Nanotoxicity: prevention and antibacterial applications of nanomaterials (micro and nano technologie

Page 1


Nanotoxicity:PreventionandAntibacterial ApplicationsofNanomaterials(MicroandNano Technologies)1stEditionSusaiRajendran(Editor)

https://ebookmass.com/product/nanotoxicity-prevention-andantibacterial-applications-of-nanomaterials-micro-and-nanotechnologies-1st-edition-susai-rajendran-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanomaterials for Sensing and Optoelectronic Applications (Micro and Nano Technologies) 1st Edition M. K. Jayaraj (Editor)

https://ebookmass.com/product/nanomaterials-for-sensing-andoptoelectronic-applications-micro-and-nano-technologies-1st-edition-mk-jayaraj-editor/ ebookmass.com

Nanomaterials Recycling (Micro and Nano Technologies) 1st Edition Mahendra Rai (Editor)

https://ebookmass.com/product/nanomaterials-recycling-micro-and-nanotechnologies-1st-edition-mahendra-rai-editor/

ebookmass.com

Applications of Nanomaterials : Advances and Key Technologies. Kalarikkal

https://ebookmass.com/product/applications-of-nanomaterials-advancesand-key-technologies-kalarikkal/

ebookmass.com

Business ethics Ninth Edition William H. Shaw

https://ebookmass.com/product/business-ethics-ninth-edition-william-hshaw/

ebookmass.com

The Wonder Brothers Frank Cottrell-Boyce

https://ebookmass.com/product/the-wonder-brothers-frank-cottrellboyce/

ebookmass.com

Stellar Urges: a scifi alien romance (Alien Gladiator Kings Book 5) Jove Chambers

https://ebookmass.com/product/stellar-urges-a-scifi-alien-romancealien-gladiator-kings-book-5-jove-chambers/

ebookmass.com

Out of the Woods (Lunar Omegaverse Book 6) Shyla Colt

https://ebookmass.com/product/out-of-the-woods-lunar-omegaversebook-6-shyla-colt/

ebookmass.com

Rhapsody: A Rock Star Romance (Ash and The Basilisks Book 2) Holly Bloom

https://ebookmass.com/product/rhapsody-a-rock-star-romance-ash-andthe-basilisks-book-2-holly-bloom/

ebookmass.com

The European Union in a Changing World Order Antonina Bakardjieva Engelbrekt

https://ebookmass.com/product/the-european-union-in-a-changing-worldorder-antonina-bakardjieva-engelbrekt/

ebookmass.com

Psychiatric Interviewing E Book: The Art of Understanding: A Practical Guide for Psychiatrists, Psychologists, Counselors, Social Workers, Nurses, and Other Mental Health Professionals 3rd Edition, (Ebook PDF) https://ebookmass.com/product/psychiatric-interviewing-e-book-the-artof-understanding-a-practical-guide-for-psychiatrists-psychologistscounselors-social-workers-nurses-and-other-mental-healthprofessionals-3rd-edition-e/ ebookmass.com

NANOTOXICITY

NANOTOXICITY

PREVENTIONAND

ANTIBACTERIALAPPLICATIONS OFNANOMATERIALS

Editedby

SusaiRajendran

PSNACollegeofEngineeringandTechnology,Dindigul,India

AnitaMukherjee

DepartmentofBotany,CentreofAdvancedStudy,UniversityofCalcutta, Kolkata,India

TuanAnhNguyen

InstituteforTropicalTechnology,VietnamAcademyof ScienceandTechnology,Hanoi,Vietnam

ChandraiahGodugu

DepartmentofRegulatoryToxicology,NationalInstituteofPharmaceutical EducationandResearch(NIPER),Balanagar,India

RiteshK.Shukla

SchoolofArts&Sciences,AhmedabadUniversity,Gujarat,India

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-819943-5

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher:MatthewDeans

AcquisitionsEditor:SimonHolt

EditorialProjectManager:MarianaKuhl

ProductionProjectManager:DebasishGhosh

CoverDesigner:VictoriaPearson TypesetbyMPSLimited,Chennai,India

ListofContributorsix

Forewordxiii

PART1

Basicprinciples

1.Nanoparticle physiologicalmedia interactions3

R.Dorothy,N.Karthiga,S.SenthilKumaran,R.JosephRathish, SusaiRajendranandGurmeetSingh

1.1Introduction3

1.2Recentadvancesontheinteractionof nanoparticleswithbiologicalmedia5 References18

2.Invitromethodstoassessthecellular toxicityofnanoparticles21

KrupaKansaraandAshutoshKumar

2.1Introduction21

2.2Materialsandmethods23

2.3Conclusion38

Acknowledgments38 References38

3.Invivostudies:toxicityand biodistributionofnanocarriersin organisms41

NivyaSharma,MohdAslamSaifi,ShashiBalaSinghand ChandraiahGodugu

Listofabbreviations41

3.1Generaloverview43

3.2Typesofnanocarriers44

3.3Polymericmicelles56

3.4Dendrimers57

3.5Liposomes62

3.6Conclusion63

3.7Futuredirections64 References64

4.Standardbiologicalassaystoestimate nanoparticletoxicityand biodistribution71

JuhiShah,StutiBhagatandSanjaySingh

4.1Introduction71

4.2Invitromethodsfordeterminationof nanoparticletoxicity72

4.3Invivobio-distributionandtoxicityof nanoparticles85

4.4Conclusionandfutureaspects96 Acknowledgments96 Conflictofinterest97 References97

PART2

Toxicityofnanomaterials

5.Toxicityofmetaloxide nanoparticles107

ThodhalYoganandhamSuman,Wei-GuoLiand De-ShengPei

5.1Introduction107

5.2Metaloxidenanoparticles107

5.3Zincoxidenanoparticles108

5.4IronOxide-basedmagneticnanoparticles110

5.5TitaniumdioxideNanoparticles112

5.6Copperoxidenanoparticles114

5.7Toxicitymechanismofmetaloxide nanoparticles115

5.8Conclusion118 Acknowledgments118

Conflictsofinterest118

References119

Furtherreading122

6.Toxicityofsilverandother metallicnanoparticles125

T.Umasankareswari,GurmeetSingh,S.SanthanaPrabha, AbdulhameedAl-Hashem,S.SenthilKumaranand SusaiRajendran

6.1Introduction125

6.2Toxicityofsilvernanoparticles126

6.3Toxicityofgoldnanoparticles128

6.4Toxicityofcoppernanoparticles132

6.5Toxicityofironnanoparticles136

6.6Toxicityofzincnanoparticles137

6.7Conclusion139

Acknowledgment140

References140

7.Recentadvancesinthestudyof toxicityofpolymer-based nanomaterials143

A.SuriyaPrabha,R.Dorothy,S.Jancirani,SusaiRajendran, GurmeetSinghandS.SenthilKumaran

7.1Introduction143

7.2Recentadvancesinthestudyoftoxicityof polymericnanomaterials144

7.3Concludingremarks163 References163

8.Toxicityofpolymeric nanomaterials167

YubinLi,ShaofeiWangandDianwenJu

8.1Introduction167

8.2Classificationofpolymeric nanomaterials168

8.3Invitrotoxicityofpolymeric nanomaterials172

8.4Invivotoxicityofpolymeric nanomaterials174

8.5Mechanismsofpolymericnanomaterialsinducedtoxicity179

Acknowledgments185

Conflictofinterest186

References186

PART3

Preventionofnanotoxicity

9.Generalmethodsfordetectionand evaluationofnanotoxicity195 HaniNasserAbdelhamid

9.1Introduction195

9.2Generalnanotoxicitymethods196

9.3Mechanismofantibacterialactivities198

9.4Methodsfordetectionandevaluationof nanotoxicity198

9.5Conclusionandoutlooks208

Acknowledgment209 References209

10.Safer-by-designfornanomaterials215 L.Reijnders

10.1Introduction215

10.2Hazardandreleasereductionforengineered nanomaterialsinproductionand products217

10.3Reducingreleasestotheenvironmentfrom nanomaterialproductionandprocessing facilities217

10.4Safer-by-designhazardreductionofengineered inorganicandcarbonaceousnanomaterialsfor organisms218

10.5Reducingreleasestotheenvironmentof nanomaterialsfromrelativelylarge nanocompositesandproducts224

10.6Reducinghazardsoffragmentsreleasedfrom nanocomposites227

10.7Conclusions228 References228

PART4

Antibacterialactivityofnanomaterials

11.Antibacterialactivityofmetaloxide nanoparticles241

VojislavStani ´ candSladjanaB.Tanaskovi ´ c

11.1Introduction241

11.2EffectivephysicochemicalpropertiesofMONPsonantibacterialactivity242

11.3Antibacterialactivityofmagnesiumoxideand calciumoxidenanoparticles250

11.4Antibacterialactivityofaluminumoxide nanoparticles253

11.5Antibacterialactivityofsilveroxide nanoparticles254

11.6Antibacterialactivityofcopperoxide nanoparticles255

11.7Antibacterialactivityofzincoxide nanoparticles258

11.8Antibacterialactivityofironoxide nanoparticles261

11.9Antibacterialactivityoftitaniumoxide nanoparticles263 Acknowledgements266 References266

12.Antibacterialactivityofplatinum nanoparticles275

SusaiRajendran,S.SanthanaPrabha,R.JosephRathish,Gurmeet SinghandAbdulhameedAl-Hashem

12.1Platinumnanoparticles275

12.2Antibacterialactivity275

12.3Antibioticsandantimicrobial compounds276

12.4Determinationofthemicrobial activity276

12.5Recenttrendsintheantibacterialactivityof platinumnanoparticles276 References280

13.Antibacterialpropertyofmetal oxide-basednanomaterials283

MdAbdusSubhan

13.1Introduction283

13.2Mechanismofantimicrobialresistance285

13.3MethodstoevaluateMO-NPsantibacterial efficiency285

13.4Antimicrobialeffectofmetalandmetal oxidenanoparticles287

13.5Modeofantimicrobialactionbymetaland metaloxidesnanoparticles288

13.6Nanoparticlecharacteristicsandtheir influenceonantimicrobialactivity292

13.7Metaloxide-basedantibacterial membrane293

13.8Antibacterialfunctionsofmulti-metaloxide nanoparticles294

13.9Magneticbio-metaloxidemagnetosome296

13.10ToxicityconcernsofMO-NPsas antimicrobialagents297

13.11Conclusions,challenges,andfuture perspectives298 References299

14.Antimicrobialpropertiesofcarbon quantumdots301

TheodorosChatzimitakosandConstantineStalikas

14.1Introduction301

14.2Antibacterialpropertiesofcarbon nanodots302

14.3Conclusion313 References313

PART5 Emergingantibacterialandantifungal applications

15.Applicationsofnanotechnologyin agry-foodproductions319

J.L.Castro-Mayorga,L.Cabrera-Villamizar,J.Balcucho-Escalante, M.J.FabraandA.Lo ´ pez-Rubio

15.1Introduction319

15.2Nanoencapsulationtechniquesappliedtofood andagriculture320

15.3Nanosensorsinfoodandagriculture328

15.4Nanotechnologyappliedtoenvironmental remediation331

15.5Manufactureofprotectiveclothesforfarm workers332

15.6Conclusionandoutlooks333 References333 Furtherreading340

16.Nanoparticleapplicationsin sustainableagriculture,poultry,andfood: trendsandperspective341

N.ChandraMohana,P.R.Mithun,H.C.YashavanthaRao, C.MahendraandS.Satish

16.1Introduction341

16.2Nanoparticleapplicationsinagriculture342

16.3Nanoparticleapplicationsinpoultry347

16.4Nanoparticleapplicationsinfood347

16.5Nano-biosensorssustainableagriculture, poultry,andfood348

16.6Regulatoryaspectsofnanotechnologyin agriculture,poultry,andfood348

16.7Conclusionandfutureperspectives350 Conflictsofinterest351 References351

17.Antibacterialnanocomposite coatings355

TienVietVu,VanThangNguyen,PhuongNguyen-Tri,TheHuu Nguyen,ThienVuongNguyenandTuanAnhNguyen

17.1Introduction355

17.2Inorganicnanocompositecoating356

17.3Organicnanocompositecoating357

17.4Environmentalbenefitsandimpactsof antibacterialnanocompositecoatings360 References360

18.Antimicrobialnanomaterialsforwater disinfection365

NidhiVerma,SachinVaidh,GajendraSinghVishwakarmaand AlokPandya

18.1Introduction365

18.2Significanceofnanotechnology366

18.3Antibacterialmetaloxidesandmetal nanoparticles367

18.4Mechanismsfornanoparticle-mediated microbialdisinfection373

18.5Advancedtechnologiesfornanoparticle-based waterdisinfection375

18.6Somecommercializedproductsandtheir information377

18.7Currentstatusoftechnologytransfer,scaleup, andchallenges378 Acknowledgment379 References379

19.Nanomaterialsforantifungal applications385

K.Kavitha,N.Vijaya,A.Krishnaveni,M.Arthanareeswari,Susai Rajendran,AbdulhameedAl-HashemandA.Subramania

19.1Introduction385

19.2Recenttrendsinthestudyofantifungal activitiesofnanoparticles387 References397

20.Antibacterialnanocoatings399 MajidMontazerandTinaHarifi

20.1Introduction399

20.2Novelandsmartantibacterialnanocoating approaches400

20.3Applicationsofantibacterial nanocoatings403

20.4Safetyandtoxicologicalissues409

20.5Conclusion410 References411 Furtherreading413

21.Emergingantibacterialandantifungal applicationsofnanomaterialsonfood products415

DılhunKerimanArserim-Uc¸arandBurcuC¸abuk

21.1Introduction415

21.2Organicnanomaterialapplications417

21.3InorganicNanomaterialApplications435

21.4Conclusion439 References440 Furtherreading453

Index455

ListofContributors

HaniNasserAbdelhamid AdvancedMultifunctionalMaterialsLaboratory,Department ofChemistry,AssiutUniversity,Assiut,Egypt

AbdulhameedAl-Hashem PetroleumResearchCentre,KuwaitInstituteforScientific Research,Safat,Kuwait

DılhunKerimanArserim-Uc¸ar FoodEngineeringDepartment,FacultyofEngineering andArchitecture,Bingo ¨ lUniversity,Bingo ¨ l,Turkey

M.Arthanareeswari PGandResearchDepartmentofChemistry,SRMUniversity, Chennai,India

J.Balcucho-Escalante NanobiotechnologyandAppliedMicrobiologyResearchGroup (NANOBIOT),UniversityoftheAndes,Bogota ´ ,Colombia

StutiBhagat DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,Gujarat,India

L.Cabrera-Villamizar NanobiotechnologyandAppliedMicrobiologyResearchGroup (NANOBIOT),UniversityoftheAndes,Bogota ´ ,Colombia

BurcuC¸abuk GastronomyandCulinaryArtsDepartment,ArtsandDesignFaculty, AlanyaHamdullahEminPa¸saUniversity,Antalya,Turkey

J.L.Castro-Mayorga NanobiotechnologyandAppliedMicrobiologyResearchGroup (NANOBIOT),UniversityoftheAndes,Bogota ´ ,Colombia

TheodorosChatzimitakos LaboratoryofAnalyticalChemistry,Departmentof Chemistry,UniversityofIoannina,Ioannina45110,Greece

R.Dorothy DepartmentofEEE,AMETUniversity,Chennai,India

M.J.Fabra FoodSafetyandPreservationDepartment,InstituteofAgrochemistryand FoodTechnology(IATA-CSIC),Valencia,Spain

ChandraiahGodugu DepartmentofRegulatoryToxicology,NationalInstituteof PharmaceuticalEducationandResearch(NIPER),Hyderabad,India

TinaHarifi DepartmentofTextileEngineering,FunctionalFibrousStructures& EnvironmentalEnhancement(FFSEE),AmirkabirUniversityofTechnology,Tehran, Iran

S.Jancirani PGandResearchDepartmentofChemistry,MVMGovernmentCollegefor Women,Dindigul,India

DianwenJu DepartmentofMicrobiologicalandBiochemicalPharmacy;TheKey LaboratoryofSmartDrugDelivery,MinistryofEducation,SchoolofPharmacy,Fudan University,Shanghai,P.R.China

KrupaKansara DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,India

N.Karthiga DepartmentofChemistry,SBMCollegeofEngineering,Dindigul,India

K.Kavitha PGandResearchDepartmentofChemistry,NationalCollege,Trichy,India

A.Krishnaveni DepartmentofChemistry,YadavaCollege,Madurai,India

AshutoshKumar DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,India

S.SenthilKumaran SchoolofMechanicalEngineering,VITUniversity,Vellore,India

Wei-GuoLi CollegeofLifeScience,HenanNormalUniversity,Xinxiang,P.R.China

YubinLi DepartmentofNeurology,XinqiaoHospital,ThirdMilitaryMedical University,Chongqing,P.R.China;DepartmentofDermatology,PerelmanSchoolof Medicine,UniversityofPennsylvania,Philadelphia,PA,UnitedStates;Corporal MichaelJ.CrescenzVAMedicalCenter,Philadelphia,PA,UnitedStates

A.Lo ´ pez-Rubio FoodSafetyandPreservationDepartment,InstituteofAgrochemistry andFoodTechnology(IATA-CSIC),Valencia,Spain

C.Mahendra DepartmentofStudiesinBotany,UniversityofMysore,Mysore,India

P.R.Mithun ElexesMedicalConsultingPvtLtd.,Bengaluru,India

N.ChandraMohana MicrobialDrugsLaboratory,DepartmentofStudiesin Microbiology,UniversityofMysore,Mysore,India

MajidMontazer DepartmentofTextileEngineering,FunctionalFibrousStructures& EnvironmentalEnhancement(FFSEE),AmirkabirUniversityofTechnology,Tehran, Iran

TheHuuNguyen FacultyofChemicalTechnology,HanoiUniversityofIndustry,Hanoi, Vietnam

ThienVuongNguyen InstituteforTropicalTechnology,VietnamAcademyofScience andTechnology,Hanoi,Vietnam

TuanAnhNguyen InstituteforTropicalTechnology,VietnamAcademyofScienceand Technology,Hanoi,Vietnam

VanThangNguyen FacultyofChemicalTechnology,HanoiUniversityofIndustry, Hanoi,Vietnam

PhuongNguyen-Tri DepartmentofChemistry,UniversityofMontreal,Montreal,QC, Canada

AlokPandya DepartmentofPhysicalScience,InstituteofAdvancedResearch, Gandhinagar,India

De-ShengPei CollegeofLifeScience,HenanNormalUniversity,Xinxiang,P.R.China; ChongqingInstituteofGreenandIntelligentTechnology,ChineseAcademyofSciences, Chongqing,P.R.China

S.SanthanaPrabha PSNACollegeofEngineeringandTechnology,Dindigul,India

SusaiRajendran CorrosionResearchCentre,StAntony’sCollegeofArtsandSciences forWomen,AmalaAnnaiNagar,Dindigul,India;PSNACollegeofEngineeringand Technology,Dindigul,India;CorrosionResearchCentre,DepartmentofChemistry,St Antony’sCollegeofArtsandSciencesforWomen,Dindigul,India;Departmentof Chemistry,St.Antony’sCollegeofArtsandSciencesforWomen,Dindigul,India

H.C.YashavanthaRao DepartmentofBiochemistry,IndianInstituteofScience, Bengaluru,India

R.JosephRathish PSNACollegeofEngineeringandTechnology,Dindigul,India

L.Reijnders IBED,UniversityofAmsterdam,Amsterdam,TheNetherlands

MohdAslamSaifi DepartmentofRegulatoryToxicology,NationalInstituteof PharmaceuticalEducationandResearch(NIPER),Hyderabad,India

S.Satish DepartmentofStudiesinMicrobiology,Manasagangotri,UniversityofMysore, Karnataka,India

JuhiShah DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,Gujarat,India

NivyaSharma DepartmentofRegulatoryToxicology,NationalInstituteof PharmaceuticalEducationandResearch(NIPER),Hyderabad,India

GurmeetSingh PondicherryUniversity,Puducherry,India

SanjaySingh DivisionofBiologicalandLifeSciences,SchoolofArtsandSciences, AhmedabadUniversity,Ahmedabad,Gujarat,India

ShashiBalaSingh DepartmentofRegulatoryToxicology,NationalInstituteof PharmaceuticalEducationandResearch(NIPER),Hyderabad,India

ConstantineStalikas LaboratoryofAnalyticalChemistry,DepartmentofChemistry, UniversityofIoannina,Ioannina45110,Greece

VojislavStani ´ c Vin ˇ caInstituteofNuclearSciences,LaboratoryofRadiationand EnvironmentalProtection,UniversityofBelgrade,Belgrade,Serbia

MdAbdusSubhan DepartmentofChemistry,ShahJalalUniversityofScienceand Technology,Sylhet,Bangladesh

A.Subramania CentreforNanoSciences&Technology,MadanjeetSchoolofGreen EnergyTechnologies,PondicherryUniversity,Puthucherry,India

ThodhalYoganandhamSuman CollegeofLifeScience,HenanNormalUniversity, Xinxiang,P.R.China;ChongqingInstituteofGreenandIntelligentTechnology,Chinese AcademyofSciences,Chongqing,P.R.China;EcotoxicologyDivision,CentreforOcean Research,SathyabamaInstituteofScienceandTechnology,Chennai,TamilNadu,India

A.SuriyaPrabha DepartmentofChemistry,MountZionCollegeofEngineeringand Technology,Pudukkottai,India

S.SanthanaPrabha PSNACollegeofEngineeringandTechnology,Dindigul,India

SladjanaB.Tanaskovi ´ c FacultyofPharmacy,DepartmentofGeneralandInorganic Chemistry,UniversityofBelgrade,Belgrade,Serbia

T.Umasankareswari DepartmentofChemistry,RajapalayamRajusCollege, Rajapalayam,India

SachinVaidh DepartmentofBiologicalScienceandBiotechnology,Instituteof AdvancedResearch,Gandhinagar,India

NidhiVerma DepartmentofPhysicalScience,InstituteofAdvancedResearch, Gandhinagar,India

N.Vijaya DepartmentofChemistry,VellalarCollegeforWomen,Thindal,India

GajendraSinghVishwakarma DepartmentofBiologicalScienceandBiotechnology, InstituteofAdvancedResearch,Gandhinagar,India

TienVietVu FacultyofChemicalTechnology,HanoiUniversityofIndustry,Hanoi, Vietnam

ShaofeiWang DepartmentofCellularandGeneticMedicine,SchoolofBasicMedical Sciences,FudanUniversity,Shanghai,P.R.China

Foreword

Ihavealwaysenjoyedmultidisciplinaryscientificmeetingsastheyarethemeltingpot forideas.Asmostknow,theprogressinsciencenowadaysisverydependentuponhaving aninputfromdifferentskillsets.Nowhereisthismoreimportantatthispointintime thanthefieldofnanotechnology.TheRoyalMicroscopicalSociety(RMS)isonesuchmultidisciplinarygroup—physicists,chemists,biologists,engineers,medics,etc.However,in the1990sRMSmeetingsoftenresultedinparallelsessionswithgroupsofspecialistsonly talkingamongstthemselves.DuringmypresidencyoftheRMSIwaschargedwithfinding atopictowhichallstrandsofthesocietycouldcontribute.Thetopicthatquicklysuggesteditselfwasthehealtheffectsoffineparticles—itneedshighresolutionmicroscopy, sophisticatedchemical,andphysicalanalysisofminuteamountsofmaterial,biological experimentation,andobservanceofhealthoutcomes.Themeetingledtoamultiauthor book, ParticulateMatter:PropertiesandEffectsUponHealth [1].Thisappearedjustpriorto theemergenceofsocietalknowledgeoftheexistenceofthenanotechnologyindustryand wasofacertainamountofinfluenceinframingthesubsequentnanotoxicologydebate.

Thisbookaddressesatopicofcrucialimportance.Itiswidelyknownthattheprofligate useofantibioticsinhumanmedicineandanimalhusbandryoverthepast50 1 yearshas ledandcontinuestoleadtotheemergenceofstrainsofbacteriathatareresistanttoall knownantibiotics.Societyhashadlessthanacentury’sbenefitfromthistechnologyand duringthattimewehavecometoexpectthatthewondersofmodernsurgeryandthe perinatalsurvivalofmostofouroffspringwillcontinue.Butnowthebugsarefighting backviaDarwinianevolutionandwestandtolosemuchofthebenefit.

Nanotechnologyholdsouttheprospectofbeingabletotargetmedicinesmoreprecisely withinthebody.Withthatcomesthetemptingideathatwemaybeabletodevise mechanismsofdeliveringantimicrobialtherapiesmoredirectlytofociofinfectionor indeedtospecifictypesofbacteriadirectly.Thereisaworldofdifferencebetweenacceptingatherapyunderinformedconsentandhavingsomethingthrustuponyou,without consent,viatheenvironment.Ifyouhaveaseriousenoughillness,cancerforexample, youmayconsideracceptingquitepotentiallydangerousoreventotallyexperimentaltherapies.Andyetweknowthatsomemedicinesortheirmetabolitescanbepassedontothe environmentinbodilyeffluviaandcausesubsequentproblems.Thesecretwithnanomedicinesisgoingtobetoachievetheformerandavoidthelatter.

Nanoparticleshavetoxicologicalpropertiesassociatedwiththeirenhancedsurface chemistryandabilitytomoveeasilythroughthebodyandtheenvironment [2].There havealsobeensomeindicationsthattheymaycauseecologicalproblems [3,4].Thenanotechnologyindustryhassofarbeenanexampleofcollaborationbetweensociety,industry, andsciencetoapplytheprecautionaryprincipletothedevelopmentofnanomedicines.It isnotcleartowhatextentthiswasduetothejuxtapositionofemergingknowledgeofthe

negativeeffectsofparticlesonhealthwiththearrivalofabrandnewindustryor,onthe otherhand,totheapplicationofethicalself-governance.Itisprobablyabitofboth.The outcome,however,isgoodbecauseitappearstobemakingproductdevelopersperform thoughtexperimentstolookatwhatmightgowrongandtestforthatbeforegoinginto fullproduction.Historyislitteredwithexampleswherethisapproachhasnotbeen heeded(simplylookatthecostscurrentlybeingincurredbythechemicalindustry becauseofPCBsintheenvironmentforagoodexample).Acomprehensivelistofsuch pooroutcomesisdescribedintheEuropeanEnvironmentAgency’slatelessonsfromearly warningsseries [5].

Societyreallydoesneedsomesortofthoughtexperimentthinktanktobeappliedin manyareasofcurrenttechnologicaldevelopment,particularlywherethetechnologyisboth powerfulandhastheabilitytobepervasiveintheenvironment.Mycurrentreadingofthe situationisthatthenanomedicineindustrymayprovideagoodtemplateforsuchacollaborationbetweensocietyandindustry—andfromthatrespectitisaverywelcomedevelopment.Thisbookmirrorsthatapproachinthatitcoversmanyoftheareasofconcerninthe realmsoftoxicologyandecotoxicologywhilealsodemonstratingtheingenuityandtechnologicalskillthatisbeingappliedtothefieldofnanomedicine.Icommendittoyou.

NanoSystemsBiology,CentreforMolecularBioscience, UniversityofUlster,Coleraine,UnitedKingdom

References

[1] R.L.Maynard,C.V.Howard(Eds.),ParticulateMatter:PropertiesandEffectsUponHealth,BiosScientific Publishers,OxfordUK,1999.ISBN1-85996-172-X.

[2] A.Elsaesser,C.V.Howard,Toxicologyofnanoparticles,Adv.DrugDeliv.Rev.64(2012)129 137.

[3] K.VanHoecke,J.K.Quik,J.Mankiewicz-Boczek,K.C.Deschamphelaere,A.Elsaesser,P.Vandermeeren, etal.,FateandeffectsofCeO2 nanoparticlesinaquaticecotoxicitytests,Environ.Sci.Technol.43(2009) 4537 4546.

[4] K.VanHoecke,K.A.C.DeSchamphelaere,Z.Ali,F.Zhang,A.Elsaesser,P.RiveraGil,etal.,Ecotoxicityand uptakeofpolymercoatedgoldnanoparticles,Nanotoxicology7(1)(2013)37 47.

[5]EuropeanEnvironmentAgencyReport22/2001,Latelessonsfromearlywarnings:theprecautionaryprinciple 1896 2000,ISBN:92-9167-323-4. https://www.eea.europa.eu/publications/environmental_issue_report_ 2001_22.

1

Nanoparticle physiologicalmedia interactions

R.Dorothy1,N.Karthiga2,S.SenthilKumaran3, R.JosephRathish4,SusaiRajendran 4 andGurmeetSingh5

1DepartmentofEEE,AMETUniversity,Chennai,India 2DepartmentofChemistry,SBM CollegeofEngineering,Dindigul,India 3SchoolofMechanicalEngineering,VITUniversity, Vellore,India 4PSNACollegeofEngineeringandTechnology,Dindigul,India 5PondicherryUniversity,Puthucherry,India

1.1Introduction

Nanoparticlesaresurroundedbyproteinscalledthecorona,whichhasbeeninvestigatedbymanytechniques.Thecoronaisusedindrugdeliveryanddiagnosis.When nanoparticles(NPs)enterintoabiologicalsystemmanyinterestingincidentscanoccur. Someoccurrencesareknown,butthemajorityareunknown.

1.1.1Particle cellinteractionsinphysiologicalmedia

Particle cellinteractionsinphysiologicalmediaaresignificantindeterminingthefate andtransportofNPsandthebiologicalresponsestothem.Theseinteractionsareassessed inrealtimeusingmanytechniquesincludingatomicforcemicroscopy-(AFM)based platform.

1.1.2Engineerednanoparticlesinmanycommercialproducts

Engineerednanoparticles(ENPs)areinvolvedinmanyindustrialprocesses.Henceenvironmental [1],occupational [2,3],andconsumerexposureareinevitable [4,5].Nano-enabled technologiesarepresentlyusedinvariousbiomedicalapplications.Theyareusedinpreventingthetransmissionofinfectiousdiseases [6,7] andtheranosticapplications [8]

1.1.3Nanoparticle-mediatedtherapies

Nanoparticle-mediatedtherapieshavebeenintroducedinmanyfields.Theycaneither enhancecurrentdiagnosticmethods likemagneticresonanceimaging(MRI) [9] andX-rays [10], orintroducenewmethodssuchasphoto-acoustictomography [11].

1.1.4Proteincorona

Thepotentialadversehealtheffectsandtheefficacyoftheranosticsdependonthe nanoparticle cellinteractionsandparticleuptakefromcells [12].Thereisaplethoraof publishedliteraturedocumentingENPsandtheirabilitytopenetratebiologicalbarriers andinitiateacascadeofevents,whichprobablyleadtoadversehealtheffects [13].When NPsenterphysiologicalmedia,thereisaninstantaneousformationofaproteincoating, generallyknownastheproteincorona(PC) [14] (Fig.1.1).ThePCisresponsiblefor undesirablebiologicalaspects,tunabledrugdeliverysystems,andnovelmedical applications.

ThebehaviorandthefateoftheNPsinbiologicalsystemsaregovernedbythePC [15] ThePChasinfluenceoftheiragglomerationpotential [16],theNPadhesiontothecell membrane [17],andpotentialcelluptakeandpossibletoxicity [18].Becauseoftheimportanceofthecoronainthenanoparticle cellinteractions,numerousstudieshavefocused ontheidentificationof(1)parametersinfluencingtheadsorptionofproteinsonthesurface ofNPsinvariousphysiologicalfluids [19] and(2)theroleofthecoronaontheNPcell uptake [20]

1.1.5Quantificationofparticleuptake

Eventhoughthesestudieshaveinvestigatedthenanoparticle cellinteractions,theyare donesoindirectlybyobservingsecondaryfeaturessuchasthecelladhesion/viability,

FIGURE1.1 Nanoparticlewithproteincorona.

morphology,metabolicactivity,oxidativestress,andparticleuptake.Theyarelaterrelated toNPpropertiessuchassize,shape,andsurfacechemistry/modifications [21].Themost frequentlyusedmetricisthequantificationofparticleuptake [22,23].

1.1.6Flowcytometry

FlowcytometryisthemostsignificantmethodusedfortheNPuptakequantification. ThisrequiresfluorescenceENPs [24].Neverthelessthefluorescentdyesmayalterthe chemistryandaffectthenanoparticle cellinteractions [25].

1.1.7Useofplasmonicproperties

Wangetal.usedtheplasmonicpropertiesofgoldnanoparticles(AuNPs)tostudythe intracellularlocalizationofNPstorecreateathree-dimensional(3D)mappingoftheirdistribution [26].However,thisapproachislimitedtoasmallnumberofENPswithintrinsic particleproperties.

1.1.8Othermethodsusedtoquantifythenanoparticleuptake

Conventionalmethodslikeinductivelycoupledmassspectrometry [27] havebeenusedto quantifytheNPuptake.Jamesetal.employedX-rayfluorescencemicroscopytomapZnO particlesdistributioninTHP-1cells [28].Thisisconsideredaverysophisticatedmethod. Recently,moleculardynamicsimulationshavebeenusedtoinvestigatetheseinteractions [12]

1.1.9Limitationsoftheabovemethods

Theabovementionedmethodshavethefollowinglimitations.

• Theydonotprovideadirectquantificationofthenanoparticle cellinteractions.

• Theydependonintrinsicparticleproperties(e.g.,fluorescence,plasmonicresonance, etc.).Thislimitstheirapplicabilitytoonlyafewparticlesystems.

• Theyrequirehighlyspecializedequipment.

1.1.10Useofatomicforcemicroscopy

RecentlyAFMhasbeenusedtoinvestigatenanoparticle nanoparticleinteractions [29] AFMhasbeenwidelyusedinmaterialscienceforsurfaceimaging [30] andcorrosioninhibitionstudy [31]

1.2Recentadvancesontheinteractionofnanoparticleswithbiologicalmedia

RecentadvancesontheinteractionofNPswithbiologicalmediaarediscussedinthis section.

1.2.1Dynamicalmodelingofmanipulationprocessintrolling-modeatomic forcemicroscopy

Dynamicalbulgedmodelingoftrolling-modeAFMinmanipulationofbio-samplesis presented.ThecombinationofhighaccuracyandcompatibilitywithphysiologicalconditionsmakesAFMauniquetoolforstudyingbiologicalmaterialsinliquidmedium. However,AFMmicrocantileverundergoesrigoroussensitivitydegradationandnoise amplificationwhileoperatinginliquid;thelargehydrodynamicpullbetweenthecantilever andthesurroundingliquidoverwhelmsthetip-sampleinterfaceforcesthataresignificantin controllingtheprocess.Consequently,asuitablenanoneedleshouldbelongenoughtomaintainthecantileveroutofliquidmediumandshortenoughtobeabletotransmittherequired forcetopushNP.Nevertheless,alongnanoneedlemaydeflectundertheapproachingforce; therefore,itsbendingdeflectionshouldbeaccountedforingoverningequations.Moreover, analyticalandfiniteelementstressanalysis ofnanoneedleandcantileveriscarriedoutto assureabouttheirselectedmaterialandgeometry.Johnson Kendall Robertstheoryisused tomodelcontactmechanicsbetweentheneedle/surfaceandtheparticle.Pullandmeniscus forcesareutilizedtomodeltheliquidmedia.GoverningequationsaresolvedusingODE45 andthesystembehaviorissimulated.Criticalconditionsofdescendingincludingcriticaltime andforceareproduced,andchangesofpushingforce,needledeflection,andindentation depthsareillustrated.Also,effectsofvelocityvariationsareobserved.Then,diverseheights fornanoneedlearetestedandanappropriateoneispreferredforourpurpose(tokeepthe needleoutofliquidandtransmittheforceappropriately).Thesimulationisrepeatedfora varietyofbiologicalparticlesandtheirbehaviorsarestudied.Attheend,thepresentsimulationisvalidatedthroughcomparingtheresultswithanearlierwork.Thiscomparisonshows thatthesimulationisreliablefortheproposedpurpose [32].

1.2.2Limitsoftheeffectivemediumtheoryinparticleamplifiedsurface plasmonresonancespectroscopybiosensors

Theresonantwavemodesinmonomodalandmultimodalplanarsurfaceplasmonresonance(SPR)sensorsandtheirresponsetoabidimensionalarrayofAuNPsareinvestigated boththeoreticallyandexperimentally,toexaminetheparametersthatrulethecorrectNP countingintheemergingmetalnanoparticle-amplifiedsurfaceplasmonresonance(PA-SPR) spectroscopy.Withnumericalsimulationsbasedonthefiniteelementmethod,wecalculate theerrorexecutedinthedeterminationofthesurfacedensityofNPs σ whentheMaxwellGarnetteffectivemediumtheoryisusedforfastdataprocessingoftheSPRreflectivity curvesuponNPdetection.Thevariationincreasesdirectlywiththedemonstrationsofnonnegligiblescatteringcross-sectionofthesingleNP,dipole dipoleinteractionsbetweenadjacentAuNPsanddipolarinteractionswiththemetalsubstrate.Nearfieldsimulationsshow clearlytheset-upofdipolarinteractionswhenthedielectricthicknessissmallerthan10nm andconfirmthatthestrangedispersionusuallyobservedexperimentallyisduetothefailureoftheeffectivemediumtheories.UsingcitratestabilizedAuNPswithanominaldiameterofabout15nm,weexpressexperimentallythatdielectricloadedwaveguidescanbe usedascorrectnanocountersintherangeofsurfacedensitybetween20and200NP/μm 2 ,

openingthewaytotheuseofPA-SPRspectroscopyonsystemsmimickingthephysiological cellmembranesonSiO2 supports [33].

1.2.3Aromaticnitrogenmustard-basedautofluorescentamphiphilicbrush copolymeraspH-responsivedrugdeliveryvehicle

Thedeliveryofclinicallyacceptednonfluorescentdrugsischallengedduetohowharditis tomonitortheintracellulardrugdeliverywithoutincorporatinganyintegratedfluorescence moietyintothedrugcarrier.ThepresentinvestigationreportsthesynthesisofapH-responsive autofluorescentpolymericnanoscaffoldfortheadministrationof nonfluorescentaromaticnitrogenmustardchlorambucil(CBL)drugintothecancercells.Copolymerizationofpoly(ethylene glycol)(PEG)attachedstyreneandCBLconjugatedN-substitutedmaleimidemonomersallows theformationofwell-definedluminescentalternatingcopolymer.Theseamphiphilicbrush copolymersself-organizedinaqueousmediuminto25 68nmNPs,wheretheCBLdrugis enclosedintothecoreoftheself-assembledNPs.Invitrostudiesexposed B70%drugwas retainedunderphysiologicalconditionsatpH7.4and37 C.AtendolysosomalpH5.0,90%of theCBLwasreleasedbythepH-inducedcleavage ofthealiphaticesterlinkagesconnecting CBLtothemaleimideunit.AlthoughthenascentNP(withoutdrugconjugation)isnonhazardous,thedrugconjugatedNPconfirmedhighertoxicityandbettercellkillingcapabilityincervicalcancer(HenriettaLacks)cellsratherthaninnormalcells.Interestingly,thecopolymer withoutanypredictablechromophoreexhibitedphotoluminescenceunderultraviolet(UV)light irradiationduetothepresenceof“through-space” π π interactionbetweentheC 5 Ogroup ofmaleimideunitandtheadjacentbenzenering ofthestyrenicmonomer.Thispropertyused intracellulartrackingofCBLconjugatedautofluorescentnanocarriersthroughfluorescence microscopeimaging.Finally,the4-(4-nitrobenzyl)pyridinecolorimetricassaywasexecutedto examinetheabilityofCBL-basedpolymeric nanomaterialstowardalkylationofDNA [34].

1.2.4Dynamicchangesofproteincoronacompositionsonthesurfaceofzinc oxidenanoparticleincellculturemedia

Thepotentialfunctionsofnanomaterialsusedinnanomedicineasconstituentsindrug deliverysystemsandinotherproductscontinuetoexpand.Whennanomaterialsareintroducedintophysiologicalenvironmentsanddrivenbyenergetics,theyreadilyassociate proteinsformingaPContheirsurface.ThisPCcouldresultinamodificationofthenanomaterial’ssurfacecharacteristics,disturbingtheirinteractionwithcellsduetoconformationalchangesinadsorbedproteinmolecules.However,ourcurrentunderstandingof nanobiologicalinteractionsisstillverylimited.Utilizingaliquidchromatography mass spectroscopy/massspectroscopytechnologyandaCytoscapeplugin(ClueGO)approach, westudiedthecompositionofthePCforasetofzincoxidenanoparticles(ZnONP)from cellculturemediacharacteristicallyandfurtheranalyzedthebiologicalinteractionofrecognizedproteins,respectively.Intotal,36and33commonproteinswereexaminedas beingboundtoZnONPat5and60min,respectively.Theseproteinswerefurtherstudied withClueGO,whichprovidedgeneontologyandthebiologicalinteractionprocessesof identifiedproteins.ProteinsboundtothesurfaceofNPsthatmaychangethestructure,

thereforethefunctionoftheadsorbedproteincouldaccordinglyaffectthedifficult biologicalprocesses [35].

1.2.5Invitromethodsforassessingnanoparticletoxicity

Asaresultoftheirincreaseinannualproductionandwidespreaddistributioninthe environment,NPspotentiallycauseanimportantpublichealthrisk.Thesought-aftercatalyticactivityapprovedbytheirphysiochemicalpropertiesdoublesasahazardtophysiologicalprocessesfollowingexposurethroughinhalation,oral,transdermal,subcutaneous, andintravenousuptake.Uponuptakeintothebody,theirsize,morphology,surfacecharge, coating,andchemicalcompositionsupplementtheresponseofbiologicalsystemstothe materialsandincreasetheirtoxicity.Recognitionofeachpropertyisessentialtopredict theharmimposedbyforeignnanomaterialsinthebody.Assaymethodsrangingfromendotoxinandlactatedehydrogenasesignalingtoapoptosisandoxidativestressdetectionsupply valuabletechniquesforexposingbiomarkersofNP-inducedcellulardamage.Spectroscopic investigationofepithelialbarrierpenetrationanddistributionwithinlivingcellsrevealsthe proclivityofNPstoenterthebody’snaturalprotectiveboundariesanddepositthemselves incytotoxiclocations.Combinationofthevariouscharacterizationmethodologiesandassays isrequiredforeverynewnanoparticulatesystemdespitepreexistingdataforsimilarsystemsduetothelackofdeterministictrendsamonginvestigatedNPs.Thepropensityof nanomaterialstodenatureproteinsandoxidizesubstratesintheirlocalenvironmentproducessignificantconcernfortheapplicabilityofseveraltraditionalinvitroassays,andthe alterationofsusceptibleapproachesintonovelmethodssuitablefortheevaluationofNPs comprisesthefocusoffutureworkcenteredonNPtoxicityanalysis [36].

1.2.6Nanoparticlestargetingretinalandchoroidalcapillariesinvivo

ThefunctionalizationofNPswithexactreceptorligandsenablestheiraccumulationin targetedtissuesandcanbeusedtherapeuticallytotransportdrugsorfordiagnosticpurposes(Parveenetal.,Nanomedicine8:147 166,2012).Targetingendothelialcellsinretinal andchoroidalcapillariescanberealizedevenunderphysiologicalconditionsusingquantumdotsasmodelNPsfunctionalizedwithanintegrin-bindingpeptide(Pollingeretal., Proc.Natl.Acad.Sci.110:6115 6120,2013).Eventhoughthechemistryisstandardand waswell-explainedintheliterature,thatweusedwaswell-explainedintheliterature, thereareanumberofpreparationstepsthataredelicateanddeservespecialnotice.Itis, therefore,ourgoaltodescribestepbystepthesignificantmethodsofligandimmobilizationonquantumdotsurfacestoassistthereadertoreproduceourwork.Herewedescribe thechemicalalterationofquantumdotswithcasatargetingpeptidethatallowsthe resultingmodifiedNPstoadheretoendothelialcellsalsointheretinaltissue.Wedemonstratethepropertiesoftheresultingparticlesbyshowingsomeoftheinvitroresultsfrom ourpreviousstudies.Doingso,weconcurrentlyencouragethereadertocheckparticles intendedfortargetingcellsinvivofirstbyextensiveinvitroanalysisofparticleinteraction withcellsbythemeansofflowcytometryandconfocalmicroscopytoprovethesuccessful functionalization.Onlythentheapplicationoffunctionalizedquantumdotsintothe

systemiccirculationofmiceledtotheprefer redlocalizationofNPsintheretinaland choroidalbloodvessels [37] .

1.2.7DistributionofsuperparamagneticAu/Fenanoparticlesinanisolated guineapigbrainwithanintactblood brainbarrier

Diagnosisandtreatmentofbraindisorders,suchasepilepsy,neurodegenerativediseases, andtumors,promotefrominnovativeapproachestodelivertherapeuticordiagnosticcompoundsintothebrainparenchyma,witheitherahomogeneousoratargetedlocalizeddistributionpattern.ToevaluatethemechanisticfeatureofdiffusionofNPsintothebrainparenchyma, acomplex,yetcontrolledandfacilitatedenvironmentwasused:theisolatedguineapigbrain maintainedinvitrobyarterialperfusion.Inthisuniquepreparationtheblood brainbarrier andtheinteractionsbetweenvascularandneuronalsectionsaremorphologicallyandfunctionallyconserved.Inthisstudy,superparamagneticAu/Fenanoparticles(MUS:OTAu/FeNPs), recentlystudiedasapromisingmagneticresonanceT2contrastagentwithhighcellular penetration,werearteriallyperfusedintotheinvitroisolatedbrainandshowedhighand homogeneouspenetrationthroughtranscytosisintothebrainparenchyma.Ultramicroscopy investigationoftheinvitroisolatedbrainsectionsbytransmissionelectronmicroscope(TEM) analysisoftheelectron-densecenteroftheMUS:OTAu/FeNPswasconductedtounderstand NPs’brainpenetrationthroughtheblood brainbarrierafterinvitroarterialperfusionand theirdistributionintheparenchyma.ThedatashowsthatMUS:OTAu/FeNPsenterthebrain usingaphysiologicalrouteandthereforecanbedevelopedasbrainpenetratingnanomaterials withpotentialcontrastagentandtheranosticscapabilities [38]

1.2.8Long-termreal-timetrackinglivestemcells/cancercellsinvitro/invivo throughhighlybiocompatiblephotoluminescentpoly(citrate-siloxane) nanoparticles

Long-termlivecelltrackingisdesirableandessentialtounderstandthedynamicsand complexityofbiologicalinteractionsinstemcellsandcancercells.Conventionallivecells fluorescencetrackersaregenerallynondegradableandshowincreasedtoxicityconcerns duringthelong-standingapplication.Previouslywedevelopedecofriendlyfluorescent poly(citrate)-basedhybridelastomersforboneregenerationapplications.Here,wefabricatedthephotoluminescentpoly(citrate-siloxane)nanoparticles(PCSNPs)throughanoil/ wateremulsionmethodandconfirmedtheirlong-termlivestemcells/cancercellsimaging applications.PCSNPsshowedauniformsizedistribution(meandiameter120nm)and highlystabledispersability(above30days)indifferentphysiologicalmedium,aswellas outstandingfluorescentpropertiesandphotostability.PCSNPspossessexcellentcellular biocompatibility,whichcouldbeefficientlyinternalizedbycellsandselectivelyimagethe celllysosomewithahighphotostability.ComparedwithcommercialCellTrackerGreen andCellTrackerRed,theadipose-derivedmesenchymalstemcellsorhumanhepatoma cellswerestablylabeledbyPCSNPsforover14daysastheygrewanddeveloped(seven passages).Additionally,PCSNPscapablytrackedcellsupto7daysinvivothroughanoninvasivewaycomparedwith1dayofcommercialtracker.Thisstudydemonstratesan

importantapproachtodesignbiodegradablemultifunctionaldeliveryplatformsfor biomedicalapplicationssuchaslong-termbioimaging [39] .

1.2.9Theeffectofsilicananoparticlesstabilityinbiologicalmedia

ThestabilityandlevelofaggregationofNPsinphysiologicalconditionsordifferent mediaaresignificantforbiomedicalapplications.TheinteractionofNPsindifferent mediacouldchangethephysicochemicalpropertiesofNPs.Inthisstudy,twodissimilar sizesofamorphoussilicananoparticles(SiNPs)encapsulateddyeweresynthesizedusing themicelleentrapmentmethod.TheSiNPsencapsulateddyessuspensionwasblended withadifferentconcentrationofsaltsolution,NaClandmouseserumandprotectedat 37 CtomimicthehumanbodyenvironmentinordertostudytheinteractionofSiNPs encapsulateddyesinphysiologicalconditions.Particlesagglomerationoraggregationof SiNPsencapsulateddyesinNaClsolutionandmouseserumwereexaminedandanalyzed.Theabsorbancespectraandthestabilityefficiencywererecordedandcalculated usingultraviolet visible(UV Vis)spectrometer,whiletheparticlesizewasmeasured usingZetasizerparticleanalysisandTEM.Theresultsshowedthat53nmofSiNPswas morestablecomparedto30nmbothinNaClsolutionandinmouseserum [40]

1.2.10Experimentalchallengesregardingtheinvitroinvestigationofthe nanoparticle-biocoronaindiseasestates

ToxicologicalevaluationofNPsrequirestheutilizationofinvitrotechniquesduetotheir numberanddiverseproperties.Cellculturesystemsareoftendeficientintheiraptitudeto carryoutcomparativetoxicityevaluationduetodosimetryissuesandcapabilitytosimulate invivoenvironments.Uponencounteringaphysiologicalenvironment,NPsbecomecoated withbiomoleculesformingabiocorona(BC),influencingfunction,biodistribution,andtoxicity.Disease-inducedalterationsinthebiologicalmilieucanalterBCformation.Thisstudy evaluatestheroleoflow-densitylipoprotein(LDL)inchangingmacrophageresponsesto ironoxide(Fe3O4)NPs.BCswereformedbyincubatingFe3O4NPsinserum-freemedia,or 10%fetalbovineserumwithorwithoutLDLpresent.Followingexposurestoanormalized dose(25 μg/mL),macrophageassociationofFe3O4NPswithaLDL-BCwasenhanced.TNFα mRNAexpressionandproteinlevelsweredifferentiallystimulatedduetoBCs.CellsurfaceexpressionofSR-B1wascondensedfollowingallFe3O4NPsexposures,whileonlyNPs withanLDL-BCenhancedmitochondrialmembranepotential.Thesefindingsproposethat elevationsinLDLmaygivetodistinctBCformationtherebyinfluencingNP-cellularinteractionsandresponse.Further,ourstudyhighlightschallengesthatmayariseduringthe invitroevaluationofdisease-relatedvariationsintheNP-BC [41].

1.2.11Effectofionicstrengthonshear-thinningnanoclay polymercomposite hydrogels

Nanoclay polymershear-thinningcompositesare designedforabroadrangeofbiomedicalapplications,includingtissueengineering,drugdelivery,andadditivebiomanufacturing.

Despitetheadvancesinclay-polymerinjectablenanocomposites,colloidalpropertiesof layeredsilicatesarenotfullyconsideredinevaluatingtheinvitroperformanceofshearthinningbiomaterials(STBs).Here,asamodelsystem,weinvestigatetheeffectofionson therheologicalpropertiesandinjectabilityofnanoclay gelatinhydrogelstoknowtheir behaviorwhenpreparedinphysiologicalmedia.Inparticular,welearntheeffectofsodium chloride(NaCl)andcalciumchloride(CaCl2),commonsaltsinphosphatebufferedsaline (PBS)andcellculturemedia(e.g.,Dulbecco’sModifiedEagle’sMedium),onthestructural organizationofnanoclay(LAPONITEXLG-XR,ahydrouslithiummagnesiumsodiumsilicate)-polymercomposites,responsiblefortheshear-thinningpropertiesandinjectability ofSTBs.Theformationofnanoclay polymeraggregatesduetotheion-inducedshrinkage ofthedisperseddoublelayerandfinallytheliquid-solidphaseseparationdecreasesthe resistanceofSTBagainstelasticdeformation,decreasingtheyieldstrain.Accordingly,the straincorrespondingtotheonsetofstructuralbreakdown(yieldzone)isregulatedby theiontypeandconcentration.TheseresultsareindependentoftheSTBcompositionand candirectlybeconvertedintothephysiologicalconditions.Theexfoliatednanoclayundergoesvisuallyundetectableaggregationuponmixingwithgelatininphysiologicalmedia, resultinginheterogeneoushydrogelsthatphasedivideunderstress.Thisworkgivesfundamentalinsightsintonanoclay polymerinteractionsinphysiologicalenvironments,pavingthewayfordesigningclay-basedinjectablebiomaterials [42]

1.2.12TheeffectofsurfacechargeandpHonthephysiologicalbehaviorof cobalt,copper,manganese,antimony,zinc,andtitaniumoxidenanoparticles invitro

ThereisinadequateknowledgeregardingvariousinteractionsofmetalNPsinaliving organism.Assumingly,metalscanconnecttonucleicacids,peptides,andproteins(e.g., enzymes),andchangethefunctioningofvitalcellularsectionsafterenteringtheorganism. Thepredictivefactorsforquantitativenanostructure activityrelationshipanalysiscould enhanceefficientandharmlessusageofNPsintheindustryaswellinthemedicine.The studiesvaluethecompositionoftheNPcoronadeterminedbytime,temperature,and sourceofproteinwhichhasbeenfoundtoimplicatethephysiologicalbehaviorofNPs. Onehaslargelybeenignored:theNPsspecificisoelectricpoint(IEP)andpHatthestate ofmeasurement.Herein,thisstudyinvestigatestheeffectofpHandsurfacechargeofsix metaloxide(MeOx)NPsontimedependencyofcytotoxicity.Severalaspectsofthecharacterizationofultrafineparticlesintheactualtestsystem,whichisthemostrelevantforthe explanationofthetoxicologicaldata,arereferred:(1)thedifferenceofpHintheroom temperatureandintheincubationconditions;(2)thedifferenceofdispersionsinMilliQ andcompletecellmedia;(3)theneedtodemonstratethepHandIEPwhenthehydrodynamicsizeismeasured;(4)thesignificanceoftimeduetothetime-dependentequilibrationandchangesofNPscorona.Thesurfacechargedeterminestheformationofcorona andcouldbemodifiedbypH.MeOxNPswithoutfullychargeequilibratedcoronamight playthemainroleofMeOxNPsenteringintothecellandaccordinglythetime-dependent materializationofthecellulareffect [43]

1.2.13Sweetstrategiesinprostatecancerbiomarkerresearch:focusona prostate-specificantigen

Aclarioncallforearlydiagnosisofprostatecancer(PCa)canbeaddressedusingnew approachessuchasabnormalproteinglycosylation.Proteinsarenaturallyaffectedby numerousposttranslationalmodifications,mainlybyglycosylationwhichisassociated withphysiologicalandpathologicaltransformationparticipatinginthegrowthofdiseases suchasvarioustypesofcancer,butalsoneurodegenerativedisorders,endocrineabnormalities,AIDS,etc.Therefore,glycoproteinsplayavitalroleincancerbiomarkerresearch, anddeterminationofglycosylationisnowadaysoneofthekeyanalyticaltasks.Thepredominantlyusedapproachbasedonaffinityassaysusinglectinsasglycorecognitionelementshasbecomeanessentialpartinthebiomedicalresearchasitshowsgreatprospects intheclinicaldiagnostics.Duetotheirabilitytounderstandsaccharidestructures,lectins canbeappliedforbindingtodifferentmoleculesandsubstratessuchasproteins,lipids, cellwallsaswellasinbiologicalmaterials,includingstemcellsandmicroorganisms.In ordertoimprovethediagnosticpotentialofwell-knowncancerbiomarkers,lectin-based biosensorsandbiochipsarebeingwidelyusedforthefindingofglycoproteins.Inthis review,wewillfocusonvariousbioassaystrategiesforglycoprofilingofaprostatespecificantigen(PSA)withanemphasisonmodernandpotentialtechniquessuitablefor theanalysisofPSAglycanpatternsbiosensors,biochips,andmassspectrometrymethods. Allmentionedmethodsaresuitableforapplicationsinresearch,diagnosis,andtherapyof PCa [44].

1.2.14Ironoxidecolloidalnanoclustersastheranosticvehiclesandtheir interactionsatthecellularlevel

Advancesinsurfactant-assistedchemicalapproacheshaveledthewayfortheutilizationofnanoscaleinorganicparticlesinmedicaldiagnosisandtreatment.Inthisfield, magnetically-drivenmultimodalnanotoolsthatperformbothdetectionandtherapy,welldesignedinsize,shape,andcomposition,arehighlyadvantageous.Suchatheranostic material—whichentailsthecontrolledassemblyofsmaller(maghemite)nanocrystalsina secondarymotifthatishighlydispersibleinaqueousmedia—isdiscussedhere.Thesesurfacefunctionalized,pomegranate-likeferrimagneticnanoclusters(40 85nm)aremadeof nanocrystalsubunitsthatshowaremarkableMRIcontrastefficiency,whichisbetterthan thatofthesuperparamagneticcontrastagentEndorem.Goingbeyondthisfeatureand withtheirdemonstratedlowcytotoxicityinhand,westudythecriticalinteractionofsuch nanoprobeswithcellsatdifferentphysiologicalenvironments.Thetime-dependentinvivo scintigraphicimagingofmiceexperimentalmodels,combinedwithabiodistributionstudy, revealedtheaccretionofnanoclustersinthespleenandliver.Moreover,theinvitroproductionofspleencellsandcytokineproductionwitnessedasize-selectiveregulationofimmune systemcells,inferringthatsmallerclustersinducemainlyinflammatoryactivities,while largeronesstimulateanti-inflammatoryactions.Thepreliminaryfindingscorroboratethat themodularchemistryofmagneticFe3O4 nanoclustersstimulatesunknownpathwaysthat couldbedeterminedtomodifytheirfunctioninfavorofhealthcare [45].

1.2.15Assemblyofcarboxylatedzincphthalocyaninewithgoldnanoparticlefor colorimetricdetectionofcalciumion

Aseriesofwater-solublecarboxylatedzinc phthalocyanine(ZnPc-COOH)wereobtained fromafacilehydrolyzationofterminatingnitrilesgroupsofzincphthalocyaninesynthesized viabisphthalonitrilebasedprecursor.After theAuNPswithpositivelychargedsurfactant cetrimoniumbromidewereaddedtoas-preparedZnPc-COOHsolution,theelectronicinteractionbetweenthemwouldcontributetothetunableconjugateofAuNPs/ZnPc-COOHand directtoared-shiftedabsorptionpeakinUV Visspectrum.Particularly,boththeamountof phthalocyanineringsandconcentrationsofZnPc-COOHwouldcreatealargedifferencein theinteractionwithAuNPs.Inthepresenceofdifferentmetalions,theZnPc-COOH/AuNPs aqueoussolutionrevealedaselectiveresponsetoCa21,leadingtoanincreasedaggregation extent,whilethenakedeyevisualizedcolorchange.Thefurtherexperimentexposedthatthe red-shiftwasavailableinawideconcentrationrangeofCa21,andthered-shiftdegreewas proportionaltotheconcentrationofCa21 intherangeof2 8 μMwithalimitofdetection definedas1 μM.CombingthephotosensitivityofZnPc-COOHandlocalizedsurfaceresonanceplasmonofAuNPs,thislabel-freesearchwouldgiveapotentialapplicationincolorimetricdetectionandphotosensitizationunderaphysiologicalenvironment [46].

1.2.16Developingthenextgenerationofgraphene-basedplatformsforcancer therapeutics

Graphenehasahopefulfutureinapplicationssuchasdiseaseidentification,cancertherapy, drug/genedelivery,bioimaging,andantibacterialapproachesduetographene’sdistinctive physical,chemical,andmechanicalpropertiesalongsideminimaltoxicitytonormalcells,and photostability.However,theseuniquefeatures andbioavailabilityofgraphenearefraughtwith uncertaintiesandconcernsforenvironmentalandoccupationalexposure.Changesinthephysicochemicalpropertiesofgrapheneinfluencebiologicalresponsesincludingreactiveoxygenspecies(ROS)production.LessproductionofROSbycurrentlyavailabletheranosticagents,for example,magneticnanoparticles(MNP),carbonnanotubes,goldnanostructuresorpolymeric NPs,controlstheirclinicalapplicationincancertherapy.Oxidativestressmadebygraphene accumulatedinlivingorgansisowingtoacellularfactors,whichmayaffectphysiologicalinteractionsbetweengrapheneandtargettissuesandcells.Acellularfactorsincludeparticlesize,shape, surfacecharge,surfacecontainingfunctionalgroups,andlightactivation.Cellularresponses suchasmitochondrialrespiration,graphene cellinteractionsandpHofthemediumarealso determinantsofROSproduction.ThemechanismsofROSproductionbygrapheneandtherole ofROSforcancertreatmentareinadequatelyunderstood.Theaimofthisstudyistosetthetheoreticalbasisforfurtherresearchingrowinggraphene-basedtheranosticplatforms [47].

1.2.17pH-Responsivemorphology-controlledredoxbehaviorandcellular uptakeofnanoceriainfibrosarcoma

Mehmoodetal.reportedonstructural/microstructuralassociationswithbiologicalperformanceforthreenanoceriamorphologies,aimingtoexplainthemajorfactorsintheir

interactionswithfibrosarcoma [48].TheseincludethepHoftheinvitromediumandthe crystallinities,stoichiometries,surfaceareasandchemistries,andmaximaloxygenvacancy concentrations([VO••]Max).Althoughthe[VO••]Maxisdominantintheredoxbehavior, theroleofthemorphologywasmarkedintheorderofusefulnessoftheredoxregulation, whichwasnanocubes(NC) , nanorods(NR) , nanooctahedra(NO).TheproposedmechanismillustratestheroleofVO•• inexplainingantioxidantbehavioratphysiologicalpH7.4 andprooxidantbehaviorinthetumormicroenvironmentpH6.4.CellularuptakeatpH7.4 wasdominatedbythemorphologyoftheNP,demonstratingtheorderNO , NC , NR. Controlofthe[VO••]Max,morphology,anddependentstructuralandmicrostructuralparameterscanbeusedtooptimizetheuptakeandredoxperformanceofnanoceria [48].

1.2.18pH-andthermo-sensitiveMTX-loadedmagneticnanocomposites: synthesis,characterization,andinvitrostudiesonA549lungcancercelland

MRimaging

Farshbafetal.haveproposed [49] asimplisticmethodforfabricationofmultifunctional pH-andthermo-sensitivemagneticnanocomposites(MNCs)asatheranosticagentforuse intargeteddrugdeliveryandMRI.Tothisend,theinvestigatorsdecoratedFe3O4 MNPs with N,N-dimethylaminoethylmethacrylateand N-isopropylacrylamide,bestknownfor theirpH-andthermo-sensitiveproperties,respectively.Theinvestigatorsalsoconjugated mesoporoussilicananoparticles(MSNs)topolymermatrixactingasadrugcontainerto increasethedrugencapsulationefficiency.Methotroxate(MTX),asamodeldrug,was effectivelyloadedinMNCs(M-MNCs)viasurfaceadsorptionontoMSNsandelectrostatic interactionbetweendrugandcarrier.ThepH-andtemperature-triggeredliberateofMTX wasconcludedthroughtheestimationofinvitroreleaseatbothphysiologicalandsimulatedtumortissueconditions.Basedoninvitrocytotoxicityassayresults,M-MNCssignificantlyexposedhigherantitumoractivitycomparedtofreeMTX.InvitroMRsusceptibility experimentshowedthatM-MNCsrelativelypossessedhightransverserelaxivity(r2)of about0.15/mM/msandalinearrelationshipbetweenthetransverserelaxationrate(R2), andtheFeconcentrationintheM-MNCswasalsodemonstrated.Therefore,thedesigned MNCscanpotentiallybecomeanelegantdrugtransporter,whiletheyalsocanbeapromisingMRInegativecontrastagent [49].

1.2.19Monitoringthedynamicsofcell-derivedextracellularvesiclesatthe nanoscalebyliquid-celltransmissionelectronmicroscopy

Cell-derivedextracellularvesicles(EVs)circulatinginbodyfluidsholdassuresasbioactivetherapeuticagentsandasbiomarkerstodetectanextensiverangeofdiseases. However,nano-imagingmethodsarerequiredtocharacterizethesecomplexandheterogeneoussoftmaterialsintheirnativewetenvironment.Theinvestigatorsexploitliquid-cell transmissionelectronmicroscopy(LCTEM)tocharacterizethemorphologyanddynamic behaviorofEVsinphysiologicalmediawithnanometerresolution.Thebeam-induced controlledgrowthofAuNPsonbilayermembranesisusedasanoriginalinsitustaining methodtoadvancethecontrastofEVsandartificialliposomes.LCTEMprovides

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.