Nanostructured, functional, and flexible materials for energy conversion and storage systems 1st edi

Page 1


https://ebookmass.com/product/nanostructured-functional-and-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Biomass-Derived Carbon Materials: Production and Applications Alagarsamy Pandikumar

https://ebookmass.com/product/biomass-derived-carbon-materialsproduction-and-applications-alagarsamy-pandikumar/

ebookmass.com

Graphene-Based Electrochemical Sensors for Biomolecules Alagarsamy Pandikumar

https://ebookmass.com/product/graphene-based-electrochemical-sensorsfor-biomolecules-alagarsamy-pandikumar/

ebookmass.com

Energy Storage Systems: System Design and Storage Technologies Armin U. Schmiegel

https://ebookmass.com/product/energy-storage-systems-system-designand-storage-technologies-armin-u-schmiegel/

ebookmass.com

Human Communication: University of Central Florida 7th Edition Judy C. Pearson

https://ebookmass.com/product/human-communication-university-ofcentral-florida-7th-edition-judy-c-pearson/

ebookmass.com

Narratives of African American Women's Literary Pragmatism and Creative Democracy 1st ed. Edition Gregory Phipps

https://ebookmass.com/product/narratives-of-african-american-womensliterary-pragmatism-and-creative-democracy-1st-ed-edition-gregoryphipps/

ebookmass.com

Introduction to global studies Second Edition John Mccormick

https://ebookmass.com/product/introduction-to-global-studies-secondedition-john-mccormick/

ebookmass.com

DiPiro's Pharmacotherapy: A Pathophysiologic Approach, 12th Edition Dipiro

https://ebookmass.com/product/dipiros-pharmacotherapy-apathophysiologic-approach-12th-edition-dipiro/

ebookmass.com

The Greek Life of Adam and Eve 1st Edition John R. Levison

https://ebookmass.com/product/the-greek-life-of-adam-and-eve-1stedition-john-r-levison/

ebookmass.com

Panther's Catch (Animal Rescue Shifters Book 3) Zoe Chant

https://ebookmass.com/product/panthers-catch-animal-rescue-shiftersbook-3-zoe-chant/

ebookmass.com

Weinstein

https://ebookmass.com/product/venomous-bites-from-non-venomous-snakesscott-a-weinstein/

ebookmass.com

NANOSTRUCTURED, FUNCTIONAL,AND FLEXIBLEMATERIALS FORENERGY CONVERSIONAND STORAGESYSTEMS

ALAGARSAMYPANDIKUMAR
PERUMALRAMESHKUMAR

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-819552-9

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: ChristinaGifford

EditorialProjectManager: GabrielaD.Capille

ProductionProjectManager: NirmalaArumugam

CoverDesigner: MarkRogers

TypesetbyTNQTechnologies

Contributors

RafaelAbargues

UMDO,InstitutodeCienciadelosMateriales,UniversidaddeValencia,Valencia,Spain

SouravAcharya

DepartmentofChemistry,IIT(ISM)Dhanbad,Dhanbad,Jharkhand,India

SomasundaramAnbuAnjugamVandarkuzhali

NationalCentreforCatalysisResearch,IndianInstituteofTechnologyMadras,Chennai, TamilNadu,India

A.Arulraj

GrapheneandAdvanced2DMaterialsResearchGroup(GAMRG),SchoolofScienceand Technology,SunwayUniversity,Selangor,Malaysia

SaravanaVadivuArunachalam

DepartmentofChemistry,SchoolofAdvancedSciences,KalasalingamAcademyof ResearchandEducation,Virudhunagar,TamilNadu,India

NorfatehahBasiron

SchoolofMaterials&MineralResourcesEngineering,EngineeringCampus,Universiti SainsMalaysia,NibongTebal,PulauPinang,Malaysia

R.JosephBensingh

AdvancedResearchSchoolforTechnologyandProductSimulation(ARSTPS),Schoolfor AdvancedResearchinPolymers(SARP),CentralInstituteofPlasticsEngineeringand Technology(CIPET),Chennai,TamilNadu,India

GaneshChandraNayak

DepartmentofChemistry,IIT(ISM)Dhanbad,Dhanbad,Jharkhand,India

MyongYongChoi

DepartmentofChemistryandResearchInstituteofNaturalScience,GyeongsangNational University,Jinju,Gyeongnam,RepublicofKorea

ShrabaniDe

DepartmentofChemistry,IIT(ISM)Dhanbad,Dhanbad,Jharkhand,India

DuraisamiDhamodharan

CASKeyLaboratoryofDesignandAssemblyofFunctionalNanostructure,FujianKey LaboratoryofNanomaterials,FujianInstituteofResearchontheStructureofMatter, ChineseAcademyofSciences,Fuzhou,Fujian,China

NidhinDivakaran

CASKeyLaboratoryofDesignandAssemblyofFunctionalNanostructure,FujianKey LaboratoryofNanomaterials,FujianInstituteofResearchontheStructureofMatter, ChineseAcademyofSciences,Fuzhou,Fujian,China

KingshukDutta

AdvancedResearchSchoolforTechnologyandProductSimulation(ARSTPS),Schoolfor AdvancedResearchinPolymers(SARP),CentralInstituteofPlasticsEngineeringand Technology(CIPET),Chennai,TamilNadu,India

ChandraSekharEspenti

DepartmentofChemistry,RajeevGandhiMemorialCollegeofEngineeringand Technology,Kurnool,AndhraPradesh,India

A.Gowrisankar

DepartmentofChemistry,BharathiarUniversity,Coimbatore,TamilNadu,India

VasanthRajendiranJothi

DepartmentofChemicalEngineering,HanyangUniversity,Seongdong-gu,Seoul, SouthKorea

Ho-YoungJung

DepartmentofEnvironment&EnergyEngineering,ChonnamNationalUniversity, Gwangju,RepublicofKorea;CenterforEnergyStorageSystem,ChonnamNational University,Gwangju,RepublicofKorea

M.AbdulKader

AdvancedResearchSchoolforTechnologyandProductSimulation(ARSTPS),Schoolfor AdvancedResearchinPolymers(SARP),CentralInstituteofPlasticsEngineeringand Technology(CIPET),Chennai,TamilNadu,India

ManojB.Kale

CASKeyLaboratoryofDesignandAssemblyofFunctionalNanostructure,FujianKey LaboratoryofNanomaterials,FujianInstituteofResearchontheStructureofMatter, ChineseAcademyofSciences,Fuzhou,Fujian,China

K.Karthick

AcademyofScientificandInnovativeResearch(AcSIR),CSIR-Campus,NewDelhi, India;MaterialsElectrochemistry(ME)Division,CSIR-CentralElectrochemicalResearch Institute(CECRI),Karaikudi,TamilNadu,India

K.Karuppasamy

DivisionofElectronicsandElectricalEngineering,DonggukUniversity-Seoul,Seoul, SouthKorea

Hyun-SeokKim

DivisionofElectronicsandElectricalEngineering,DonggukUniversity-Seoul,Seoul, SouthKorea

VijayS.Kumbhar

DepartmentofEnergyChemicalEngineering,SchoolofNano&MaterialsScienceand Engineering,KyungpookNationalUniversity,Sangju,Gyeonsang-daero,Republicof Korea

SubrataKundu

MaterialsElectrochemistry(ME)Division,CSIR-CentralElectrochemicalResearch Institute(CECRI),Karaikudi,TamilNadu,India

N.LakshmanaReddy

NanocatalysisandSolarFuelsResearchLaboratory,DepartmentofMaterialsScience& Nanotechnology,YogiVemanaUniversity,Kadapa,AndhraPradesh,India;Departmentof EnergyChemicalEngineering,SchoolofNano&MaterialsScienceandEngineering, KyungpookNationalUniversity,Sangju,Gyeonsang-daero,RepublicofKorea

SeungJunLee

DepartmentofChemistryandResearchInstituteofNaturalScience,GyeongsangNational University,Jinju,Gyeongnam,RepublicofKorea

KiyoungLee

DepartmentofEnergyChemicalEngineering,SchoolofNano&MaterialsScienceand Engineering,KyungpookNationalUniversity,Sangju,Gyeonsang-daero,Republicof Korea

N.Malarvizhi

DepartmentofChemistry,GuruNanakCollege,Chennai,TamilNadu,India

JuanP.Martínez-Pastor

UMDO,InstitutodeCienciadelosMateriales,UniversidaddeValencia,Valencia,Spain

SuhailMubarak

CASKeyLaboratoryofDesignandAssemblyofFunctionalNanostructure,FujianKey LaboratoryofNanomaterials,FujianInstituteofResearchontheStructureofMatter, ChineseAcademyofSciences,Fuzhou,Fujian,China

A.Murali

SchoolforAdvancedResearchinPolymers(SARP)-ARSTPS,CentralInstituteofPlastics Engineering&Technology(CIPET),Chennai,TamilNadu,India

A.Nichelson

DepartmentofPhysics,NationalEngineeringCollege,K.R.Nagar,Kovilpatti,Tamil Nadu,India

S.T.Nishanthi

ElectrochemicalPowerSourcesDivision,CSIR-CentralElectrochemicalResearch Institute(CECRI),Karaikudi,TamilNadu,India

AlagarsamyPandikumar

FunctionalMaterialsDivision,CSIR-CentralElectrochemicalResearchInstitute, Karaikudi,TamilNadu,India

S.Priya

DepartmentofPlantBiology&Biotechnology,LoyolaCollege,Chennai,TamilNadu, India

AlagarRamar

GraduateInstituteofAppliedScienceandTechnology,NationalTaiwanUniversityof ScienceandTechnology,Taipei,Taiwan,RepublicofChina

PedroJ.Rodríguez-Canto

UMDO,InstitutodeCienciadelosMateriales,UniversidaddeValencia,Valencia,Spain

T.Sadhasivam

DepartmentofEnvironment&EnergyEngineering,ChonnamNationalUniversity, Gwangju,RepublicofKorea;CenterforEnergyStorageSystem,ChonnamNational University,Gwangju,RepublicofKorea

KhairulArifahSaharudin

SchoolofMaterials&MineralResourcesEngineering,EngineeringCampus,Universiti SainsMalaysia,NibongTebal,PulauPinang,Malaysia

SumantaSahoo

DepartmentofChemistry,IIT(ISM)Dhanbad,Dhanbad,Jharkhand,India

M.Sakar

CentreforNanoandMaterialSciences,JainUniversity,Bangalore,Karnataka,India

S.SamSankar

AcademyofScientificandInnovativeResearch(AcSIR),CSIR-Campus,NewDelhi, India;MaterialsElectrochemistry(ME)Division,CSIR-CentralElectrochemicalResearch Institute(CECRI),Karaikudi,TamilNadu,India

T.Saravanakumar

DepartmentofNanoscienceandTechnology,AnnaUniversityRegionalCampus, Coimbatore,TamilNadu,India

M.Selvaraj

DepartmentofChemistry,GuruNanakCollege,Chennai,TamilNadu,India

T.Selvaraju

DepartmentofChemistry,BharathiarUniversity,Coimbatore,TamilNadu,India

T.Senthil

AdvancedResearchSchoolforTechnologyandProductSimulation(ARSTPS),Schoolfor AdvancedResearchinPolymers(SARP),CentralInstituteofPlasticsEngineeringand Technology(CIPET),Chennai,TamilNadu,India

M.V.Shankar

NanocatalysisandSolarFuelsResearchLaboratory,DepartmentofMaterialsScience& Nanotechnology,YogiVemanaUniversity,Kadapa,AndhraPradesh,India

ParamasivamShanmugam

DepartmentofChemistry,St.JosephUniversity,Dimapur,Nagaland,India

SubramanianSingaravadivel

DepartmentofChemistry,SSMInstituteofEngineeringandTechnology,Dindigul,Tamil Nadu,India

GandhiSivaraman

DepartmentofChemistry,GandhigramRuralInstitute DeemedtobeUniversity, Gandhigram,TamilNadu,India

AnanthakumarSoosaimanickam

UMDO,InstitutodeCienciadelosMateriales,UniversidaddeValencia,Valencia,Spain

SrimalaSreekantan

SchoolofMaterials&MineralResourcesEngineering,EngineeringCampus,Universiti SainsMalaysia,NibongTebal,PulauPinang,Malaysia

TammineniVenkataSurendra

DepartmentofChemistry,RajeevGandhiMemorialCollegeofEngineeringand Technology,Kurnool,AndhraPradesh,India

WaqasHassanTanveer

ResearchCentreforCarbonSolutions,Heriot-WattUniversity,Edinburgh,United Kingdom;DepartmentofMechanicalEngineering,SchoolofMechanicaland ManufacturingEngineering,NationalUniversityofSciencesandTechnology(NUST), Islamabad,Pakistan

JayaramanTheerthagiri

DepartmentofChemistryandResearchInstituteofNaturalScience,GyeongsangNational University,Jinju,Gyeongnam,RepublicofKorea;CentreofExcellenceforEnergy Research,CentreforNanoscienceandNanotechnology,SathyabamaInstituteofScience andTechnology(DeemedtobeUniversity),Chennai,TamilNadu,India

DhanasekaranVikraman

DivisionofElectronicsandElectricalEngineering,DonggukUniversity-Seoul,Seoul, SouthKorea

Fu-MingWang

GraduateInstituteofAppliedScienceandTechnology,NationalTaiwanUniversityof ScienceandTechnology,Taipei,Taiwan,RepublicofChina

LaiChinWei

Nanotechnology&CatalysisResearchCentre,InstituteforAdvancedStudies,University ofMalaya,KualaLumpur,Malaysia

LixinWu

CASKeyLaboratoryofDesignandAssemblyofFunctionalNanostructure,FujianKey LaboratoryofNanomaterials,FujianInstituteofResearchontheStructureofMatter, ChineseAcademyofSciences,Fuzhou,Fujian,China

Sung-ChulYi

DepartmentofChemicalEngineering,HanyangUniversity,Seongdong-gu,Seoul,South Korea;DepartmentofHydrogenandFuelCellTechnology,HanyangUniversity,Seoul, SouthKorea

CHAPTER1

Basicprinciplesinenergy conversionandstorage

JayaramanTheerthagiri1, 2, a,SeungJunLee1, a , ParamasivamShanmugam3,MyongYongChoi1

1DepartmentofChemistryandResearchInstituteofNaturalScience,GyeongsangNationalUniversity, Jinju,Gyeongnam,RepublicofKorea; 2CentreofExcellenceforEnergyResearch,Centrefor NanoscienceandNanotechnology,SathyabamaInstituteofScienceandTechnology(Deemedtobe University),Chennai,TamilNadu,India; 3DepartmentofChemistry,St.JosephUniversity,Dimapur, Nagaland,India

1.Introduction

Energyisindisputablyoneoftheforemostissuesofmodernsocietyand playsanimportantroleineconomicgrowth.Inthecurrentenergyscenario,researchershaveparticularlyfocusedontheproductionandconsumptionofenergy.However,energyconsumptionincreaseisinevitable becauseofthegrowingpopulationandeconomicgrowthindeveloping countries.Nevertheless,thetremendousexploitationoffossilfuelsas nonrenewablesourceshasraisedconcernsaboutthelackofenergyresourcesandCO2 emissionsthatdeterioratetheenvironment[1 3].To overcometheseissues,anaffordable,clean,andrenewableenergyresource, whichcanbeanalternativetofossilfuels,isurgentlyrequired.Asan importantsteptowardtheutilizationofrenewableenergyresources,energy storageandconversiondeviceshaveattractedglobalattention.Highly efficientelectrochemicalenergystorageandconversiondeviceswith minimaltoxicity,lowcost,and flexibilityinenergyutilizationare consideredtomeettheever-expandingenergydemandinelectricvehicles (EV),consumerelectronics,andminiaturizeddevices.

Theperformanceoftheelectrochemicalenergystorageandconversion devicesiscloselyassociatedwithphysicochemicalpropertiesofmaterials utilized.Forexample,materialswithlimitedelectrochemicalactivesurface sitesandbulkmaterialswithslowdiffusioncannotbeutilizedinenergy devicessuchasbatteriesandsupercapacitors.Also,thelowelectrocatalytic behaviorofenergymaterialsisnotsuitableformakinghighlyefficient

a Theseauthorscontributedequallytothiswork.

Nanostructured,Functional,andFlexibleMaterialsforEnergy ConversionandStorageSystems

ISBN978-0-12-819552-9 https://doi.org/10.1016/B978-0-12-819552-9.00001-4

2 Nanostructured,Functional,andFlexibleMaterialsforEnergyConversionandStorageSystems

dye-sensitizedsolarcells(DSSCs)andfuelcells[4 6].Ontheotherhand, nanomaterialswithexceptionalsurfacestructureshavegainedimmense interestbecauseoftheiruniqueelectricalandmechanicalproperties,and theirsurfacepropertiesalsoplayavitalroleintheelectrochemicalbehavior. Theadventofnanotechnologyoffersanewplatformforthedesignand fabricationofenergymaterialswithnanosizedstructures.Thus,theperformanceofelectrochemicalenergystorageandconversiondeviceshas highlybenefittedfromthe fieldofnanotechnology.

Thischapteroutlinesthespecificfeatures,basiclandscape,general components,andperformanceevaluationofvariouselectrochemicalenergy storageandconversiondevices,suchasbatteries,supercapacitors,DSSCs, photocatalytichydrogenproductionviawatersplitting,andfuelcells.Also, nanostructuredmaterialsinenergystorageandconversiontechnologiesare emphasized.

2.Lithiumbatteries

Lithium-ionbatteries(LIBs)arethemostpromisingcandidatesforportable electronicsandEVapplications.Itwas firstdevelopedinJapanbyAsahi KaseiCompanyin1991.The firstrechargeableLIBmadeupofLiCoO2 cathodeandgraphiteanodewascommercializedbySony[7].Currently, availableLIBsinthemarketpossesshighenergydensityandgoodperformance,aslithiumisthelightestmetalandmostelectropositivemetallic element( 3.04Vvs.standardhydrogenelectrode)andthereforeenables anelectrochemicalstoragedevicewithhighenergydensities[8].Moreover, LIBscanundergomorethan1000charge/dischargecyclesandcanbe manufacturedinvarioussizesanddimensions.ThemaintenanceofLIBsis quitesimplecomparedwiththeotherbatterytechnologies,suchas lead acid,Na NiCl2,andNi MHbatteries.TheLIBtechnologyhas beenwidelyusedinelectronicdevicesandhasrecentlybeenintroducedto thehybridEVmarketasasuitablecandidatetopowerelectriccars[9].Still, researchershavebeenfocusingonelectrodes,electrolytematerials,and designsofthistechnologytodecreasethecost,improvethecyclinglife,and increasethesafety.

2.1Batteryprincipleandbasics

ALIBisatypeofrechargeableenergystoragedevicethatconvertsstored chemicalenergyintoelectricalenergybymeansofchemicalreactionsof lithium.ThesimplestunitofLIBscalledelectrochemicalcellconsistsof

threekeycomponents:cathode,anode,andelectrolyte.Faradaicredox reactionstakeplaceatalowerelectrodepotentialcalledtheanode(negative electrode)andamorepositiveelectrodecalledthecathode.The first workingrechargeableLIBsconsistedofLiCoO2 asthepositiveelectrode andgraphiteasthenegativeelectrode[10]. Fig.1.1 showstheschematic diagramoftheLIBdesign.IntheLIBs,Liþ ionsaretransferredbetweenthe cathodeandanodeduringchargeanddischargeprocesses.TheLIBdesign shownin Fig.1.1 isanexampleof “rockingchair” battery[11],whereLiþ ionsaredeintercalatedfromthelayeredlithiumcobaltoxideduringthe chargingprocess(oxidationofLiCoO2).ThedeintercalatedLiþ ionsfrom LiCoO2 migratetothegraphitetoformLiC6.Duringthedischargeprocess,thereversereactionofLiþ ionsisintercalatedtoLixCoO2.The electrochemicalreactionsatthepositiveandnegativeelectrodeduringthe charge/dischargeprocessaregivenbelow[12]:

LiMO 2 #Li1 x MO 2 þ xLiþ þ xe

Figure1.1 SchematicrepresentationofLi-ionbatterydesignusingaLiCoO2 cathode andgraphiteanode [13].Copyright(2020)AmericanChemicalSociety.

Positive:

OneofthethreemaincomponentsinLIBsisthecathode/positive electrode.ThecapacityandvoltageoftheLIBsdependonthecathode material,whichisthelimitingfactorofthedevice.Forexample,the theoreticalcapacityofLiFePO4 islimitedto170mAhg 1 basedontheone Liþ transfer,althoughthetheoreticalcapacityoftheanodematerial, graphite,is372mAhg 1.ElectrolytesareusedtotransportLiþ ionsfrom oneelectrodetoanotherelectrode.Theycanbedividedintotwotypes:(1) liquidelectrolyteand(2)solidelectrolyte.Theliquidelectrolytes,suchas NaPF6 inethylenecarbonate/propylenecarbonate,requireseparatorto preventshortcircuits.However,solidelectrolytesdonotneedanyadditionalseparatorastheycanfunctionasbothaseparatorandanelectrolyte. Inaddition,electrolytesshouldhavehighionicconductivityandbroad operatingvoltagerangewithoutanydecomposition[13].

3.Supercapacitors

Asupercapacitorisanelectrochemicalenergystoragedevice,whichcanbe usedtostoreanddeliverchargebyreversibleadsorptionanddesorptionof ionsattheinterfacebetweentheelectrodematerialandelectrolyte. Supercapacitorsarealsocalledultracapacitorsorelectrochemicalcapacitors. Theycanwithstandmanychargeanddischargecyclescomparedto rechargeablebatteries.Supercapacitorshavemanyadvantages,suchashigh powerdensityandspecificcapacitance(SC),longlifecycle,ecofriendliness, and flexibilityofworkingtemperature[14,15].Inaddition,theycanrapidly chargewithquickpowerconveyanceandarecompetenttoreplaceconventionalcapacitors.Also,supercapacitorscanactlikebridgesanddecrease thegapamongcapacitors,batteries,orfuelcells.Theoperatingvoltage rangeofastandardcapacitorisveryhigh,butforsupercapacitors,itis between2.5and2.7V.

Theelectrochemicalsupercapacitorsareclassifiedintothreecategories basedonthechargestoragemechanism:(1)electrochemicaldouble-layer capacitors(EDLCs),(2)pseudocapacitors,and(3)hybridcapacitors. EDLCsconsistoftwoelectrodesandanelectrolyte.Thetwoelectrodesare separatedbyaseparator,andtheelectrolyteisthecombinationofnegative andpositiveionsdissolvedinsuitablesolvents.Inpseudocapacitors,energy isstoredfaradaicallybymeansofchargetransferbetweentheelectrolyteand

electrode.Thechargetransfermayoccurviaredoxreactionsandelectrosorption.Thus,theFaradaicprocesscanachievehighSCandenergy densitycomparedwithnon-FaradaicprocessofEDLCs.Hybridcapacitors areacombinationofEDLCs(non-Faradaic)andpseudocapacitors(Faradaic).Typesofsupercapacitorsandthecorrespondingmaterialsareshown in Fig.1.2.

3.1Workingprincipleofasupercapacitor

Acurrentcollectorattractsoppositelychargedionswhenvoltageisapplied, andtheionsfromtheelectrolytearecollectedonboththecurrentcollector surfacesandthenthechargeisbuilt.Supercapacitorscomprise currentcollectors(conductingmetalplates),electrodes,anelectrolyte, andaseparator.Thestructuresofsupercapacitorsvaryfromstandard capacitorstobatteries.Theutilizationofactivatedcarbonincreasesthe surfacearea,therebyincreasingthecapacitancevalue.Moreover,electrolyte withalowinternalresistanceincreasespowerdensity.Thesetwo featuresleadtotheabilitytoquicklystoreandreleaseenergyin supercapacitors.

Figure1.2 Typesofsupercapacitors.

4.Dye-sensitizedsolarcells

Therenewableenergydeviceofsolarcellsconvertssolarenergy(sunlight) intoelectricalenergyandpotentiallycansolvethegrowingenergydemand. Currently,solarlight basedtechnologiesaregainingrecognitionbecause ofitsvariousadvantages,suchaslowtoxicityandnoise.Amongvarious solarcells,DSSCshavebeenreceivingconsiderableinterestbecauseoftheir lowmanufacturingcost,simplefabrication,ecofriendliness,excellentstability,andrelativelyhighpowerconversionefficiency.Sincethemid1980s,Gratzel’sgroupatEPFL(Switzerland)hasbeenthemaindriving forceforthedevelopmentofDSSCs.In1991,theyinventedaDSSCwith aconversionefficiencyof7.1%basedonlow-costnanoporousTiO2 particlestogetherwithnewlydevelopedrutheniumdyes,whichopenedanew wayintheareaofDSSCs(akaGratzelcells)byprovidingbetterstabilityand enhancedefficiency[16].

4.1Majorcomponentsofdye-sensitizedsolarcells

ADSSCcontainsfourmaincomponents:photoanode(photoelectrode), counterelectrode,dyesensitizer,andelectrolyte.Aschematicofatypical DSSCisshownin Fig.1.3.Specificfunctionsofallfourcomponentsare

Figure1.3 Schematicofadye-sensitizedsolarcell[23].Copyright(2020)Elsevier.

crucialtoaccomplishamaximumpowerconversionefficiencyandlifetime ofthedevice.

ThephotoanodeisanimportantpartofaDSSC.Ingeneral,photoanodespreparedbyanonporouslayerofasemiconductormetaloxide,such asTiO2,ZnO,SiO2,andNb2O5,arecoatedonatransparentconducting (indium-or fluorine-dopedtinoxide)glasssubstrate,whichlargelyenhancesthesurfaceareaofphotoanodeandallowsmoredyemoleculestobe adsorbed,therebyimprovingthelightabsorptionefficiency.Thedyesensitizedsemiconductoroxidecollectsthephotoinducedelectronfrom thelowestunoccupiedmolecularorbitalofthedyesensitizer,providing electronmobilitytotheconductingsubstrate.Thedyemolecules’ (sensitizer)functioninatypicalDSSCis,withtheabsorptionofmaximumsolar light,toproduceelectronsthatareconsequentlyinjectedintotheconductionband(CB)ofthenonporousoxideelectrodeonwhichthedye moleculesareattached.Generally,ruthenium-basedpolypyridylcomplexes (N719andN3dye)areusedashigh-performancedyemoleculesinthe fabricationofDSSCs.AnotherimportantcomponentofDSSCsisredox electrolytes.Thefunctionoftheelectrolyteistoregeneratetheoxidized formofdyemoleculesandcompletionofanelectriccircuitbytransporting positivechargestothecounterelectrode.Also,thestabilityofthefabricatedDSSCdeviceiscloselyassoci atedwiththenatureoftheredox electrolytes.Torecoveroxidizeddyemolecules,thepotentialofthe redoxelectrolyteshouldbemargina llysituatedatamorenegativelevel thanthehigherunoccupiedmolecularorbitalofthedyemolecules. Numerousredoxmediatorsareutili zedintheDSSCelectrolyte,for example,I /I3 ,SCN /SCN3 ,Br /Br3 ,andCo(II)/Co(III).I /I3 isthe mostcommonlyutilizedamongredoxmediatorsinelectrolytes.In DSSCs,thecounterelectrodecomprisesanelectrocatalystcoatedonthe conductingsubstrate.Thefunctiono fthecounterelectrodeistoinject electronsintotheredoxelectrolytestoelectrocatalyzethetriiodideinto iodideions.Agoodcounterelectrodeshouldpossesshighelectrocatalytic behaviortowardthereductionofI 3 intoI ions,lowresistancetoobtain ahigh fi llfactor,andbeavailableatlowcost.Generally,platinumisused asaconventionalelectrocatalyticmaterialbecauseofitshighcatalytic reductionperformance[ 6,16].However,itslarge-scaleapplicationsare limitedbecauseofitshighcostandscarcity;thus,theselimitationsfueled variousstudiestodevelopasubstitu tematerialfortheplatinum-based counterelectrodesanddecreasetheircostwhilemaintainingtheef ficiencyofDSSCs.

4.2Workingprinciplesofdye-sensitizedsolarcells

UpontheilluminationofsolarlightontothefabricatedDSSCdevice,dye moleculesareexcitedfromthegroundstatetotheexcitedstate.The exciteddyemoleculesinjectitselectrontotheCBofthesemiconductor metaloxide basedphotoanode.Then,theoxidizedformofdyemolecules isregeneratedbyI oftheelectrolyte,andI isconvertedtoI3 ions. Simultaneously,I3 isreducedtoI becauseofelectrongainfromthe counterelectrode.Thecycleiscompletedbythe flowofinjectedelectrons fromthephotoelectrodetothecounterelectrodeviaanexternalcircuit.

TheperformanceofaDSSCdevicecanbeassessedbythe fillfactor(FF) andapowerconversionefficiency(h)usingthefollowingequations[6]:

where Vmax isthemaximumvoltage, Jmax isthemaximumcurrentdensity, Voc istheopencircuitvoltage, Jsc istheshortcircuitcurrent,and Pin and Pout arethepowerinputandoutputfromsolarlight,respectively.

5.Hydrogenproductionbyphotocatalyticwatersplitting

Hydrogenisakindofenergysourcewithzerogreenhousegasemissionand thushasattractedmuchattentionasanalternativetofossilfuels,providing ecofriendliness,sustainability,andcleanenergy[17,18].Hydrogenismainly obtainedfromthedecompositionoffossilfuels(naturalgas,oil,andcoal). However,theconsumptionoffossilfuelshasgeneratedasubstantial quantityofCO2 emissionandisthemainreasonforglobalwarming.Itis criticallyneededtosupplantfossilfuelswithadvancedalternateenergy sources.Hence,hydrogenproductionviawatersplittinghasgainedinterest becausewaterisnaturallyabundant,carbon-free,andenvironmentally friendly[19].

Watersplittingviaphotocatalyticreactionisinitiatedbytheabsorption ofphotonsbyasemiconductorphotocatalyst,whichcanbephotoexcited bytheabsorptionofphotonswithequalorhigherenergythanitsbandgap energy.Then,thephotoinducedholesandelectronsaredirectlyinvolved inthesplittingofwater.Theproductionofhydrogenbywatersplitting usingTiO2 photocatalystsunderUVlightilluminationwas firstreportedby

FujishimaandHondainthe1970s,wheretheyutilizedaphotoelectrochemicalcellcomprisingTiO2 andPtelectrodesunderanelectric potential[20].Thechemicalprocessinvolvedinphotocatalyticwater splittingisdemonstratedin Fig.1.4

Mostly,thewatersplittingprocessviaphotocatalysistakesplacein severalreactions:

(1) Intrinsicionizationofphotocatalystsbytheabsorptionofphotonsover thebandgap,generatingholesinvalenceband(VB)andelectronsin CBofcatalysts;

Photocatalyst þ 2hv / 2hþ þ 2e

(2) Watermoleculesoxidizedbyphotogeneratedholes;

2H2O þ 4hþ / 4Hþ þ O2

(3) Hydrogenionreductionbyphotogeneratedelectrons;

2Hþ þ 2e / H2

Theoverallreactionofwatersplittingis

2H2O / 2H2 þ O2

Duringthewatersplittingreaction,thephotoinducedelectronscan reduceHþ intoH2 onlywhentheCBpotentialismorenegativethanthe

Figure1.4 Chemicalprocessinvolvedinthephotocatalyticwatersplitting[24]. Copyright(2020)RoyalSocietyofChemistry.

0Vofhydrogenevolution,whereasholescanoxidizewatermoleculesinto O2 onlywhentheVBismorepositivethan þ1.23Vofoxygenevolution. Toachievehighlyefficienthydrogenproduction,itiscriticaltodevelop semiconductormaterialswithappropriatebandenergygapsasacatalystfor watersplittingtoproducehydrogenundervisiblelightillumination. Furthereffortwasputintodevelopinghigh-performancephotocatalystsfor hydrogenproduction,buttheyarestillstrugglingwithlowactivitybecause oftherecombinationofchargecarriers.Thephotocatalyticmaterialsare oftentunedwithothercocatalyst,whichencouragestheseparationof chargebydevelopinganewsemiconductorphotocatalyst/cocatalystinterfaces,subsequentlyimprovingthephotoinducedchargecarrierlifetime andphotocatalyticactivity.

6.Fuelcell

Fuelcellisanelectrochemicaldevicethatconvertschemicalenergy (hydrogen,methanol,ornaturalgas)andpureoxygenorairintoelectricity, water,andheat.Insomecases,by-productsofcarbondioxideandlow molecularweighthydrocarbonsmaybeproduced[21].Fuelcellscan continuouslyproduceelectricityaslongasfuelandoxidantaresupplied. Fuelcellsaresuitablechoicesforapplicationsinbuildingsbecauseoftheir highelectricalefficiency,environmentalcompatibility,flexibility,andquiet operation.Currently,fuelcellsarerecognizedintransportationandvarious markets(boomingpowersector,fuelcell basedvehicles,portability,and stationaryapplications,etc.)asabetterchoicecomparedtocombustionbasedconventionalgenerators[22].

Atypicalfuelcellcomprisesacathode,ananode,andanelectrolyte [1,21].Thechoiceofelectrocatalystsutilizedinelectrodematerialsrelieson theoperatingtemperature.Thetypesofelectrochemicalreactionsthattake placeinthefuelcelldeviceareassociatedwithelectrolytetype.Basedon thefuelandelectrolyteutilized,thefuelcelliscategorizedintodifferent types,asshownin Fig.1.5.Alkalinefuelcell,polymericelectrolyte membranefuelcell,directmethanolfuelcell,andphosphoricacidfuelcell havealowoperatingtemperaturerangefrom60to220 C,whereassolid oxidefuelcellscanoperateathightemperaturesfrom800to1000 C (Fig.1.5).Uponconstantsupplyoffuelattheanodesideandoxidantatthe cathodesideofthedevice,thefuel(hydrogen)attheanodesideis decomposedintohydrogenionsandelectrons(H2 / 2Hþ þ 2e ).Thus, theproducedhydrogenionsmovetothecathodepartthroughan

Figure1.5 Differenttypesoffuelcellsoperatingatvarioustemperatures[25]. Copyright(2020)Elsevier.

electrolyte,andtheelectrons flowthroughtheexternalcircuittothecathode.Subsequently,thereachedionsandelectronsatthecathodearecombinedwithanoxidanttoproducewater(1/2O2 þ 2Hþ þ 2e / H2O).In contrasttothewaterelectrolysis,theanodeisnegativeandthe cathodeispositiveinfuelcells.Besides,theproducedelectricitybyafuel cellmostlydependsontheelectrocatalystsutilizedinthefabricationof electrodes.

Nevertheless,somedrawbacksoffuelcellsincludehighfabrication cost,lowstability,andlimitationoffuelsinthemarket.Toovercome thesedisadvantages,researchersareworkingtoadvancefuelcellsby usingalternativematerialswithlowcostandexcellentstability,in additiontofocusingonthechallengesrelatedtotheproductionoffuel (hydrogen)andconsumption.Thechoiceofelectrocatalystsforelectrode fabricationmayinvolveuniquesurfacestructuresatthenanoscale,high electrocatalyticactivity,andimprovedmasstransportattheelectrode surface.

7.Conclusions

Inthischapter,fundamentalconsiderationsofenergyconversionand storagedevicesaresummarizedtosolvechallengesrelatedtotheutilization ofnonrenewablefossilfuelenergysources(coal,gas,andoil),suchas increasingCO2 emissionbecauseofhumanactivitiesandglobalwarming. Energyconversionandstoragedevicesthatcanconvertorstoreenergyin variousformsarebeingimprovedbyvariousadvancednanomaterials. Currently,the fieldofnanotechnologyhasopenednewavenuesfornovel energyconversionandstoragedevices.Wediscussedbasicworkingprinciples,components,andanalysismethodsofthesetechnologicaldevices, includingbatteries,supercapacitors,DSSCs,hydrogenproductionviawater splitting,andfuelcells.

Energyproductionfromrenewableenergysourcesrequiresstoring energyinthedeviceforutilizationonanas-neededbasis.Designingnew integratedtechnologiesforbothenergyconversionandstorageneedsmuch considerationforthemanagementandcontrolofelectricalgrids.

Acknowledgments

ThisworkwassupportedbytheKoreaBasicScienceInstitute(KBSI)NationalResearch FacilitiesandEquipmentCenter(NFEC)grantfundedbytheKoreagovernment(Ministry ofEducation)(No.2019R1A6C1010042).TheauthorsProf.M.Y.ChoiandDr.J. Theerthagiriacknowledgethe financialsupportfromNationalResearchFoundationof Korea(NRF),(NRF-2019H1D3A1A01071209,NRF-2017M2B2A9A02049940).Also, Dr.J.Theerthagirithankfullyacknowledgesthe financialsupportfromIndianSpace ResearchOrganization(RespondprogramgrantNo.ISRO/RES/3/792/18-19),India.

References

[1]J.Theerthagiri,J.Madhavan,S.J.Lee,M.Ashokkumar,B.G.Pollet,Sonoelectrochemistryforenergyandenvironmentalapplications,UltrasonicsSonochemistry63 (2020)104960.

[2]J.Theerthagiri,S.Sunitha,R.A.Senthil,P.Nithyadharseni,A.Madankumar, A.Prabhakarn,T.Maiyalagan,H.S.Kim,AreviewonZnOnanostructuredmaterials:energy,environmentalandbiologicalapplications,Nanotechnology30(2019) 39200.

[3]J.Theerthagiri,A.P.Murthy,V.Elakkiya,S.Chandrasekaran,P.Nithyadharseni, Z.Khan,R.A.Senthil,R.Shanker,M.Raghavender,P.Kuppusami,J.Madhavan, M.Ashokkumar,Recentdevelopmentoncarbonbasedheterostructuresfortheirapplicationsinenergyandenvironment:areview,JournalofIndustrialandEngineering Chemistry64(2018)16 59.

[4]J.Liu,J.Wang,C.Xu,H.Jiang,C.Li,L.Zhang,J.Lin,Z.X.Shen,Advancedenergy storagedevices:basicprinciples,analyticalmethods,andrationalmaterialsdesign, AdvancementofScience5(2017)1700322.

[5]J.Theerthagiri,K.Karuppasamy,G.Durai,A.H.SarwarRana,P.Arunachalam, K.Sangeetha,P.Kuppusami,H.S.Kim,Recentadvancesinmetalchalcogenides(MX; X ¼ S,Se)nanostructuresforelectrochemicalsupercapacitorapplications:abriefreview,Nanomaterials8(2018)256.

[6]J.Theerthagiri,R.A.Senthil,J.Madhavan,T.Maiyalagan,Reviewonrecentprogress innonplatinumcounterelectrodematerialsfordye-sensitizedsolarcells,ChemElectroChem2(2015)928 945.

[7]M.S.Whittingham,R.F.Savinelli,T.Zawodzinski,Introdeuction:batteriesandfuel cells,ChemicalReviews104(2004)4243 4886.

[8]J.M.Tarascon,M.Armand,Issuesandchallengesfacingrechargeablelithiumbatteries, Nature414(2001)359 367.

[9]A.Yoshino,K.Sanechika,T.Nakajima,SecondaryBattery,UnitedStatesPatent 4668595,1987.

[10]K.Mizushima,P.Jones,P.Wiseman,J.Goodenough,LixCoO2 (0 < x 1):anew cathodematerialforbatteriesofhighenergydensity,SolidStateIonics3 4(1981) 171 174.

[11]A.J.Salkind,J.J.Kelly,A.G.Cennone,in:D.Linden(Ed.),HandBookofBatteries, McGrawHill,NewYork,1995.

[12]K.Ozawa,Lithium-ionrechargeablebatterieswithLiCoO2 andcarbonelectrodes:the LiCoO2/Csystem,SolidStateIonics69(1994)212 221.

[13]K.Xu,Nonaqueousliquidelectrolytesforlithium-basedrechargeablebatteries, ChemicalReviews104(2004)4303 4418.

[14]J.Theerthagiri,G.Durai,K.Karuppasamy,P.Arunachalam,V.Elakkiya, P.Kuppusami,T.Maiyalagan,H.S.Kim,RecentAdvancesin2-Dnanostructured metalnitrides,carbidesandphosphideselectrodesforelectrochemicalsupercapacitors abriefreview,JournalofIndustrialandEngineeringChemistry67(2018)12 27.

[15]J.Li,J.Qiao,K.Lian,Hydroxideionconductingpolymerelectrolytesandtheirapplicationsinsolidsupercapacitors:areview,EnergyStorageMaterials24(2020)6 217.

[16]B.O.Regan,M.Gratzel,Alow-cost,high-efficiencysolarcellbasedondye-sensitized colloidalTiO2 films,Nature353(1991)737 740.

[17]J.Theerthagiri,E.Cardoso,G.Fortunato,G.Casagrande,B.Senthilkumar, J.Madhavan,G.Maia,HighlyelectroactiveNipyrophosphate/Ptcatalysttowards hydrogenevolutionreaction,ACSAppliedMaterialsandInterfaces11(2019) 4969 4982.

[18]N.Fajrina,M.Tahir,Acriticalreviewinstrategiestoimprovephotocatalyticwater splittingtowardshydrogenproduction,InternationalJournalofHydrogenEnergy44 (2019)540 577.

[19]A.P.Murthy,D.Govindarajan,J.Theerthagiri,J.Madhavan,K.Parasuraman,Metaldopedmolybdenumnitride filmsforenhancedhydrogenevolutioninnear-neutral stronglybufferedaerobicmedia,ElectrochimicaActa283(2018)1525 1533.

[20]A.Fujishima,K.Honda,Electrochemicalphotolysisofwateratasemiconductor electrode,Nature238(1972)37 38.

[21]P.E.Dodds,I.Staffell,A.D.Hawkes,F.Li,P.Grunewald,W.McDowall,P.Ekins, Hydrogenandfuelcelltechnologiesforheating:areview,InternationalJournalof HydrogenEnergy40(2015)2065 2083.

14 Nanostructured,Functional,andFlexibleMaterialsforEnergyConversionandStorageSystems

[22]K.AmarsinghBhabu,J.Theerthagiri,J.Madhavan,T.Balu,G.Muralidharan, T.R.Rajasekaran,Superioroxideionconductivityofnovelacceptordopedcerium oxideelectrolytesforIT-SOFCapplications,JournalofPhysicalChemistryC120 (2016)18452 18461.

[23]A.Pandikumar,S.P.Lim,S.Jayabal,N.M.Huang,H.N.Lim,R.Ramaraj, Titania@goldplasmonicnanoarchitectures:anidealphotoanodefordye-sensitizedsolar cells,RenewableandSustainableEnergyReviews60(2016)408 420.

[24]J.Ran,J.Zhang,J.Yu,M.Jaroniec,S.Z.Qiao,Earth-abundantcocatalystsfor semiconductor-basedphotocatalyticwatersplitting,ChemicalSocietyReviews43 (2014)7787 7812.

[25]N.Seselj,C.Engelbrekt,J.Zhang,Graphene-supportedplatinumcatalystsforfuel cells,ScienceBulletin60(2015)864 876.

CHAPTER2

Low-dimensionalcarbon-based nanomaterialsforenergy conversionandstorage applications

T.Senthil1,NidhinDivakaran2,ManojB.Kale2,SuhailMubarak2, DuraisamiDhamodharan2,LixinWu2,R.JosephBensingh1, M.AbdulKader1,KingshukDutta1

1AdvancedResearchSchoolforTechnologyandProductSimulation(ARSTPS),SchoolforAdvanced ResearchinPolymers(SARP),CentralInstituteofPlasticsEngineeringandTechnology(CIPET), Chennai,TamilNadu,India; 2CASKeyLaboratoryofDesignandAssemblyofFunctional Nanostructure,FujianKeyLaboratoryofNanomaterials,FujianInstituteofResearchontheStructureof Matter,ChineseAcademyofSciences,Fuzhou,Fujian,China

1.Introduction

TheUSdepartmentofenergyestimatesthatin15yearsfromnowthe globalenergydemandwillincreasebyabout20%(Fig.2.1A).Theuseof fossilfuelshascreatedaconcernoveritseffectonclimatechange,whichled tothesearchforrenewableandsustainableenergyresources.Itisimportant todeveloprenewableenergygenerationandstoragesystemstocounterthe problemofclimatechangeandmeettherequirementofincreasingenergy consumption[1].Theworldpopulationisexpectedtobearound9billion by2050,andasaresulttheenergydemandisgoingtoincreaseto13trillion wattsby2050.Thenaturaloilresourcesmaybeabletofulfilltheneedof energyfor60years,naturalgasfor60years,andcoalfor200years[2].

Currently,theworld’selectricityneedisful filledbyfossilfuel-andnuclearpoweredplants,whicharecausingenvironmentalpollutionbecauseof greengaseffects.Therefore,newenergygenerationtechniqueshavebeen developed,whicharenonpollutingandeasytostore,transfer,anduse wheneverneeded.Theconventionalenergyresourcescanbereplacedand/ oraccompaniedbysolarpower,windenergy,andwaterenergy,butthese energyresourcesneedefficientconversionandstoragedevices.Thestorage devices,suchasbatteriesandsupercapacitors,canbeusefultostorethe excessenergyanduseitwheneverneeded.

Nanostructured,Functional,andFlexibleMaterialsforEnergy ConversionandStorageSystems ISBN978-0-12-819552-9 https://doi.org/10.1016/B978-0-12-819552-9.00002-6

Figure2.1 (A)Thepastandprojectedenergyconsumptiononaglobalscale; (B)schematicsetupofthecarbonnanodots(CNDs)possessingvariousstructures. (A) BasedondatafromtheUSEnergyInformationAdministration,2011(https://voer.edu.vn/ m/world-energy-use/99605200#import-auto-id1764068 ,accessedonJuly10,2019).(B) ReproducedfromC.Hu,M.Li,J.Qiu,Y.-P.Sun,Designandfabricationofcarbondotsfor energyconversionandstorage,ChemicalSocietyReviews48(2019)2315 2337, https:// doi.org/10.1039/c8cs00750k withpermissionfromTheRoyalSocietyofChemistry.)

Carbonhasplayedaveryimportantroleinthedevelopmentofmodern scienceandtechnology.Itoriginatedfromthediscoveryoffullereneand carbonnanotubes(CNTs)tothehighlyefficientgrapheneinthemid2000s. Theconstanturgeofinclusivepropertiesofnanofillerspropelledthesearch ofthecarbon-basedmaterialshavingluminescentproperty.Itwasuntilthe discoveryofthecarbonnanodots(CNDs)intheyear2006.CNTshavebeen discoveredin1991byIijima[3].Theyhavehighsurfacearea,better electricalconductivity,highmechanicalstrength,andcorrosionresistance [4 6].CNTsaremadeupofcovalentlybondedcarbonatomsinhexagonal

shape,justlikeingraphene.TheCNTsareclassifiedintosingle-walled carbonnanotube(SWCNT)andmulti-walledcarbonnanotube (MWCNT).TheSWCNTsarejustlikesingle-foldedsheetsofgraphene, havinginnerdiameterofabout0.4 3nmandfewmicrometerslong.The MWCNTsareconcentricfoldedsheetswithvaryingdiametersofdifferent sheetseachrangingfrom1.4to25nm,andtheintersheetsdistanceisabout 0.4nm[7 9].TheCNTscanbepreparedbyvariousmethods,suchas arc-dischargemethod[10],spraypyrolysis[11],chemicalvapordeposition (CVD)[12],electrocatalyticmethod,andlaserablation.CNTsareas conductiveascopperandhavethecapacitytotransfermorecurrent.The highelectricalconductivityistheresultoftransferofelectronsthroughthe sidewalls.TheCNTsaremostlylimitedtothelaboratoryresearchforenergy storageapplicationbecauseoftheirlowdispersion,poorelectrochemical performance,andlowspecificcapacitance[13,14].Butthesurface functionalizationofCNTscanenhancethedispersion,electrochemical performance,andspecificcapacitance.TheCNTshavebeenresearchedfor variousapplications,suchashydrogenstorage[15],fuelcells[16],anode materialforLi-ionbatteries[17],drugdeliverysystem[18],andenergy conversionandstorage[19].TheCNTshavehighmechanicalandcharge transferproperties,whicharefavorableintheapplicationofenergy conversion.Also,thesurfaceofCNTscanbefunctionalizedusingsurface functionalgroupstoenhancetheirelectricalanddispersionproperties[20]. TheprecursorcarbonmaterialtosynthesizeCNTsischeapandabundant,so theuseofCNTsinstoragedevicesmakestheproducteconomicallycheap.

CNDsarealsoknownbythenameofcarbonquantumdots(QDs)or carbondots(CDs)[21].Thediscoveryaddedalaurelintheever-blooming applicationsofthecarboniferousmaterialswithCNDs,beingoneofthe proponents.Itcameunderthecategoryofthenanoparticleswiththe dimensionlessthan10nm.ThediscoveryofCNDstransformedthearch typeofcarbonbeingthematerialthatisunabletoemitlightasitisblackin color[22].TherevelationoftheCNDscouldbetracedbacktotheresearch on fluorescentmaterialsderivedfromCNTs(SWCNTs)intheyear2004. These fluorescentmaterialswerecoinedasCNDsbySunetal.,whoalso devisedthesynthesisroutetodevelopCNDswithaugmented fluorescent propertiesbysurfacepassivation[23].TheinventionoftheCNDscreated ripplesofresonanceinthe fieldofscienceandtechnologywithprosinthe formofchemicalstability,watersolubility,lowtoxicity,highluminescence,andlessphotobleaching[24 27].CNDsareoftenanalogoustothe semiconductorQDsandtheirfascinatingpropertiesmakethempompous

tothatofconventionalluminousQDsandluminousorganicdyes[28,29]. ThesubsequentsurveyintheapplicationofCNDsintheapplicationpoint ofviewhasopenedthegatesfortheircommercialuseinvarious fields,such asoptoelectronics,photovoltaicdevices,photocatalysis,biosensing,and bioimagingdevices[30 38].

ThestructuralperspectiveoftheCNDscanbeelaboratedintermsofa carbogeniccorecomprisingofcrystallineandamorphousfragmentwith functionalgroupsattachedonthesurface.Thereseemstobeasimilarityto thatofthegraphenestructurewiththeresearcherssuggestingthepresence ofcrystallinesp2 carbonsegments.ThecoreCNDsseemtohavepossessed theamorphouscarbonstructure,graphene/graphiticstructure,orthe diamond-likestructure.ThepresenceofdefectswithintheCNDsstructure appearstobemorethanthatofthegraphenequantumdots(GQDs).Italso holdspoorercrystallinitythanGQDs.Nevertheless,GQDscouldbe consideredasoneoftheCNDsastheybothhavesimilararrangementof oxygen-terminatedfunctionalgroupsontotheirsurface[39]. Fig.2.1B displaystheschematicsetupofthestructureoftheCNDswithvarious configurations.Themolecularorbitaltheoryencapsulatestheelectronic structureoftheCNDs.TheCNDsdisplayn / p and p / ntransition becauseofthepresenceofdifferenceintheenergylevels.The p states indicatethesp2 hybridizationinthecore,whilethenstatesspecifythe oxygenfunctionalgroupattachedtothesp2-hybridizedcarbon.The functionalgroupcouldbecarbonyl,amine,amides,andthiol[40].CNDs canactashydrophobicorhydrophilic,dependingonthestructureofthe surface.The fluorescencecharacteristicsoftheCNDscouldbedepictedon thebasisofthesynthesisproceduretodevelopit.Itdependsonthe synthesismethodswhethertheywillbecapableofemitting fluorescenceat differentwavelength.The fluorescenceiscommonlytunablewithit, havingtheabilityofemittingblue,green,orredlight,independentofthe excitationwavelength.

Thearrangementofhoneycombcrystallatticestructureofsp2-bonded carbonatomsiscalledgraphene.Ithasnumberofapplicationsinvarious sectorsbecauseofitshighsurfacearea,uniqueelectronicquality,andhigh mechanicalandthermalproperties[41,42].Theadjacentbondingbetween thecarbonatomsandthedelocalizationofbondingelectronsthroughout thelatticestructuremaybethekeyreasonfortheattractivepropertiesof graphene[43].Grapheneisacombinationofmanypolycyclicaromatic hydrocarbons,suchasanthracene,pyrene,naphthalene,etc.[44].The first successfulgrapheneproductionwasdonebyAndreGeimandhisfellow

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Nanostructured, functional, and flexible materials for energy conversion and storage systems 1st edi by Education Libraries - Issuu