Nanotoxicity:PreventionandAntibacterial ApplicationsofNanomaterials(MicroandNano Technologies)1stEditionSusaiRajendran(Editor)
https://ebookmass.com/product/nanotoxicity-prevention-andantibacterial-applications-of-nanomaterials-micro-and-nanotechnologies-1st-edition-susai-rajendran-editor/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Nanomaterials for Sensing and Optoelectronic Applications (Micro and Nano Technologies) 1st Edition M. K. Jayaraj (Editor)
https://ebookmass.com/product/nanomaterials-for-sensing-andoptoelectronic-applications-micro-and-nano-technologies-1st-edition-mk-jayaraj-editor/ ebookmass.com
Nanomaterials Recycling (Micro and Nano Technologies) 1st Edition Mahendra Rai (Editor)
https://ebookmass.com/product/nanomaterials-recycling-micro-and-nanotechnologies-1st-edition-mahendra-rai-editor/
ebookmass.com
Applications of Nanomaterials : Advances and Key Technologies. Kalarikkal
https://ebookmass.com/product/applications-of-nanomaterials-advancesand-key-technologies-kalarikkal/
ebookmass.com
Business ethics Ninth Edition William H. Shaw
https://ebookmass.com/product/business-ethics-ninth-edition-william-hshaw/
ebookmass.com
The Wonder Brothers Frank Cottrell-Boyce https://ebookmass.com/product/the-wonder-brothers-frank-cottrellboyce/
ebookmass.com
Stellar Urges: a scifi alien romance (Alien Gladiator Kings Book 5) Jove Chambers
https://ebookmass.com/product/stellar-urges-a-scifi-alien-romancealien-gladiator-kings-book-5-jove-chambers/
ebookmass.com
Out of the Woods (Lunar Omegaverse Book 6) Shyla Colt
https://ebookmass.com/product/out-of-the-woods-lunar-omegaversebook-6-shyla-colt/
ebookmass.com
Rhapsody: A Rock Star Romance (Ash and The Basilisks Book 2) Holly Bloom
https://ebookmass.com/product/rhapsody-a-rock-star-romance-ash-andthe-basilisks-book-2-holly-bloom/
ebookmass.com
The European Union in a Changing World Order Antonina Bakardjieva Engelbrekt
https://ebookmass.com/product/the-european-union-in-a-changing-worldorder-antonina-bakardjieva-engelbrekt/
ebookmass.com
Psychiatric Interviewing E Book: The Art of Understanding: A Practical Guide for Psychiatrists, Psychologists, Counselors, Social Workers, Nurses, and Other Mental Health Professionals 3rd Edition, (Ebook PDF) https://ebookmass.com/product/psychiatric-interviewing-e-book-the-artof-understanding-a-practical-guide-for-psychiatrists-psychologistscounselors-social-workers-nurses-and-other-mental-healthprofessionals-3rd-edition-e/ ebookmass.com
NANOTOXICITY NANOTOXICITY PREVENTIONAND ANTIBACTERIALAPPLICATIONS OFNANOMATERIALS Editedby
SusaiRajendran
PSNACollegeofEngineeringandTechnology,Dindigul,India
AnitaMukherjee
DepartmentofBotany,CentreofAdvancedStudy,UniversityofCalcutta, Kolkata,India
TuanAnhNguyen
InstituteforTropicalTechnology,VietnamAcademyof ScienceandTechnology,Hanoi,Vietnam
ChandraiahGodugu
DepartmentofRegulatoryToxicology,NationalInstituteofPharmaceutical EducationandResearch(NIPER),Balanagar,India
RiteshK.Shukla
SchoolofArts&Sciences,AhmedabadUniversity,Gujarat,India
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom
50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2020ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).
Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.
BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-819943-5
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher:MatthewDeans
AcquisitionsEditor:SimonHolt
EditorialProjectManager:MarianaKuhl
ProductionProjectManager:DebasishGhosh
CoverDesigner:VictoriaPearson TypesetbyMPSLimited,Chennai,India
ListofContributorsix
Forewordxiii
PART1 Basicprinciples
1.Nanoparticle physiologicalmedia interactions3
R.Dorothy,N.Karthiga,S.SenthilKumaran,R.JosephRathish, SusaiRajendranandGurmeetSingh
1.1Introduction3
1.2Recentadvancesontheinteractionof nanoparticleswithbiologicalmedia5 References18
2.Invitromethodstoassessthecellular toxicityofnanoparticles21
KrupaKansaraandAshutoshKumar
2.1Introduction21
2.2Materialsandmethods23
2.3Conclusion38
Acknowledgments38 References38
3.Invivostudies:toxicityand biodistributionofnanocarriersin organisms41
NivyaSharma,MohdAslamSaifi,ShashiBalaSinghand ChandraiahGodugu
Listofabbreviations41
3.1Generaloverview43
3.2Typesofnanocarriers44
3.3Polymericmicelles56
3.4Dendrimers57
3.5Liposomes62
3.6Conclusion63
3.7Futuredirections64 References64
4.Standardbiologicalassaystoestimate nanoparticletoxicityand biodistribution71
JuhiShah,StutiBhagatandSanjaySingh
4.1Introduction71
4.2Invitromethodsfordeterminationof nanoparticletoxicity72
4.3Invivobio-distributionandtoxicityof nanoparticles85
4.4Conclusionandfutureaspects96 Acknowledgments96 Conflictofinterest97 References97
PART2 Toxicityofnanomaterials 5.Toxicityofmetaloxide nanoparticles107
ThodhalYoganandhamSuman,Wei-GuoLiand De-ShengPei
5.1Introduction107
5.2Metaloxidenanoparticles107
5.3Zincoxidenanoparticles108
5.4IronOxide-basedmagneticnanoparticles110
5.5TitaniumdioxideNanoparticles112
5.6Copperoxidenanoparticles114
5.7Toxicitymechanismofmetaloxide nanoparticles115
5.8Conclusion118 Acknowledgments118
Conflictsofinterest118
References119
Furtherreading122
6.Toxicityofsilverandother metallicnanoparticles125
T.Umasankareswari,GurmeetSingh,S.SanthanaPrabha, AbdulhameedAl-Hashem,S.SenthilKumaranand SusaiRajendran
6.1Introduction125
6.2Toxicityofsilvernanoparticles126
6.3Toxicityofgoldnanoparticles128
6.4Toxicityofcoppernanoparticles132
6.5Toxicityofironnanoparticles136
6.6Toxicityofzincnanoparticles137
6.7Conclusion139
Acknowledgment140
References140
7.Recentadvancesinthestudyof toxicityofpolymer-based nanomaterials143
A.SuriyaPrabha,R.Dorothy,S.Jancirani,SusaiRajendran, GurmeetSinghandS.SenthilKumaran
7.1Introduction143
7.2Recentadvancesinthestudyoftoxicityof polymericnanomaterials144
7.3Concludingremarks163 References163
8.Toxicityofpolymeric nanomaterials167
YubinLi,ShaofeiWangandDianwenJu
8.1Introduction167
8.2Classificationofpolymeric nanomaterials168
8.3Invitrotoxicityofpolymeric nanomaterials172
8.4Invivotoxicityofpolymeric nanomaterials174
8.5Mechanismsofpolymericnanomaterialsinducedtoxicity179
Acknowledgments185
Conflictofinterest186
References186
PART3 Preventionofnanotoxicity 9.Generalmethodsfordetectionand evaluationofnanotoxicity195 HaniNasserAbdelhamid
9.1Introduction195
9.2Generalnanotoxicitymethods196
9.3Mechanismofantibacterialactivities198
9.4Methodsfordetectionandevaluationof nanotoxicity198
9.5Conclusionandoutlooks208
Acknowledgment209 References209
10.Safer-by-designfornanomaterials215 L.Reijnders
10.1Introduction215
10.2Hazardandreleasereductionforengineered nanomaterialsinproductionand products217
10.3Reducingreleasestotheenvironmentfrom nanomaterialproductionandprocessing facilities217
10.4Safer-by-designhazardreductionofengineered inorganicandcarbonaceousnanomaterialsfor organisms218
10.5Reducingreleasestotheenvironmentof nanomaterialsfromrelativelylarge nanocompositesandproducts224
10.6Reducinghazardsoffragmentsreleasedfrom nanocomposites227
10.7Conclusions228 References228
PART4 Antibacterialactivityofnanomaterials
11.Antibacterialactivityofmetaloxide nanoparticles241
VojislavStani ´ candSladjanaB.Tanaskovi ´ c
11.1Introduction241
11.2EffectivephysicochemicalpropertiesofMONPsonantibacterialactivity242
11.3Antibacterialactivityofmagnesiumoxideand calciumoxidenanoparticles250
11.4Antibacterialactivityofaluminumoxide nanoparticles253
11.5Antibacterialactivityofsilveroxide nanoparticles254
11.6Antibacterialactivityofcopperoxide nanoparticles255
11.7Antibacterialactivityofzincoxide nanoparticles258
11.8Antibacterialactivityofironoxide nanoparticles261
11.9Antibacterialactivityoftitaniumoxide nanoparticles263 Acknowledgements266 References266
12.Antibacterialactivityofplatinum nanoparticles275
SusaiRajendran,S.SanthanaPrabha,R.JosephRathish,Gurmeet SinghandAbdulhameedAl-Hashem
12.1Platinumnanoparticles275
12.2Antibacterialactivity275
12.3Antibioticsandantimicrobial compounds276
12.4Determinationofthemicrobial activity276
12.5Recenttrendsintheantibacterialactivityof platinumnanoparticles276 References280
13.Antibacterialpropertyofmetal oxide-basednanomaterials283
MdAbdusSubhan
13.1Introduction283
13.2Mechanismofantimicrobialresistance285
13.3MethodstoevaluateMO-NPsantibacterial efficiency285
13.4Antimicrobialeffectofmetalandmetal oxidenanoparticles287
13.5Modeofantimicrobialactionbymetaland metaloxidesnanoparticles288
13.6Nanoparticlecharacteristicsandtheir influenceonantimicrobialactivity292
13.7Metaloxide-basedantibacterial membrane293
13.8Antibacterialfunctionsofmulti-metaloxide nanoparticles294
13.9Magneticbio-metaloxidemagnetosome296
13.10ToxicityconcernsofMO-NPsas antimicrobialagents297
13.11Conclusions,challenges,andfuture perspectives298 References299
14.Antimicrobialpropertiesofcarbon quantumdots301
TheodorosChatzimitakosandConstantineStalikas
14.1Introduction301
14.2Antibacterialpropertiesofcarbon nanodots302
14.3Conclusion313 References313
PART5 Emergingantibacterialandantifungal applications 15.Applicationsofnanotechnologyin agry-foodproductions319
J.L.Castro-Mayorga,L.Cabrera-Villamizar,J.Balcucho-Escalante, M.J.FabraandA.Lo ´ pez-Rubio
15.1Introduction319
15.2Nanoencapsulationtechniquesappliedtofood andagriculture320
15.3Nanosensorsinfoodandagriculture328
15.4Nanotechnologyappliedtoenvironmental remediation331
15.5Manufactureofprotectiveclothesforfarm workers332
15.6Conclusionandoutlooks333 References333 Furtherreading340
16.Nanoparticleapplicationsin sustainableagriculture,poultry,andfood: trendsandperspective341
N.ChandraMohana,P.R.Mithun,H.C.YashavanthaRao, C.MahendraandS.Satish
16.1Introduction341
16.2Nanoparticleapplicationsinagriculture342
16.3Nanoparticleapplicationsinpoultry347
16.4Nanoparticleapplicationsinfood347
16.5Nano-biosensorssustainableagriculture, poultry,andfood348
16.6Regulatoryaspectsofnanotechnologyin agriculture,poultry,andfood348
16.7Conclusionandfutureperspectives350 Conflictsofinterest351 References351
17.Antibacterialnanocomposite coatings355
TienVietVu,VanThangNguyen,PhuongNguyen-Tri,TheHuu Nguyen,ThienVuongNguyenandTuanAnhNguyen
17.1Introduction355
17.2Inorganicnanocompositecoating356
17.3Organicnanocompositecoating357
17.4Environmentalbenefitsandimpactsof antibacterialnanocompositecoatings360 References360
18.Antimicrobialnanomaterialsforwater disinfection365
NidhiVerma,SachinVaidh,GajendraSinghVishwakarmaand AlokPandya
18.1Introduction365
18.2Significanceofnanotechnology366
18.3Antibacterialmetaloxidesandmetal nanoparticles367
18.4Mechanismsfornanoparticle-mediated microbialdisinfection373
18.5Advancedtechnologiesfornanoparticle-based waterdisinfection375
18.6Somecommercializedproductsandtheir information377
18.7Currentstatusoftechnologytransfer,scaleup, andchallenges378 Acknowledgment379 References379
19.Nanomaterialsforantifungal applications385
K.Kavitha,N.Vijaya,A.Krishnaveni,M.Arthanareeswari,Susai Rajendran,AbdulhameedAl-HashemandA.Subramania
19.1Introduction385
19.2Recenttrendsinthestudyofantifungal activitiesofnanoparticles387 References397
20.Antibacterialnanocoatings399 MajidMontazerandTinaHarifi
20.1Introduction399
20.2Novelandsmartantibacterialnanocoating approaches400
20.3Applicationsofantibacterial nanocoatings403
20.4Safetyandtoxicologicalissues409
20.5Conclusion410 References411 Furtherreading413
21.Emergingantibacterialandantifungal applicationsofnanomaterialsonfood products415
DılhunKerimanArserim-Uc¸arandBurcuC¸abuk
21.1Introduction415
21.2Organicnanomaterialapplications417
21.3InorganicNanomaterialApplications435
21.4Conclusion439 References440 Furtherreading453
Index455
ListofContributors HaniNasserAbdelhamid AdvancedMultifunctionalMaterialsLaboratory,Department ofChemistry,AssiutUniversity,Assiut,Egypt
AbdulhameedAl-Hashem PetroleumResearchCentre,KuwaitInstituteforScientific Research,Safat,Kuwait
DılhunKerimanArserim-Uc¸ar FoodEngineeringDepartment,FacultyofEngineering andArchitecture,Bingo ¨ lUniversity,Bingo ¨ l,Turkey
M.Arthanareeswari PGandResearchDepartmentofChemistry,SRMUniversity, Chennai,India
J.Balcucho-Escalante NanobiotechnologyandAppliedMicrobiologyResearchGroup (NANOBIOT),UniversityoftheAndes,Bogota ´ ,Colombia
StutiBhagat DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,Gujarat,India
L.Cabrera-Villamizar NanobiotechnologyandAppliedMicrobiologyResearchGroup (NANOBIOT),UniversityoftheAndes,Bogota ´ ,Colombia
BurcuC¸abuk GastronomyandCulinaryArtsDepartment,ArtsandDesignFaculty, AlanyaHamdullahEminPa¸saUniversity,Antalya,Turkey
J.L.Castro-Mayorga NanobiotechnologyandAppliedMicrobiologyResearchGroup (NANOBIOT),UniversityoftheAndes,Bogota ´ ,Colombia
TheodorosChatzimitakos LaboratoryofAnalyticalChemistry,Departmentof Chemistry,UniversityofIoannina,Ioannina45110,Greece
R.Dorothy DepartmentofEEE,AMETUniversity,Chennai,India
M.J.Fabra FoodSafetyandPreservationDepartment,InstituteofAgrochemistryand FoodTechnology(IATA-CSIC),Valencia,Spain
ChandraiahGodugu DepartmentofRegulatoryToxicology,NationalInstituteof PharmaceuticalEducationandResearch(NIPER),Hyderabad,India
TinaHarifi DepartmentofTextileEngineering,FunctionalFibrousStructures& EnvironmentalEnhancement(FFSEE),AmirkabirUniversityofTechnology,Tehran, Iran
S.Jancirani PGandResearchDepartmentofChemistry,MVMGovernmentCollegefor Women,Dindigul,India
DianwenJu DepartmentofMicrobiologicalandBiochemicalPharmacy;TheKey LaboratoryofSmartDrugDelivery,MinistryofEducation,SchoolofPharmacy,Fudan University,Shanghai,P.R.China
KrupaKansara DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,India
N.Karthiga DepartmentofChemistry,SBMCollegeofEngineering,Dindigul,India
K.Kavitha PGandResearchDepartmentofChemistry,NationalCollege,Trichy,India
A.Krishnaveni DepartmentofChemistry,YadavaCollege,Madurai,India
AshutoshKumar DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,India
S.SenthilKumaran SchoolofMechanicalEngineering,VITUniversity,Vellore,India
Wei-GuoLi CollegeofLifeScience,HenanNormalUniversity,Xinxiang,P.R.China
YubinLi DepartmentofNeurology,XinqiaoHospital,ThirdMilitaryMedical University,Chongqing,P.R.China;DepartmentofDermatology,PerelmanSchoolof Medicine,UniversityofPennsylvania,Philadelphia,PA,UnitedStates;Corporal MichaelJ.CrescenzVAMedicalCenter,Philadelphia,PA,UnitedStates
A.Lo ´ pez-Rubio FoodSafetyandPreservationDepartment,InstituteofAgrochemistry andFoodTechnology(IATA-CSIC),Valencia,Spain
C.Mahendra DepartmentofStudiesinBotany,UniversityofMysore,Mysore,India
P.R.Mithun ElexesMedicalConsultingPvtLtd.,Bengaluru,India
N.ChandraMohana MicrobialDrugsLaboratory,DepartmentofStudiesin Microbiology,UniversityofMysore,Mysore,India
MajidMontazer DepartmentofTextileEngineering,FunctionalFibrousStructures& EnvironmentalEnhancement(FFSEE),AmirkabirUniversityofTechnology,Tehran, Iran
TheHuuNguyen FacultyofChemicalTechnology,HanoiUniversityofIndustry,Hanoi, Vietnam
ThienVuongNguyen InstituteforTropicalTechnology,VietnamAcademyofScience andTechnology,Hanoi,Vietnam
TuanAnhNguyen InstituteforTropicalTechnology,VietnamAcademyofScienceand Technology,Hanoi,Vietnam
VanThangNguyen FacultyofChemicalTechnology,HanoiUniversityofIndustry, Hanoi,Vietnam
PhuongNguyen-Tri DepartmentofChemistry,UniversityofMontreal,Montreal,QC, Canada
AlokPandya DepartmentofPhysicalScience,InstituteofAdvancedResearch, Gandhinagar,India
De-ShengPei CollegeofLifeScience,HenanNormalUniversity,Xinxiang,P.R.China; ChongqingInstituteofGreenandIntelligentTechnology,ChineseAcademyofSciences, Chongqing,P.R.China
S.SanthanaPrabha PSNACollegeofEngineeringandTechnology,Dindigul,India
SusaiRajendran CorrosionResearchCentre,StAntony’sCollegeofArtsandSciences forWomen,AmalaAnnaiNagar,Dindigul,India;PSNACollegeofEngineeringand Technology,Dindigul,India;CorrosionResearchCentre,DepartmentofChemistry,St Antony’sCollegeofArtsandSciencesforWomen,Dindigul,India;Departmentof Chemistry,St.Antony’sCollegeofArtsandSciencesforWomen,Dindigul,India
H.C.YashavanthaRao DepartmentofBiochemistry,IndianInstituteofScience, Bengaluru,India
R.JosephRathish PSNACollegeofEngineeringandTechnology,Dindigul,India
L.Reijnders IBED,UniversityofAmsterdam,Amsterdam,TheNetherlands
MohdAslamSaifi DepartmentofRegulatoryToxicology,NationalInstituteof PharmaceuticalEducationandResearch(NIPER),Hyderabad,India
S.Satish DepartmentofStudiesinMicrobiology,Manasagangotri,UniversityofMysore, Karnataka,India
JuhiShah DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,Gujarat,India
NivyaSharma DepartmentofRegulatoryToxicology,NationalInstituteof PharmaceuticalEducationandResearch(NIPER),Hyderabad,India
GurmeetSingh PondicherryUniversity,Puducherry,India
SanjaySingh DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,Gujarat,India
ShashiBalaSingh DepartmentofRegulatoryToxicology,NationalInstituteof PharmaceuticalEducationandResearch(NIPER),Hyderabad,India
ConstantineStalikas LaboratoryofAnalyticalChemistry,DepartmentofChemistry, UniversityofIoannina,Ioannina45110,Greece
VojislavStani ´ c Vin ˇ caInstituteofNuclearSciences,LaboratoryofRadiationand EnvironmentalProtection,UniversityofBelgrade,Belgrade,Serbia
MdAbdusSubhan DepartmentofChemistry,ShahJalalUniversityofScienceand Technology,Sylhet,Bangladesh
A.Subramania CentreforNanoSciences&Technology,MadanjeetSchoolofGreen EnergyTechnologies,PondicherryUniversity,Puthucherry,India
ThodhalYoganandhamSuman CollegeofLifeScience,HenanNormalUniversity, Xinxiang,P.R.China;ChongqingInstituteofGreenandIntelligentTechnology,Chinese AcademyofSciences,Chongqing,P.R.China;EcotoxicologyDivision,CentreforOcean Research,SathyabamaInstituteofScienceandTechnology,Chennai,TamilNadu,India
A.SuriyaPrabha DepartmentofChemistry,MountZionCollegeofEngineeringand Technology,Pudukkottai,India
S.SanthanaPrabha PSNACollegeofEngineeringandTechnology,Dindigul,India
SladjanaB.Tanaskovi ´ c FacultyofPharmacy,DepartmentofGeneralandInorganic Chemistry,UniversityofBelgrade,Belgrade,Serbia
T.Umasankareswari DepartmentofChemistry,RajapalayamRajusCollege, Rajapalayam,India
SachinVaidh DepartmentofBiologicalScienceandBiotechnology,Instituteof AdvancedResearch,Gandhinagar,India
NidhiVerma DepartmentofPhysicalScience,InstituteofAdvancedResearch, Gandhinagar,India
N.Vijaya DepartmentofChemistry,VellalarCollegeforWomen,Thindal,India
GajendraSinghVishwakarma DepartmentofBiologicalScienceandBiotechnology, InstituteofAdvancedResearch,Gandhinagar,India
TienVietVu FacultyofChemicalTechnology,HanoiUniversityofIndustry,Hanoi, Vietnam
ShaofeiWang DepartmentofCellularandGeneticMedicine,SchoolofBasicMedical Sciences,FudanUniversity,Shanghai,P.R.China
Foreword Ihavealwaysenjoyedmultidisciplinaryscientificmeetingsastheyarethemeltingpot forideas.Asmostknow,theprogressinsciencenowadaysisverydependentuponhaving aninputfromdifferentskillsets.Nowhereisthismoreimportantatthispointintime thanthefieldofnanotechnology.TheRoyalMicroscopicalSociety(RMS)isonesuchmultidisciplinarygroup—physicists,chemists,biologists,engineers,medics,etc.However,in the1990sRMSmeetingsoftenresultedinparallelsessionswithgroupsofspecialistsonly talkingamongstthemselves.DuringmypresidencyoftheRMSIwaschargedwithfinding atopictowhichallstrandsofthesocietycouldcontribute.Thetopicthatquicklysuggesteditselfwasthehealtheffectsoffineparticles—itneedshighresolutionmicroscopy, sophisticatedchemical,andphysicalanalysisofminuteamountsofmaterial,biological experimentation,andobservanceofhealthoutcomes.Themeetingledtoamultiauthor book, ParticulateMatter:PropertiesandEffectsUponHealth [1].Thisappearedjustpriorto theemergenceofsocietalknowledgeoftheexistenceofthenanotechnologyindustryand wasofacertainamountofinfluenceinframingthesubsequentnanotoxicologydebate.
Thisbookaddressesatopicofcrucialimportance.Itiswidelyknownthattheprofligate useofantibioticsinhumanmedicineandanimalhusbandryoverthepast50 1 yearshas ledandcontinuestoleadtotheemergenceofstrainsofbacteriathatareresistanttoall knownantibiotics.Societyhashadlessthanacentury’sbenefitfromthistechnologyand duringthattimewehavecometoexpectthatthewondersofmodernsurgeryandthe perinatalsurvivalofmostofouroffspringwillcontinue.Butnowthebugsarefighting backviaDarwinianevolutionandwestandtolosemuchofthebenefit.
Nanotechnologyholdsouttheprospectofbeingabletotargetmedicinesmoreprecisely withinthebody.Withthatcomesthetemptingideathatwemaybeabletodevise mechanismsofdeliveringantimicrobialtherapiesmoredirectlytofociofinfectionor indeedtospecifictypesofbacteriadirectly.Thereisaworldofdifferencebetweenacceptingatherapyunderinformedconsentandhavingsomethingthrustuponyou,without consent,viatheenvironment.Ifyouhaveaseriousenoughillness,cancerforexample, youmayconsideracceptingquitepotentiallydangerousoreventotallyexperimentaltherapies.Andyetweknowthatsomemedicinesortheirmetabolitescanbepassedontothe environmentinbodilyeffluviaandcausesubsequentproblems.Thesecretwithnanomedicinesisgoingtobetoachievetheformerandavoidthelatter.
Nanoparticleshavetoxicologicalpropertiesassociatedwiththeirenhancedsurface chemistryandabilitytomoveeasilythroughthebodyandtheenvironment [2].There havealsobeensomeindicationsthattheymaycauseecologicalproblems [3,4].Thenanotechnologyindustryhassofarbeenanexampleofcollaborationbetweensociety,industry, andsciencetoapplytheprecautionaryprincipletothedevelopmentofnanomedicines.It isnotcleartowhatextentthiswasduetothejuxtapositionofemergingknowledgeofthe
negativeeffectsofparticlesonhealthwiththearrivalofabrandnewindustryor,onthe otherhand,totheapplicationofethicalself-governance.Itisprobablyabitofboth.The outcome,however,isgoodbecauseitappearstobemakingproductdevelopersperform thoughtexperimentstolookatwhatmightgowrongandtestforthatbeforegoinginto fullproduction.Historyislitteredwithexampleswherethisapproachhasnotbeen heeded(simplylookatthecostscurrentlybeingincurredbythechemicalindustry becauseofPCBsintheenvironmentforagoodexample).Acomprehensivelistofsuch pooroutcomesisdescribedintheEuropeanEnvironmentAgency’slatelessonsfromearly warningsseries [5].
Societyreallydoesneedsomesortofthoughtexperimentthinktanktobeappliedin manyareasofcurrenttechnologicaldevelopment,particularlywherethetechnologyisboth powerfulandhastheabilitytobepervasiveintheenvironment.Mycurrentreadingofthe situationisthatthenanomedicineindustrymayprovideagoodtemplateforsuchacollaborationbetweensocietyandindustry—andfromthatrespectitisaverywelcomedevelopment.Thisbookmirrorsthatapproachinthatitcoversmanyoftheareasofconcerninthe realmsoftoxicologyandecotoxicologywhilealsodemonstratingtheingenuityandtechnologicalskillthatisbeingappliedtothefieldofnanomedicine.Icommendittoyou.
C.VyvyanHoward
NanoSystemsBiology,CentreforMolecularBioscience, UniversityofUlster,Coleraine,UnitedKingdom
References [1] R.L.Maynard,C.V.Howard(Eds.),ParticulateMatter:PropertiesandEffectsUponHealth,BiosScientific Publishers,OxfordUK,1999.ISBN1-85996-172-X.
[2] A.Elsaesser,C.V.Howard,Toxicologyofnanoparticles,Adv.DrugDeliv.Rev.64(2012)129 137.
[3] K.VanHoecke,J.K.Quik,J.Mankiewicz-Boczek,K.C.Deschamphelaere,A.Elsaesser,P.Vandermeeren, etal.,FateandeffectsofCeO2 nanoparticlesinaquaticecotoxicitytests,Environ.Sci.Technol.43(2009) 4537 4546.
[4] K.VanHoecke,K.A.C.DeSchamphelaere,Z.Ali,F.Zhang,A.Elsaesser,P.RiveraGil,etal.,Ecotoxicityand uptakeofpolymercoatedgoldnanoparticles,Nanotoxicology7(1)(2013)37 47.
[5]EuropeanEnvironmentAgencyReport22/2001,Latelessonsfromearlywarnings:theprecautionaryprinciple 1896 2000,ISBN:92-9167-323-4. https://www.eea.europa.eu/publications/environmental_issue_report_ 2001_22.
1 Nanoparticle physiologicalmedia interactions R.Dorothy1,N.Karthiga2,S.SenthilKumaran3, R.JosephRathish4,SusaiRajendran 4 andGurmeetSingh5
1DepartmentofEEE,AMETUniversity,Chennai,India 2DepartmentofChemistry,SBM CollegeofEngineering,Dindigul,India 3SchoolofMechanicalEngineering,VITUniversity, Vellore,India 4PSNACollegeofEngineeringandTechnology,Dindigul,India 5PondicherryUniversity,Puthucherry,India
1.1Introduction Nanoparticlesaresurroundedbyproteinscalledthecorona,whichhasbeeninvestigatedbymanytechniques.Thecoronaisusedindrugdeliveryanddiagnosis.When nanoparticles(NPs)enterintoabiologicalsystemmanyinterestingincidentscanoccur. Someoccurrencesareknown,butthemajorityareunknown.
1.1.1Particle cellinteractionsinphysiologicalmedia Particle cellinteractionsinphysiologicalmediaaresignificantindeterminingthefate andtransportofNPsandthebiologicalresponsestothem.Theseinteractionsareassessed inrealtimeusingmanytechniquesincludingatomicforcemicroscopy-(AFM)based platform.
1.1.2Engineerednanoparticlesinmanycommercialproducts Engineerednanoparticles(ENPs)areinvolvedinmanyindustrialprocesses.Henceenvironmental [1],occupational [2,3],andconsumerexposureareinevitable [4,5].Nano-enabled technologiesarepresentlyusedinvariousbiomedicalapplications.Theyareusedinpreventingthetransmissionofinfectiousdiseases [6,7] andtheranosticapplications [8]
1.1.3Nanoparticle-mediatedtherapies Nanoparticle-mediatedtherapieshavebeenintroducedinmanyfields.Theycaneither enhancecurrentdiagnosticmethods likemagneticresonanceimaging(MRI) [9] andX-rays [10], orintroducenewmethodssuchasphoto-acoustictomography [11].
1.1.4Proteincorona Thepotentialadversehealtheffectsandtheefficacyoftheranosticsdependonthe nanoparticle cellinteractionsandparticleuptakefromcells [12].Thereisaplethoraof publishedliteraturedocumentingENPsandtheirabilitytopenetratebiologicalbarriers andinitiateacascadeofevents,whichprobablyleadtoadversehealtheffects [13].When NPsenterphysiologicalmedia,thereisaninstantaneousformationofaproteincoating, generallyknownastheproteincorona(PC) [14] (Fig.1.1).ThePCisresponsiblefor undesirablebiologicalaspects,tunabledrugdeliverysystems,andnovelmedical applications.
ThebehaviorandthefateoftheNPsinbiologicalsystemsaregovernedbythePC [15] ThePChasinfluenceoftheiragglomerationpotential [16],theNPadhesiontothecell membrane [17],andpotentialcelluptakeandpossibletoxicity [18].Becauseoftheimportanceofthecoronainthenanoparticle cellinteractions,numerousstudieshavefocused ontheidentificationof(1)parametersinfluencingtheadsorptionofproteinsonthesurface ofNPsinvariousphysiologicalfluids [19] and(2)theroleofthecoronaontheNPcell uptake [20]
1.1.5Quantificationofparticleuptake Eventhoughthesestudieshaveinvestigatedthenanoparticle cellinteractions,theyare donesoindirectlybyobservingsecondaryfeaturessuchasthecelladhesion/viability,
FIGURE1.1 Nanoparticlewithproteincorona.
morphology,metabolicactivity,oxidativestress,andparticleuptake.Theyarelaterrelated toNPpropertiessuchassize,shape,andsurfacechemistry/modifications [21].Themost frequentlyusedmetricisthequantificationofparticleuptake [22,23].
1.1.6Flowcytometry
FlowcytometryisthemostsignificantmethodusedfortheNPuptakequantification. ThisrequiresfluorescenceENPs [24].Neverthelessthefluorescentdyesmayalterthe chemistryandaffectthenanoparticle cellinteractions [25].
1.1.7Useofplasmonicproperties
Wangetal.usedtheplasmonicpropertiesofgoldnanoparticles(AuNPs)tostudythe intracellularlocalizationofNPstorecreateathree-dimensional(3D)mappingoftheirdistribution [26].However,thisapproachislimitedtoasmallnumberofENPswithintrinsic particleproperties.
1.1.8Othermethodsusedtoquantifythenanoparticleuptake
Conventionalmethodslikeinductivelycoupledmassspectrometry [27] havebeenusedto quantifytheNPuptake.Jamesetal.employedX-rayfluorescencemicroscopytomapZnO particlesdistributioninTHP-1cells [28].Thisisconsideredaverysophisticatedmethod. Recently,moleculardynamicsimulationshavebeenusedtoinvestigatetheseinteractions [12]
1.1.9Limitationsoftheabovemethods
Theabovementionedmethodshavethefollowinglimitations.
• Theydonotprovideadirectquantificationofthenanoparticle cellinteractions.
• Theydependonintrinsicparticleproperties(e.g.,fluorescence,plasmonicresonance, etc.).Thislimitstheirapplicabilitytoonlyafewparticlesystems.
• Theyrequirehighlyspecializedequipment.
1.1.10Useofatomicforcemicroscopy
RecentlyAFMhasbeenusedtoinvestigatenanoparticle nanoparticleinteractions [29] AFMhasbeenwidelyusedinmaterialscienceforsurfaceimaging [30] andcorrosioninhibitionstudy [31]
1.2Recentadvancesontheinteractionofnanoparticleswithbiologicalmedia
RecentadvancesontheinteractionofNPswithbiologicalmediaarediscussedinthis section.
1.2.1Dynamicalmodelingofmanipulationprocessintrolling-modeatomic forcemicroscopy
Dynamicalbulgedmodelingoftrolling-modeAFMinmanipulationofbio-samplesis presented.ThecombinationofhighaccuracyandcompatibilitywithphysiologicalconditionsmakesAFMauniquetoolforstudyingbiologicalmaterialsinliquidmedium. However,AFMmicrocantileverundergoesrigoroussensitivitydegradationandnoise amplificationwhileoperatinginliquid;thelargehydrodynamicpullbetweenthecantilever andthesurroundingliquidoverwhelmsthetip-sampleinterfaceforcesthataresignificantin controllingtheprocess.Consequently,asuitablenanoneedleshouldbelongenoughtomaintainthecantileveroutofliquidmediumandshortenoughtobeabletotransmittherequired forcetopushNP.Nevertheless,alongnanoneedlemaydeflectundertheapproachingforce; therefore,itsbendingdeflectionshouldbeaccountedforingoverningequations.Moreover, analyticalandfiniteelementstressanalysis ofnanoneedleandcantileveriscarriedoutto assureabouttheirselectedmaterialandgeometry.Johnson Kendall Robertstheoryisused tomodelcontactmechanicsbetweentheneedle/surfaceandtheparticle.Pullandmeniscus forcesareutilizedtomodeltheliquidmedia.GoverningequationsaresolvedusingODE45 andthesystembehaviorissimulated.Criticalconditionsofdescendingincludingcriticaltime andforceareproduced,andchangesofpushingforce,needledeflection,andindentation depthsareillustrated.Also,effectsofvelocityvariationsareobserved.Then,diverseheights fornanoneedlearetestedandanappropriateoneispreferredforourpurpose(tokeepthe needleoutofliquidandtransmittheforceappropriately).Thesimulationisrepeatedfora varietyofbiologicalparticlesandtheirbehaviorsarestudied.Attheend,thepresentsimulationisvalidatedthroughcomparingtheresultswithanearlierwork.Thiscomparisonshows thatthesimulationisreliablefortheproposedpurpose [32].
1.2.2Limitsoftheeffectivemediumtheoryinparticleamplifiedsurface plasmonresonancespectroscopybiosensors
Theresonantwavemodesinmonomodalandmultimodalplanarsurfaceplasmonresonance(SPR)sensorsandtheirresponsetoabidimensionalarrayofAuNPsareinvestigated boththeoreticallyandexperimentally,toexaminetheparametersthatrulethecorrectNP countingintheemergingmetalnanoparticle-amplifiedsurfaceplasmonresonance(PA-SPR) spectroscopy.Withnumericalsimulationsbasedonthefiniteelementmethod,wecalculate theerrorexecutedinthedeterminationofthesurfacedensityofNPs σ whentheMaxwellGarnetteffectivemediumtheoryisusedforfastdataprocessingoftheSPRreflectivity curvesuponNPdetection.Thevariationincreasesdirectlywiththedemonstrationsofnonnegligiblescatteringcross-sectionofthesingleNP,dipole dipoleinteractionsbetweenadjacentAuNPsanddipolarinteractionswiththemetalsubstrate.Nearfieldsimulationsshow clearlytheset-upofdipolarinteractionswhenthedielectricthicknessissmallerthan10nm andconfirmthatthestrangedispersionusuallyobservedexperimentallyisduetothefailureoftheeffectivemediumtheories.UsingcitratestabilizedAuNPswithanominaldiameterofabout15nm,weexpressexperimentallythatdielectricloadedwaveguidescanbe usedascorrectnanocountersintherangeofsurfacedensitybetween20and200NP/μm 2 ,
openingthewaytotheuseofPA-SPRspectroscopyonsystemsmimickingthephysiological cellmembranesonSiO2 supports [33].
1.2.3Aromaticnitrogenmustard-basedautofluorescentamphiphilicbrush copolymeraspH-responsivedrugdeliveryvehicle
Thedeliveryofclinicallyacceptednonfluorescentdrugsischallengedduetohowharditis tomonitortheintracellulardrugdeliverywithoutincorporatinganyintegratedfluorescence moietyintothedrugcarrier.ThepresentinvestigationreportsthesynthesisofapH-responsive autofluorescentpolymericnanoscaffoldfortheadministrationof nonfluorescentaromaticnitrogenmustardchlorambucil(CBL)drugintothecancercells.Copolymerizationofpoly(ethylene glycol)(PEG)attachedstyreneandCBLconjugatedN-substitutedmaleimidemonomersallows theformationofwell-definedluminescentalternatingcopolymer.Theseamphiphilicbrush copolymersself-organizedinaqueousmediuminto25 68nmNPs,wheretheCBLdrugis enclosedintothecoreoftheself-assembledNPs.Invitrostudiesexposed B70%drugwas retainedunderphysiologicalconditionsatpH7.4and37 C.AtendolysosomalpH5.0,90%of theCBLwasreleasedbythepH-inducedcleavage ofthealiphaticesterlinkagesconnecting CBLtothemaleimideunit.AlthoughthenascentNP(withoutdrugconjugation)isnonhazardous,thedrugconjugatedNPconfirmedhighertoxicityandbettercellkillingcapabilityincervicalcancer(HenriettaLacks)cellsratherthaninnormalcells.Interestingly,thecopolymer withoutanypredictablechromophoreexhibitedphotoluminescenceunderultraviolet(UV)light irradiationduetothepresenceof“through-space” π π interactionbetweentheC 5 Ogroup ofmaleimideunitandtheadjacentbenzenering ofthestyrenicmonomer.Thispropertyused intracellulartrackingofCBLconjugatedautofluorescentnanocarriersthroughfluorescence microscopeimaging.Finally,the4-(4-nitrobenzyl)pyridinecolorimetricassaywasexecutedto examinetheabilityofCBL-basedpolymeric nanomaterialstowardalkylationofDNA [34].
1.2.4Dynamicchangesofproteincoronacompositionsonthesurfaceofzinc oxidenanoparticleincellculturemedia
Thepotentialfunctionsofnanomaterialsusedinnanomedicineasconstituentsindrug deliverysystemsandinotherproductscontinuetoexpand.Whennanomaterialsareintroducedintophysiologicalenvironmentsanddrivenbyenergetics,theyreadilyassociate proteinsformingaPContheirsurface.ThisPCcouldresultinamodificationofthenanomaterial’ssurfacecharacteristics,disturbingtheirinteractionwithcellsduetoconformationalchangesinadsorbedproteinmolecules.However,ourcurrentunderstandingof nanobiologicalinteractionsisstillverylimited.Utilizingaliquidchromatography mass spectroscopy/massspectroscopytechnologyandaCytoscapeplugin(ClueGO)approach, westudiedthecompositionofthePCforasetofzincoxidenanoparticles(ZnONP)from cellculturemediacharacteristicallyandfurtheranalyzedthebiologicalinteractionofrecognizedproteins,respectively.Intotal,36and33commonproteinswereexaminedas beingboundtoZnONPat5and60min,respectively.Theseproteinswerefurtherstudied withClueGO,whichprovidedgeneontologyandthebiologicalinteractionprocessesof identifiedproteins.ProteinsboundtothesurfaceofNPsthatmaychangethestructure,
thereforethefunctionoftheadsorbedproteincouldaccordinglyaffectthedifficult biologicalprocesses [35].
1.2.5Invitromethodsforassessingnanoparticletoxicity
Asaresultoftheirincreaseinannualproductionandwidespreaddistributioninthe environment,NPspotentiallycauseanimportantpublichealthrisk.Thesought-aftercatalyticactivityapprovedbytheirphysiochemicalpropertiesdoublesasahazardtophysiologicalprocessesfollowingexposurethroughinhalation,oral,transdermal,subcutaneous, andintravenousuptake.Uponuptakeintothebody,theirsize,morphology,surfacecharge, coating,andchemicalcompositionsupplementtheresponseofbiologicalsystemstothe materialsandincreasetheirtoxicity.Recognitionofeachpropertyisessentialtopredict theharmimposedbyforeignnanomaterialsinthebody.Assaymethodsrangingfromendotoxinandlactatedehydrogenasesignalingtoapoptosisandoxidativestressdetectionsupply valuabletechniquesforexposingbiomarkersofNP-inducedcellulardamage.Spectroscopic investigationofepithelialbarrierpenetrationanddistributionwithinlivingcellsrevealsthe proclivityofNPstoenterthebody’snaturalprotectiveboundariesanddepositthemselves incytotoxiclocations.Combinationofthevariouscharacterizationmethodologiesandassays isrequiredforeverynewnanoparticulatesystemdespitepreexistingdataforsimilarsystemsduetothelackofdeterministictrendsamonginvestigatedNPs.Thepropensityof nanomaterialstodenatureproteinsandoxidizesubstratesintheirlocalenvironmentproducessignificantconcernfortheapplicabilityofseveraltraditionalinvitroassays,andthe alterationofsusceptibleapproachesintonovelmethodssuitablefortheevaluationofNPs comprisesthefocusoffutureworkcenteredonNPtoxicityanalysis [36].
1.2.6Nanoparticlestargetingretinalandchoroidalcapillariesinvivo
ThefunctionalizationofNPswithexactreceptorligandsenablestheiraccumulationin targetedtissuesandcanbeusedtherapeuticallytotransportdrugsorfordiagnosticpurposes(Parveenetal.,Nanomedicine8:147 166,2012).Targetingendothelialcellsinretinal andchoroidalcapillariescanberealizedevenunderphysiologicalconditionsusingquantumdotsasmodelNPsfunctionalizedwithanintegrin-bindingpeptide(Pollingeretal., Proc.Natl.Acad.Sci.110:6115 6120,2013).Eventhoughthechemistryisstandardand waswell-explainedintheliterature,thatweusedwaswell-explainedintheliterature, thereareanumberofpreparationstepsthataredelicateanddeservespecialnotice.Itis, therefore,ourgoaltodescribestepbystepthesignificantmethodsofligandimmobilizationonquantumdotsurfacestoassistthereadertoreproduceourwork.Herewedescribe thechemicalalterationofquantumdotswithcasatargetingpeptidethatallowsthe resultingmodifiedNPstoadheretoendothelialcellsalsointheretinaltissue.Wedemonstratethepropertiesoftheresultingparticlesbyshowingsomeoftheinvitroresultsfrom ourpreviousstudies.Doingso,weconcurrentlyencouragethereadertocheckparticles intendedfortargetingcellsinvivofirstbyextensiveinvitroanalysisofparticleinteraction withcellsbythemeansofflowcytometryandconfocalmicroscopytoprovethesuccessful functionalization.Onlythentheapplicationoffunctionalizedquantumdotsintothe
systemiccirculationofmiceledtotheprefer redlocalizationofNPsintheretinaland choroidalbloodvessels [37] .
1.2.7DistributionofsuperparamagneticAu/Fenanoparticlesinanisolated guineapigbrainwithanintactblood brainbarrier
Diagnosisandtreatmentofbraindisorders,suchasepilepsy,neurodegenerativediseases, andtumors,promotefrominnovativeapproachestodelivertherapeuticordiagnosticcompoundsintothebrainparenchyma,witheitherahomogeneousoratargetedlocalizeddistributionpattern.ToevaluatethemechanisticfeatureofdiffusionofNPsintothebrainparenchyma, acomplex,yetcontrolledandfacilitatedenvironmentwasused:theisolatedguineapigbrain maintainedinvitrobyarterialperfusion.Inthisuniquepreparationtheblood brainbarrier andtheinteractionsbetweenvascularandneuronalsectionsaremorphologicallyandfunctionallyconserved.Inthisstudy,superparamagneticAu/Fenanoparticles(MUS:OTAu/FeNPs), recentlystudiedasapromisingmagneticresonanceT2contrastagentwithhighcellular penetration,werearteriallyperfusedintotheinvitroisolatedbrainandshowedhighand homogeneouspenetrationthroughtranscytosisintothebrainparenchyma.Ultramicroscopy investigationoftheinvitroisolatedbrainsectionsbytransmissionelectronmicroscope(TEM) analysisoftheelectron-densecenteroftheMUS:OTAu/FeNPswasconductedtounderstand NPs’brainpenetrationthroughtheblood brainbarrierafterinvitroarterialperfusionand theirdistributionintheparenchyma.ThedatashowsthatMUS:OTAu/FeNPsenterthebrain usingaphysiologicalrouteandthereforecanbedevelopedasbrainpenetratingnanomaterials withpotentialcontrastagentandtheranosticscapabilities [38]
1.2.8Long-termreal-timetrackinglivestemcells/cancercellsinvitro/invivo throughhighlybiocompatiblephotoluminescentpoly(citrate-siloxane) nanoparticles
Long-termlivecelltrackingisdesirableandessentialtounderstandthedynamicsand complexityofbiologicalinteractionsinstemcellsandcancercells.Conventionallivecells fluorescencetrackersaregenerallynondegradableandshowincreasedtoxicityconcerns duringthelong-standingapplication.Previouslywedevelopedecofriendlyfluorescent poly(citrate)-basedhybridelastomersforboneregenerationapplications.Here,wefabricatedthephotoluminescentpoly(citrate-siloxane)nanoparticles(PCSNPs)throughanoil/ wateremulsionmethodandconfirmedtheirlong-termlivestemcells/cancercellsimaging applications.PCSNPsshowedauniformsizedistribution(meandiameter120nm)and highlystabledispersability(above30days)indifferentphysiologicalmedium,aswellas outstandingfluorescentpropertiesandphotostability.PCSNPspossessexcellentcellular biocompatibility,whichcouldbeefficientlyinternalizedbycellsandselectivelyimagethe celllysosomewithahighphotostability.ComparedwithcommercialCellTrackerGreen andCellTrackerRed,theadipose-derivedmesenchymalstemcellsorhumanhepatoma cellswerestablylabeledbyPCSNPsforover14daysastheygrewanddeveloped(seven passages).Additionally,PCSNPscapablytrackedcellsupto7daysinvivothroughanoninvasivewaycomparedwith1dayofcommercialtracker.Thisstudydemonstratesan
importantapproachtodesignbiodegradablemultifunctionaldeliveryplatformsfor biomedicalapplicationssuchaslong-termbioimaging [39] .
1.2.9Theeffectofsilicananoparticlesstabilityinbiologicalmedia
ThestabilityandlevelofaggregationofNPsinphysiologicalconditionsordifferent mediaaresignificantforbiomedicalapplications.TheinteractionofNPsindifferent mediacouldchangethephysicochemicalpropertiesofNPs.Inthisstudy,twodissimilar sizesofamorphoussilicananoparticles(SiNPs)encapsulateddyeweresynthesizedusing themicelleentrapmentmethod.TheSiNPsencapsulateddyessuspensionwasblended withadifferentconcentrationofsaltsolution,NaClandmouseserumandprotectedat 37 CtomimicthehumanbodyenvironmentinordertostudytheinteractionofSiNPs encapsulateddyesinphysiologicalconditions.Particlesagglomerationoraggregationof SiNPsencapsulateddyesinNaClsolutionandmouseserumwereexaminedandanalyzed.Theabsorbancespectraandthestabilityefficiencywererecordedandcalculated usingultraviolet visible(UV Vis)spectrometer,whiletheparticlesizewasmeasured usingZetasizerparticleanalysisandTEM.Theresultsshowedthat53nmofSiNPswas morestablecomparedto30nmbothinNaClsolutionandinmouseserum [40]
1.2.10Experimentalchallengesregardingtheinvitroinvestigationofthe nanoparticle-biocoronaindiseasestates
ToxicologicalevaluationofNPsrequirestheutilizationofinvitrotechniquesduetotheir numberanddiverseproperties.Cellculturesystemsareoftendeficientintheiraptitudeto carryoutcomparativetoxicityevaluationduetodosimetryissuesandcapabilitytosimulate invivoenvironments.Uponencounteringaphysiologicalenvironment,NPsbecomecoated withbiomoleculesformingabiocorona(BC),influencingfunction,biodistribution,andtoxicity.Disease-inducedalterationsinthebiologicalmilieucanalterBCformation.Thisstudy evaluatestheroleoflow-densitylipoprotein(LDL)inchangingmacrophageresponsesto ironoxide(Fe3O4)NPs.BCswereformedbyincubatingFe3O4NPsinserum-freemedia,or 10%fetalbovineserumwithorwithoutLDLpresent.Followingexposurestoanormalized dose(25 μg/mL),macrophageassociationofFe3O4NPswithaLDL-BCwasenhanced.TNFα mRNAexpressionandproteinlevelsweredifferentiallystimulatedduetoBCs.CellsurfaceexpressionofSR-B1wascondensedfollowingallFe3O4NPsexposures,whileonlyNPs withanLDL-BCenhancedmitochondrialmembranepotential.Thesefindingsproposethat elevationsinLDLmaygivetodistinctBCformationtherebyinfluencingNP-cellularinteractionsandresponse.Further,ourstudyhighlightschallengesthatmayariseduringthe invitroevaluationofdisease-relatedvariationsintheNP-BC [41].
1.2.11Effectofionicstrengthonshear-thinningnanoclay polymercomposite hydrogels
Nanoclay polymershear-thinningcompositesare designedforabroadrangeofbiomedicalapplications,includingtissueengineering,drugdelivery,andadditivebiomanufacturing.
Despitetheadvancesinclay-polymerinjectablenanocomposites,colloidalpropertiesof layeredsilicatesarenotfullyconsideredinevaluatingtheinvitroperformanceofshearthinningbiomaterials(STBs).Here,asamodelsystem,weinvestigatetheeffectofionson therheologicalpropertiesandinjectabilityofnanoclay gelatinhydrogelstoknowtheir behaviorwhenpreparedinphysiologicalmedia.Inparticular,welearntheeffectofsodium chloride(NaCl)andcalciumchloride(CaCl2),commonsaltsinphosphatebufferedsaline (PBS)andcellculturemedia(e.g.,Dulbecco’sModifiedEagle’sMedium),onthestructural organizationofnanoclay(LAPONITEXLG-XR,ahydrouslithiummagnesiumsodiumsilicate)-polymercomposites,responsiblefortheshear-thinningpropertiesandinjectability ofSTBs.Theformationofnanoclay polymeraggregatesduetotheion-inducedshrinkage ofthedisperseddoublelayerandfinallytheliquid-solidphaseseparationdecreasesthe resistanceofSTBagainstelasticdeformation,decreasingtheyieldstrain.Accordingly,the straincorrespondingtotheonsetofstructuralbreakdown(yieldzone)isregulatedby theiontypeandconcentration.TheseresultsareindependentoftheSTBcompositionand candirectlybeconvertedintothephysiologicalconditions.Theexfoliatednanoclayundergoesvisuallyundetectableaggregationuponmixingwithgelatininphysiologicalmedia, resultinginheterogeneoushydrogelsthatphasedivideunderstress.Thisworkgivesfundamentalinsightsintonanoclay polymerinteractionsinphysiologicalenvironments,pavingthewayfordesigningclay-basedinjectablebiomaterials [42]
1.2.12TheeffectofsurfacechargeandpHonthephysiologicalbehaviorof cobalt,copper,manganese,antimony,zinc,andtitaniumoxidenanoparticles invitro
ThereisinadequateknowledgeregardingvariousinteractionsofmetalNPsinaliving organism.Assumingly,metalscanconnecttonucleicacids,peptides,andproteins(e.g., enzymes),andchangethefunctioningofvitalcellularsectionsafterenteringtheorganism. Thepredictivefactorsforquantitativenanostructure activityrelationshipanalysiscould enhanceefficientandharmlessusageofNPsintheindustryaswellinthemedicine.The studiesvaluethecompositionoftheNPcoronadeterminedbytime,temperature,and sourceofproteinwhichhasbeenfoundtoimplicatethephysiologicalbehaviorofNPs. Onehaslargelybeenignored:theNPsspecificisoelectricpoint(IEP)andpHatthestate ofmeasurement.Herein,thisstudyinvestigatestheeffectofpHandsurfacechargeofsix metaloxide(MeOx)NPsontimedependencyofcytotoxicity.Severalaspectsofthecharacterizationofultrafineparticlesintheactualtestsystem,whichisthemostrelevantforthe explanationofthetoxicologicaldata,arereferred:(1)thedifferenceofpHintheroom temperatureandintheincubationconditions;(2)thedifferenceofdispersionsinMilliQ andcompletecellmedia;(3)theneedtodemonstratethepHandIEPwhenthehydrodynamicsizeismeasured;(4)thesignificanceoftimeduetothetime-dependentequilibrationandchangesofNPscorona.Thesurfacechargedeterminestheformationofcorona andcouldbemodifiedbypH.MeOxNPswithoutfullychargeequilibratedcoronamight playthemainroleofMeOxNPsenteringintothecellandaccordinglythetime-dependent materializationofthecellulareffect [43]
1.2.13Sweetstrategiesinprostatecancerbiomarkerresearch:focusona prostate-specificantigen
Aclarioncallforearlydiagnosisofprostatecancer(PCa)canbeaddressedusingnew approachessuchasabnormalproteinglycosylation.Proteinsarenaturallyaffectedby numerousposttranslationalmodifications,mainlybyglycosylationwhichisassociated withphysiologicalandpathologicaltransformationparticipatinginthegrowthofdiseases suchasvarioustypesofcancer,butalsoneurodegenerativedisorders,endocrineabnormalities,AIDS,etc.Therefore,glycoproteinsplayavitalroleincancerbiomarkerresearch, anddeterminationofglycosylationisnowadaysoneofthekeyanalyticaltasks.Thepredominantlyusedapproachbasedonaffinityassaysusinglectinsasglycorecognitionelementshasbecomeanessentialpartinthebiomedicalresearchasitshowsgreatprospects intheclinicaldiagnostics.Duetotheirabilitytounderstandsaccharidestructures,lectins canbeappliedforbindingtodifferentmoleculesandsubstratessuchasproteins,lipids, cellwallsaswellasinbiologicalmaterials,includingstemcellsandmicroorganisms.In ordertoimprovethediagnosticpotentialofwell-knowncancerbiomarkers,lectin-based biosensorsandbiochipsarebeingwidelyusedforthefindingofglycoproteins.Inthis review,wewillfocusonvariousbioassaystrategiesforglycoprofilingofaprostatespecificantigen(PSA)withanemphasisonmodernandpotentialtechniquessuitablefor theanalysisofPSAglycanpatternsbiosensors,biochips,andmassspectrometrymethods. Allmentionedmethodsaresuitableforapplicationsinresearch,diagnosis,andtherapyof PCa [44].
1.2.14Ironoxidecolloidalnanoclustersastheranosticvehiclesandtheir interactionsatthecellularlevel
Advancesinsurfactant-assistedchemicalapproacheshaveledthewayfortheutilizationofnanoscaleinorganicparticlesinmedicaldiagnosisandtreatment.Inthisfield, magnetically-drivenmultimodalnanotoolsthatperformbothdetectionandtherapy,welldesignedinsize,shape,andcomposition,arehighlyadvantageous.Suchatheranostic material—whichentailsthecontrolledassemblyofsmaller(maghemite)nanocrystalsina secondarymotifthatishighlydispersibleinaqueousmedia—isdiscussedhere.Thesesurfacefunctionalized,pomegranate-likeferrimagneticnanoclusters(40 85nm)aremadeof nanocrystalsubunitsthatshowaremarkableMRIcontrastefficiency,whichisbetterthan thatofthesuperparamagneticcontrastagentEndorem.Goingbeyondthisfeatureand withtheirdemonstratedlowcytotoxicityinhand,westudythecriticalinteractionofsuch nanoprobeswithcellsatdifferentphysiologicalenvironments.Thetime-dependentinvivo scintigraphicimagingofmiceexperimentalmodels,combinedwithabiodistributionstudy, revealedtheaccretionofnanoclustersinthespleenandliver.Moreover,theinvitroproductionofspleencellsandcytokineproductionwitnessedasize-selectiveregulationofimmune systemcells,inferringthatsmallerclustersinducemainlyinflammatoryactivities,while largeronesstimulateanti-inflammatoryactions.Thepreliminaryfindingscorroboratethat themodularchemistryofmagneticFe3O4 nanoclustersstimulatesunknownpathwaysthat couldbedeterminedtomodifytheirfunctioninfavorofhealthcare [45].
1.2.15Assemblyofcarboxylatedzincphthalocyaninewithgoldnanoparticlefor colorimetricdetectionofcalciumion
Aseriesofwater-solublecarboxylatedzinc phthalocyanine(ZnPc-COOH)wereobtained fromafacilehydrolyzationofterminatingnitrilesgroupsofzincphthalocyaninesynthesized viabisphthalonitrilebasedprecursor.After theAuNPswithpositivelychargedsurfactant cetrimoniumbromidewereaddedtoas-preparedZnPc-COOHsolution,theelectronicinteractionbetweenthemwouldcontributetothetunableconjugateofAuNPs/ZnPc-COOHand directtoared-shiftedabsorptionpeakinUV Visspectrum.Particularly,boththeamountof phthalocyanineringsandconcentrationsofZnPc-COOHwouldcreatealargedifferencein theinteractionwithAuNPs.Inthepresenceofdifferentmetalions,theZnPc-COOH/AuNPs aqueoussolutionrevealedaselectiveresponsetoCa21,leadingtoanincreasedaggregation extent,whilethenakedeyevisualizedcolorchange.Thefurtherexperimentexposedthatthe red-shiftwasavailableinawideconcentrationrangeofCa21,andthered-shiftdegreewas proportionaltotheconcentrationofCa21 intherangeof2 8 μMwithalimitofdetection definedas1 μM.CombingthephotosensitivityofZnPc-COOHandlocalizedsurfaceresonanceplasmonofAuNPs,thislabel-freesearchwouldgiveapotentialapplicationincolorimetricdetectionandphotosensitizationunderaphysiologicalenvironment [46].
1.2.16Developingthenextgenerationofgraphene-basedplatformsforcancer therapeutics
Graphenehasahopefulfutureinapplicationssuchasdiseaseidentification,cancertherapy, drug/genedelivery,bioimaging,andantibacterialapproachesduetographene’sdistinctive physical,chemical,andmechanicalpropertiesalongsideminimaltoxicitytonormalcells,and photostability.However,theseuniquefeatures andbioavailabilityofgraphenearefraughtwith uncertaintiesandconcernsforenvironmentalandoccupationalexposure.Changesinthephysicochemicalpropertiesofgrapheneinfluencebiologicalresponsesincludingreactiveoxygenspecies(ROS)production.LessproductionofROSbycurrentlyavailabletheranosticagents,for example,magneticnanoparticles(MNP),carbonnanotubes,goldnanostructuresorpolymeric NPs,controlstheirclinicalapplicationincancertherapy.Oxidativestressmadebygraphene accumulatedinlivingorgansisowingtoacellularfactors,whichmayaffectphysiologicalinteractionsbetweengrapheneandtargettissuesandcells.Acellularfactorsincludeparticlesize,shape, surfacecharge,surfacecontainingfunctionalgroups,andlightactivation.Cellularresponses suchasmitochondrialrespiration,graphene cellinteractionsandpHofthemediumarealso determinantsofROSproduction.ThemechanismsofROSproductionbygrapheneandtherole ofROSforcancertreatmentareinadequatelyunderstood.Theaimofthisstudyistosetthetheoreticalbasisforfurtherresearchingrowinggraphene-basedtheranosticplatforms [47].
1.2.17pH-Responsivemorphology-controlledredoxbehaviorandcellular uptakeofnanoceriainfibrosarcoma
Mehmoodetal.reportedonstructural/microstructuralassociationswithbiologicalperformanceforthreenanoceriamorphologies,aimingtoexplainthemajorfactorsintheir
interactionswithfibrosarcoma [48].TheseincludethepHoftheinvitromediumandthe crystallinities,stoichiometries,surfaceareasandchemistries,andmaximaloxygenvacancy concentrations([VO••]Max).Althoughthe[VO••]Maxisdominantintheredoxbehavior, theroleofthemorphologywasmarkedintheorderofusefulnessoftheredoxregulation, whichwasnanocubes(NC) , nanorods(NR) , nanooctahedra(NO).TheproposedmechanismillustratestheroleofVO•• inexplainingantioxidantbehavioratphysiologicalpH7.4 andprooxidantbehaviorinthetumormicroenvironmentpH6.4.CellularuptakeatpH7.4 wasdominatedbythemorphologyoftheNP,demonstratingtheorderNO , NC , NR. Controlofthe[VO••]Max,morphology,anddependentstructuralandmicrostructuralparameterscanbeusedtooptimizetheuptakeandredoxperformanceofnanoceria [48].
1.2.18pH-andthermo-sensitiveMTX-loadedmagneticnanocomposites: synthesis,characterization,andinvitrostudiesonA549lungcancercelland
MRimaging Farshbafetal.haveproposed [49] asimplisticmethodforfabricationofmultifunctional pH-andthermo-sensitivemagneticnanocomposites(MNCs)asatheranosticagentforuse intargeteddrugdeliveryandMRI.Tothisend,theinvestigatorsdecoratedFe3O4 MNPs with N,N-dimethylaminoethylmethacrylateand N-isopropylacrylamide,bestknownfor theirpH-andthermo-sensitiveproperties,respectively.Theinvestigatorsalsoconjugated mesoporoussilicananoparticles(MSNs)topolymermatrixactingasadrugcontainerto increasethedrugencapsulationefficiency.Methotroxate(MTX),asamodeldrug,was effectivelyloadedinMNCs(M-MNCs)viasurfaceadsorptionontoMSNsandelectrostatic interactionbetweendrugandcarrier.ThepH-andtemperature-triggeredliberateofMTX wasconcludedthroughtheestimationofinvitroreleaseatbothphysiologicalandsimulatedtumortissueconditions.Basedoninvitrocytotoxicityassayresults,M-MNCssignificantlyexposedhigherantitumoractivitycomparedtofreeMTX.InvitroMRsusceptibility experimentshowedthatM-MNCsrelativelypossessedhightransverserelaxivity(r2)of about0.15/mM/msandalinearrelationshipbetweenthetransverserelaxationrate(R2), andtheFeconcentrationintheM-MNCswasalsodemonstrated.Therefore,thedesigned MNCscanpotentiallybecomeanelegantdrugtransporter,whiletheyalsocanbeapromisingMRInegativecontrastagent [49].
1.2.19Monitoringthedynamicsofcell-derivedextracellularvesiclesatthe nanoscalebyliquid-celltransmissionelectronmicroscopy
Cell-derivedextracellularvesicles(EVs)circulatinginbodyfluidsholdassuresasbioactivetherapeuticagentsandasbiomarkerstodetectanextensiverangeofdiseases. However,nano-imagingmethodsarerequiredtocharacterizethesecomplexandheterogeneoussoftmaterialsintheirnativewetenvironment.Theinvestigatorsexploitliquid-cell transmissionelectronmicroscopy(LCTEM)tocharacterizethemorphologyanddynamic behaviorofEVsinphysiologicalmediawithnanometerresolution.Thebeam-induced controlledgrowthofAuNPsonbilayermembranesisusedasanoriginalinsitustaining methodtoadvancethecontrastofEVsandartificialliposomes.LCTEMprovides