Dedication
Thisbookisdedicatedtothe2020floodvictimsofthecentralprovincesofVietnam.
SECTION1Nanotechnologyfordisasterprevention
1.Applicationofnanotechnologyindisasterprevention:Anintroduction3 YounesAhmadiandMubasherFurmuly
1.1 Introduction 3
1.2 Nanotechnologyinsustainableagricultureandhungerprevention4
1.3 Roleofnanotechnologyinenvironmentalpollutionprevention6
1.4 Nanotechnologyinharvestingrenewableenergy9
1.5 Nanotechnologyinhealthsector11 1.6
2.Nanomaterialsforconstructionbuildingproductsdesigned towithstandnaturaldisasters19
GautamM.Patel,VrajShah,JaydipBhaliya,andKomalMehta
2.1 Introduction
2.2 Nanomaterialsusedintheconstruction22
2.3 Traditionalmaterialsforconstructionagainstdisaster24
2.4 Sustainableusagesofnano-basedmaterials26
2.5 Nanomaterialsinadvancedarchitecture29
2.6 Healthaspectsofnanomaterialswhenusedintheconstructionbuildingmaterials30
2.7 Environmentaladvantagesanddisadvantagesandlife-cycleassessment31
2.8 Riskassessmentandanalysisfornanomaterialsusedintheconstruction32
2.9 Regulationsdatainvariouscountries33
2.10
3.Nano-sensorsandnano-devicesforbiologicaldisastermonitoring (virus/diseaseepidemics/animalplaguesdetections)43 SemraAkgonulluandAdilDenizli
3.1
3.3 Thebiologicaldisastermonitoringapplications46
3.4 Conclusions 53 References 54
4.InternetofThings-baseddisastermanagementsystem59
PrasadM.Pujar,UmeshM.Kulkarni,RavirajM.Kulkarni,andHarishH.Kenchannavar
4.1 Introductiontodisaster59
4.2 Classification 59
4.3 Wirelesssensornetworkandinternetofthings60
4.4 DesignchallengesofusingWSN/IoTindisastermanagement andpossiblesolutions63
4.5 Resultsanddiscussion73
4.6 Scopeforresearchindisastermanagement80
4.7 Conclusion 81 References 82 Furtherreading 84
5.Nanosensorsforsmartphone-enabledsensingdevices85
Yes ¸ erenSaylan,SemraAkgonullu,Erdogan Ozgur,andAdilDenizli
5.1 Introduction 85
5.2 Nanosensors 86
5.3 Nanosensorsonsmartplatforms88
5.4 Conclusionandfutureperspectives97 References 98
6.Smartandautonomous(self-powered)nanosensornetworks105
ThabangJ.ThekaandDavidE.Motaung
6.1 Introduction 105
6.2 Technologyforself-powerednanosensors106
6.3 Applicationsofself-poweredsensorsfornaturaldisasters111
6.4 Conclusionandremarks118 References 118
7.Nanosensorsforsmartphonesensingmethod123
T.P.Mokoena,S.J.Mofokeng,andDavidE.Motaung
7.1 Introduction 123
7.2 Applicationsofnanosensorsinsmartphones125
7.3 Conclusionandremarks132 References 133
SECTION2Spacetechnologyfordisasterprevention
8.Nanotechnologyinthespaceindustry139
AyushSinhaandAjitBehera
8.1 Introductionofnanotechnologyinspacetechnology139
8.2 Nanomaterialsinspaceindustries140
8.3 Nanostructuresinaero-parts147
8.4 Summary 152 References 153
9.Unmannedaerialvehicles(UAVs)fordisastermanagement159
OsamaM.Bushnaq,DebashishaMishra,EnricoNatalizio,andIanF.Akyildiz
9.1 Introduction159
9.2 UAVadvancementfordisastermanagement161
9.3 UAV-assistedcommunicationnetworkfordisastermanagement164
9.4 Disastertypesandphases169
9.5 Casestudies173
9.6 Conclusions183 References 183
10.Theroleofsatelliteremotesensinginnaturaldisastermanagement189
A.C.TeodoroandL.Duarte
10.1 Introduction189
10.2 Remotesensingdataandtechniquestoaccessnaturaldisasters195
10.3 Conclusions207
References 208
11.Thesynergyofremotesensingandgeographicalinformationsystems inthemanagementofnaturaldisasters217
A.C.TeodoroandL.Duarte
11.1 Introduction217
11.2 ThesynergyofremotesensingandGISinthemanagementofnaturaldisasters219
11.3 Conclusions226
References 226
12.Smallsatellitesfordisastermonitoring231 SimoneBattistini
12.1 Introduction231
12.2 Remotesensingplatforms232
12.3 Ataxonomyofdisasters238
12.4 Enablingtechnologies240
12.5 Conclusions247 References 248
13.Acomparativestudyofdeeplearning-basedtime-seriesforecasting techniquesforfine-scaleurbanextremeheatpredictionusingInternet ofThingsobservations253 ManzhuYu,TracyShen,andGuidoCervone
13.1 Introduction253
13.2 Data 255
13.3 Methods 257
13.4 Trainingandevaluation261
13.5 Experimentresult262
13.6 Conclusions268 References 269
14.Satelliteandaerialremotesensingindisastermanagement: Anintroduction273
AkhouriPramodKrishnaandAlokBhushanMukherjee
14.1 Introduction273 14.2 Dataandmethods276
14.3 Results 277
14.4 Conclusions278 References 278
15.Emergingroleofunmannedaerialvehicles(UAVs)fordisaster managementapplications281
UmairIqbal,JohanBarthelemy,andPascalPerez
15.1 Introduction281
15.2 Disastermanagementcycle283
15.3 Unmannedaerialvehicles(UAVs)284
15.4 OverviewofUAVsensors286
15.5 UAVregulations287
15.6 UAVhardwareconsiderations290
15.7 ApplicationsofUAVsindisastermanagement293
15.8 Futureapplicationsandchallenges297
References 298
16.Smartremotesensingnetworkforearlywarningofdisasterrisks303 Ala’ Khalifeh,ManaliGupta,OmarAlmomani,AhmadM.Khasawneh, andKhalidA.Darabkh
16.1 Introduction303
16.2 Remotesensingnetworkarchitecture305
16.3 Utilizingmachinelearningforsmartsensing309
16.4 UAVpotentialinearlywarningsystems314
16.5 Conclusion321 Acknowledgment321
Contributors
YounesAhmadi
DepartmentofAnalyticalChemistry,KabulUniversity,Kabul,Afghanistan;DepartmentofCivil andEnvironmentalEngineering,HanyangUniversity,Seoul,RepublicofKorea
SemraAkgonullu
DepartmentofChemistry,HacettepeUniversity,Beytepe,Ankara,Turkey
IanF.Akyildiz
AutonomousRoboticsResearchCenter,TechnologyInnovationInstitute,AbuDhabi,United ArabEmirates
OmarAlmomani
TheWorldIslamicSciencesandEducationUniversity,Amman,Jordan
JohanBarthelemy
UniversityofWollongong,SMARTInfrastructureFacility,Wollongong,NSW,Australia
SimoneBattistini
DepartmentofEngineeringandMathematics,SheffieldHallamUniversity,Sheffield, UnitedKingdom
AjitBehera
DepartmentofMetallurgicalandMaterialsEngineering,NationalInstituteofTechnology, Rourkela,India
JaydipBhaliya
DepartmentofChemistry,SchoolofScience,ITMSLSBarodaUniversity,Vadodara, Gujarat,India
OsamaM.Bushnaq
AutonomousRoboticsResearchCenter,TechnologyInnovationInstitute,AbuDhabi,United ArabEmirates
GuidoCervone
DepartmentofGeography,InstituteofComputationalandDataSciences,ThePennsylvaniaState University,StateCollege,PA;ResearchApplicationLaboratory(RAL),NationalCenterfor AtmosphericResearch(NCAR),Boulder,CO,UnitedStates
KhalidA.Darabkh
TheUniversityofJordan,Amman,Jordan
AdilDenizli
DepartmentofChemistry,HacettepeUniversity,Beytepe,Ankara,Turkey
L.Duarte
FacultyofSciences;InstituteofEarthSciences,UniversityofPorto,Porto,Portugal
MubasherFurmuly
DepartmentofAnalyticalChemistry,KabulUniversity,Kabul,Afghanistan
ManaliGupta
GITAMUniversity,Hyderabad,Telangana,India
UmairIqbal
UniversityofWollongong,SMARTInfrastructureFacility,Wollongong,NSW,Australia
HarishH.Kenchannavar
DepartmentofInformationScienceandEngineering,KLSGogteInstituteofTechnology, Belagavi,Karnataka,India
Ala’Khalifeh
GermanJordanianUniversity,Amman,Jordan
AhmadM.Khasawneh
AmmanArabUniversity,Amman,Jordan
AkhouriPramodKrishna
BirlaInstituteofTechnology(BIT),Mesra,Ranchi,India
RavirajM.Kulkarni
DepartmentofChemistry,CentreforNanoscienceandNanotechnology,KLSGogteInstituteof Technology,Belagavi,Karnataka,India
UmeshM.Kulkarni
DepartmentofComputerScienceandEngineering,KLSGogteInstituteofTechnology, Belagavi,Karnataka,India
KomalMehta
Drs.KiranandPallaviPatelGlobalUniversityKPGU,Vadodara,Gujarat,India
DebashishaMishra
AutonomousRoboticsResearchCenter,TechnologyInnovationInstitute,AbuDhabi,United ArabEmirates
S.J.Mofokeng
DepartmentofPhysics,CollegeofScienceEngineeringandTechnology,Universityof SouthAfrica,Johannesburg,SouthAfrica
T.P.Mokoena
DepartmentofPhysics,SefakoMakgathoHealthSciencesUniversity,Ga-Rankuwa; DepartmentofPhysics,UniversityoftheFreeState,Bloemfontein,SouthAfrica
DavidE.Motaung
DepartmentofPhysics,UniversityoftheFreeState,Bloemfontein,SouthAfrica
AlokBhushanMukherjee LeadsConnectServicesPvtLtd,Noida,India
EnricoNatalizio
AutonomousRoboticsResearchCenter,TechnologyInnovationInstitute,AbuDhabi, UnitedArabEmirates
Erdogan € Ozg € ur DepartmentofChemistry,HacettepeUniversity,Beytepe,Ankara,Turkey
GautamM.Patel
DepartmentofIndustrialChemistry,InstituteofScience&TechnologyforAdvancedStudies& Research(ISTAR),CVMUniversity,V.V.Nagar,Gujarat,India
PascalPerez UniversityofWollongong,SMARTInfrastructureFacility,Wollongong,NSW,Australia
PrasadM.Pujar
DepartmentofComputerScienceandEngineering,KLSGogteInstituteofTechnology, Belagavi,Karnataka,India
Yes ¸ erenSaylan
DepartmentofChemistry,HacettepeUniversity,Beytepe,Ankara,Turkey
VrajShah
DepartmentofChemistry,SchoolofScience,ITMSLSBarodaUniversity,Vadodara, Gujarat,India
TracyShen
CollegeofInformationSciencesandTechnology,ThePennsylvaniaStateUniversity, StateCollege,PA,UnitedStates
AyushSinha
DepartmentofMetallurgicalandMaterialsEngineering,NationalInstituteofTechnology, Rourkela,India
A.C.Teodoro
FacultyofSciences;InstituteofEarthSciences,UniversityofPorto,Porto,Portugal
ThabangJ.Theka DepartmentofPhysics,UniversityoftheFreeState,Bloemfontein,SouthAfrica
ManzhuYu
DepartmentofGeography,InstituteofComputationalandDataSciences,ThePennsylvaniaState University,StateCollege,PA,UnitedStates
Preface
In2020,389naturaldisasterswerereportedthatkilled15,080people,affected98.4 millionothersandcosted171.3billionUS$.Asstatisticallycalculated,anaverageof 400naturaldisastersoccursworldwideeachyear.
Mostcurrenttechnologiesappliedfordisastermonitoring/analysis/managementare basedonatop-downapproach,usingsatellites,drones,andunmannedaerialvehicles (UAVs).However,thisapproachisusuallytoolateforanyeffectiveresponsetoadisaster whenitoccurs.Therehasbeenalackofresearchrelatedtotheapplicationofland-based sensorsandtheirwirelessnetworksfordisasterprevention,especiallyincombination withthistop-downapproach.
Ournewlyproposedbottom-up/top-downhybridapproachcouldbefeasiblefor detectionofdisasterrisksattheearlystages,usingcheapsensors,cheapconstellations oflowEarthorbit(LEO)satellites,andsmartwirelessnetworksusingartificialintelligence(AI)tools.
Nanosensors(ornanomaterials-basedsensors)canoffermanyadvantagesovertheir microsensorcounterparts,suchaslowerpowerconsumption(orself-power),highsensitivity,lowerconcentrationofanalytes,andsmallerinteractiondistancebetweenobject andsensor.Inaddition,withthesupportofAItoolssuchasfuzzylogic,geneticalgorithms,neuralnetworks,andambientintelligence,amongothers,sensorsystemsnowadayshavebecomesmarter,withlargernumbersofsensors(millions/billionsofcheap nanosensors).
Thisbookexploreshownanotechnologyandspacetechnologycanbeusedinsmart remotesensingnetworkstoaddressdisasterrisks.Inthefirstpartofthebook,thechapters focusontheuseofnanotechnologyfordisasterprevention:introductiontonanotechnologyappliedindisasterprevention(Chapter1),resistantnanostructuresforbuilding construction(Chapter2),nanosensors/nanosensornetworks/wirelesssensornetworks/IoTfordisastermanagement(Chapters3,4,and6),andnanosensorsforsmartphonesensing(Chapters5and7).Thesecondpartofthisbookemphasizesthe applicationofspacetechnologyfordisasterprevention,includingtheuseofnanotechnologyinspacetechnology(Chapter8). Chapters9,12,14,and15 presentUAVs/small satellites/aerialremotesensingfordisastermonitoring/management,and Chapter13 focusesondeeplearning-basedtime-seriesforecastingtechniquesusingInternetof Things(IoT)observations. Chapters10and11 discussthesynergyofsatelliteremote sensingandGIS(GeographicalInformationSystems)innaturaldisastermanagement. Thelastchapter(Chapter16)isanoverviewofsmartremotesensingnetworksforearly warningofdisasterrisks.
Wewouldliketothankalltheauthorsfortheireffortsinprovidingup-to-datechapters.WealsowouldliketothanktheElsevierteamfortheircooperation,timelyhelp,and patienceinthepublicationofthisbook.
AdilDenizli
MarceloS.Alencar TuanAnhNguyen
DavidE.Motaung
Applicationofnanotechnology indisasterprevention:Anintroduction
YounesAhmadia,b andMubasherFurmulya
aDepartmentofAnalyticalChemistry,KabulUniversity,Kabul,Afghanistan
bDepartmentofCivilandEnvironmentalEngineering,HanyangUniversity,Seoul,RepublicofKorea
1.1Introduction
Disastermeansacatastropheorgraveoccurrenceinanyarea,whichcanbeduetonatural orman-madecauses.Disasterscancausesubstantialloss(orsuffering)ofhumanlife, destructionofproperties(orinfrastructures),anddegradationofenvironment.Disasters cangenerallybedividedintotwomaincategories,whichareman-madeandnatural disasters [1].Asthenamesuggests,naturaldisastersoccurnaturally,whicharebeyond humancontrol.Naturaldisasterssuchasfloods,clones,tornados,landslides,andearthquakes,canleadtoseriouscircumstances,affectinghumanandotherbeing’slife.Such catastrophiceventsalsoinfluencethedevelopmentalprogramsofcountriesbycausing infrastructuredamagesandmassivehumanfatalities.Therefore,developingnationsare mostlyaffectedbynaturaldisastersbecauseofweakinfrastructures,poorinformation sharingsystems,andlow-scalehumandevelopmentprograms [1]
Generally,afterthehumanitariancatastrophes,thesocialstructuresoftheaffected communitiesentirelycollapseandsituationswillbedifficultespeciallyforvulnerable individuals [2].Forexample,inadisaster,thehealthsystemanditscomponentsplay essentialrolesinsavinghumanlives [3].Initialmeasuresafterdisastersaremainlyfocused tomanageinjuredpeopleandtreatmentofinfectiousdiseases(orsevereconditions) [4] Inaddition,anaturaldisastercanjeopardizeaccesstosafedrinkingwater,lackofwhich canleadtoseveralhealthconditionslikediarrhealdiseaseoutbreaks [3].
Man-madedisastersareanothertypeofcatastrophecausedbyhumans.Man-made disastersaregenerallycausedbydestructiveactivitiesofhumansthatcanbearisenfrom error,negligence,orfailureofman-madesystems [5].Thesephenomenacanfurther destroytheenvironment(bypoisoningair,water,andsoil)andcreateseriousproblems foralltypesofbeings [6].Currently,thedevelopedandunder-developedcountriesare facingsomemutualproblemsincludingenvironmentalpollution,energycrises,andpandemics.Theseproblemsaremainlyduetoclimatechange,increasingpopulation,industrialization,anddeforestation.Amongallthementionedproblems,environmental pollutionisacriticalissuethatrequiresurgentaction.Pollutionisindifferentforms,
includingwater,air,land,light,andnoisepollutions,amongwhichairandwaterpollutionscausemoreharmtotheclimate,environment,andalllivingbeings [7].Therefore, scientistsandtechnologistshavetriedtofindvarioussolutionstocombattheseproblems. Amongthesesolutions,thedesign,formulation,andapplicationofnanomaterialshave attractedimmenseattentionincontrollingvariousproblemsandcrises [8,9].
Nanotechnologyisgenerallyreferredtoas“technologyatthenano-scale.”Moreover,thedefinitionsofcomponentsofnanotechnology,likenanotubes,nanofibers, nano-sheets,nano-rods,etc.alsorefertothenano-scale.Indeed,wordsstartingwith nano,genericallywrittenasnanoX,canbedefinedasnano-scale [10,11].Nano-scale istherangefrom1to100nm.Nano-materialspossessinterestingphysical(e.g.,size, shape,specificsurfacearea,aspectratio,aggregationstatesizedistributionsurfacemorphology/topography,crystallinity,andsolubility)andchemicalproperties(suchas molecularstructure,purity,enormousreactivesites,catalyticproperties,etc.).Such propertieshavefacilitatedtheextensiveapplicationofnano-materialstocontroldisasters inwideareassuchasenvironmental,energy,andhealthsectors [12–14].Therefore,this chapteraimstoprovideanoverviewofthepotentialroleofnanotechnologyindisaster managementbyhighlightingrolesofnano-materialsinmajorareaslikeagriculture, energyproduction,healthsector,pollutioncontrol(water,air,light,etc.),corrosion protection,andpreventionaswellastherapyofpandemics [8,15]
1.2Nanotechnologyinsustainableagricultureandhungerprevention
SustainableagricultureisoneoftheimportantgoalsoftheUnitedNations(UN)to achieve“Zerohunger”intheworld.Thefoodproductionsectorhasexperiencedhuge stressduetotheincreasingpopulation,environmentalcontamination,climatechange, andhighdemandsofenergyandwater [16].Currently,theagriculturesystemsuseastaggeringamountofresources.Forexample,4milliontonsofpesticides,187milliontonsof fertilizers,2.7trillioncubicmetersofwater(approximately70%ofglobalconsumptive freshwater),andmorethantwoquadrillionBritishthermalunitsofenergyareconsumed fortheannualcropproductionof3billiontonsofcrops [17].In2017,theFoodand AgricultureOrganizationhasreportedthattheworld’spopulationispredictedtoreach 10billionby2050,whichincreasesthefoodrequirementsbyapproximately50%particularlyindevelopingnations.Currently,over815millionpeoplearemalnourished, whichisexpectedtobeincreasedbyadditional2billionpeoplein2050.Thiscondition necessitatesseriouschangesintheglobalfoodmanufacturingsystems [16,18]
Recentresearchrevealedthatnanotechnologypossessespromisingpotentialto improvetheagriculturesectorbyenhancingtheefficacyofagriculturaleffortsandproposingsolutionstoagriculturalaswellasenvironmentalproblems,whichmayhelp
increasefoodproductionandsafety.Therefore,inrecentyears,exploringtheapplicabilityofnanotechnologyinagriculturesectorhasgainedsubstantialattention [19].Inthe presentsection,wehavesummarizedtheeffectiveapplicationofnano-materialsindifferentrealmsforachievingthegoalofsustainableagriculturetopreventhungercrises. Nano-materialshavefoundenormoususesinagriculture,suchassoilremediates, nano-biosensors,nano-fertilizers,andnano-pesticides.Utilizationofnano-materialscan helpimprovethegrowth,yield,andsafetyofcropplants.Forexample,nano-fertilizers proliferatetheyield,quality,andmetabolismofcropsbyincreasingtheirnutrientefficiency whiledecreasingtheproductioncost,hence,contributingtowardagriculturalsustainability andstaveoffhunger [18,20].Studiesrevealedthatnano-fertilizershaveincreasedthe medianefficacyby18%–29%comparedtotheconventionalfertilizers [18].Theuseof phosphaticnano-fertilizershasincreasedgrowthrateandseedyieldofsoybeanby32% and20%,respectivelyascomparedtothoseofconventionalfertilizers [21].Similarly, nano-pesticideshavegainedhugeinterestcomparedtotheconventionalpesticidessince theypreservewaterandenergyastheyareusedinsmallerquantities.Nano-pesticidesalso helppreventhungercrisesbyimprovingtheefficiencyofpesticides,enhancethecropproductivity,increasethecropsyield,lowertheinputcosts,anddecreasethewasteaswellas laborcharges.However,thesmallsizeofnano-pesticidesmayinitiatehealthissuessince theycanenterhumanbodythroughskin,breathing,andfoodconsumption.Moreover, theresponsetonano-materialsmaybedifferentasperplantspecies [22].Therefore,the commercialapplicationofnano-materialsneedsdetailedresearchandexperimentation toscreenandoptimizetheamountofnano-materialsfordiverseplantspecies.Itshould benotedthattheefficiency,behavior,andpropertiesofnano-materialscanbetailored byalteringtheirproductionconditions.Asaresult,extensiveadvancementsintheformulationofinnovativesynthesismethodswithhelpcontroltheproductcompositionthatmay improveefficiencyofnano-materials.
Theapplicationofnano-biosensorshasalsoplayedanimportantroleintheagriculturesector.Nano-biosensorsgenerallypossessnano-sizedmaterials,whichcanactasbioreceptorsonatransducertoprovidesignals.Thesesignalsarefurthertransferredto recognitionelementsinordertodetectsingle/complexanalytes.Theinterestingcharacteristicsofnano-biosensorsaretheirfacilefictionalization,immobilizationaswellas miniaturization,whichhelpintegratethebio-componentsoftransductionsystemsinto complexstructureshence,improvingtheperformanceofnano-materials(Fig.1.1) [23]. Thenano-biosensors,aregenerallyusedforthedetectionofanalytesinwaterandsoil bodiessincetheearlydetectionofpollutantsinsoilandwaterhelpsminimizetheirharmfuleffects.Forexample,theaccumulationoftoxicmetalions,abovethethresholdlevels, inarablesoilandplantsisaworldwideissue,whichcancauseserioushealthproblems [23].Suchpollutantscanbedetectedwiththehelpofopticalsensors,whichutilizeelectromagneticradiationsforthedetectionofspecificanalytes [24]

1.3Roleofnanotechnologyinenvironmentalpollutionprevention
Pollutionisgenerallyreferredtoasthepresenceoftoxicelementsintheenvironment, whichhavethepotencytodecreasethequalityofenvironmentalelementsandproduce healthproblems [25].Furthermore,thepreventionofinfectionsisreducingtheconcentrationofpollutantsattheirsources.Increasingthehumanpopulationhasledtothe extensiveurbanization,whichsubsequentlyincreasedtheenvironmentalpollution.In thisregard,nanotechnologyhasprovidedanewsolutionforthedetoxificationandcleaningofthesurroundingenvironmentandalsoimprovedtheperformanceofconventional approachesusedforcombatingpollution.Nanotechnologyreducesandpreventsthe releaseofpollutantstothesurroundingenvironment.Improvingthequalityofenvironmentisconsideredtobeoneoftheeightcross-cuttingareasofnanotechnology [25,26].
Fig.1.1 Schematicrepresentationfordesignsandmechanismofactionofnano-structuredbiosensors [22].
Thepollutioncontrolatmolecularlevelcanbeachievedbytheapplicationof nano-materials,whichisbasicallytheseparationofspecificpollutantmolecules/materials fromamixture(air,water,andsoil) [27,28]
Airpollutioncanbeeradicatedbytheapplicationofnanotechnologyinvariousmanners.Oneofthewidelyusedmethodsisdevelopmentandutilizationofthenano-catalysts possessinghighsurfaceareforgaseouspollutantssuchasvolatileorganiccompounds [29]. Suchcatalystsarefunctionalmaterialsthatincreasetherateofchemicalreactionsthatwould producetoxicgasesgeneratedfromindustrialplants,cars,andhumanactivities [30].Nanocatalystssuchasnano-fibercatalysts,formulatedfrommanganeseoxide,caneliminate organicmaterialsexposedbytheexplosionofindustrialsmokestackstotheair [1] Nano-materialshavealsofoundintensiveapplicationsinothermethodsofpurificationlike filtration,adsorption,anddegradationofgaseouspollutants.Thestructureofsuchnanoparticlespossesseslargesurfaceareaandporedensitythathelpadsorbedandseparatetoxic gases [31].Asaresult,carbonnanotubescanadsorbthegasesupto100timesfasterthan otheradsorbents.Thistechnologyalsoseparates,purifies,andprocesseslargevolumesof gaseouspollutantsproficiently.Inadditiontotheremovalofgaseouspollutants,numerous studieshaverevealedthatmetal-basednano-particles(likeAg,Cu,Au,andFe)exhibit broad-spectrumantiviralandantibacterialabilities,whichmakethemextensively employedinbiomedicinesandthedisinfectionofairaswellaswatermediums [32].Studies havealsosuggestedthattheeffectofmetallicnano-particlesontheinactivationofviruses mayplaycrucialrolesbeforeaswellasafterthevirusesenterhosts(Fig.1.2) [32].
Theprovisionofclean,safe,andadequatewatertopeopleisaworldwidechallenge. Inaddition,waterpurificationanddecontaminationtechnologiescontinuetobeenergyintensiveandineffectiveineliminatingvitaltracepollutants [35].Ingeneral,theglobal watertreatmentsystemsarepoorlysuitedtodistributethewateramongpublic.Recently, severaleffortshavebeenmadetoleveragethetunableandeffectivecharacteristicsof nanotechnologytoeradicateandcombatthesetechnicalweaknesses.Furthermore, theevolutionofdifferentmanufacturingplantshasledtothecontaminationofwater bodies.Suchindustriescontaminatethewaterbyreleaseoftoxicdyes,pesticides,oils, andpharmaceuticalwastes [36].Theadsorptionofcontaminants(e.g.,dyesandother compounds)byformulatedmaterials(suchasnano-celluloses,metals,metaloxides, etc.)hasbeenexploreddeeply [36].Theapplicationofnano-materialseasesthedetoxificationofwaterbytheirfacileinsertionintotheundergroundwaterresources,therefore makingtheutilizationofnano-sizedmaterialscheaperthanconventionalpurification approaches [25].Theconventionalmethodsofwaterfiltrationapplysemipermeable membranesforelectrodialysisandreverseosmosis.Besides,ionexchangeresinsaregenerallyemployedfortheseparation,decontamination,andcleaningprocesses [25].Inthis regard,nano-materialssuchasnano-whiskers(NWs),nanofibers(NFs),andnanocrystals (NCs)withanexcellentcapacityforwaterpurificationhavebeenformulated [37–39]