.chattanoogensis Ribosomeengineering26

Formycin Streptomyceslavendulae Ribosomeengineering5.2 GE2270 P.rosea Ribosomeengineering1.8

Hydroxycitricacid Streptomyces U121Genomeshuffling5

Kanamycin Streptomyceskanamyceticus Self-resistance3.5

Megalomycin S.Erythraea Heterologousexpressionand6DOHmetabolism3.4

15-Methyl-6-dEB S.coelicolor Heterologousexpressionandplasmidco-integration4 25

Mithramycin Streptomycesargillaceus Upregulation2 16

MonensinB Streptomycescinnamonensis Fattyacidprecursors1.76 (Continued)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.