Nanostructured carbon nitrides for sustainable energy and environmental applications 1st edition sha

Page 1


https://ebookmass.com/product/nanostructured-carbonnitrides-for-sustainable-energy-and-environmentalapplications-1st-edition-shamik-chowdhury/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanomaterials for Sustainable Energy and Environmental Remediation (Materials Today) Dr. Mu. Naushad (Editor)

https://ebookmass.com/product/nanomaterials-for-sustainable-energyand-environmental-remediation-materials-today-dr-mu-naushad-editor/

ebookmass.com

Carbon Nanomaterials for Agri-food and Environmental Applications 1st Edition Kamel A. Abd-Elsalam (Editor)

https://ebookmass.com/product/carbon-nanomaterials-for-agri-food-andenvironmental-applications-1st-edition-kamel-a-abd-elsalam-editor/

ebookmass.com

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials Sekhar Chandra Ray

https://ebookmass.com/product/magnetism-and-spintronics-in-carbon-andcarbon-nanostructured-materials-sekhar-chandra-ray/

ebookmass.com

Congenital Heart Disease: A Clinical, Pathological, Embryological, and Segmental Analysis 1st Edition Richard Van Praagh

https://ebookmass.com/product/congenital-heart-disease-a-clinicalpathological-embryological-and-segmental-analysis-1st-edition-richardvan-praagh/ ebookmass.com

Big English 2 Plus. Pupil's Book Mario Herrera

https://ebookmass.com/product/big-english-2-plus-pupils-book-marioherrera/

ebookmass.com

The Power Of The Cross John Bradshaw

https://ebookmass.com/product/the-power-of-the-cross-john-bradshaw/

ebookmass.com

Remote Sensing and Image Interpretation, 7th Edition 7th Edition, (Ebook PDF)

https://ebookmass.com/product/remote-sensing-and-imageinterpretation-7th-edition-7th-edition-ebook-pdf/

ebookmass.com

2D

Functional Nanomaterials: Synthesis, Characterization and Applications Ganesh S. Kamble (Ed.)

https://ebookmass.com/product/2d-functional-nanomaterials-synthesischaracterization-and-applications-ganesh-s-kamble-ed/

ebookmass.com

Nothing:

A Philosophical History Roy Sorensen

https://ebookmass.com/product/nothing-a-philosophical-history-roysorensen/

ebookmass.com

https://ebookmass.com/product/the-virtual-public-servant-artificialintelligence-and-frontline-work-stephen-jeffares/

ebookmass.com

NANOSTRUCTURED CARBONNITRIDES FORSUSTAINABLE ENERGYAND ENVIRONMENTAL APPLICATIONS

MicroandNanoTechnologies NANOSTRUCTURED CARBONNITRIDES FORSUSTAINABLE ENERGYAND ENVIRONMENTAL APPLICATIONS

AssistantProfessorintheSchoolofEnvironmentalScience andEngineering,IndianInstituteofTechnologyKharagpur, WestBengal,India

MU.NAUSHAD

FullProfessorintheDepartmentofChemistry,CollegeofScience, KingSaudUniversity,Riyadh,SaudiArabia

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermission inwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’ s permissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthan asmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromany useoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN978-0-12-823961-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: EdwardPayne

EditorialProjectManager: ClodaghHolland-Borosh

ProductionProjectManager: NirmalaArumugam

CoverDesigner: MilesHitchen

TypesetbySTRAIVE,India

1.Synthesisandpropertiesofcarbonnitridematerials1

RajangamVinodh,RajiAtchudan,MoonsukYi,andHee-JeKim

SectionISustainableenergyapplications

2.Exploringsmartgraphiticcarbonnitridematerialtowardflexible energystoragesupercapacitors21

MeenakshiTalukdarandPritamDeb

3.Carbonnitridesascatalystsupportinfuelcells:Currentscenario andfuturerecommendation39

ChanchalGupta,AmanBhardwaj,RamaKant,andSatyabrataPatnaik

1.Introduction

3.Graphiticcarbonnitridesasfuelcellelectrocatalystsupportmaterial45

4.Enhancingmicrobialfuelcellperformancebycarbonnitride-based nanocomposites63

M.M.Ghangrekar,AnilDhanda,S.M.Sathe,andIndrajitChakraborty

1.Introduction 63

2.DesirablepropertiesofacathodecatalystinMFC66

3.ApplicationofgraphiticcarbonnitrideascathodecatalystinMFC67

4.Futurescope 74

5.Solarenergyharvestingwithcarbonnitrides81

ArabindaBaruah,NirupamjitSarmah,SantoshKumar,PriyaGhosh, RituMalik,andVijayK.Tomer

1.Introduction 81

2.Magneticallyseparableg-C3N4-Fe3O4 asvisible-light-drivenphotocatalyst83

3.Solarenergyharvestingusingg-C3N4-Ag3PO4 hybridnanocomposite91

4.Conclusionandfutureoutlook101 References 102

SectionIIEnvironmentalremediationapplications

6.Superioradsorptionofenvironmentalcontaminantsontocarbon nitridematerials111

AliKhadir,MehrdadNegarestani,EbrahimPakzad, andAfsanehMollahosseini

1.Introduction 111

2.Pollutantremovaltechniques112

3.Fundamentalsofadsorption114

4.Carbonnitride-basedadsorbentsfortheremovaloftoxicmetals/heavymetals115

5.Carbonnitride-basedadsorbentsfortheremovalofdyes123

6.Conclusion 130 References 131

7.Carbonnitridephotocatalystsforwatertreatmentandpurification137

MehdiAlKausorandDhrubaChakrabortty

1.Introduction 137

2.Spectroscopicmethodsforcharacterizationofg-C3N4 andg-C3N4-basedmaterials143

3.Photocatalyticdegradationoforganicpollutantsbyg-C3N4 152

4.Mechanisticpathwayofphotodegradationbyg-C3N4-basedmaterials162

5.Conclusionandfuturescope166 References 167

8.Graphiticcarbonnitride-basedcompositesforphotocatalyticabatementof emergingpollutants175

ShabnamTaghipour,BehzadAtaie-Ashtiani,SeiyedMossaHosseini,andKingLunYeung

1.Introduction175

2.Emergingpollutants177

3.Photocatalyticreactionsasadvancedoxidationprocesses177

4.Graphitic-C3N4 179

5.Differentmorphologiesofg-C3N4 181

6.Synthesismethodsofg-C3N4 forwaterpurification186

7.Defectsofg-C3N4 188

8.Methodstominimizedefects188

9.Photocatalyticapplicationsofg-C3N4 190

10.Conclusionandfutureperspectives200

References 202

9.Artificialphotosynthesisbycarbonnitride-basedcomposite photocatalysts215

KonstantinosC.Christoforidis

1.Elementarystepsinphotocatalyticprocesses218

2.FundamentalsofphotocatalyticwatersplittingandCO2 reduction220

3.Compositephotoactivematerials Generalremarks221

4.CNsynthesis 222

5.CN-basedcompositematerialsforartificialphotosynthesis227

6.Concludingremarksanddirections238 References 239

10.Carbonnitride-basedopticalsensorsformetaliondetection245

EktaSharma,AshishGuleria,KulvinderSingh,RituMalik,andVijayK.Tomer

1.Introduction 245

2.GraphiticcarbonnitridequantumdotsasanopticalsensorforHg2+ ions247

3.GraphiticcarbonnitridequantumdotsasanopticalsensorforFe2+ andFe3+ ions251

4.Conclusion 255 References 256 Index 261

Contributors

BehzadAtaie-Ashtiani

DepartmentofCivilEngineering,SharifUniversityofTechnology,Tehran,Iran

RajiAtchudan

DepartmentofChemicalEngineering,YeungnamUniversity,Gyeongsan,RepublicofKorea

ArabindaBaruah DepartmentofChemistry,GauhatiUniversity,Guwahati,Assam,India

AmanBhardwaj

SchoolofPhysicalSciences,JawaharlalNehruUniversity,NewDelhi,India

DhrubaChakrabortty DepartmentofChemistry,B.N.College,Dhubri,Assam,India

IndrajitChakraborty

DepartmentofCivilEngineering,IndianInstituteofTechnologyKharagpur,Kharagpur,India

KonstantinosC.Christoforidis

DepartmentofEnvironmentalEngineering,DemocritusUniversityofThrace,Xanthi,Greece; InstitutdeChimieetProcedesPourl’Energie,l’EnvironnementetlaSante(ICPEES),ECPM UniversityofStrasbourg,Strasbourg,France

PritamDeb

AdvancedFunctionalMaterialLaboratory(AFML),DepartmentofPhysics,TezpurUniversity (CentralUniversity),Tezpur,India

AnilDhanda

DepartmentofCivilEngineering,IndianInstituteofTechnologyKharagpur,Kharagpur,India

M.M.Ghangrekar

DepartmentofCivilEngineering,IndianInstituteofTechnologyKharagpur,Kharagpur,India

PriyaGhosh

DepartmentofAppliedOrganicChemistry,CSIR-NEIST,Jorhat,Assam,India

AshishGuleria

DepartmentofAppliedSciences,WITDehradun,Dehradun,Uttarakhand,India

ChanchalGupta

DepartmentofChemistry,UniversityofDelhi,NewDelhi,India

Contributors

SeiyedMossaHosseini

PhysicalGeographyDepartment,UniversityofTehran,Tehran,Iran

RamaKant

DepartmentofChemistry,UniversityofDelhi,NewDelhi,India

MehdiAlKausor

DepartmentofChemistry,ScienceCollege,Kokrajhar,Assam,India

AliKhadir

YoungResearcherandEliteClub,Yadegar-e-ImamKhomeini(RAH)ShahreReyBranch, IslamicAzadUniversity,Tehran,Iran

Hee-JeKim

SchoolofElectricalandComputerEngineering,PusanNationalUniversity,Busan,Republicof Korea

SantoshKumar

DepartmentofChemicalEngineering,ImperialCollegeLondon,London,UnitedKingdom

RituMalik

DepartmentofMechanicalEngineering,UniversityofCalifornia,Berkeley,CA,UnitedStates

AfsanehMollahosseini

ResearchLaboratoryofSpectroscopy&MicroandNanoExtraction,DepartmentofChemistry, IranUniversityofScienceandTechnology,Tehran,Iran

MehrdadNegarestani

DepartmentofCivilandEnvironmentalEngineering,IranUniversityofScienceand Technology,Tehran,Iran

EbrahimPakzad

DepartmentofCivilandEnvironmentalEngineering,IranUniversityofScienceand Technology,Tehran,Iran

SatyabrataPatnaik

SchoolofPhysicalSciences,JawaharlalNehruUniversity,NewDelhi,India

NirupamjitSarmah

DepartmentofChemistry,GauhatiUniversity,Guwahati,Assam,India

S.M.Sathe

DepartmentofCivilEngineering,IndianInstituteofTechnologyKharagpur,Kharagpur,India

EktaSharma

DepartmentofChemistry,SchoolofBasicandAppliedSciences,MaharajaAgrasenUniversity, Baddi,HimachalPradesh,India

KulvinderSingh DepartmentofChemistry,DAVCollege,Chandigarh,India

ShabnamTaghipour

DepartmentofCivilEngineering,SharifUniversityofTechnology,Tehran,Iran;Departmentof ChemicalandBiologicalEngineering,TheHongKongUniversityofScienceandTechnology, HongKong

MeenakshiTalukdar AdvancedFunctionalMaterialLaboratory(AFML),DepartmentofPhysics,TezpurUniversity (CentralUniversity),Tezpur,India

VijayK.Tomer

DepartmentofMechanicalEngineering,UniversityofCalifornia,Berkeley,CA,UnitedStates

RajangamVinodh

DepartmentofElectronicsEngineering,PusanNationalUniversity,Busan,RepublicofKorea

KingLunYeung DepartmentofChemicalandBiologicalEngineering;DivisionofEnvironmentand Sustainability,TheHongKongUniversityofScienceandTechnology,HongKong

MoonsukYi

DepartmentofElectronicsEngineering,PusanNationalUniversity,Busan,RepublicofKorea

Preface

Withescalatingworldpopulation,unsustainableconsumptionoffossilfuels,insatiable energydemand,rapidenvironmentaldegradation,andglobalclimatechange,energy andenvironmentalissuesarereceivingconsiderableattentionworldwideinthecontext ofsustainabledevelopment.Inordertoaddresstheseinterconnectedchallenges,theuse ofinexpensive,robust,andhighlyefficientenergyconversion/storagedevicesandenvironmentalremediationtechnologiesbasedonadvancedmaterialshasintensifiedinrecent years.Inparticular,carbonnitride,anewtypeoftwo-dimensional(2D)material,has stimulatedgreatinterestforfundamentalscientificinvestigationsandpotentialpractical applicationsinamultitudeofcleanenergytechnologies(e.g.,lithium-ionbatteries, sodium-ionbatteries,supercapacitors,fuelcells,microbialfuelcells,solarcells,photoelectrochemicalwatersplittingdevices,andhydrogenstorage)andenvironmentalremediationtechniques(suchaswastewatertreatment,waterpurification,airpollution control,andclimatechangemitigation).Thiscanbelargelyattributedtoitsexcellent optoelectronicandphysicochemicalproperties,includingmoderatebandgapenergy, adjustableenergybandconfiguration,tailor-madesurfacefunctionalities,lowcost, metal-freenature,remarkablethermochemicalstability,andenvironmentallybenign manufacturingprotocol.Additionally,duetotheirpolymericstructure,thesurface chemistryofcarbonnitridescanbeeasilytailoredbymeansofsurfaceengineeringat themolecularlevel,leadingtonewmaterialsystemswithnovelfunctionalities.Indeed, inthelast5years,over1000researcharticleshavebeenpublishedwithaparticularfocus onfabricatinghigh-performancenanostructuredcarbonnitridesforenergyconversion andstorageaswellasenvironmentalremediationapplications.Assuch,acomprehensive andup-to-dateaccountofcarbonnitride-based2Dmaterials,exploredforsustainable energyandenvironmentalapplications,ishighlydesirableasitwouldpromotefurther advancesinthisrapidlyevolvingcross-disciplinaryresearchfieldofcurrentglobalinterest.Tothisend,webelievethatthisbookwillhelptheglobalscientificcommunityto gaindeepinsightsintovariousaspectsofcarbonnitridematerialsfrommultidisciplinary perspectivesandinapplyingthesematerialstotackleglobalenergyandenvironmental challengesinasustainablemanner.Specifically,thebookwillhaveagreatappealto chemists,electrochemists,physicalchemists,solidstatephysicists,chemicalengineers, materialscientists,environmentalscientistsandengineers,andenergyspecialists.Needlesstosay,thisinturnwillstimulatefurtheradvancesinthedevelopmentofmultifunctionalmaterialsforcleanenergy-relatedapplicationsandenvironmentalremediation.

Thebookissystematicallyorganizedinto10chapters. Chapter1 narratestheunique setofoptical,electronic,andchemicalpropertiespossessedbycarbonnitrides,which

makethemparticularlyattractiveforenergy-andenvironment-relatedapplications.It thencollatesthecurrentstate-of-the-artsynthesisstrategiesavailabletorealizecarbon nitridenanostructureswithsuperiorphysiochemicalproperties.Thenextninechapters aredividedintotwosections.SectionIfocusesonsustainableenergyapplications (Chapters2–5),whileSectionIIdealswithenvironmentalremediationapplications (Chapters6–10).

Chapter2 summarizestherecentadvancesinthedesignanddevelopmentofexotic carbonnitride-basedelectrodesforthecreationofsupercapacitorswithunprecedented performance. Chapter3 highlightstherecentprogressincarbonnitride-basednanocatalystswithcontrollablesizeandshapeforfuelcellapplications. Chapter4 presentsasystematic,updatedsummaryofthecurrentstatusoftheapplicationofcarbonnitride-based materialswithhighconductivityandbiocompatibilityinmicrobialfuelcells(MFCs)and discussesthekeyscientificandtechnologicalchallengesinusingthemtoimprovethe performanceofMFCs. Chapter5 providesabroadoverviewofthelatestdevelopments incarbonnitride-mediatedsolarenergyharvestingforpotentialapplicationsinsterilizationofwasteandseawaterdesalination.

Chapter6 criticallyexaminestherecentprogressinthedevelopmentofnovelcarbon nitride-basednanostructuresforfastandefficientremovalofavarietyofcontaminants fromwater,withaspecialfocusoninteractionmechanismswithcontaminantmolecules. Chapters7and8 collatetherecentadvancesintherationaldesignofcarbonnitride-based photocatalysts,withaspecialemphasisongraphiticcarbonnitride,andhighlighttheir applicationsinphotocatalyticdegradationofenvironmentalcontaminants. Chapter9 providesasystematicoverviewofthelatestprogressinthedevelopmentandapplication ofcarbonnitride-basedphotocatalystsforCO2 reductiontosolarfuels. Chapter10 introducesthebasicprinciplesofsensordesignandexplorestheapplicationofcarbonnitridebasedsensorsfortheon-sitedetectionofvariousheavymetalions.

Wearethankfultoalltheleadandcontributingauthorsforsharingtheirvaluable expertiseinvariousaspectsofcarbonnitrideswithoutwhichthisbookwouldnothave beenpossible.WearealsogratefultotheElsevierEditorialProjectManager,Cloe Holland-Borosh,forherconstructivefeedback,logisticalsupport,andconstant encouragement.

Synthesisandpropertiesofcarbon nitridematerials

RajangamVinodha,RajiAtchudanb,MoonsukYia,andHee-JeKimc aDepartmentofElectronicsEngineering,PusanNationalUniversity,Busan,RepublicofKorea bDepartmentofChemicalEngineering,YeungnamUniversity,Gyeongsan,RepublicofKorea cSchoolofElectricalandComputerEngineering,PusanNationalUniversity,Busan,RepublicofKorea

Carbonnitrides(C3N4),oftenreferredtoasg-C3N4,isapolymericmaterialcontaining carbon(C),nitrogen(N),andfewcontaminantssuchashydrogen(H),whicharebonded throughtri-s-triazine-basedpatterns.Theg-C3N4,oneoftheancientpolymersexisting intheliterature,hasthemolecularformulaof(C3N4H)n.Thedevelopmenthistoryof g-C3N4 canbetracedfrom1834 [1].Inthe1990s,researchworkwasinspiredbythe hypotheticalprophecythatdiamond-likeC3N4 maypossessthehighesthardness [2] Theg-C3N4 wasconsideredtobeamorestableallotropeatroomtemperature.The g-C3N4 hasalayeredstructuresimilartographitematerial,containsVanderWaalsforce layers,andeverylayerismadeupoftri-s-triazineunitslinkedtoplanar –NH2 groups [3]. Theringstructureoftri-s-triazinegivesthepolymerhighthermalandchemicalstability inalkalineandacidicconditions [4]

Whencomparedtoothermaterials,g-C3N4 possessesmanyadvantages,suchas (i)lowcost,(ii)excellentCO2 activationcharacteristicsbecauseofitsnitrogen-rich

configuration [5],(iii)photocatalyticCO2 reduction,(iv)itcantransferelectronstosurfacechemicaladsorptionsitesduetoitstwo-dimensional(2D)layerstructure,and(v)the structure/shapeofg-C3N4 structurecanbeadjustedbyoptimizingtheparameterslike precursorsofmonomers,time,andtemperatureofthepolymerizationreaction;thus, aminorbandoffcouldbeattained [6].Furthermore,co-monomerscanbemadebyaddingcombinationsofmonomermoleculespreferredtoprecursors [7].Theycanappreciablyalterthecapabilityoflightabsorptionandelectrontransfercapabilitiesofg-C3N4 in organiccompounddegradation,andhydrogenmanufactureandoxidationofNOx (nitrogenoxides)canbeimprovedbymetalstimulants [8]

Thesemiconductingpropertiesofg-C3N4 differsignificantlyfromthatofgraphene sheetswithabandgapof2.7eVforbulkg-C3N4;thismakesitanormalbandgapsemiconductor.Theg-C3N4 hasanopticalabsorptionpeakofabout460nmbecauseofits yellowcolor.Theg-C3N4 isoneoftheexcellentmaterialsforproducingsolarenergy duetoitsremarkablechemicalandthermalstability [9].Furthermore,g-C3N4,also knownas“melon,”isastableallotrope.Moreover,g-C3N4 isextractedfromtheEarth’s crust,soitiscost-effectiveandreasonableforcommercialutilizationsinenergyconversionandwatersplitting [10].However,itselectricalresistancehaslimiteditselectrocatalyticactivity [11].Untilnow,g-C3N4 ismostlyusedinitspowderform,which preventsitfrombeingreusedforsomeapplications.Therefore,thetransformationof 2Dconstructionmodulesintomacroscopic3Dstructuraldesignsiscriticalformany applications [12].

Inthischapter,wegiveanoverviewofthebasicconceptsandstructureofg-C3N4,synthesisprotocols,aswellasthepropertiesofg-C3N4.Wefirmlyhopethiswillincreaseofthe growthofg-C3N4.Novelphysicochemicalpropertiesbasedong-C3N4 nanostructureshave notyetbeendiscovered.Weareatacrucialjuncturetoemphasizethedevelopmentandoffer high-qualityevidenceforthisemergingresearchtopic.

2.Structureofg-C3N4

Usually,g-C3N4 ispreparedbythepolycondensationofamelamine(MA)precursor, whichisalow-costnitrogen-containingmonomer.Sincethediscoveryofcarbonnitride materials,manyeffortshavebeencarriedouttoconcludehowdifferentsyntheticprocessesinfluencethematerialproducedbasedonitsmorphologyandreactivity.

2.1Geometricstructure

Theexactbuildingblockofg-C3N4 containstwoimportantunits,tri-s-triazine(C6N7) and s-triazine(C3N4)rings,asshownin Fig.1.1AandB [13].Tri-s-triazineisrecognized tobehighlystableatroomtemperature [14].Thetwomajorunitsofg-C3N4 alsoshow thattri-s-triazineisthermodynamicallymorestablebasedondensityfunctionaltheory

Fig.1.1 g-C3N4 structuresof(A) s-triazineand(B)tri-s-triazine.(C)Acharge-transfermechanism fortypicalg-C3N4 ((A)and(B)ReproducedwiththepermissionfromS.Zhang,P.Gu,R.Ma,C.Luo, T.Wen,G.Zhao,W.Cheng,X.Wang,Recentdevelopmentsinfabricationandstructureregulationof visible-light-driveng-C3N4-basedphotocatalyststowardswaterpurification:acriticalreview,Catal. Today335(2019)65–77, https://doi.org/10.1016/j.cattod.2018.09.013 .(C)Reproducedwiththe permissionfromN.Rono,J.K.Kibet,B.S.Martincigh,V.O.Nyamori,Areviewofthecurrentstatusof graphiticcarbonnitride,Crit.Rev.SolidStateMater.Sci., https://doi.org/10.1080/10408436.2019.1709414 .)

(DFT)calculations [15].Theoretically,ithasbeenmentionedthattheoptimalsurface areaofamonolayersheetcanbeenhancedtoapproximately2500m2 g 1 [16,17].Itusuallyconsistsofa2Dsheetofsp2 carbons [18],whereasg-C3N4 hasp-conjugatedgraphitic planesproducedbyasp2 hybridofCandNatoms [19].Finaetal. [20] elucidatedthe3D structureofg-C3N4 viapowderX-raydiffraction(PXRD)andneutrondiffractiontechniques.Theyclearlyrevealedthattheas-synthesizedg-C3N4 showsa3Darrangement withmisalignmentoftri-s-triazine-basedlayers.Thelayersweremisalignedtoevade therepulsiveforcesofp-electronsinadjacentlayers.

2.2Electronicstructure

Theg-C3N4 hasbecomeacenterofdebateduetoitsextraordinaryelectronicproperties andprospectiveutilizations [21].ItconsistsofCandN,whichisasp2 hybridthatforms thep-conjugateddelocalizedsystem.ThelonepairofelectronsfromNcausesalonepair ofvalancebandstoform,andtherefore,creatingthebandstructure [22].Itisimportantto notethatthelonepairofnitrogenisimportantintheelectronicconfigurationofg-C3N4 [23].TheoreticalapproachesconcerningDFTmeasurementspredictthatthevalance

bandwillhavenitrogenPz orbitals,whereastheconductionbandwillhavecarbonPz orbitals;therefore,Catomsactaspointswherereductionoccurs,andNatomsactas pointswhereoxidationoccurs [24].Asaphotocatalyst,g-C3N4 tendstosplittheholes andelectrons.The2.7eVofbandgapallowsittoabsorbsunlight,whichisusedtopurify water,producehydrogen,andusedforsolarcellapplications [25]. Fig.1.1Crepresentsa chargetransfering-C3N4.

3.Preparationofg-C3N4

Theg-C3N4 canbepreparedbythermalpolycondensationofnitrogen-containingprecursors(triazineandheptazinederivatives),suchasurea [26],MA(C3H6N6) [27], dicyandiamide(C2N3 ) [28],cyanamide(CH2N2) [29],thiourea(CH4N2S) [30],guanidiniumchloride(CH5N3 HCl) [31],guanidinethiocyanate(C2H6N4S) [32],andthioureaoxide(CH4N2O2S) [33].ThecondensationroutesfromtheseC-Nprecursorsare easyandprominentwaystobuildag-C3N4-interpenetratingarchitecture [34].Among them,MAisacommonandstraightmonomersupplytosynthesizeC-N,whereasthe highbondingenergyofthechemicalbondbetweenC3H6N6 unitsand –NH2 groupsof MAisinactivatedatlowtemperatures,withoutthecatalyst,andwithnootherreactionto formCN.

Ithasbeenarguedthatthephysicochemicalcharacteristicsoftheresultingg-C3N4 canbeseverelyaffectedbyavarietyofprecursorsandtreatments,includingporevolume, surfacearea,photoluminescence(PL),CandNratio,absorption,andnanostructures. Differentfunctionalitiesandsurfacemodificationshavebeenusedtogetpreferredmorphology/structuressuchas2Dnanosheets(NSs),3Dbulks,1Dnanorods,2Dfilms,1D nanowires,1Dnanotubes,and0Dquantumdots.

3.1Chemicalvapordepositionmethod

Urakamietal. [35] reportedthatg-C3N4 filmsweregrownuniformlyonthesurfaceof differentsubstratesbythermalchemicalvapordeposition(CVD)method.Thestoichiometricamountandnatureofatomicbondswerecharacterized,anditwasfoundtobe equivalenttothoseofidealg-C3N4.ForaPLstudy,althoughelectronexcitationisto thesp3 C-Nconductionband,thesp2 C-NconductionbandwasidentifiedasthepreferredelectroninjectionfromthePLintensityandtheexcitation-energydependenceof thePLpeakshift.Also,Urakamietal. [36] discussedthegrowthofborane(B)atoms attachedtotheg-C3N4 filmsinc-planesapphiresubstratesbythermalCVDatdifferent augmentationtemperatures(Fig.1.2).AmmoniumboraneandMAwereusedasprecursors.TheincorporationofBisaccomplishedat618°Cofgrowthtemperature.Itwas higherthantheg-C3N4 thinfilm’sidealgrowthtemperaturetosomeextent.Thesignal peakfortheB1scorepositionduetotheB NbondswasnoticedbyXPS,whichindicatestheperceptionofBpenetrationintog-C3N4 films.Whenthegrowthtemperature

Fig.1.2 (A)Sketchofin-househow-wallCVDequipmentforB/g-C3N4 films;(B)pictorialrepresentation oftheB/g-C3N4 growthprocessusingmelamineasprecursorandammoniaboraneasborane molecularspecies. (ReproducedwiththepermissionfromN.Urakami,M.Kosaka,Y.Hashimoto, Chemicalvapordepositionofboron-incorporatedgraphiticcarbonnitridefilmforcarbon-basedwide bandgapsemiconductormaterials,Phys.StatusSolidiB27(2)(2019)1900375, https://doi.org/10.1002/ pssb.201900375.)

wasincreasedto650°C,auniformlyenhancingBcompositionandadeclininggraphite compositionwerenoticed,indicatingthatBatomsareintegratedintog-C3N4 asanalternativetothegraphitesites.Wangetal. [37] preparedorderedcubicmesoporous(OCM) g-C3N4 byasimpleCVDmethodusingMAastheprecursorand3DOCMsilicaKIT-6 asthetemplate.ThesynthesizedOCMg-C3N4 couldbeseentohavea3Dcubicsymmetrywithahighsurfacearea(129.8m2 g 1)andregularporesize(3.5nm).Duetothese excellentproperties,theOCMg-C3N4 showedimprovedphotocatalyticactivityto reduceCO2 withwatercomparedtoflak-likeg-C3N4.Yadavetal. [38] produced free-standingfilmswithg-C3N4 nanolayersbytheannealingofdicyandiamide (DCN)usingaCVDmethod.Thepyrolysiswascarriedoutunderlow-pressure(approximately3Torr)at600°C.Furthermore,excitation-dependentPLspectraoftheprepared g-C3N4 filmexhibitedastable,strong,andbroademissionpeakof459nminthevisible region.Thefree-standingg-C3N4 filmsshowedablueshiftandbandsharpeningofthe emissionspectra(ES)comparedtotheg-C3N4 powder.Cuietal. [39] reportedaneasy

andair-conditionedCVDprocessthatwouldproduceonionring-likeg-C3N4 (OR-gC3N4)microstructuresinafacile,ecofriendly,andconsistentway.Thistechniqueuses approximatelypacked350nmSiO2 microspheresasarigidtemplateandMAasaCVD precursortoformathinlayerofg-C3N4 inthenarrowspacebetweentheSiO2 microspheres.AfterdissolutionoftheSiO2 microspherehardtemplate,theresultingg-C3N4 uniformlyexhibitsOR-likemicrostructures.Ashortdescriptionofthesynthesisprocedureisasfollows:Typically,afewgramsofMAprecursorweretakeninanaluminaboat, andthefewgramsofSiO2 microspheresweredistributeduniformlyontheMApowder surface.Thealuminaboatwithalidwasannealedat320°Cfor2hinamufflefurnace witharampingrateof10°Cmin 1.Then,themufflefurnacetemperaturewasfurther increasedto550°Candsubjectedintocalcinationfor3htoformg-C3N4 phase.Theresultantyellow-coloredg-C3N4/SiO2 solidsediment(toplayer)wascarefullyseparatedand furthersubjectedwithammoniumbifluoride(4M)for12htoisolatetheSiO2 microspheres.Afterthoroughwashingwithwater,centrifugation,andultrasonication,ayellow powderofOR-g-C3N4 wasprocured.ThedeterminedbandgapforOR-g-C3N4 was 2.58eV,whichwasconsiderablyshorterthanthatof2.70eVofbulkg-C3N4.Furthermore,thepreparedOR-g-C3N4 facilitateschargeseparation,extendsthelifespanofphotoinducedcarriers,andexhibitsfivetimesmorephotocatalytichydrogenevolutionthan thatofbulkg-C3N4

3.2Hydrothermalmethod

Thehydrothermal(HT)processisessentiallytheleastexpensiveandmostcommon methodofproducingg-C3N4-basedNSs.Thisistheeasiestandmostreliablemethod ofproducingg-C3N4-basedternaryheterostructure,whichcanobtainhighpurityheterostructureNSs [40,41].Zhangetal. [42] highlightedaHTmethodatlowtemperature toproducecarbon-richg-C3N4 NSs,whichshowsenhancedphotocurrentandphotocatalyticactivity,becauseofitssuperiorabilityofelectrontransportandimprovedlifespanofphotoexcitedchargecarriers.Inatypicalprocedure,MA(5.5mmol)andglucose powder(16.5mmol)wereplacedinTeflon-linedautoclave(100mL)andthenfilledwith Milliporewaterupto60%oftheautoclavetotalvolume.Thereactionmixtureinthe autoclavewasstirredfor12hwiththemagneticstirrer,thentheautoclavewassealedwith thenickelfoamsubstrateandmaintainedat180°C.Afterheatingtothespecifiedtemperature,theautoclavewasnaturallycooledtoambientcondition.Thefinalmaterialwas thoroughlycleanedwithMilliporeH2Oand92.1%ethanoltoeliminateresidualcontaminants,andtheresultingyellowpowderwasdriedfor12hat60°Ctogettheultimate product.Thedetailedschematicviewisdepictedin Fig.1.3.Guoetal. [43] successfully synthesizedanovelg-C3N4 andBiVO4 (bismuthvanadate)composite(g-C3N4/BiVO4) byasimpleHTmethodforphotocatalyticdegradationreaction.Thegeneralreaction

Fig.1.3 (A)Thermalpolycondensationofmelamineprecursorandglucoseinwatersolution;(B)and (C)exhibitionoftheg-C3N4 onnickelfoam. (ReproducedwiththepermissionfromP.Zhang,X.Li,C. Shao,Y.Liu,Hydrothermalsynthesisofcarbon-richgraphiticcarbonnitridenanosheetsforphotoredox catalysis,J.Mater.Chem.A3(2015)3281–3284, https://doi.org/10.1039/C5TA00202H .)

protocolisasfollows:Atfirst,theg-C3N4 wassynthesizedfromMAmonomer.Briefly, DCN(2g)reactantwasplacedintoanaluminajarwithalid,thenannealedtoreacha temperatureof550°Catarateof2.3 °Cmin 1 andthencontinuedat550°Cforanother 2h.Theyellowproductwascomposedandgroundedintofineparticlesforfurtheruse. Second,g-C3N4/BiVO4 heterojunctionswerepreparedbyaHTroute.Inatypicalprocedure,g-C3N4 (0.3g)andNH4VO4 (0.1083g)wereplacedindistilledwater(30mL) andstirredvigorouslyfor3hfollowedbyahomogeneoussedimentation.Simultaneously,Bi(NO3)3 5H2O(0.449g)wasmixedin3mLofHNO3 (1molL 1)toattain aplainsolution.Theclearsolutionwasquicklytransferredtothesedimentationand immediatelymixedwellatroomtemperatureforanextra3h.AfteralteringthepHvalue (pH ¼ 8)usingsodiumhydroxidesolution,thereactioncontentwascarefullymovedinto anautoclave,whichwasannealedinanovenfor20hat160°C.Atlast,theresulting g-C3N4/BiVO4 wasgatheredandcleanednumeroustimesinethanolanddeionized wateranddesiccatedfor2hat100°C.Tianetal. [44] coupledg-C3N4 byBi2WO6 (g-C3N4/Bi2WO6)viaaHTmethod.Aninterfacewasformedbetweeng-C3N4 and

Bi2WO6 heterojunctions,whichwasconfirmedbyhigh-resolutiontransmissionelectron microscopy(HR-TEM).Further,moreintensiveabsorptionwithinthevisiblelight regionoccursinthecompositethanpristineBi2WO6,whichwasattributedby UV-visiblediffusereflection(DRSUV-visible)spectraresults.Theseoutstandingstructuralandspectralcharacteristicsprovidedtheg-C3N4/Bi2WO6 heterojunctionswith improvedphotocatalyticactivities.Furthermore,itshowedagreaterstrengthandlifetime duringsixconsecutivecycles.Zhuangetal. [45] developedaneasyandecofriendlyHT methodologyfortheone-steppreparationofg-C3N4 NSusingsodiumcitrate (Na3C6H5O7)andMA(C3H6N6)astheprecursors.Inbrief,Na3C6H5O7 (0.075g) wastakenalongwithwater(20mL)andC3H6N6 (0.22g)ina100-mLbeaker.After 5minofsonication,thecontentwasmovedintoaTeflon-linedautoclave(50mL) andannealedfor4hat200°C.Aftercompletionofthereaction,thebrown-yellowcoloredmaterialwascentrifugedat12,000rpmfor30min.Theattainedmaterialwas thendialyzedbesidedeionizedwatertoeliminatecontaminantsviacellulosedialysis membrane.Thesynthesizedg-C3N4 NSreleasedpowerfulfluorescencewithahighpercentagequantumyield(48.3%).Shietal. [46] fabricated n-typeg-C3N4 andmodified with p-typeInVO4 (indiumvanadate)toformanovelInVO4/g-C3N4 p-n heterojunctionphotocatalystforthecompetentphotocatalyticdegradationofRhB(rhodamineB). Inaclassicpreparationmethod,g-C3N4 wassynthesizedbypolycondensationofanMA monomer.Briefly,afewgramsofDCNpowderwaskeptinaporcelaincruciblewitha stopperandthenannealedto550°Cwitharampingrateof2.3 °Cmin 1,andthencontinuedfor2h.Theobtainedyellowproductwasgatheredandgroundintofineparticles forfutureuse.InVO4/g-C3N4 heterojunctionswereproducedbyHTmethodology.In aclassicprotocol,g-C3N4 (0.54g)andNaVO3 2H2O(1.58g)weretakenin30mLof deionizedwaterandthenstirredfor3hforsedimentation.Simultaneously,0.381gof indiumnitratepentahydrate(In(NO3)3 5H2O)wasmixedindilutenitricacid(3mL) toattainaplainsedimentation.Thereactantwastransferredquicklytothesedimentation andimmediatelywellmixedatambienttemperatureforextra3h.AftertuningthepH value(pH ¼ 4)withthehelpof1Msodiumhydroxidesolution,thecombinedsolution wasmovedintoanautoclaveandpyrolyzedinatemperature-controlledovenfor24hat 150°C.Finally,thesynthesizedInVO4/g-C3N4 compositewasgatheredandcleaned numeroustimeswithabsoluteethanolanddeionizedwateranddesiccatedfor2hat 100°C.

3.3Thermalexfoliationmethod

Generally,thermalexfoliation(TEXF)isachievedbysubjectingbulkg-C3N4 toheat, whichbreakstheweakVanderWaalsforcesofattractionbetweenthelayersensuing inexfoliation [47].Supremely,whileheating,H2 anchoredtothetri-s-triazineor s-triazineunitsreactswithO2,andwhenthisgasreleases,itproducesporesinthe

aggregateandformssheets [48].Asaresult,theg-C3N4 NSsarerelatedwithahigher surfaceareaandporesizes,thusincreasingtheporosityofthematerial.Xuetal. [49] studiedg-C3N4 NSswithsingleatomiclayerstructurebyafacilechemicalexfoliation (CEXF)method.Theas-synthesizedg-C3N4 NSsexhibited0.4nmofsingleatomic thicknessandmicrometersoflateralsize.Thesynthesisprocedureinvolvestwosteps: First,g-C3N4 wassynthesizedbyheatingDCNfor4hat550°Cinthemufflefurnace andaeratedatthesametemperatureforanother4h.Secondly,single-layerg-C3N4 (SLg-C3N4)NSswerepreparedbyCEXFmethod.Onegramofas-synthesized g-C3N4 wasmixedwith98%of10mLsulfuricacidinaglassbeakerandwell-mixed atambienttemperaturefor8h.Subsequently,thereactioncontentwasgentlytransferred intodeionizedwater(100mL)andultrasonicatedforexfoliation.Thesuspensiontemperaturewasincreasedquickly,andthecolorchangedfromyellowtopaleyellow. Theattainedsedimentwasthencentrifugedfor10minat3000rpmtoeliminate unreacted/unexfoliatedg-C3N4 afterthoroughwashingwithethanolanddeionized water,andatlastdriedinairovernightat80°C.Toremovestructuraldefects,thepreparedpale-yellowpowders(0.3g)wereplacedintoaglassround-bottomflaskcontaining 150mLofmethanolandrefluxedinaheatingmantlefor6hat65°C.Theg-C3N4 NSs wereobtainedaftercentrifugationanddrying.Whencomparedwithbulkg-C3N4,SL g-C3N4 NSsexhibitedsuperiorenhancementinphotogeneratedchargecarrier’stransfer andseparation.Consequently,thephotocatalyst’shydrogenproduction,contaminant decompositionactivities,andphotocurrentgenerationofSLg-C3N4 NSsarefarbetter thanthatofthebulkg-C3N4,illustratingthattheSLg-C3N4 NSswasapowerfulcandidateforphotosynthesisandphotocatalysis.

Thetransformationandtransportationofphotogeneratedcarriersduringthephotocatalyticprocessofg-C3N4 werecontrolledbytheefficacyoflowerchargeseparation andinadequatesurface-activesite.Asatop-downstrategy,theexfoliationoflayerstackedbulkg-C3N4 intoNSswasextensivelyacknowledgedasacompatiblepathway butisstillchallengingintermsofscalabilityandcleansetofsynthesis.ThisissuewasovercomebyCuietal. [50] usingafacileHTmethodinanNaClOsolution,whichcombined theeffectofalkalinemetalionintercalationandtheoxidativeexfoliationofbulkg-C3N4 (Fig.1.4).Highlyactiveg-C3N4 NSswereproducedinthelaboratorybyasimplemanner,anditcouldbeimmediatelyfar-extendedtoapilotscale(large-scaleproduction). TheHTmethodproducedaverticallyorientedpathwayfordirectelectrontransfer andresultantultrathing-C3N4 NSswithsignificantporosity(meso-,macro-,andmicropores)andexcellenthydrophilicity.Theg-C3N4 NSsexhibitedexcellentsurfaceareaof 170.7m2 g 1,narrowbandgapof2.55eV,highnumberofexposededges,andoutstandingelectrontransportcapability.Theseg-C3N4 NSshaveanaverageH2 evolutionrate ninetimeshigherthanthatofbulkg-C3N4.Moreover,theyconcludedthatthisgreen, simple,andscalablemethodtopreparelayeredg-C3N4 NSsprovidesanewapproachfor designingandfabricatingotherfunctional2Dobjects.Inthiswork,Lietal. [51]

Fig.1.4 SketchoftheaqueousNaClOHTexfoliationofbulkg-C3N4 intoaSL,molecularstructure modelsofbulkg-C3N4 (left)andexfoliatedg-C3N4 (right),andanticipatedmechanismforthe photocatalytichydrogenevolution. ReproducedwiththepermissionfromL.Cui,Y.Liu,X.Fang,C. Yin,S.Li,D.Sun,S.Kang,ScalableandCleanExfoliationofGraphiticCarbonNitrideinNaClOSolution: EnrichedSurfaceActiveSitesforEnhancedPhotocatalyticH2Evolution,GreenChem.20(2018)13541361. https://doi.10.1039/C7GC03704J

successfullypreparedultrathingraphene-likeg-C3N4 NSswithrichnanoporousenrichedandsuperiorhydrophilicpropertiesbyafacileandprominentTEXFofbulk g-C3N4.TounderstandtheeffectofTEXFconditionsonthetexture,surfacestate, andphotocatalyticactivityoftheresultingg-C3N4,aseriesofexfoliatedg-C3N4 NSs weresynthesizedbyoptimizingtheTEXFparameters,suchastimeandtemperature. Theextensivephysicochemicalcharacterizationresultsclearlyrevealedthattheexfoliationtemperatureledtoagreaternumberofnitrogenvacancies;thespecificsurfacearea alsoincreased,aswellasprolongedexfoliationtime,increaseddegreeofTEXF,higher carbonvacancies,andtheexpandedporevolumeintheendmaterials.Furthermore,the degreeofexfoliationandphotocatalyticefficiencyoftheresultantproductswere improvedbyincreasingTEXFtimeandtemperature.Sunreported [52] g-C3N4 NSs withhighphotoactivityproducedwiththehelpofisopropanol(IPA)inthesynthesis process.Theg-C3N4 NSsweresynthesizedbythefollowingtwosteps.First,bulk g-C3N4 waspreparedfromthepolycondensationofprecursor,MA.Inbrief,MA (3g)wascompletelyspreadintoIPA(30mL)ina50-mLporcelaincruciblewitha lid,andthenthereactantwascalcinedat550°Cfor3hinthemufflefurnaceataheating rateof5 °Cmin 1.Thematerialinthesilicacruciblewasgatheredafterbeingnaturally

cooleddowntoambienttemperatureandthenwasgroundtoapowderinamortarand pestle.Thepreparedmaterialwasbulkg-C3N4.Second,g-C3N4 NSswerepreparedbya TEXFprocessofbulkg-C3N4 insemiclosedsurroundings.Bulkg-C3N4 (0.1g)was takenwithIPL(10mL),andthenthesuspensionwasmovedintoa30-mLcruciblewith alidforTEXFprocess.Theoxidationtreatmentwascontinuedfor2hafterthefurnace temperaturewasraisedto550°Cwitharampingrateof5 °Cmin 1.Theproductfinally collectedwasg-C3N4 NSs.TheintroductionofIPAcausesverypowerfuloxidationin theexfoliationprocess,andthederivedg-C3N4 NSshasitsdistinctivepropertiesofa visiblelightwithawideabsorptionrange,highersurfacearea,andunevensurface.As aresult,theg-C3N4 NSshavegoodphotocatalyticactivityinthedegradationoforganic contaminants.Furthermore,thephotocatalyticH2 evolutionrateofg-C3N4 NSswas threetimesthatofg-C3N4 NSs,whichispreparedwithoutIPAusinganidentical method.Pattnaik [53] reportedexfoliatedg-C3N4 nanoparticles(NPs)byagreenpath. Degradationofanaqueoussolutionofciprofloxacin(CPN)byexposuretosolarradiation inthepresenceofg-C3N4 NPswasstudiedtoevaluatethephotocatalyticactivitiesofa semiconductorphotocatalyst.Thephotocatalyticactivitiesofg-C3N4 NPsenhanced afteritsexfoliation.Theimprovedbehaviorofphotocatalysisofexfoliatedg-C3N4 is theresultofitsefficientseparation,lowrearrangementofphotogeneratedchargecarriers, andhighspecificsurfacearea.Asawhole,theexfoliationmethoddeliversmoreadvantagessuchassimplechemicalsandequipment(lowcost),nosolvents,rapidandtimely performance,goodproductyield,andproducesvaluablestructuraldefectsintheresultant NSs.However,thisexfoliationmethodproducesvaluablestructuraldefectsintheresultantNSs.However,thisexfoliationmethodproducesaproductwithlowcrystallinity andcomparativelysmallersurfacearea.

3.4Solvothermalmethod

Solvothermal(ST)techniqueisdevelopedbasedontheHTmethod;themostimportant differenceofSTprocessfromthelatteristhatthepreparativeconditionisorganicsolvent ratherthanwater.Tianetal. [54] in-situsynthesizedanewg-C3N4/Bi2MoO6 heterojunctionswithvaryingcontentofBi2MoO6 NSsbyafacileSTmethod.Atypicalsynthesisprocedureofg-C3N4/Bi2MoO6 heterojunctionsisasfollows:Arequiredquantity ofsodiummolybdatedihydratewasdissolvedinethyleneglycol(10mL)andethanol (60mL)mixturetoformaclearsolution.Subsequently,fewgramsofg-C3N4 powder wasuniformlydispersedinthisclearsolutionviaultrasonicationfor5min,andthena solutionofethyleneglycol(10mL)withacertainamountofbismuthnitratepentahydratewasrapidlyadded.Aftervigorousstirring(30min),thesedimentwasgentlymoved toanautoclaveandkeptfor24hat160°C.Finally,thesuspensionwasgathered,washed numeroustimeswithH2Oandethanol,driedat60°Cinanoven,andgrindedforfuture use.Theobtainedg-C3N4/Bi2MoO6 heterojunctionshaveimprovedabsorptionwithin

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.